JP2005188559A - 電磁クラッチ - Google Patents

電磁クラッチ Download PDF

Info

Publication number
JP2005188559A
JP2005188559A JP2003427643A JP2003427643A JP2005188559A JP 2005188559 A JP2005188559 A JP 2005188559A JP 2003427643 A JP2003427643 A JP 2003427643A JP 2003427643 A JP2003427643 A JP 2003427643A JP 2005188559 A JP2005188559 A JP 2005188559A
Authority
JP
Japan
Prior art keywords
rotor
armature
electromagnetic clutch
permanent magnet
electromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003427643A
Other languages
English (en)
Inventor
Yoshitaka Nagano
佳孝 永野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2003427643A priority Critical patent/JP2005188559A/ja
Publication of JP2005188559A publication Critical patent/JP2005188559A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Braking Arrangements (AREA)

Abstract

【課題】動力の伝達経路等において回転伝達装置として利用される電磁方式のクラッチで永久磁石を用いた形式の電磁クラッチ(無励磁作動型)を、電磁コイル式(電磁コイルへの通電によりクラッチが係合)に比べて電磁クラッチ部の軸方向寸法が大きくならず、組立性(生産性)のよいロータ及び磁石の形状を採用した電磁クラッチを得ることである。
【解決手段】電磁クラッチは、回転軸1に固定されたロータ4と、ロータから弾性部材の皿ばね7により弾性的に離反するように設けられたアーマチュア5をロータ4のスリットに嵌合された永久磁石8の磁気でロータ4に吸着させるように設け、ロータ4の凹部に挿置された電磁コイル6を備え、ロータ4の内、外側リング4b、4a間を連結柱9で連結し、この連結柱の数を最小限の本数の3本としてクラッチ部Aの軸方向寸法を最小限に形成したものである。
【選択図】図1

