JP2005184896A - 圧電トランスの駆動回路 - Google Patents

圧電トランスの駆動回路 Download PDF

Info

Publication number
JP2005184896A
JP2005184896A JP2003418462A JP2003418462A JP2005184896A JP 2005184896 A JP2005184896 A JP 2005184896A JP 2003418462 A JP2003418462 A JP 2003418462A JP 2003418462 A JP2003418462 A JP 2003418462A JP 2005184896 A JP2005184896 A JP 2005184896A
Authority
JP
Japan
Prior art keywords
piezoelectric transformer
voltage
detection electrode
voltage detection
drive circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003418462A
Other languages
English (en)
Inventor
Hiroaki Onitsuka
博明 鬼束
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tamura Corp
Original Assignee
Tamura Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamura Corp filed Critical Tamura Corp
Priority to JP2003418462A priority Critical patent/JP2005184896A/ja
Publication of JP2005184896A publication Critical patent/JP2005184896A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

【課題】 圧電トランスの振動を阻害せずに自励発振できる構成としながらも、製造工程及び構造の複雑化を抑える。
【解決手段】 駆動回路10は、圧電トランス20の出力に応じた制御信号Soをフィードバックして自励発振し、その発振周波数の駆動電圧Vdを圧電トランス20に印加するものであり、圧電トランス20の出力に応じた制御信号Soを検出する電圧検出電極11を備えている。電圧検出電極11は、圧電トランス20が実装されるプリント配線板30上に、その配線31とともに形成されている。電圧検出電極11はプリント配線板30の配線31とともに同時に形成するので、電圧検出電極11形成用として別の工程を設ける必要がない。
【選択図】 図1

