JP2005183338A - Fuel cell - Google Patents

Fuel cell Download PDF

Info

Publication number
JP2005183338A
JP2005183338A JP2003426327A JP2003426327A JP2005183338A JP 2005183338 A JP2005183338 A JP 2005183338A JP 2003426327 A JP2003426327 A JP 2003426327A JP 2003426327 A JP2003426327 A JP 2003426327A JP 2005183338 A JP2005183338 A JP 2005183338A
Authority
JP
Japan
Prior art keywords
separator
electrode side
fuel
fuel cell
side separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003426327A
Other languages
Japanese (ja)
Inventor
Takahiro Takai
貴裕 高井
Masao Utsunomiya
政男 宇都宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003426327A priority Critical patent/JP2005183338A/en
Priority to US11/019,563 priority patent/US20050142416A1/en
Publication of JP2005183338A publication Critical patent/JP2005183338A/en
Priority to US12/579,520 priority patent/US7981570B2/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell which prevents reduction of durability performance due to mixing in of impurity metal ion by preventing corrosion under the use environment and prevents reduction of output performance due to increase of contact resistance between a separator and an electrode structure, on the premise that a stainless steel having sufficient corrosion resistance is used as the separator material. <P>SOLUTION: The fuel cell comprises a laminate which is made by clipping further by a stainless steel separator the electrode structure that is made by clipping an electrolyte membrane by a fuel electrode and an oxidation electrode, and the Cr concentration of the surface of the fuel electrode side separator of the above electrode structure is made 0.7-1.3 as a Cr/Fe weight ratio and the Cr concentration of the surface of the oxidation electrode side separator is made less than 0.7 in Cr/Fe weight ratio. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、固体高分子型燃料電池に係り、特に、電極構造体の燃料極側では、セパレータの腐食を防止することにより、電解質膜等への不純物金属イオンの混入による耐久性能の低下を防止するとともに、電極構造体の酸化極側では、セパレータの電極構造体との接触抵抗を過度に高めることなく、出力性能を向上させるものである。   The present invention relates to a polymer electrolyte fuel cell, and in particular, on the fuel electrode side of an electrode structure, by preventing corrosion of a separator, deterioration of durability performance due to mixing of impurity metal ions into an electrolyte membrane or the like is prevented. In addition, on the oxidation electrode side of the electrode structure, the output performance is improved without excessively increasing the contact resistance of the separator with the electrode structure.

固体高分子電解質を用いた燃料電池は、水素を含有する燃料ガスと空気など酸素を含有する酸化剤ガスとを電気化学的に反応させることにより、電力と熱とを同時に発生させる。この燃料電池は、基本的には、水素イオンを選択的に輸送する高分子電解質膜と、高分子電解質膜の両面に形成された一対の電極、即ちアノード及びカソードとから構成される。これらの電極は、通常、白金族金属触媒を担持したカーボン粉末を主成分とし、高分子電解質膜の表面に形成される触媒層と、この触媒層の外面に形成され、通気性と電子伝導性とを兼備する拡散層とからなる。電極に供給される燃料ガス又は酸化剤ガスの外部へのリークや、これらのガスが混合しないように、電極の周囲には高分子電解質膜を挟んでガスシール材やガスケットが配置される。これらのシール材やガスケットは、高分子電解質膜及び電極と一体化するように予め組み立てられる。このような組立体を一般に電極構造体(以下、「MEA」と称する。)と称する。MEAの外側には、これを機械的に固定するとともに、隣接したMEAを互いに電気的に直列又は並列に接続するための導電性のセパレータが配置される。セパレータのMEAとの接触部分には、電極面に反応ガスを供給するとともに、生成ガスや余剰ガスを回収するためのガス流路が形成される。このガス流路は、セパレータと別個に設けることもできるが、セパレータの表面に溝を設けてガス流路とする方式が一般的に採用されている。   A fuel cell using a solid polymer electrolyte generates electric power and heat simultaneously by electrochemically reacting a fuel gas containing hydrogen and an oxidant gas containing oxygen such as air. This fuel cell basically includes a polymer electrolyte membrane that selectively transports hydrogen ions, and a pair of electrodes formed on both sides of the polymer electrolyte membrane, that is, an anode and a cathode. These electrodes are usually composed mainly of carbon powder carrying a platinum group metal catalyst, and are formed on the surface of the polymer electrolyte membrane, and on the outer surface of the catalyst layer. And a diffusion layer. A gas seal material and a gasket are arranged around the electrode with a polymer electrolyte membrane interposed therebetween so that fuel gas or oxidant gas supplied to the electrode is not leaked to the outside and these gases are not mixed. These sealing materials and gaskets are assembled in advance so as to be integrated with the polymer electrolyte membrane and the electrode. Such an assembly is generally referred to as an electrode structure (hereinafter referred to as “MEA”). On the outside of the MEA, a conductive separator for mechanically fixing the MEA and electrically connecting adjacent MEAs to each other in series or in parallel is disposed. At the contact portion of the separator with the MEA, a gas flow path for supplying the reaction gas to the electrode surface and recovering the generated gas and surplus gas is formed. Although this gas flow path can be provided separately from the separator, a method of providing a gas flow path by providing a groove on the surface of the separator is generally employed.