Description

この発明は、動力伝達経路等において動力の伝達と遮断の切換えを電磁力を用いて制御自在とした電磁クラッチに関する。
2つの回転軸間の動力を伝達、遮断する手段であるクラッチは、適用される種々の装置、例えば車両等に適用した場合、走行中の動力の伝達を速やかに切換えることが要求されるため、制御ユニットからの制御信号によって動力の伝達と遮断を迅速に制御できることが望ましい。この要求を満たすクラッチとして、電磁クラッチ、あるいはクラッチの係合、遮断により動力を正逆回転の二方向へ伝達する二方向クラッチにそのクラッチの係合、遮断を制御する電磁クラッチとを一体化した電磁式二方向クラッチがある。
上記電磁クラッチ等については、電磁コイルを有し電流を通電しないときに電磁クラッチが係合して動力を伝達する無励磁作動型電磁クラッチと、電磁コイルに電流を流したときに電磁クラッチが係合する電磁コイル式のものとがある。無励磁作動型電磁クラッチは、電磁コイルの断線や電源が使用不能等の際に動力が伝達されないと安全上問題となるような場合に用いられ、一般に永久磁石によってクラッチの係合が行なわれる。
上記無励磁作動型電磁クラッチの一例として特許文献1に「Magnetic Clutch with stationary winding (固定巻線付き電磁クラッチ)」が開示されている。この公報による電磁クラッチは、中軸とその外側に中空軸を設け、中軸上に設けたアーマチュアを中空軸上に設けたロータと耐摩擦材を介して対向、接触するように設置し、中軸のフランジ材とアーマチュア間のばねでアーマチュアをロータから引き離すように付勢し、かつロータには強い永久磁石が設けられ、その磁力で通常はアーマチュアをロータにばね力以上の吸引力で吸着して摩擦接触させ、中軸から中空軸へ動力を伝達できるように構成されている。
そして、ロータには近接して電磁石が適宜固定部に固定して設けられており、クラッチを遮断したいときは、永久磁石の磁束の向きと逆向きに電磁石に磁束を発生させ、永久磁石の磁束を打消し、ばね力によりアーマチュアをロータから引き離してロータへの回転の伝達を遮断するようになっている。
一方、電磁式二方向クラッチの一例として、特許文献2にローラの係合により動力の伝達を行なうクラッチ部材と隣接して電磁石ユニットを組合わせた「回転伝達装置」が開示されている。この公報による電磁式二方向クラッチは、一方の軸に連結された内方部材と他方の軸に連結され内方部材の外側に配置された外輪との間に係合子であるローラをポケットに入れた保持器を挿置し、内方部材と外輪との対向面間に楔空間を形成するカム面を形成し、保持器と外輪又は内方部材間にローラを係合させないように中立位置に保持するための弾性部材を組込み、保持器端部にアーマチュアを軸方向に移動可能に取付け、アーマチュアを吸着させるための電磁石を組込んで構成されている。
前述した無励磁作動型電磁クラッチは、アーマチュアとロータ間の係合を弾性部材の力で引き離そうとする以上の永久磁石の吸引力で吸引している。又、前記電磁式二方向クラッチを無励磁作動型電磁クラッチとすることもできるが、その場合もアーマチュアとロータ間の吸引力は弾性部材より強くする必要がある。このため、永久磁石は強力な磁石が使用され、かつアーマチュアへの磁束が減少しないように相互の構造、形状が決められている。しかしながら、上記従来のいずれの形式の電磁クラッチも、アーマチュア、ロータ、永久磁石を含むクラッチ部の構成は、軸方向の寸法が大きく、かつ各部材の寸法精度を確保しなければ生産性が不十分であり、結局電磁クラッチ部の寸法が大きくなるという問題がある。
上記問題は、具体的には構造上2つの問題を含む。まず、一般的に磁束量は、磁束の流れを横切る方向の部材の断面積と、その部分の平均磁束密度の積であるから、漏れ磁束を無視すれば、磁束量は各構成部材のどの場所でも同じである。又、磁束量の上限は磁束密度が飽和する部分によって決定される。従って、電磁コイル式の電磁クラッチで電磁クラッチ部の寸法を小さくする場合、特定の部分のみが磁束密度が飽和しないようにする必要がある。このため、磁気回路構成部材であるロータ、アーマチュア、フィールドコイルの材料の磁気特性がほぼ同じ場合、各部の磁束密度が均一になるように磁束の流れを横切る方向の断面積の寸法を決定する。
例えば、図13に示すロータ4、アーマチュア5、フィールドコイル6a、ヨーク6bを含む磁気コイル6の磁気回路において、矢印f1 、f2 で示す部分の磁束密度が高くなるため、この場合はこの矢印部分によりロータのスリット部の軸寸法が決定される。一方、図13の(b)図に示す永久磁石式の電磁クラッチでは、永久磁石8の磁束はラジアル配向されているため、磁極は外径側から内径側に向い、永久磁石の磁束φ2 は永久磁石の磁極の断面積と永久磁石の表面平均磁束密度Br2 の積である。
ここで、対比的に図13の(a)図の電磁コイル式(永久磁石無し)のクラッチ部での磁束φ1 と等しいだけの磁束φ2 を上記電磁クラッチで発生させたとする。しかし、実際に使用される永久磁石として、希土類系焼結磁石の磁束密度Br2 は、パーミアンス係数が無限大としても、約1T、希土類系ボンド磁石では約0.6Tであり、実際にはパーミアンス係数が1〜2程度となるため、表面磁束密度はさらに低下する。永久磁石をスリットに挿入した場合のロータの材料の飽和磁束密度Br1 は、概ね1.5T程度であって、例えばBr2 を0.6〜1Tとした場合、φ2 =φ1 とするとロータの磁極部であるスリットの断面積は電磁コイル式に比べて1.5〜2.5(1.5÷1〜1.5=0.6)倍以上となる。
そこで、第1の問題として、各部の半径をほぼ等しいと考えれば、断面積は軸寸法に比例するので、図13に示す永久磁石式のクラッチのロータの軸寸法L2 は電磁コイル式の軸寸法L1 の1.5〜2.5倍となり、全体の軸寸法が長くなる。又、永久磁石はアーマチュアには直接接触しないようにアーマチュアとロータの接触面から隙間を有して固定されているため、この隙間分だけさらにL2 が長くなるという問題がある。
第2に、永久磁石式においては、ロータとフィールドコイルのギャップ(図14の(a)図中のg1 )を接近させることができず、全体の軸寸法がさらに大きくなるという問題がある。その理由は次の通りである。アーマチュアとロータ間にギャップがある場合、磁石から発生する磁束はアーマチュアだけでなく、電磁コイル側にも流れる。図14の(b)図に示すように、フィールドコイルとロータ間のギャップがg2 のように小さくなると、ロータとフィールドコイル間の磁気抵抗が下がり、フィールドコイル側へ流れる磁束が増加し(図14中の(a)図の点線から(b)図の点線に変化する部分)、その増加分だけアーマチュアに流れる磁束が減少する。
従って、アーマチュアとロータ間の吸引力は、図14の(c)図に示すような特性となり、フィールドコイルとロータのギャップをあまり小さくすると、アーマチュアとロータ間のギャップの増加に対し急激に吸引力が減少する。そのため、アーマチュアとロータ間のギャップ及び弾性部材を精度よく管理しなければ、電磁コイルの通電を遮断したときに、永久磁石の吸引力でアーマチュアを吸引することができなくなるため、量産性が悪く、ロータとフィールドコイル間のギャップを接近させることができなかった。
米国特許第3,055,470号公報 特開平11−336799号公報
この発明は、上記の種々の問題に留意して、動力の伝達経路等において回転伝達装置として利用される電磁方式のクラッチで永久磁石を用いた形式の電磁クラッチ(無励磁作動型)を電磁コイル式(電磁コイルへの通電によりクラッチが係合)に比べてクラッチ部の軸方向寸法が大きくならず、組立性(生産性)のよいロータ及び磁石の形状を採用した電磁クラッチ形式の回転伝達装置を提供することを課題とする。
この発明は、上記の課題を解決する手段として、回転軸間に回転を伝達するためのロータと、軸方向へのみ移動して回転の伝達をするようにロータに摩擦係合するアーマチュアと、このアーマチュアをロータに係合させるためロータに設けた永久磁石とアーマチュアの係合、遮断をするための電磁石とを備え、永久磁石を挿入するためロータに設けたスリットで分離される内、外側リング部材間を連結する連結柱を磁束密度、部材強度上必要で、かつ組立性上必要とされる総隙間量が最小となる最小本数を設けて成る電磁クラッチを採用したのである。