Description

本発明は、圧電振動子の共振現象を利用して交流電圧を変圧する圧電トランスに関し、詳しくはその駆動回路に関する。
圧電トランス(ソリッドフォーマ)は、圧電振動子の共振現象を利用することにより、低電圧を入力し高電圧を出力するようにしたものである。圧電トランスの特長は、電磁型に比べて圧電振動子のエネルギ密度が高い点にある。そのため、小型化が可能であるので、冷陰極管点灯用、液晶バックライト点灯用、小型ACアダプタ用、小型高電圧電源用などに使われている。
また、圧電トランスの駆動回路として、圧電トランスの収納ケースに電極を取り付けて、この電極から圧電トランスの出力電圧に応じた電荷を検出して制御信号として駆動手段にフィードバックすることにより、自励発振するようにした技術が知られている(特許文献1)。この駆動回路によれば、圧電トランスに直接電極を取り付けることなく制御信号を生成できるので、圧電トランスの振動を阻害することがない、という利点を有する。
特開平10−127059号公報
しかしながら、特許文献1の駆動回路では、次のような問題があった。
収納ケースに電極を形成する工程、その電極をプリント配線板に接続する構造等が必要になる。そのため、製造工程及び構造が複雑化し、ひいては高価格化を招く。
また、フィードバックする制御信号の位相差によっては正帰還しなくなるので、自励発振に支障が出ることがある。このような場合、位相差を所望の値にする部品を別途設ける必要があった。
そこで、本発明の目的は、圧電トランスの振動を阻害せずに自励発振できる構成でありながら、製造工程及び構造の複雑化を抑えることができ、かつ他の部品を用いることなく制御信号の位相差を所望の値にできる、圧電トランスの駆動回路を提供することにある。
本発明に係る駆動回路は、圧電トランスの出力に応じた制御信号をフィードバックして自励発振し、その発振周波数の駆動電圧を圧電トランスに印加するものであり、圧電トランスの出力に応じた制御信号を検出する電圧検出電極を備えている。この電圧検出電極は、圧電トランスが実装されるプリント配線板上に、その配線とともに形成されている。
この電圧検出電極は、次のいずれかの機能を有する。(1).圧電トランスの出力電圧によって静電誘導された電圧を、制御信号として検出する(請求項1)。(2).圧電トランスの出力電流によって電磁誘導された電圧を、制御信号として検出する(請求項2)。(3).圧電トランスの出力電圧によって静電誘導された電圧及び圧電トランスの出力電流によって電磁誘導された電圧を、制御信号として検出する(請求項3)。
電圧検出電極はプリント配線板の配線とともに同時に形成するので、電圧検出電極形成用として別の工程を設ける必要がない。また、電圧検出電極とプリント配線板の配線との接続は、配線形成時に同時になされるので別の工程が不要であるし、構造も簡単である。
請求項4記載の駆動回路は、請求項1〜3記載の駆動回路において、プリント配線板の一方の面に圧電トランスが実装され、プリント配線板の他方の面に圧電トランスと対向して電圧検出電極が形成された、というものである。
圧電トランスと電圧検出電極とがプリント配線板を挟んで対向している。そのため、圧電トランスと電圧検出電極との沿面距離は、プリント配線板の一方の面の圧電トランスからプリント配線板の周端を通ってプリント配線板の他方の面の電圧検出電極までの距離であるから、十分に長い。したがって、圧電トランスと電圧検出電極との間の絶縁性が良い。
請求項5記載の駆動回路は、請求項1〜4記載の駆動回路において、圧電トランスの出力電流を検出する出力電流検出部と、電圧検出電極で検出された制御信号の周波数で発振する発振部と、出力電流検出部で検出された出力電流に応じて駆動電圧のデューティ比を制御するデューティ比制御部と、発振部における周波数及びデューティ比制御部で制御されたデューティ比によって駆動電圧を圧電トランスに印加する駆動部と、を備えたものである。
発振部は、制御信号の周波数と同じ周波数で発振する。デューティ比制御部は、出力電流に応じて駆動電圧のデューティ比を制御する。駆動部は、発振部における周波数及び制御されたデューティ比で、駆動電圧を圧電トランスに印加する。デューティ比制御部は、出力電流が大きければデューティ比を大きくすることにより(すなわち圧電トランスの電圧印加時間を長くすることにより)、負荷での消費電力が増えれば負荷への供給電力を増やすこともできる。逆に、出力電流が大きければデューティ比を小さくすることにより(すなわち圧電トランスの電圧印加時間を短くすることにより)、負荷での消費電力を一定にすることもできる。