上記の溝に燃料ガス又は酸化剤ガスを供給するためには、燃料ガス又は酸化剤ガスを供給する配管を、使用するセパレータの枚数に分岐させ、その分岐先を直接セパレータの溝に連結する配管治具が必要となる。この治具をマニホールドと称し、特に上記のような燃料ガス又は酸化剤ガスの供給配管から直接連結するタイプを外部マニホールドと称する。このマニホールドには、構造をより簡単にした内部マニホールドと称する形式のものもある。内部マニホールドとは、ガス流路を形成したセパレータに、貫通した孔を設け、ガス流路の出入り口をこの孔まで連通させ、この孔から直接燃料ガス又は酸化剤ガスを供給するものである。燃料電池は、運転中に発熱するので、電池を良好な温度状態に維持するために、冷却水等で冷却する必要がある。その冷却態様としては、通常、1〜3セル毎に、冷却水を流す冷却部が設けられる態様がある。また、この冷却部の形式には、一のセパレータと他のセパレータとの間に挿入する形式と、セパレータの背面に冷却水流路を設けて冷却部とする形式とがあり、特に後者が多く利用されている。   In order to supply fuel gas or oxidant gas to the groove, a pipe for supplying fuel gas or oxidant gas is branched to the number of separators to be used, and a pipe for directly connecting the branch destination to the groove of the separator A jig is required. This jig is referred to as a manifold, and in particular, the type directly connected from the fuel gas or oxidant gas supply pipe as described above is referred to as an external manifold. Some of these manifolds are called internal manifolds with a simplified structure. The internal manifold is a separator in which a gas flow path is formed, and a through-hole is provided, and the gas flow path is connected to the hole and the fuel gas or oxidant gas is supplied directly from the hole. Since the fuel cell generates heat during operation, it is necessary to cool the fuel cell with cooling water or the like in order to maintain the battery in a favorable temperature state. As the cooling mode, there is usually a mode in which a cooling unit for flowing cooling water is provided for every 1 to 3 cells. In addition, there are two types of cooling units, one is inserted between one separator and the other, and the other is a type where a cooling water channel is provided on the back of the separator to form a cooling unit. Has been.

これらのMEAとセパレータ及び冷却部とを交互に積層して、10〜200セルの積層体を作製し、その積層体を集電板と絶縁板とを介して端板で挟み、締結ボルトで両端から固定すると、一般的な積層電池が得られる。このような高分子電解質型燃料電池では、セパレータは導電性が高く、且つ燃料ガス及び酸化剤ガスに対して気密性が高く、さらに水素又は酸素を酸化又は還元する際の反応に対して高い耐食性を具備する必要がある。このような理由から、従来のセパレータは、通常、グラッシーカーボンや膨張黒鉛などのカーボン材料で構成され、ガス流路もその表面の切削や、膨張黒鉛の場合は型による成型により作製されていた。しかしながら、これらの材料は、ガスリークの防止のために緻密化する工程が必須となり、しかも材料が脆いため、加工が困難でその加工費が高くなり、燃料電池価格の高騰の要因となっていた。   These MEAs, separators, and cooling parts are alternately laminated to produce a laminate of 10 to 200 cells. The laminate is sandwiched between end plates via a current collector plate and an insulating plate, and both ends are fastened with fastening bolts. If fixed from the above, a general laminated battery can be obtained. In such a polymer electrolyte fuel cell, the separator has high conductivity, high airtightness to the fuel gas and oxidant gas, and high corrosion resistance to the reaction when oxidizing or reducing hydrogen or oxygen. It is necessary to have. For these reasons, conventional separators are usually made of a carbon material such as glassy carbon or expanded graphite, and the gas flow path is also produced by cutting the surface of the separator or by molding with a mold in the case of expanded graphite. However, these materials are required to be densified in order to prevent gas leaks, and because the materials are brittle, the processing is difficult and the processing costs are high, which causes the fuel cell price to rise.

近年、上記コストを低減するため、燃料電池に関し、種々の提案がなされている。例えば、セパレータ材料として金属板を用い、プレスやパンチング加工によりセパレータを得る手法が提案されている(例えば、特許文献1参照)。しかしながら、金属板に上記加工手段のみを施してセパレータを得た場合には、セパレータの腐食により電池の集電抵抗が増加し、耐久性能が低下するという問題がある。   In recent years, various proposals have been made regarding fuel cells in order to reduce the cost. For example, a method has been proposed in which a metal plate is used as a separator material and a separator is obtained by pressing or punching (for example, see Patent Document 1). However, when the separator is obtained by applying only the above processing means to the metal plate, there is a problem that the current collecting resistance of the battery increases due to the corrosion of the separator, and the durability performance deteriorates.