上記の構成としたこの発明の電磁クラッチは、回転軸と回転軸間での動力の伝達、遮断を行なう電磁クラッチの主要部の構造として、軸方向の電磁クラッチ部長さが最も短い合理的でコンパクト、かつ組立性(生産性)も最もよい構成のものが得られる。この場合、最も特徴的な構成は、ロータに永久磁石を取付けるため内、外側リングにロータを分割して形成し、かつ両リングを連結する連結柱が最小本数となるようにしたことである。この最小本数を採用する際の条件としてロータからアーマチュアへ流れる磁束密度及び両リングを連結する強度が十分であること、及び組立性上必要な総隙間量が最小となる条件を満たす必要がある。
このような条件を満足する連結柱の実際の本数は、他の種々の条件を総合して設定すると3本となり、これが最も合理的な本数である。他の条件とは、さらに本数によって決まる内、外側リングの相互の軸、軸周りの拘束度と、軸方向の連結柱の縦断面積が最小となるという条件である。このような条件を満足するようにクラッチ部の軸方向寸法を設定することによりクラッチ部は最小の軸方向長さとなり、合理的な構成でかつ強力、迅速なクラッチ作用が得られることとなる。
一方、上記課題を解決するもう1つの手段として、回転軸間に回転を伝達するためのロータと、軸方向へのみ移動して回転の伝達をするようにロータに摩擦係合するアーマチュアと、このアーマチュアをロータに係合させるためロータに設けた永久磁石と、アーマチュアの係合、遮断をするための電磁石とを備え、ロータの、電磁コイルのヨークに対向する面に凹部を設けて成る電磁クラッチとすることもできる。
このような構成の電磁クラッチとすることにより、第1の発明と同様に、回転軸と回転軸間での動力の伝達、遮断を行なう電磁クラッチの主要部の構造として、軸方向の電磁クラッチ部長さが最も短い合理的でコンパクト、かつ磁束の流れの良い構成のものが得られる。この場合、最も特徴的な構成は、電磁コイルのヨークに対向するロータの対向面に凹部を設け、フィールドコイルの端とロータ内面間のギャップは小さくするが、ヨークとロータ内面間の距離は凹部を設けるこにより大きくしてヨークとロータ間の磁気抵抗を大きくし、アーマチュアとロータ間にギャップがある場合にも永久磁石の磁束はフィールドコイル側へは流れ難く、アーマチュア側への磁束が減少しない。又、ロータに凹部を設けるため重量の軽減をすることにもなる。
なお、第1又は第2の発明のいずれかに記載の電磁クラッチにローラを係合子として有するローラクラッチを設け、ローラクラッチの内方部材と外方部材間の動力の伝達、遮断を電磁クラッチのロータとアーマチュア間の伝達、遮断により行なうようにした電磁式二方向クラッチとすることもできる。
このような電磁式二方向クラッチでは、電磁クラッチ部の軸方向寸法が最小に設計でき、従って合理的な配置、構成が可能となり、二方向クラッチに電磁クラッチの特性を併有することとなるため、機能性がさらに向上する。
第1、第2の発明の電磁クラッチのいずれもクラッチ部の構造において、軸方向寸法が最小となり、合理的でかつ十分な磁束密度をアーマチュアに及ぼし、コンパクトで経済的な電磁クラッチが得られるという利点がある。
以下、この発明の実施の形態について図面を参照して説明する。図1の(a)図は第1実施形態の回転伝達装置としての電磁クラッチの主要縦断面図である。この実施形態の電磁クラッチは、無励磁作動型電磁クラッチの一種であり、その基本原理構成は特許文献1に示されたものと同様であるが、図示の例では細部の構成は若干異なっている。1は回転動力を伝達する回転軸(入力軸)であり、2は回転ディスク状に形成された出力軸として動力を伝達する回転軸である。上記回転軸1と2の間に動力の伝達、遮断をするための電磁クラッチAが設けられており、この電磁クラッチAはロータ4、アーマチュア5、電磁コイル6を備えている。
ロータ4は回転軸1に一体に固定されており、図示のように、断面はコ字状に形成され、そのボス部の外側で最外周のフランジ部との間の凹部4iに対し電磁コイル6がロータ内面と所定の隙間を置いて挿置され、ロータ4の反対側面にはアーマチュア5がロータ4の外面に摩擦係合するように、従ってアーマチュア5と電磁コイル6とはロータ4を挟んで互いに対向して設置されている。ロータ4は、後述するように、外側リング4aと内側リング4bとを連結柱9で一体に連結されており、両リング間の溝(スリット)内に永久磁石8が挿置されている。
アーマチュア5は、磁性材でディスク状に形成され、出力軸である回転軸2のボス部に内孔を挿入し、ボス部に設けたスプライン又は突条片2aに嵌合され、回転軸2の軸方向には移動可能であるが、回転軸2とは一体に回転するように設けられている。又、ボス部の基部に設けられた、例えば皿ばね7のような弾性部材により通常はアーマチュア5は、ロータ4の外面に摩擦係合しないように押圧されている。なお、図1の(b)図に示すようにアーマチュア5の対向面と永久磁石8の外面とが直接接触しないように、永久磁石8の外面はロータ4の外面からわずかな隙間tができるように永久磁石8の位置が設定されている。
電磁コイル6は、フィールドコイル6aをヨーク6bで囲み、フィールドコイルに通電すると発生する磁束をヨーク6bの端面又は外周面を介してロータ、アーマチュアへ及ぼして電磁力を発生させる。この電磁コイル6は、この例では回転軸1を回転自在に支持する支持部材3に適宜固定手段(図示せず)により静止、固定されている。支持部材3は図示の例以外どんな構造、形状でもよい。電磁コイル6には、図示していないが、外部より電源ラインが接続され、制御回路の指令により通電、非通電が制御される。
図2〜図5に示すように、ロータ4は外側リング4aと内側リング4bとが連結柱9により複数箇所(図示の例では3箇所)において一体に連結されている。連結柱9は外側リング4a、内側リング4bと同一の磁性材料が用いられ、一体物として製作される。この連結柱9はロータ4の外側、内側にリング状に形成された外側、内側リング4a、4bが互いに分離しないようにして永久磁石8を両リング間の溝(スリット)に装着するために設けられるが、例えば図7に示す従来の一般的な(a)電磁コイル式、(b)永久磁石式のどちらの場合もリング部材と同一材で形成される。
図7にはそれぞれの場合の磁束の流れを示している。(a)では電磁コイル6による磁束fa、fb、fb’、(b)では永久磁石8による磁束fa、fb、fb’を示している。なお、ロータ4の外側フランジ部と中央の突出したボス部間に挿入される電磁コイル6との内径側及び外径側のそれぞれの隙間は磁束fbが流れ易い適宜のわずかな寸法とされる。
又、ロータ4は、その一側方に凹部4iが形成されているから、連結柱9で外側、内側リング4a、4bが連結されている以外の部分は、溝4rで両リング4a、4bは互いに分離されている。この溝4rに嵌合される永久磁石8は、平扁なドーナツ状の円形リング状として形成され、連結柱9に対応する位置のみ部分的に片面に浅い凹部8sがそれぞれ形成されている。このロータ4の中心孔1rに回転軸1がスプライン又はキーなどを用いて一体に固定される。
なお、連結柱9の本数は図2〜図5では、連結柱9の両脇に設けられる隙間9a、9aの本数分の総隙間量が最小、かつ永久磁石8の軸寸法が最小となる3本が最もスペース効率がよいとして図示している。その理由を以下説明する。即ち、前述したように、連結柱9は、外側、内側リング4a、4bと同一の磁性材料が用いられているから、永久磁石の磁束はロータの両リング4a、4bを介してアーマチュア5へ流れるが、同時に連結柱9にも流れ、アーマチュア5を流れる磁束がその分だけ減少する。そのため、連結柱の総断面積は極力少ない方がよい。
連結柱9の軸方向の断面積は、外側、内側両リング4a、4bを互いに保持する強度を保持するのに必要な最小限以上の断面積とする必要がある。連結柱の強度は、各連結柱の断面積×柱本数が必要な強度以上であればよく、その総断面積を何本の柱本数に分割しても、本数を何本に選んだかという点の影響は比較的小さく、一般には寸法管理等の容易な4本が選ばれることが多い。例えば、本出願人の先願である特願2002−356988号では、4本の連結柱を設けた例が示されている。