請求項6記載の駆動回路は、請求項1〜5記載の駆動回路において、電圧検出電極は、制御信号の位相差を所定値に設定するためのコイル成分が付与された形状になっている、というものである。
電圧検出電極は、後述するような形状によって、コイル成分が付与される。一般にはコイル成分が付与されるほど制御信号の位相が遅れると考えられるが、電圧検出電極の大きさや位置等によっても変化するので、そう単純ではない。実際には、電圧検出電極の形状と制御信号の位相差との関係を予め実測しておき、所望の位相差になるような電圧検出電極の形状を選択する。
請求項7〜9記載の駆動回路は、請求項1〜5記載の駆動回路において、電圧検出電極の形状を多角形状、円状、楕円状、渦巻状、枠状等に特定したものである。なお、多角形とは、Nを3以上の整数としたときのN角形である。渦巻状には、多角形状渦巻、円状渦巻、楕円状渦巻等が含まれる。枠状には、多角形状枠、円状枠、楕円状枠等が含まれる。
電圧検出電極の形状を多角形状、円状又は楕円状とした場合は、コイル成分を含まないので、静電誘導電圧を検出することに適する。電圧検出電極の形状を渦巻状とした場合は、コイル成分を多く含むので、電磁誘導電圧を検出することに適する。電圧検出電極の形状を枠状とした場合は、コイル成分をやや多く含むので、静電誘導電圧及び電磁誘導電圧の両方が混在した電圧を検出することに適する。また、コイル成分を多く含む場合は、ファラデーの電磁誘導の法則により、圧電トランスの出力電流の周波数に電磁誘導電圧が比例するので、高周波になるほど検出感度が向上する。
本発明に係る駆動回路によれば、自励発振用の制御信号を検出する電圧検出電極を、圧電トランスが実装されるプリント配線板上にその配線とともに形成することにより、プリント配線板の配線形成工程で同時に形成できる。これに加え、電圧検出電極とプリント配線板の配線との接続は、配線形成時に同時になされるので別の工程が不要であるし、構造も簡単である。したがって、圧電トランスの振動を阻害せずに自励発振できる構成でありながら、製造工程及び構造の複雑化を抑えることができる。また、本発明に係る駆動回路によれば、各請求項ごとに次の効果も奏する。
請求項4記載の駆動回路によれば、圧電トランスと電圧検出電極とをプリント配線板を挟んで対向させたことにより、圧電トランスと電圧検出電極とを接近させても圧電トランスと電圧検出電極との沿面距離を十分に長くできるので、電圧検出電極の感度を損なうことなく、圧電トランスと電圧検出電極との間の絶縁性を向上できる。
請求項5記載の駆動回路によれば、制御信号と同じ周波数及び圧電トランスの出力電流に応じて制御されたデューティ比で、駆動電圧を圧電トランスに印加することにより、出力電流に応じて多種多様な制御、例えば負荷での消費電力を一定にするような制御を実現できる。
請求項6記載の駆動回路によれば、制御信号の位相差に対応するコイル成分が付与された電圧検出電極の形状とすることにより、他の部品を用いることなく制御信号の位相差を所望の値に設定できる。
請求項7記載の駆動回路によれば、電圧検出電極の形状を多角形状、円状又は楕円状とすることにより、コイル成分を含まない電圧検出電極が得られるので、静電誘導電圧の検出に適した電圧検出電極を実現できる。
請求項8記載の駆動回路によれば、電圧検出電極の形状を渦巻状とすることにより、コイル成分を多く含む電圧検出電極が得られるので、電磁誘導電圧の検出に適した電圧検出電極を実現できる。
請求項9記載の駆動回路によれば、電圧検出電極の形状を枠状とすることにより、コイル成分をやや多く含む電圧検出電極が得られるので、静電誘導電圧及び電磁誘導電圧の検出に適した電圧検出電極を実現できる。
図1は、本発明に係る駆動回路の一実施形態を示し、図1[1]は回路構成図、図1[2]は電圧検出電極の平面図、図1[3]は図1[2]におけるI−I線断面図(圧電トランス側を上に図示)である。以下、この図面に基づき説明する。
本実施形態の駆動回路10は、圧電トランス20の出力に応じた制御信号Soをフィードバックして自励発振し、その発振周波数の駆動電圧Vdを圧電トランス20に印加するものであり、圧電トランス20の出力に応じた制御信号Soを検出する電圧検出電極11を備えている。電圧検出電極11は、圧電トランス20が実装されるプリント配線板30上に、その配線31とともに形成されている。