また、上記問題を解決する技術として、セパレータの腐食及び溶解を抑制すべく、表面に凹凸を形成したステンレス鋼からなり、且つその表面がCr富化された不動態皮膜で覆われている導電性セパレータ板が提案されている(例えば、特許文献2参照)。しかしながら、上記ステンレス鋼表面のCr濃度を富化する手段では、十分な耐酸化性は得られるものの、MEAの燃料極に対向するセパレータ(以下、「燃料極側セパレータ」と称する。)の表面のみならず、酸化極に対向するセパレータ(以下、「酸化極側セパレータ」と称する。)の表面においても強固な不動態皮膜が形成されるため、MEAとの接触抵抗が過度に高くなり、初期性能として、優れた出力性能を得ることができないという問題がある。   In addition, as a technique for solving the above problems, the conductivity is made of stainless steel having irregularities formed on the surface in order to suppress the corrosion and dissolution of the separator, and the surface is covered with a passivated film enriched with Cr. A separator plate has been proposed (see, for example, Patent Document 2). However, although the means for enriching the Cr concentration on the surface of the stainless steel provides sufficient oxidation resistance, only the surface of the separator facing the fuel electrode of the MEA (hereinafter referred to as “fuel electrode side separator”). In addition, since a strong passive film is formed on the surface of the separator facing the oxidation electrode (hereinafter referred to as “oxidation electrode side separator”), the contact resistance with the MEA becomes excessively high, and the initial performance. There is a problem that excellent output performance cannot be obtained.

さらに、セパレータ表面のCr濃度の規定はないが、酸化極側セパレータの表面を粗面化し、その後に不動態皮膜を形成する技術が提案されている(例えば、特許文献3参照)。しかしながら、この技術においては、酸化極側セパレータの表面にTiN等の不動態皮膜を形成することから、加工費が嵩むという問題がある。このような従来技術の種々の問題から、特に、セパレータの腐食による耐久性能の低下を防止するとともに、MEAとの接触抵抗の過度な上昇による出力性能の低下を防止した燃料電池の開発が要請されていた。   Furthermore, although there is no regulation of the Cr concentration on the separator surface, a technique for roughening the surface of the oxidation electrode side separator and then forming a passive film has been proposed (see, for example, Patent Document 3). However, this technique has a problem that processing costs increase because a passive film such as TiN is formed on the surface of the oxidation electrode side separator. Due to these various problems of the prior art, in particular, development of a fuel cell that prevents deterioration in durability due to corrosion of the separator and prevents deterioration in output performance due to excessive increase in contact resistance with MEA is required. It was.

特開平8−180883号公報(発明の詳細な説明)JP-A-8-180883 (Detailed Description of the Invention) 特開2002−270196号公報(特許請求の範囲)JP 2002-270196 (Claims) 特開2003−123783号公報(特許請求の範囲)JP 2003-123783 A (Claims)

本発明は、上記要請に鑑みてなされたものであり、使用環境下でのセパレータの腐食による耐久性能の低下を防止するとともに、MEAとの接触抵抗の過度な上昇による出力性能の低下を防止した燃料電池を提供することを目的としている。   The present invention has been made in view of the above demands, and prevents a decrease in durability due to the corrosion of the separator in a use environment, and also prevents a decrease in output performance due to an excessive increase in contact resistance with the MEA. The object is to provide a fuel cell.

ステンレス鋼製セパレータを組み込んだ燃料電池の耐久性能を劣化させる要因の一つとしては、ステンレス鋼製セパレータから溶出した不純物金属イオンによって電極触媒やイオン交換膜が汚染されることが挙げられる。即ち、酸性水溶液に接触するセパレータ表面から不純物金属イオンが溶出すると、電解触媒やイオン交換膜を汚染し、電解触媒等の集電抵抗が増大することによって耐久性能が劣化する。本発明者等は、従来のステンレス鋼製セパレータを燃料電池に組み込み、燃料極側セパレータ及び酸化極側セパレータの双方について、一定時間発電前後のMEAとの接触抵抗と、一定時間発電後の表面性状とについて調査した。発電前後の両極側セパレータの接触抵抗を表1に示す。   One of the factors that degrade the durability of a fuel cell incorporating a stainless steel separator is that the electrode catalyst or ion exchange membrane is contaminated by impurity metal ions eluted from the stainless steel separator. That is, when impurity metal ions are eluted from the separator surface in contact with the acidic aqueous solution, the electrolytic catalyst and the ion exchange membrane are contaminated, and the current collection resistance of the electrolytic catalyst and the like is increased, so that the durability performance is deteriorated. The present inventors incorporated a conventional stainless steel separator into a fuel cell, and for both the fuel electrode side separator and the oxidation electrode side separator, contact resistance with the MEA before and after power generation for a certain time and surface properties after power generation for a certain time. And investigated. Table 1 shows the contact resistance of the bipolar separator before and after power generation.