以上は、連結柱の磁束と強度についての影響であるが、さらに以下の条件も考慮する必要がある。永久磁石8を溝(スリット)4rに挿入する際に、永久磁石8の溝4rに対する組立性、即ち生産性を考慮すると、一般に連結柱9と永久磁石8との溝4rに対する干渉を避けるために、ある程度の隙間9a(=d)を設ける必要がある。従って、このような隙間9aを設ければ、総隙間量=柱本数×d×2は連結柱の本数に比例して増加し、このため永久磁石の磁極総断面積が連結柱を何本に分割したとしても全て等しいとすると、連結柱を3本としたときに結果的に磁石の回転軸方向の寸法も最小となる。その理由は次の通りである。
まず、連結柱の本数の増減に対する外側、内側リング4a、4bの相互の自由度の拘束状態を考える。図8に連結柱9の数を1〜4に変化させたときのロータ4の模式図を示し、対応する自由度の拘束数の変化を次の表1に示す。
Figure 2005188559
上記表では、連結柱を支点と見做した場合に、連結柱9と溝(スリット)4rによって分割されたロータ4の外側リング4aに対する内側リング4bの自由度の拘束数を表にしたものである。例えば、図8の(a)図で連結柱9を1とした場合、この連結柱を支点として取扱うものとすると、支点を中心に内側リング4bは外側リング4aに対しX軸、Z軸のいずれの方向にも可動であり、拘束されないし、Y軸の周りにも支点を中心として回転することができる。連結柱9を2とすると、上下の連結柱の支点を中心としてY軸周りのみ回転できる。本数が3以上となれば全ての軸、軸周りの拘束を受ける。従って、拘束数は表1に示す通りとなる。
次に、全ての連結柱の軸方向総断面積をロータの外側、内側リングをそれぞれ互いに支える強度を保つのに最小限必要な面積として連結柱を1〜4本に分割した場合に、それぞれの場合の軸方向総断面積を比較すると、連結柱の本数が3以上の場合は全ての自由度が拘束されるため、全ての連結柱の軸方向断面積の総和がほぼ等しくなる。従って、3以上の本数に分割しても強度上はあまり大きく変化しないこととなる。反対に、本数を3以下の1又は2とすると、この場合は拘束されない自由度があるため、強度上の理由から柱の断面積を広げたとすると拘束されない自由点まで拘束しようとする。
このため、軸方向の連結柱の総断面積は本数が3のときより却って大きくなってしまう。従って、本数が3以上の方が連結柱の総断面積は最も少なく、その中で総隙間量の最も少ない3本が永久磁石を挿入する磁石スペースを最も効率的に使用でき、結果的に永久磁石の幅寸法が最小となるのである。以上の種々の条件を総合的に判断すると連結柱の本数を3とするのが最適であることが分る。但し、上記各種条件のうち最適本数3を決定するのに重要なのは、連結柱の強度、磁束への影響、及び隙間設定の条件である。
以上のように構成したこの実施形態の回転伝達装置としての電磁クラッチは、無励磁作動電磁クラッチとして作動するものである。電磁コイル6への通電を遮断した状態では永久磁石8の磁束は、図1の(b)図に示すように、その一端から出てアーマチュア5へ磁束faとして流れ、かつ電磁コイル6のヨーク6bへも磁束fbとして流れる。このとき、磁束faによるアーマチュア5のロータ4への吸着力は弾性部材の皿ばね7のばね力でアーマチュア5をロータ4から引き離そうとする弾性力(離反力)より大きく設定されている。従って、アーマチュア5はロータ4の外面に摩擦係合してロータ4と一緒に回転し、回転軸1と2の間で回転動力が伝達される。
電磁コイル6に電流を通電すると、図6の(a)図に示すようにヨーク6bには永久磁石による磁束fbと逆向きの磁束fcが生じ(逆向きとなるようにフィールドコイル6aに通電する)、永久磁石8による磁束faも磁束fcにより打消されて減少した磁束fa’となり、アーマチュア5の吸着力が小さくなる。アーマチュア5は軸方向へ移動可能であって、アーマチュア5をロータ4から引き離すよう弾性部材の皿ばね7が作用しているから、アーマチュアに作用する吸着力が弾性部材のばね力より小さくなると、アーマチュア5は軸方向に移動してロータ4から離れ、電磁クラッチの係合は解除される。電磁コイル6への通電を遮断すると、最初の状態に戻り、アーマチュア5とロータ4間は永久磁石の磁力でトルク伝達を行なうことができる。
図1〜図5に示されている永久磁石は、リング磁石の一部に溝を設けたものを用いた。永久磁石は、希土類の焼結磁石、又はボンド磁石等が使用されるが、ボンド磁石はある程度柔軟な形状ができるので上記リング磁石に用いられている。焼結型の磁石は複雑な形状とすることができないので、図6の(b)図に示すように溝に合せて分割(8’)するのが一般的である。又、磁石の形状が大きくなる場合は、永久磁石8”のように3つに分割したそれぞれをさらに細分割した形状とする場合もある。
図9に第1実施形態の回転伝達装置としての電磁クラッチのクラッチ部Aの一部変形例A’の部分断面図を示す。この変形例A’は、ロータ4の、電磁コイル6のヨーク6b端面に対向する部分に凹部4Tを形成した例である。この変形例A’は、第1実施形態ではロータ4と電磁コイル6の対向面間のギャップを所定距離以下に接近させることができないという不都合を解消し、クラッチ部A’の軸方向寸法を小さくすることをねらいとしている。図示のように、ロータ4の軸方向厚みを、外側リング4aの内周縁4PRと内側リング4bの外周縁4PRをフィールドコイル6aに対して極く接近するように突出させ、連結柱9部分では突出した内、外周縁4PRを上下連続一体に形成している。
従って、ロータ4の内面が電磁コイル6のヨーク6b端面に対向する位置では厚みを厚くすることなく、これによりロータ4の内面に凹部4T、4Tのリング状面を形成している。その他の構成については第1実施形態と同じであり、第1実施形態の構成がそのまま適用される。このような構成とした理由は次の通りである。即ち、図10の(a)図に示すように、ロータ4の内面と外面間の厚みを全体に厚くして電磁コイル6との対向面間のギャップをg2 に小さくすると、永久磁石8による磁束は、電磁コイル6のヨーク6bの端面を通る流れとして磁束fbに加えて磁束fb’が生じ、その分アーマチュア5への磁束faが減少する。
永久磁石8の寸法を大きくして磁束を増大させたい場合に、並行してロータ4の厚みを厚くすることなく、かつ電磁コイル6とのギャップをg2 のまま小さく保持するためには、ロータ4の内面をヨーク6bの端面と対向する位置で凹部4T、4Tとして形成すれば、ヨーク6bの端面とロータ4の内面凹部4T間のギャップ量が増大するため磁気抵抗が増加し、従って図7の(a)図中の磁束fb’が生じなくなる。これによってロータの重量を減少させると共に、クラッチ部A’の軸方向の寸法を小さくすることができることとなる。なお、この変形例によるロータ4の内面に凹部を設けるという構成は第1実施形態に設けることを前提として説明したが、第1実施形態と異なる種々の電磁クラッチに対し独立に採用してもよい。
図11、図12に第2実施形態の回転伝達装置としての電磁クラッチの構成を示す。この電磁クラッチは、ローラを係合子とするローラクラッチBに電磁クラッチユニットCを組込んだ電磁式二方向クラッチである。電磁クラッチユニットCでは、第1実施形態とその変形例によるクラッチ部の軸方向寸法を小さくするための構成要素がそれぞれ採用されており、かつアーマチュアを介してローラクラッチBの係合、遮断を行なうように構成されている。なお、第1実施形態とその変形例と同じ操作、機能については同じ符号を付して説明を省略し、異なる部分及びローラクラッチBについて主として説明する。
図11の主要断面図に示すように、電磁クラッチユニットCは、第1実施形態、その変形例と同様に、ロータ4、アーマチュア5、電磁コイル6を備えているが、この例では後述するローラクラッチBに連結される回転軸に対してロータ4、電磁コイル6は固定されておらず、回転軸に対してはそれぞれ相対回転できる。但し、電磁コイル6は支持部材3’により図示しない静止部材に対し固定されている。又、ロータ4はローラクラッチBの外方部材(外輪)12に一体に固定され、弾性部材としての皿ばね7はアーマチュア5のロータ4側の側面に設けられ、アーマチュア5をロータ4から引き離すよう弾性力を作用させている。
ローラクラッチBは、特許文献2に記載されているものと基本構成は同じであるが、以下簡単にその構成、作用を説明する。このローラクラッチBは、内方部材(内輪)10と外方部材(外輪)12間でローラ11を介して回転を伝達するクラッチであり、ローラ11は保持器13に設けられた複数(図示の例では11)のポケットに挿入、保持され、保持器13は内方部材10の端の保持溝内に端部材が挿入されて軸方向には移動しないが、回転方向には内方部材10に対し回転し得るように設けられている。内方部材10の外周にはそれぞれのローラ11に対応する所定角度範囲内で内周の接線方向に延びる平面状のカム面と、このカム面と外方部材12の内周面との間に形成されている楔空間内でローラ11が移動することにより内方部材10と外方部材12の両部材が係合又は遮断されるようになっている。