圧電トランス20は、圧電振動体21に一次電極22,23と二次電極24とを設け、一次側を厚さ方向(図[1]上下方向)に分極し、二次側を長さ方向(図[2]左右方向)に分極し、これらを樹脂ケース25に収容したものである。一次電極22,23は、圧電振動体21を挟んで対向している。圧電振動体21は、PZT等の圧電セラミックスからなり、板状(直方体状)を呈している。圧電振動体21の長さ方向において、一端からその長さの半分までに一次電極22,23が設けられ、他端に二次電極24が設けられている。一次側に長さ寸法で決まる固有共振周波数frの駆動電圧Vdを入力すると、逆圧電効果により強い機械振動を起こし、圧電効果によりその振動に見合った高い出力電圧Voが二次側から出力される。出力電圧Voは負荷40に印加される。
電圧検出電極11は、後述するその形状等によって、次のいずれかの機能を有する。(1).圧電トランス20の出力電圧Voによって静電誘導された電圧を、制御信号Soとして検出する。(2).圧電トランス20の出力電流Ioによって電磁誘導された電圧を、制御信号Soとして検出する。(3).圧電トランス20の出力電圧Voによって静電誘導された電圧及び圧電トランス20の出力電流Ioによって電磁誘導された電圧を、制御信号Soとして検出する。
プリント配線板30は、絶縁板32、導電体膜33、絶縁膜34等からなる一般的なものである。絶縁板32及び絶縁膜34は例えば合成樹脂である。導電体膜33は、例えば銅箔であり、所定形状に加工されて配線32や電圧検出電極11となる。絶縁板32の表面35には、図示しないが導電体膜及び絶縁膜が設けられ、圧電トランス20及び駆動回路20の構成部品(図示せず)が実装され、配線(図示せず)も形成されている。絶縁板32の裏面36には、配線32や電圧検出電極11が形成され、これらの上が絶縁膜34で覆われている。ただし、図1[2]では絶縁膜34を省略して図示している。
次に、プリント配線板30に配線32及び電圧検出電極11を形成する方法について説明する。まず、全面に導電体膜33が成膜された絶縁板32を用意する。そして、例えばフォトリソグラフィ及びエッチングを使って、導電体膜33を所定形状に加工して配線32及び電圧検出電極11を得る。最後に、配線32のはんだ付け部分を除き、配線32及び電圧検出電極11の上を絶縁膜34で覆う。
このように、電圧検出電極11はプリント配線板30の配線31とともに同時に形成するので、電圧検出電極11形成用として別の工程を設ける必要がない。また、電圧検出電極11とプリント配線板30の配線31との接続は、配線31形成時に同時になされるので別の工程が不要であるし、構造も簡単である。したがって、本実施形態の駆動回路10によれば、圧電トランス20の振動を阻害せずに自励発振できる構成でありながら、製造工程及び構造の複雑化を抑えることができる。
また、本実施形態では、プリント配線板30の一方の面に圧電トランス20が実装され、プリント配線板30の他方の面に圧電トランス20と対向して電圧検出電極11が形成されている。つまり、圧電トランス20と電圧検出電極11とがプリント配線板30を挟んで対向している。そのため、圧電トランス20と電圧検出電極11との沿面距離は、圧電トランス20からプリント配線板30の周端37までの距離L1と、プリント配線板30の厚さと、電圧検出電極11からプリント配線板30の周端37までの距離L2との和であるから、十分に長い。したがって、本実施形態の駆動回路10によれば、圧電トランス20と電圧検出電極11とを接近させても圧電トランス20と電圧検出電極11との沿面距離を十分に長くできるので、電圧検出電極11の感度を損なうことなく、圧電トランス20と電圧検出電極11との間の絶縁性を向上できる。
図2は本実施形態における電圧検出電極の形状を示す平面図であり、図2[1]は多角形状の一例、図2[2]は渦巻状の一例、図2[3]は枠状の一例である。以下、この図面に基づき説明する。
図2[1]の電圧検出電極111の形状は、正方形状である。この形状は、コイル成分を含まないので、静電誘導電圧を検出することに適する。他の多角形状、円状又は楕円状とした場合も同様である。
図2[2]の電圧検出電極112の形状は、正方形状渦巻である。この形状は、コイル成分を多く含むので、電磁誘導電圧を検出することに適する。他の多角形状渦巻、円状渦巻又は楕円状渦巻とした場合も同様である。一般に、巻数を多くするほど、コイル成分が多くなる。