Figure 2005183338
Figure 2005183338

表1によれば、燃料極側セパレータ及び酸化極側セパレータについて、発電後の接触抵抗は共に上昇していないことが判る。また、表面性状については、発電後の各セパレータ表面を電子顕微鏡により観察した。その結果を図1(a),(b)にそれぞれ示す。これらの図によれば、燃料極側セパレータ表面には金属溶出の痕跡であるファセットがみられるが、酸化極側セパレータ表面にはファセットはみられない。この理由は以下のとおりである。即ち、燃料極側セパレータ表面は、水素による還元性雰囲気下にあるため、不動態皮膜は成長せず、またセパレータがステンレス鋼の活性溶解電位付近に位置するため、不純物金属イオンが溶出し易い。これに対し、酸化極側セパレータ表面は、酸素による酸化性雰囲気下にあるため、基本的には不動態皮膜が成長する。さらに、酸化極側セパレータ表面の不動態皮膜はその安定領域にあるため、上記電子の導通する部分以外についても不純物金属イオンの溶出が防止される。   According to Table 1, it can be seen that the contact resistance after power generation of the fuel electrode side separator and the oxidation electrode side separator is not increased. Moreover, about the surface property, each separator surface after electric power generation was observed with the electron microscope. The results are shown in FIGS. 1 (a) and 1 (b), respectively. According to these figures, facets which are traces of metal elution are seen on the surface of the fuel electrode side separator, but no facets are seen on the surface of the oxidation electrode side separator. The reason for this is as follows. That is, since the surface of the separator on the fuel electrode side is in a reducing atmosphere with hydrogen, the passive film does not grow, and the separator is located in the vicinity of the active dissolution potential of stainless steel, so that impurity metal ions are easily eluted. On the other hand, since the surface of the oxidation electrode side separator is in an oxidizing atmosphere with oxygen, a passive film basically grows. Furthermore, since the passive film on the surface of the oxidation electrode side separator is in its stable region, the elution of impurity metal ions is prevented also in portions other than the portion where the electrons are conducted.

本発明者等は、上記接触抵抗及び表面性状の結果に基づき、以下の知見を得た。即ち、燃料極側セパレータについては、表面から不純物金属イオンが溶出し、長期的には電解質膜を汚染する。このため、電解質膜の集電抵抗が上昇し、これに伴って、電解質膜でのジュール熱による損失が増大することから、結果的に電池の耐久性能が低下する。よって、燃料極側セパレータからの不純物金属イオンの溶出を防止すれば、電解質膜の集電抵抗の上昇による耐久性能の低下を防止することができる。また、酸化極側セパレータについては、セパレータのMEAとの接触抵抗が高い場合には、初期性能としての出力性能を十分に得ることができない。よって、酸化極側セパレータのMEAとの接触抵抗を低下させれば、出力性能を十分に得ることができる。   Based on the results of the contact resistance and surface properties, the present inventors have obtained the following knowledge. That is, for the fuel electrode side separator, impurity metal ions are eluted from the surface and contaminate the electrolyte membrane in the long term. For this reason, the current collection resistance of the electrolyte membrane increases, and as a result, the loss due to Joule heat in the electrolyte membrane increases, resulting in a decrease in battery durability. Therefore, if elution of impurity metal ions from the fuel electrode side separator is prevented, it is possible to prevent a decrease in durability performance due to an increase in the current collecting resistance of the electrolyte membrane. Further, regarding the oxidation electrode side separator, when the contact resistance of the separator with the MEA is high, the output performance as the initial performance cannot be sufficiently obtained. Therefore, if the contact resistance with the MEA of the oxidation electrode side separator is lowered, sufficient output performance can be obtained.