この場合、図12の(b)図に示すように、ローラ11がカム面の中央位置にあれば外方部材12の内周面とのわずかな隙間により両部材は係合せず(遮断)、カム面中央からローラ11がいずれかの方向に移動して楔空間の狭い方へ寄るとローラ11が内方部材10のカム面と外方部材12の内周面間に挟まれて両部材が係合し、内方部材10と外方部材12間で回転が伝達される。又、保持器13の上記内方部材10の保持溝と反対側面には、円形状のばね溝にリング状のスイッチばね14が取付けられ、このスイッチばね14の2本の先端の角(ツノ)14a、14aは上記ばね溝及び保持器13の一部に形成した切欠き15に挿入され、半径方向の外方へ突出している。
又、保持器13には、そのばね溝側の端の少なくとも2箇所に突出片13Rが設けられ、この突出片13Rはアーマチュア5の円形板の対応する位置に設けた孔13Hに挿入されている。従って、アーマチュア5は保持器13に対して回転方向には一体に回転し、軸方向への移動は保持器13に対し自在である。なお、アーマチュア5は軸方向及び回転方向に移動、回転自在とするため内方部材10のばね溝側の突出端には、図1の(b)図に示す突条2aは設けられておらず、内方部材10に対し遊嵌状に嵌合されている。又、内方部材10の中心穴1rには回転軸1が挿入され、スプライン嵌合されて内方部材10と一体に回転するが、簡略化のため回転軸1は図示省略している。
以上の構成とした第2実施形態の回転伝達装置としての電磁クラッチは、第1実施形態と同様に無励磁作動型の電磁式二方向クラッチである。前述したように、電磁クラッチユニットCは非通電時にアーマチュア5がロータ4に摩擦係合し、通電時にはアーマチュア5はロータ4と係合が遮断される。但し、この場合、アーマチュア5とロータ4の外面間のギャップが所定値(g)以上のギャップ量であれば永久磁石8によるアーマチュア5に対する吸着力は弾性部材による離反力以下となるため及ばなくなる。
又、上記保持器13の位相ずれによりローラ11はカム面と外方部材12内周面との間の楔空間の一方に片寄り、ローラ11は内方部材10ト外方部材12の両者に係合し、内方部材10からの回転が外方部材12に伝達される。
一方、電磁クラッチユニットCへ通電すると電磁コイル6において永久磁石8の磁束を打消す方向の磁束を発生させることにより永久磁石8と電磁コイル6との磁束の差による吸引力はギャップ0であっても弾性部材の離反力より小さくなり、このためアーマチュア5はロータ4からギャップg’の位置に引き離され、電磁クラッチユニットCの係合は遮断される。そして、このまま電磁コイル6への通電を遮断して電磁コイル6の磁束を0としても、アーマチュア5とロータ4間にはギャップg’があるため、g’>gの状態ではFm<FK となり、アーマチュア5は永久磁石の磁力だけではロータ4に吸着することができない。よって、電磁コイル6への通電を遮断したままでも電磁クラッチユニットCの遮断状態は保持される。
次に、再びローラクラッチBを係合したい場合は、電磁コイル6へ通電し、かつこの場合は永久磁石8の磁束と同方向の磁束を生じるように上記とは反対方向へ電流を流すと、永久磁石8と電磁コイル6の合わせた吸引力FM はギャップがg’と大きくても弾性部材の離反力より大きくなる。このため、アーマチュア5をロータ4に吸着することができる。そして、吸着後は電磁コイル6への通電を遮断してもアーマチュア5とローラ4の間にはギャップがないためFm>FK となり、アーマチュア5は永久磁石の磁力だけでロータ4に摩擦係合され続ける。このため、電磁コイル6への通電を維持しなくても電磁クラッチユニットCの係合が保持される。吸引力Fmと、弾性部材の皿ばね7による離反力FK との関係がFm<FK 、ギャップ量がg以下であればFm>FK となるように永久磁石8の磁力を設定するものとする。
上記のように設定された電磁クラッチユニットCは、非通電時にアーマチュア5がロータ4に摩擦係合し、この状態で回転軸1が回転して内方部材10が回転すると、その回転はローラ11に伝達されるが、ローラ11は初期にはカム面の中央に位置しているため、外方部材12へは回転は直ちには伝達されない。又、保持器13は外方部材12にアーマチュア5、ロータ4を介して回転方向には固定されているから、外方部材12が静止していれば保持器13も回転に対しては静止している。しかし、内方部材10が回転を始めた直後に内方部材10に対し保持器13が内方部材10の回転方向と反対方向に相対的に極くわずかに位相がずれ、これにより保持器13の切欠き15に挿入されていたスイッチばねの2つの角(ツノ)14aの一方が押されて縮径する。
このため保持器13に保持されているローラ11も内方部材10の回転方向と反対方向に位相がずれて外方部材12との間の楔空間の狭い方へ進み、両部材に対してローラ11が係合し、これにより内方部材10の回転が外方部材12へ伝達され、外方部材12も回転を始める。しかし、電磁コイル6へ通電をすると、前述した第1実施形態又はその変形例と同様に、アーマチュア5のロータ4に対する摩擦係合が遮断されると、ロータ4と保持器13との係合が遮断される。このため、外方部材12の回転の追従が断たれ、スイッチばね14が拡径してローラ11をカム面の中央に戻し、これにより内方部材10から外方部材12へ回転は伝達されなくなる。
上記第2実施形態の変形例として、第2実施形態における永久磁石8の磁力Fmと弾性部材の離反力FK の関係をギャップ量gがどんな値(但し、弾性部材によりアーマチュアが移動し得る距離範囲内で)であってもFm>FK とすることもできる。この場合、電磁コイル6への通電を遮断した状態では直ちにアーマチュア5とロータ4とが摩擦係合し、内方部材10と外方部材12に回転数差があればローラクラッチBは係合状態となる。このような電磁クラッチユニットCを空転状態とするには、永久磁石8の磁束を打消す方向の磁束でかつ永久磁石による吸引力が少なくとも弾性部材による離反力以下に打消された状態となる程の磁束強度を発生させるように電磁コイル6に電流を流す必要がある。
以上のように、ギャップ量に拘らずFm>FK とすると、空転状態を確保するには電磁コイル6へ電流を流し続ける必要があるが、第2実施形態の場合と異なり、ギャップ量に拘らず非通電とすれば必ず電磁クラッチユニットC、ローラクラッチBを係合状態とすることができる。従って、このFm>FK とする変形例は電磁コイル6の配線が断線したときや駆動電源が故障又は電圧低下した最に、安全上上記クラッチを必ず係合させる必要がある場合、あるいは望ましい場合に適合する。
この発明の回転伝達装置としての電磁クラッチは、軸方向のクラッチ部寸法を最小限に構成したものであり、従って車両等の動力伝達経路等における動力の伝達と遮断の切換えを必要とする構成部に広く利用できる。
第1実施形態の電磁クラッチの(a)主要断面図、(b)部分断面図 図1(a)の矢視II−IIの部分断面側面図 図2の矢視III−IIIの部分断面図 ロータ及び永久磁石の分解斜視図 ロータの側面図 クラッチ部の(a)作用説明図、(b)永久磁石の変形例の斜視図 従来の一般的な電磁クラッチの(a)電磁コイル式、(b)永久磁石式の例を示す模式図 連結柱の本数によるロータリングの拘束条件を説明する図 第1実施形態のクラッチ部の変形例を示す(a)部分断面図、(b)(a)図中の矢視B−Bの部分断面図 同上変形例の(a)対比例の作用の説明図、(b)本例の作用の説明図 第2実施形態の電磁クラッチの(a)主要断面図、(b)作用の説明図 図11(a)の(a)矢視XIa−XIaの断面図、(b)矢視XIb−XIbの部分断面図 従来例の電磁式のクラッチの(a)電磁コイルクラッチ、(b)永久磁石による無励磁作動型電磁クラッチの説明図 従来例の無励磁作動型電磁クラッチの(a)ギャップg1 、(b)ギャップg2 の場合の作用の説明図
符号の説明
1 回転軸(入力軸)
2 回転軸(出力軸)
3 支持部材
4 ロータ
5 アーマチュア
6 電磁コイル
7 皿ばね
8 永久磁石
9 連結柱
A 電磁クラッチ