図2[3]の電圧検出電極113の形状は、正方形状枠である。この形状は、コイル成分をやや多く含むので、静電誘導電圧及び電磁誘導電圧の両方が混在した電圧を検出することに適する。他の多角形状枠、円状枠又は楕円状枠とした場合も同様である。
また、電圧検出電極111〜113のように付与するコイル成分を変えることにより、制御信号Soの位相差を所定値に設定することができる。一般にはコイル成分が付与されるほど制御信号Soの位相が遅れると考えられるが、電圧検出電極111〜113の大きさや取り付け位置等の影響を受けるので、そう単純ではない。実際には、電圧検出電極111〜113の形状と制御信号Soの位相差との関係を予め実測しておき、所望の位相差になるような電圧検出電極111〜113の形状を選択する。
更に、コイル成分を多く含む場合は、圧電トランス20の出力電流Ioの周波数に電磁誘導電圧が比例するので、高周波になるほど検出感度が向上する。
図3及び図4は上記実施形態を更に具体化した一実施例を示し、図4は全体構成を示す回路図、図4は図3の各部分における波形を示す波形図である。以下、この図面に基づき説明する。ただし、図1と同じ部分は同じ符号を付すことにより説明を省略する。なお、図3及び図4における○内の英数字は、明細書では()内の英数字として表示する。また、図3の(1)〜(9)の部分は、それぞれ図4(1)〜(9)の波形に対応する。
本実施例の駆動回路10は、前述した電圧検出電極11と、圧電トランス20の出力電流Ioを検出する出力電流検出部12と、電圧検出電極11で検出された制御信号Soの周波数で発振する発振部13と、出力電流検出部12で検出された出力電流Ioに応じて駆動電圧Vdのデューティ比を制御するデューティ比制御部14と、発振部13における周波数及びデューティ比制御部14で制御されたデューティ比によって駆動電圧Vdを圧電トランス20に印加する駆動部15とを備えたものである。
また、駆動回路10には、駆動部15の一部としての共振部16、基準電圧を発生する基準電圧発生部17等が付設されている。駆動回路10の入力側には、直流の入力電圧Vinが印加され、入力端子間に電圧変動防止用のコンデンサC1が接続されている。圧電トランス20の出力側には、整流用のダイオードD3,D4、平滑用のコンデンサC8、これらに付随する抵抗器R19,R20等が付設されている。更にこれらの出力側に負荷40が接続されている。
電圧検出電極11は、圧電トランス20の出力電圧Voによって静電誘導された電圧を、制御信号Soとして検出する。
基準電圧発生部17は、抵抗器R3、ツェナーダイオードD1、コンデンサC2等からなり、入力電圧Vinを入力して基準電圧を出力する。
発振部13は、抵抗器R6〜R11、コンデンサC3、コンパレータIC1等からなる。コンパレータIC1の+入力端子には、電圧検出電極11で検出された制御信号So(波形(1))が印加される。コンパレータIC1の−入力端子には、トランジスタQ1,Q2の出力電圧(波形(7))の平均電圧(波形(2))が印加される。これにより、コンパレータIC1は、制御信号Soの周波数で発振する矩形波信号(波形(3))を出力する。
出力電流検出部12は、抵抗器R4、コンデンサC5、トランジスタQ5等からなる。抵抗器R4及びコンデンサC5によって、出力電流Iiに対応するトランジスタQ5のベース電圧が発生する。ベース電圧がしきい電圧を越えると、トランジスタQ5がオンになる。すると、ベース電圧が増加するほど、トランジスタQ5のコレクタ−エミッタ間電圧が低下する。また、調整用の可変抵抗器を抵抗器R4に並列に接続しても良い。なお、出力電流検出部12の詳しい動作については後述する。
デューティ比制御部14は、抵抗器R15〜R17、コンデンサC6、コンパレータIC2、FETQ4等からなる。コンパレータIC2の−入力端子には、抵抗器R15,R16及び出力電流検出部12のトランジスタQ5によって基準電圧が分圧された電圧(波形(5))が印加される。この電圧(波形(5))は、圧電トランス20の出力電流Ioに対応している。つまり、出力電流Ioが一定値を越えたとき、出力電流Ioが増加するほど、電圧(波形(5))は低下する。一方、コンパレータIC2の+入力端子には、トランジスタQ1,Q2の出力電圧(波形(7))の積分波形である鋸歯状電圧(波形(4))が印加される。これにより、コンパレータIC2は、出力電流Ioに対応したデューティ比信号(波形(6))を出力する。デューティ比信号(波形(6))はFETQ4のゲートに印加され、FETQ4がオンすると駆動部15のFETQ3を強制的にオフにする。すなわち、FETQ4のドレイン電圧がFETQ3のゲート電圧となる(波形(8))。