さらに、本発明者等は、燃料極側セパレータについて不純物金属イオンの溶出を防止するとともに、酸化極側セパレータについて接触抵抗を低下させる具体的手段について検討した。その結果、セパレータ表面への不動態化処理を燃料極側セパレータにのみ行い、これによって燃料極側セパレータについては表面のCr濃度を高める一方、酸化極側セパレータについては表面のCr濃度を高めないことが適当であるとの知見を得た。また、燃料極側セパレータへの具体的な不動態化処理については、硝酸、硝ふっ酸等へのステンレス製セパレータの浸漬により、不動態皮膜中のCr/Fe質量比を0.7〜1.3とすることが適当であるとの知見を得た。一方、酸化極側セパレータについては、事前に不動態化処理を施すことにより、初期の接触抵抗が増大してしまうことに鑑みれば、不動態化処理を施さずに初期の接触抵抗を過度に高めないことが好ましく、しかも酸化極側セパレータからの金属溶出は、自然酸化によって形成される不動態皮膜によって十分に防止できるとの知見を得た。また、酸化極側セパレータ表面のCr/Fe質量比を0.7未満とすることが適当であるとの知見も併せて得た。ここで、Cr/Fe質量比とは、不動態皮膜中の最大Cr/Fe比を意味する。   Furthermore, the present inventors examined specific means for preventing the elution of impurity metal ions from the fuel electrode side separator and reducing the contact resistance of the oxidation electrode side separator. As a result, the passivation treatment to the separator surface is performed only on the fuel electrode side separator, thereby increasing the surface Cr concentration for the fuel electrode side separator, but not increasing the surface Cr concentration for the oxidation electrode side separator. Was found to be appropriate. As for the specific passivation treatment for the fuel electrode side separator, the Cr / Fe mass ratio in the passivation film is adjusted to 0.7 to 1. by immersing the stainless steel separator in nitric acid, nitric hydrofluoric acid or the like. It was found that 3 is appropriate. On the other hand, regarding the oxidation electrode side separator, in view of the fact that the initial contact resistance is increased by performing the passivation treatment in advance, the initial contact resistance is excessively increased without performing the passivation treatment. It has been found that the metal elution from the oxidation electrode side separator can be sufficiently prevented by a passive film formed by natural oxidation. Moreover, the knowledge that it was appropriate to make Cr / Fe mass ratio of the oxidation pole side separator surface less than 0.7 was also obtained. Here, the Cr / Fe mass ratio means the maximum Cr / Fe ratio in the passive film.

本発明の燃料電池は、これらの知見に鑑みてなされたものであり、電解質膜を燃料極と酸化極とにより挟んでなるMEAを、ステンレス鋼製セパレータによりさらに挟んでなる積層体を備えるものであって、燃料極側セパレータの表面のCr濃度がCr/Fe質量比で0.7〜1.3であり、酸化極側セパレータの表面のCr濃度がCr/Fe質量比で0.7未満であることを特徴としている。   The fuel cell of the present invention has been made in view of these findings, and includes a laminate in which an MEA in which an electrolyte membrane is sandwiched between a fuel electrode and an oxidation electrode is further sandwiched between stainless steel separators. The Cr concentration on the surface of the fuel electrode side separator is 0.7 to 1.3 in terms of Cr / Fe mass ratio, and the Cr concentration on the surface of the oxide electrode side separator is less than 0.7 in terms of Cr / Fe mass ratio. It is characterized by being.

本発明によれば、燃料極側セパレータのみに不動態化処理を行うことで、使用環境下での燃料極側セパレータの腐食を防止して不純物金属イオンの混入による耐久性能の低下を防止するとともに、酸化極側セパレータのMEAとの接触抵抗の上昇による出力性能の低下を防止した燃料電池を提供することができる。よって、本発明の燃料電池は、長時間にわたって高位に安定した出力性能を発揮することができる。   According to the present invention, the passivation treatment is performed only on the fuel electrode side separator, thereby preventing the corrosion of the fuel electrode side separator in the use environment and preventing the deterioration of the durability performance due to the mixing of impurity metal ions. In addition, it is possible to provide a fuel cell that prevents a decrease in output performance due to an increase in contact resistance between the oxidation electrode side separator and the MEA. Therefore, the fuel cell of the present invention can exhibit high and stable output performance for a long time.

本発明の燃料電池を製造するにあたり、セパレータ基材として使用するステンレス鋼板は、燃料電池の使用雰囲気で必要な耐食性を具備する限り、鋼種に特段の制約が加わるものではない。具体的には、種々のフェライト系、オーステナイト系又は二相系等のステンレス鋼板を使用することができる。これらのステンレス鋼板の成分組成は、必要な耐酸化性を確保する上で、12質量%以上のCrを含有することが好ましい。また、ステンレス鋼板の板厚は、燃料電池の組み立てを考慮すると、0.05〜0.3mmであることが好ましい。   In producing the fuel cell of the present invention, the stainless steel plate used as the separator base material does not impose any particular restrictions on the steel type as long as it has the corrosion resistance required in the atmosphere in which the fuel cell is used. Specifically, various ferritic, austenitic, or duplex stainless steel plates can be used. The component composition of these stainless steel plates preferably contains 12% by mass or more of Cr in order to ensure necessary oxidation resistance. Further, the plate thickness of the stainless steel plate is preferably 0.05 to 0.3 mm in consideration of assembly of the fuel cell.