Claims (10)

  1. 回転軸間に回転を伝達するためのロータと、軸方向へのみ移動して回転の伝達をするようにロータに摩擦係合するアーマチュアと、このアーマチュアをロータに係合させるためロータに設けた永久磁石とアーマチュアの係合、遮断をするための電磁石とを備え、永久磁石を挿入するためロータに設けたスリットで分離される内、外側リング部材間を連結する連結柱を磁束密度、部材強度上必要で、かつ組立性上必要とされる総隙間量が最小となる最小本数を設けて成る電磁クラッチ。
  2. 前記連結柱の最小本数を、さらに本数によって決まる内、外側リングの相互の軸及び軸周りの拘束度と軸方向柱の総断面積が最小となる条件下で設定したことを特徴とする請求項1に記載の電磁クラッチ。
  3. 前記連結柱の最小本数を3本としたことを特徴とする請求項1又は2に記載の電磁クラッチ。
  4. 回転軸間に回転を伝達するためのロータと、軸方向へのみ移動して回転の伝達をするようにロータに摩擦係合するアーマチュアと、このアーマチュアをロータに係合させるためロータに設けた永久磁石と、アーマチュアの係合、遮断をするための電磁石とを備え、ロータの、電磁コイルのヨークに対向する面に凹部を設けて成る電磁クラッチ。
  5. 前記最小本数の連結柱を設けると共に、ロータの、電磁石のヨークに対向する面に凹部を設けたことを特徴とする請求項1乃至3のいずれかに記載の電磁クラッチ。
  6. 前記アーマチュアをロータから離反する方向に作用する弾性部材をアーマチュアに設け、電磁クラッチが電磁コイルへの通電を遮断することによりアーマチュアをロータに摩擦係合させるように永久磁石の磁束密度を設定したことを特徴とする請求項1乃至5のいずれかに記載の電磁クラッチ。
  7. 前記電磁コイルへの通電をすることにより永久磁石の磁束を打消す方向に電磁コイルによる磁束を発生させるように電磁コイルを設けたことを特徴とする請求項6に記載の電磁クラッチ。
  8. 前記弾性部材の弾性力FK に対し永久磁石の磁力Fmを、ロータと永久磁石間の隙間が所定量以下のギャップ量ではFm>FK 、所定量以上のギャップではFm<FK となるように永久磁石の磁力Fmを設定したことを特徴とする請求項6又は7に記載の電磁クラッチ。
  9. 前記永久磁石の磁力Fmをロータと永久磁石間の隙間が所定範囲内である限り、そのギャップ量の如何に拘らず弾性部材の弾性力FK に対しFm>FK となるように設定したことを特徴とする請求項6又は7に記載の電磁クラッチ。
  10. 前記請求項1乃至9のいずれかに記載の電磁クラッチにローラを係合子として有するローラクラッチを設け、ローラクラッチの内方部材と外方部材間の動力の伝達、遮断を電磁クラッチのロータとアーマチュア間の伝達、遮断により行なうようにした電磁式二方向クラッチ。
JP2003427643A 2003-12-24 2003-12-24 電磁クラッチ Pending JP2005188559A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003427643A JP2005188559A (ja) 2003-12-24 2003-12-24 電磁クラッチ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003427643A JP2005188559A (ja) 2003-12-24 2003-12-24 電磁クラッチ