駆動部15は、抵抗器R12〜R14、トランジスタQ1,Q2、FETQ3等からなる。共振部16は、コイルL1、コンデンサC4等からなる。トランジスタQ1,Q2は、コンプリメンタリ回路を構成し、コンパレータIC1のバッファとして機能する(波形(7))。FETQ3は、FETQ4がオフであればトランジスタQ1,Q2の出力電圧(波形(7))に応じてオン・オフし、FETQ4がオンであれば常にオフとなる。コイルL1及びコンデンサC4の各値は、圧電トランス20の内部容量とともに共振するように設定されている。そのため、FETQ3がオンからオフとなったとき、駆動電圧Vdが圧電トランス20に印加される(波形(9))。
FETQ3がオンする時間tonは、トランジスタQ1,Q2の出力電圧(波形(7))の立ち上がり時刻(a)から、コンパレータIC2から出力されたデューティ比信号(波形(6))の立ち上がり時刻(b)までである。その逆に、FETQ3がオフする時間toffは、デューティ比信号(波形(6))の立ち上がり時刻(b)から出力電圧(波形(7))の次の立ち上がり時刻(a)までである。ここで、デューティ比は、ton/(ton+toff)であるから、デューティ比信号(波形(6))の立ち上がり時刻(b)を制御することにより、所望の値に設定できる。
次に、駆動回路10の全体の動作について説明する。
発振部13は、制御信号Soの周波数と同じ周波数で発振する。デューティ比制御部14は、出力電流Ioに応じて駆動電圧Vdのデューティ比を制御する。駆動部15は、発振部13における周波数及び制御されたデューティ比で、駆動電圧Vdを圧電トランス20に印加する。このとき、デューティ比制御部14は、出力電流Ioが一定値を越えたとき、出力電流Ioが大きければデューティ比を小さくすることにより(すなわち圧電トランス20の電圧印加時間を短くすることにより)、負荷40での消費電力を一定にすることができる。
図5は図3における出力電流検出部の動作を示す説明図であり、図5[1]は回路図(その1)、図5[2]は回路図(その2)、図5[3]は波形図である。以下、この図面に基づき説明する。ただし、図3と同じ部分は同じ符号を付すことにより説明を省略する。
まず、図5[1]に示すように、圧電トランス20によってコンデンサC8に充電された電荷は、電流I=IR1+IR2として放出される。そのため、コンデンサC8に充電されていた電荷が電流Iによって放電された分、圧電トランス20から新たに電荷を供給しなければならない。
そこで、図5[2],[3]に示すように、最初の半波で圧電トランス20の内部容量20Cに電流Iで充電する。続いて、残りの半波で圧電トランス20の内部容量20Cの電荷も含めて電流IでコンデンサC8に充電する。ここで、圧電トランス20の出力が正弦波であることから、各充放電電流が同じになるので、I=I=Iが成り立つ。
したがって、抵抗器R4に流れる電流Iは負荷40側に流れる電流Iに等しいので、抵抗器R4での電圧降下すなわちトランジスタQ5のベース電圧は電流Iの検出値となる。
本発明に係る駆動回路の一実施形態を示し、図1[1]は回路構成図、図1[2]は電圧検出電極の平面図、図1[3]は図1[2]におけるI−I線断面図(圧電トランス側を上に図示)である。 図1における電圧検出電極の形状を示す平面図であり、図2[1]は多角形状の一例、図2[2]は渦巻状の一例、図2[3]は枠状の一例である。 本発明に係る駆動回路の一実施例における全体構成を示す回路図である。 図3の各部分における波形を示す波形図である。 図3における出力電流検出部の動作を示す説明図であり、図5[1]は回路図(その1)、図5[2]は回路図(その2)、図5[3]は波形図である。
符号の説明
10 駆動回路
11,111,112,113 電圧検出電極
12 出力電流検出部
13 発振部
14 デューティ比制御部
15 駆動部
16 共振部
17 基準電圧発生部
20 圧電トランス
30 プリント配線板
31 配線
So 制御信号
Vd 駆動電圧
Io 出力電流
Vo 出力電圧