燃料電池の使用環境下では、ステンレス鋼製セパレータの表面には、大気中で自然に生成した不動態皮膜が形成されている。このような不動態皮膜生成状況下では、酸化極側セパレータ表面は、酸化性雰囲気に曝されても、十分な耐酸化性を呈する。このため、酸化極側セパレータ表面にはさらに不動態化処理を行う必要はない。これに対し、燃料極側セパレータ表面は、還元性雰囲気に曝されると、十分な耐酸化性を呈さず、不純物金属イオンの溶出を招来する。このため、燃料極側セパレータ表面には、大気中で自然に生成した不動態皮膜の他に、さらに不動態化処理を行う必要がある。この不動態化処理の手段としては、硝酸及び硝ふっ酸等の酸化性の酸へのセパレータの浸漬を採用することができる。なお、塩酸のような塩素イオンを含む溶液中にセパレータを浸漬した場合には、ステンレス鋼表面にピッティングが発生し、十分な耐食性が得られない。   Under the environment where the fuel cell is used, a passive film naturally formed in the atmosphere is formed on the surface of the stainless steel separator. Under such a passive film generation situation, the surface of the oxidation electrode side separator exhibits sufficient oxidation resistance even when exposed to an oxidizing atmosphere. For this reason, it is not necessary to further passivate the surface of the oxidation electrode side separator. On the other hand, when the surface of the fuel electrode side separator is exposed to a reducing atmosphere, it does not exhibit sufficient oxidation resistance, and causes elution of impurity metal ions. For this reason, it is necessary to further passivate the surface of the fuel electrode side separator in addition to the passive film naturally formed in the atmosphere. As a means for the passivation treatment, immersion of the separator in an oxidizing acid such as nitric acid and nitric hydrofluoric acid can be employed. When the separator is immersed in a solution containing chlorine ions such as hydrochloric acid, pitting is generated on the surface of the stainless steel, and sufficient corrosion resistance cannot be obtained.

上記のように、硝酸及び硝ふっ酸中にセパレータを浸漬する場合には、不動態皮膜を適度に成長させるために、硝酸濃度を5〜30質量%とすることが好ましい。硝酸濃度が5質量%未満では、不動態皮膜が十分に成長しない。これに対し、硝酸濃度が30質量%を超えると、不動態皮膜が厚く成長し過ぎ、初期の接触抵抗を増大させる。また、溶液の温度範囲は20〜80℃以下が好ましい。溶液の温度が20℃未満では不動態皮膜が成長する時間が多大になる一方、80℃を超えると不動態皮膜のCr組成を制御し難くなるだけでなく、酸ヒュームにより作業環境が悪化する。   As described above, when the separator is immersed in nitric acid and nitric hydrofluoric acid, the nitric acid concentration is preferably 5 to 30% by mass in order to allow the passive film to grow appropriately. If the nitric acid concentration is less than 5% by mass, the passive film does not grow sufficiently. On the other hand, if the nitric acid concentration exceeds 30% by mass, the passive film grows too thick, increasing the initial contact resistance. The temperature range of the solution is preferably 20 to 80 ° C or lower. When the temperature of the solution is less than 20 ° C., the time for the passive film to grow increases. On the other hand, when it exceeds 80 ° C., not only is the Cr composition of the passive film difficult to control, but the working environment is deteriorated by acid fume.

以上のように、燃料極側セパレータに不動態化処理を施す一方、酸化極側セパレータには不動態化処理を施さずに、これらのセパレータをMEAの両側に設置して燃料電池を組み立てた場合には、腐食環境が厳しい燃料極側セパレータ表面では、不純物金属イオンの溶出が防止されることから、優れた耐久性能が得られる。また、腐食環境が比較的穏やかな酸化極側セパレータ表面では、過剰な不動態皮膜の生成を防止することから、優れた接触抵抗が得られ、結果的に出力性能が向上する。その結果、ジュール発熱による損失等が抑えられ、長期間にわたって高い発電効率を保持することができる。   As described above, the fuel electrode side separator is passivated while the oxidation electrode side separator is not passivated, and these separators are installed on both sides of the MEA to assemble the fuel cell. On the surface of the fuel electrode side separator, which has a severe corrosive environment, the elution of impurity metal ions is prevented, so that excellent durability performance can be obtained. Further, on the surface of the separator on the oxidation electrode side where the corrosive environment is relatively mild, since an excessive passive film is prevented from being formed, an excellent contact resistance is obtained, and as a result, output performance is improved. As a result, loss due to Joule heat generation is suppressed, and high power generation efficiency can be maintained over a long period of time.