Publications (1)

Publication Number Publication Date
JP2005188559A true JP2005188559A (ja) 2005-07-14

Family

ID=34786857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003427643A Pending JP2005188559A (ja) 2003-12-24 2003-12-24 電磁クラッチ

Country Status (1)

Country Link
JP (1) JP2005188559A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008111506A (ja) * 2006-10-31 2008-05-15 Shinko Electric Co Ltd 動力伝達装置、クラッチ・ブレーキ装置、クラッチ装置及びブレーキ装置
JP2010106663A (ja) * 2008-10-28 2010-05-13 Hitachi Automotive Systems Ltd 自動車用ウォータポンプ
JP2010230018A (ja) * 2009-03-25 2010-10-14 Ogura Clutch Co Ltd 電磁クラッチおよびその製造方法
WO2013060008A1 (zh) * 2011-10-27 2013-05-02 龙口中宇机械有限公司 电磁风扇离合器传动盘制造方法、模具及制造的传动盘
CN105570341A (zh) * 2015-04-17 2016-05-11 盖茨胜地汽车水泵产品(烟台)有限责任公司 电磁离合器
WO2016114230A1 (ja) * 2015-01-13 2016-07-21 シンフォニアテクノロジー株式会社 動力伝達装置
KR20190062365A (ko) * 2019-05-30 2019-06-05 주식회사 카펙발레오 복합 토크 컨버터
KR102060964B1 (ko) * 2017-08-08 2019-12-31 주식회사 카펙발레오 복합 토크 컨버터