Claims (9)

  1. 圧電トランスの出力に応じた制御信号をフィードバックして自励発振し、その発振周波数の駆動電圧を前記圧電トランスに印加する、圧電トランスの駆動回路において、
    前記圧電トランスの出力電圧によって静電誘導された電圧を前記制御信号として検出する電圧検出電極を備え、
    前記圧電トランスが実装されるプリント配線板上に、その配線とともに前記電圧検出電極が形成された、
    ことを特徴とする圧電トランスの駆動回路。
  2. 圧電トランスの出力に応じた制御信号をフィードバックして自励発振し、その発振周波数の駆動電圧を前記圧電トランスに印加する、圧電トランスの駆動回路において、
    前記圧電トランスの出力電流によって電磁誘導された電圧を前記制御信号として検出する電圧検出電極を備え、
    前記圧電トランスが実装されるプリント配線板上に、その配線とともに前記電圧検出電極が形成された、
    ことを特徴とする圧電トランスの駆動回路。
  3. 圧電トランスの出力に応じた制御信号をフィードバックして自励発振し、その発振周波数の駆動電圧を前記圧電トランスに印加する、圧電トランスの駆動回路において、
    前記圧電トランスの出力電圧によって静電誘導された電圧及び前記圧電トランスの出力電流によって電磁誘導された電圧を前記制御信号として検出する電圧検出電極を備え、
    前記圧電トランスが実装されるプリント配線板上に、その配線とともに前記電圧検出電極が形成された、
    ことを特徴とする圧電トランスの駆動回路。
  4. 前記プリント配線板の一方の面に前記圧電トランスが実装され、当該プリント配線板の他方の面に前記圧電トランスと対向して前記電圧検出電極が形成された、
    請求項1乃至3のいずれかに記載の圧電トランスの駆動回路。
  5. 前記圧電トランスの出力電流を検出する出力電流検出部と、
    前記電圧検出電極で検出された制御信号の周波数で発振する発振部と、
    前記出力電流検出部で検出された出力電流に応じて前記駆動電圧のデューティ比を制御するデューティ比制御部と、
    前記発振部における前記周波数及び前記デューティ比制御部で制御された前記デューティ比によって前記駆動電圧を前記圧電トランスに印加する駆動部と、
    を備えた請求項1乃至4のいずれかに記載の圧電トランスの駆動回路。
  6. 前記電圧検出電極は、前記制御信号の位相差を所定値に設定するためのコイル成分が付与された形状になっている、
    請求項1乃至5のいずれかに記載の圧電トランスの駆動回路。
  7. 前記電圧検出電極の形状が多角形状、円状又は楕円状である、
    請求項1乃至5のいずれかに記載の圧電トランスの駆動回路。
  8. 前記電圧検出電極の形状が渦巻状である、
    請求項1乃至5のいずれかに記載の圧電トランスの駆動回路。
  9. 前記電圧検出電極の形状が枠状である、
    請求項1乃至5のいずれかに記載の圧電トランスの駆動回路。
JP2003418462A 2003-12-16 2003-12-16 圧電トランスの駆動回路 Pending JP2005184896A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003418462A JP2005184896A (ja) 2003-12-16 2003-12-16 圧電トランスの駆動回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003418462A JP2005184896A (ja) 2003-12-16 2003-12-16 圧電トランスの駆動回路