以下、本発明を実施例によって更に詳細に説明する。
先ず、ステンレス鋼製セパレータ表面に施した不動態化処理について説明する。セパレータ表面からの不純物金属イオンの溶出を防止するため、セパレータ表面に、硝酸で処理することによりCr富化した不動態皮膜を形成した。本発明例1〜3では、50質量%の硝酸水溶液中に表2に示す組成のステンレス鋼を浸漬し、浸漬温度を50℃とするとともに、浸漬時間を5分、30分又は120分とした。比較例1,2では、不動態化処理を施さないものと、50質量%硝酸水溶液中で24時間煮沸を行ったものとをサンプルとした。次いで、これらの不動態皮膜の組成を、オージェ電子分光法により分析した。表3に、各本発明例及び各比較例の不動態皮膜中のCr/Feの最大比の測定結果と、不動態化処理後のカーボンペーパーとの15kgf/cm負荷時の接触抵抗の測定結果とを示す。
Hereinafter, the present invention will be described in more detail by way of examples.
First, the passivation treatment performed on the stainless steel separator surface will be described. In order to prevent elution of impurity metal ions from the separator surface, a Cr-enriched passive film was formed on the separator surface by treatment with nitric acid. In Invention Examples 1 to 3, stainless steel having the composition shown in Table 2 was immersed in a 50% by mass nitric acid aqueous solution, the immersion temperature was 50 ° C., and the immersion time was 5 minutes, 30 minutes, or 120 minutes. . In Comparative Examples 1 and 2, samples that were not subjected to passivation treatment and those that were boiled in a 50 mass% nitric acid aqueous solution for 24 hours were used as samples. The composition of these passive films was then analyzed by Auger electron spectroscopy. Table 3 shows the measurement results of the maximum ratio of Cr / Fe in the passive films of the present invention and the comparative examples, and the measurement of the contact resistance at 15 kgf / cm 2 load with the carbon paper after the passivation treatment. Results are shown.

Figure 2005183338
Figure 2005183338

Figure 2005183338
Figure 2005183338

表3から明らかなように、本発明例1〜3においては、不動態化処理を施すことにより、比較例1に比して不動態皮膜中の最大Cr/Fe比は増加している。また、24時間煮沸処理を行った比較例2は、比較例1に比して、Cr/Fe比の増加と同時に、カーボンペーパーとの接触抵抗も増加している。これは煮沸処理を行った比較例2は表面が黄色を呈しており、不動態皮膜中のCr/Fe比が増加しただけでなく、不動態皮膜の厚さも増加したためである。   As is apparent from Table 3, in Examples 1 to 3 of the present invention, the maximum Cr / Fe ratio in the passive film is increased by performing the passivation treatment as compared with Comparative Example 1. Moreover, compared with the comparative example 1, the comparative example 2 which performed the boiling process for 24 hours has also increased the contact resistance with carbon paper simultaneously with the increase in Cr / Fe ratio. This is because Comparative Example 2 subjected to the boiling treatment had a yellow surface, and not only the Cr / Fe ratio in the passive film increased, but also the thickness of the passive film increased.

以上の実施例1の結果に基づき、燃料電池の燃料極側セパレータと酸化極側セパレータとの組み合わせについて、以下に示す(1)〜(4)の各タイプを用意した。
(1)燃料極側セパレータとして、表2に示す組成のステンレス鋼板をセパレータ形状に加工した後、50℃、50質量%硝酸中にて30分間不動態化処理を行ったステンレス鋼製セパレータを用意するとともに、酸化極側セパレータとして、表2に示す組成のステンレス鋼板をセパレータ形状に加工したままのステンレス鋼製セパレータを用意した。
(2)燃料極側セパレータとして、表2に示す組成のステンレス鋼板をセパレータ形状に加工したままのステンレス鋼製セパレータを用意するとともに、酸化極側セパレータとして、燃料極側セパレータと同じものを用意した。
(3)燃料極側セパレータとして、表2に示す組成のステンレス鋼板をセパレータ形状に加工したままのステンレス鋼製セパレータを用意するとともに、酸化極側セパレータとして、表2に示す組成のステンレス鋼板をセパレータ形状に加工した後、50℃、50質量%硝酸中にて30分間不動態化処理を行ったステンレス鋼製セパレータを用意した。
(4)燃料極側セパレータとして、表2に示す組成のステンレス鋼板をセパレータ形状に加工した後、50℃、50質量%硝酸中にて30分間不動態化処理を行ったステンレス鋼製セパレータを用意するとともに、酸化極側セパレータとして、燃料極側セパレータと同じものを用意した。
Based on the results of Example 1 above, the following types (1) to (4) were prepared for combinations of the fuel electrode side separator and the oxidation electrode side separator of the fuel cell.
(1) As a fuel electrode-side separator, a stainless steel separator prepared by processing a stainless steel plate having the composition shown in Table 2 into a separator shape and then performing a passivation treatment at 50 ° C. in 50 mass% nitric acid for 30 minutes is prepared. In addition, a stainless steel separator having a stainless steel plate having the composition shown in Table 2 processed into a separator shape was prepared as the oxidation electrode side separator.
(2) As the fuel electrode side separator, a stainless steel separator made of a stainless steel plate having the composition shown in Table 2 as processed into a separator shape was prepared, and as the oxidation electrode side separator, the same one as the fuel electrode side separator was prepared. .
(3) As a fuel electrode side separator, a stainless steel separator made by processing a stainless steel plate having the composition shown in Table 2 as processed into a separator shape is prepared, and as the oxidation electrode side separator, a stainless steel plate having a composition shown in Table 2 is used as a separator. After processing into a shape, a stainless steel separator that was passivated for 30 minutes in nitric acid at 50 ° C. was prepared.
(4) A stainless steel separator prepared by processing a stainless steel plate having the composition shown in Table 2 into a separator shape as a fuel electrode side separator and then performing a passivation treatment in nitric acid at 50 ° C. and 50% by mass for 30 minutes is prepared. In addition, the same oxide electrode side separator as the fuel electrode side separator was prepared.