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58181029U (ja) * 1982-05-27 1983-12-03 三菱電機株式会社 電磁連結装置
JPS5937439U (ja) * 1982-09-03 1984-03-09 株式会社デンソー 電磁スプリングクラツチ
JPH0218935U (ja) * 1988-07-26 1990-02-08
JPH03320A (ja) * 1989-02-04 1991-01-07 Rover Group Plc:The たわみ継手
JPH07197965A (ja) * 1993-12-28 1995-08-01 Shinko Electric Co Ltd 無励磁作動型電磁ブレ−キ
JPH1019064A (ja) * 1996-06-28 1998-01-20 Shinko Electric Co Ltd 無励磁作動型電磁クラッチ/ブレーキ
JPH11336799A (ja) * 1998-05-25 1999-12-07 Ntn Corp 回転伝達装置
JP2000097267A (ja) * 1998-09-21 2000-04-04 Shinko Electric Co Ltd 永久磁石方式無励磁作動形電磁ブレーキのアーマチュア構造
JP2000192996A (ja) * 1998-12-25 2000-07-11 Otsubo Seisakusho:Kk 磁気吸引式連結装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58181029U (ja) * 1982-05-27 1983-12-03 三菱電機株式会社 電磁連結装置
JPS5937439U (ja) * 1982-09-03 1984-03-09 株式会社デンソー 電磁スプリングクラツチ
JPH0218935U (ja) * 1988-07-26 1990-02-08
JPH03320A (ja) * 1989-02-04 1991-01-07 Rover Group Plc:The たわみ継手
JPH07197965A (ja) * 1993-12-28 1995-08-01 Shinko Electric Co Ltd 無励磁作動型電磁ブレ−キ
JPH1019064A (ja) * 1996-06-28 1998-01-20 Shinko Electric Co Ltd 無励磁作動型電磁クラッチ/ブレーキ
JPH11336799A (ja) * 1998-05-25 1999-12-07 Ntn Corp 回転伝達装置
JP2000097267A (ja) * 1998-09-21 2000-04-04 Shinko Electric Co Ltd 永久磁石方式無励磁作動形電磁ブレーキのアーマチュア構造
JP2000192996A (ja) * 1998-12-25 2000-07-11 Otsubo Seisakusho:Kk 磁気吸引式連結装置

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008111506A (ja) * 2006-10-31 2008-05-15 Shinko Electric Co Ltd 動力伝達装置、クラッチ・ブレーキ装置、クラッチ装置及びブレーキ装置
JP2010106663A (ja) * 2008-10-28 2010-05-13 Hitachi Automotive Systems Ltd 自動車用ウォータポンプ
JP2010230018A (ja) * 2009-03-25 2010-10-14 Ogura Clutch Co Ltd 電磁クラッチおよびその製造方法
EA029798B1 (ru) * 2011-10-27 2018-05-31 Лункоу Чжунюй Машинери Ко., Лтд Способ и оправка для производства ведущего диска электромагнитной муфты вентилятора и полученный ведущий диск
WO2013060008A1 (zh) * 2011-10-27 2013-05-02 龙口中宇机械有限公司 电磁风扇离合器传动盘制造方法、模具及制造的传动盘
CN107208711B (zh) * 2015-01-13 2019-06-07 昕芙旎雅有限公司 动力传递装置
WO2016114230A1 (ja) * 2015-01-13 2016-07-21 シンフォニアテクノロジー株式会社 動力伝達装置
JP2016130539A (ja) * 2015-01-13 2016-07-21 シンフォニアテクノロジー株式会社 動力伝達装置
CN107208711A (zh) * 2015-01-13 2017-09-26 昕芙旎雅有限公司 动力传递装置
US10325709B2 (en) 2015-01-13 2019-06-18 Sinfonia Technology Co., Ltd. Power transmission device
CN105605121B (zh) * 2015-04-17 2017-11-24 盖茨胜地汽车水泵产品(烟台)有限责任公司 电磁离合器
CN105605121A (zh) * 2015-04-17 2016-05-25 盖茨胜地汽车水泵产品(烟台)有限责任公司 电磁离合器
CN105570341A (zh) * 2015-04-17 2016-05-11 盖茨胜地汽车水泵产品(烟台)有限责任公司 电磁离合器
KR102060964B1 (ko) * 2017-08-08 2019-12-31 주식회사 카펙발레오 복합 토크 컨버터
KR20190062365A (ko) * 2019-05-30 2019-06-05 주식회사 카펙발레오 복합 토크 컨버터
KR102038457B1 (ko) 2019-05-30 2019-10-30 주식회사 카펙발레오 복합 토크 컨버터

Similar Documents

Publication Publication Date Title
EP1577193B1 (en) Steer-by-wire steering system with solenoid clutch
US6257386B1 (en) Power cut/connect device
EP2669542B1 (en) Electromagnetic clutch
JP2005188559A (ja) 電磁クラッチ
JP4949887B2 (ja) ドグクラッチアクチュエータ
JP2009156283A (ja) 回転伝達装置
US10132370B2 (en) Non-excitation operative brake and motor with non-excitation operative brake
JP2018163829A (ja) 回転型操作装置および入力装置
JP6402057B2 (ja) 電磁クラッチ
JP2006283955A (ja) 可変イナーシャ装置
JP2009008172A (ja) 回転伝達装置
JP2007187249A (ja) 回転伝達装置
US20230213075A1 (en) Electromagnetic braking device
JP3057320B1 (ja) 磁気吸引式連結装置
JP2007205519A (ja) 回転伝達装置
JPS6028747A (ja) ブレ−キ付電動機
JP6746862B2 (ja) 回転方向切換装置
JP2008144949A (ja) 回転伝達装置
JP2017133581A (ja) 断続装置
JP2009144737A (ja) 回転伝達装置
JP2011220405A (ja) 係合装置
JP2522125Y2 (ja) 電磁連結装置
JP2009008169A (ja) 回転伝達装置
JP2005233343A (ja) 回転伝達装置
JP2007205515A (ja) 回転伝達装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20061026

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A977 Report on retrieval

Effective date: 20091126

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A02 Decision of refusal

Effective date: 20100413

Free format text: JAPANESE INTERMEDIATE CODE: A02