Publications (1)

Publication Number Publication Date
JP2005184896A true JP2005184896A (ja) 2005-07-07

Family

ID=34780672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003418462A Pending JP2005184896A (ja) 2003-12-16 2003-12-16 圧電トランスの駆動回路

Country Status (1)

Country Link
JP (1) JP2005184896A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007037312A (ja) * 2005-07-27 2007-02-08 Tamura Seisakusho Co Ltd 圧電トランスを用いた電源装置
JP2007043804A (ja) * 2005-08-02 2007-02-15 Tamura Seisakusho Co Ltd 圧電トランス出力検出装置及びこれを用いた電源装置
JP2008109780A (ja) * 2006-10-25 2008-05-08 Tamura Seisakusho Co Ltd 圧電トランスを用いた電源装置、電子写真用電源装置、圧電トランス用駆動電圧制御方法及びそのプログラム
JP2013206859A (ja) * 2012-03-29 2013-10-07 Tokyo Keiki Inc プラズマ放電ランプ起動装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007037312A (ja) * 2005-07-27 2007-02-08 Tamura Seisakusho Co Ltd 圧電トランスを用いた電源装置
JP2007043804A (ja) * 2005-08-02 2007-02-15 Tamura Seisakusho Co Ltd 圧電トランス出力検出装置及びこれを用いた電源装置
JP2008109780A (ja) * 2006-10-25 2008-05-08 Tamura Seisakusho Co Ltd 圧電トランスを用いた電源装置、電子写真用電源装置、圧電トランス用駆動電圧制御方法及びそのプログラム
JP4729468B2 (ja) * 2006-10-25 2011-07-20 株式会社タムラ製作所 圧電トランスを用いた電源装置、電子写真用電源装置、圧電トランス用駆動電圧制御方法及びそのプログラム
JP2013206859A (ja) * 2012-03-29 2013-10-07 Tokyo Keiki Inc プラズマ放電ランプ起動装置

Similar Documents

Publication Publication Date Title
KR100280765B1 (ko) 방전관의 구동장치 및 이에 이용되는 압전 변압기
US7492615B2 (en) Switching power supply
US7729137B2 (en) Switching power supply and regulation circuit
TW400684B (en) Piezoelectric transformer driving circuit
JP4371042B2 (ja) スイッチング電源装置
US7548028B2 (en) Current-mode resonant inverter circuit
JPH08275553A (ja) 圧電トランスの駆動回路
KR100333974B1 (ko) 전자식 안정기
JP2005184896A (ja) 圧電トランスの駆動回路
JP2004221031A (ja) 放電灯点灯装置
JP2002017090A (ja) 圧電トランスの駆動方法および駆動装置
US20100237792A1 (en) Discharge tube power supply apparatus and semiconductor integrated circuit
JP2006024512A (ja) 放電灯点灯装置
JPWO2006041102A6 (ja) トランスの駆動装置及び駆動方法
JPWO2006041102A1 (ja) トランスの駆動装置及び駆動方法
JP2009176515A (ja) 放電管点灯装置及び半導体集積回路
JP2004328837A (ja) スイッチング電源回路およびこれを備えたスイッチングレギュレータ
JP2006204038A (ja) インバータ回路
KR100256090B1 (ko) 압전 변압기 및 그를 이용한 고전압 발생회로
JP2006526976A (ja) Dc−dcコンバータ
JP2004072878A (ja) スイッチング電源装置
JP2001008453A (ja) スイッチング電源装置
JP2003303536A (ja) リレー駆動装置及びリレー装置
JPH08149851A (ja) 圧電トランス駆動装置
JP3477136B2 (ja) 共振型dc−dcコンバータ回路とdc−dcコンバータ回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091006