上記(1)〜(4)の各タイプにおいて、各セパレータを燃料電池の燃料極側及び酸化極側に組み込み、燃料電池を組み立て、本発明例4の燃料電池及び比較例3〜5の各燃料電池を得た。これらの燃料電池には、燃料ガスとして水素を使用するとともに、酸化剤ガスとして空気を使用し、0.5A/cmで200時間連続運転した。さらに、発電終了後、ステンレス鋼製セパレータの腐食状態を観察するとともに、カーボンペーパーに対する15kgf/cm負荷時の接触抵抗を測定した。これらの結果を表4に示す。 In each of the above types (1) to (4), each separator is incorporated on the fuel electrode side and the oxidation electrode side of the fuel cell to assemble the fuel cell. The fuel cell of Invention Example 4 and each fuel of Comparative Examples 3 to 5 A battery was obtained. These fuel cells used hydrogen as a fuel gas and air as an oxidant gas, and were continuously operated at 0.5 A / cm 2 for 200 hours. Further, after the end of power generation, the corrosion state of the stainless steel separator was observed, and the contact resistance at 15 kgf / cm 2 load on the carbon paper was measured. These results are shown in Table 4.

Figure 2005183338
Figure 2005183338

表4から明らかなように、腐食状況について、燃料極側セパレータに不動態化処理を施した燃料電池(本発明例4及び比較例5)は、燃料極側セパレータ及び酸化極側セパレータの双方共に腐食の痕跡はみられなかった。これに対し、燃料極側セパレータに不動態化処理を施した燃料電池(比較例3,4)は、燃料極側セパレータの表面にファセットが発生し、腐食の痕跡がみられた。   As is apparent from Table 4, the fuel cell (invention example 4 and comparative example 5) in which the fuel electrode side separator was subjected to passivation treatment in terms of corrosion was both in the fuel electrode side separator and the oxidation electrode side separator. There was no evidence of corrosion. In contrast, in the fuel cell (Comparative Examples 3 and 4) in which the fuel electrode side separator was passivated, facets were generated on the surface of the fuel electrode side separator, and traces of corrosion were observed.

また、表4から明らかなように、接触抵抗については、いずれの燃料電池においても、燃料極側セパレータ及び酸化極側セパレータの双方の接触抵抗の増加はみられなかった。   Further, as apparent from Table 4, regarding the contact resistance, no increase in the contact resistance of both the fuel electrode side separator and the oxidation electrode side separator was observed in any fuel cell.

以上の結果から明らかなように、燃料極側セパレータにのみ不動態化処理を施したステンレス鋼製セパレータを組み込んだ燃料電池(本発明例4)は、過酷な腐食環境に曝される燃料極側でも腐食の発生はなく、また酸化極側の初期の接触抵抗の増加もないため、長時間運転後においても高い発電効率を有することが判る。   As is clear from the above results, the fuel cell (Example 4 of the present invention) incorporating a stainless steel separator that has undergone passivation treatment only on the fuel electrode side separator is the fuel electrode side that is exposed to a severe corrosive environment. However, no corrosion occurs and there is no increase in the initial contact resistance on the oxidation electrode side, so that it can be seen that the power generation efficiency is high even after long-time operation.

本発明の燃料電池は、高い発電効率を長時間にわたって維持することが要請されている各種電源として使用することができ、特に、自動車産業、電機機器産業、並びに通信産業等の幅広い分野で使用することができる。   The fuel cell of the present invention can be used as various power sources that are required to maintain high power generation efficiency over a long period of time. In particular, the fuel cell is used in a wide range of fields such as the automobile industry, electrical equipment industry, and communication industry. be able to.

従来のセパレータの一定時間発電後の表面性状を示す写真であり、(a)は燃料極側セパレータを示し、(b)は酸化極側セパレータを示す。It is the photograph which shows the surface property after a fixed time electric power generation of the conventional separator, (a) shows a fuel electrode side separator, (b) shows an oxidation electrode side separator.

Claims (1)

電解質膜を燃料極と酸化極とにより挟んでなる電極構造体を、ステンレス鋼製セパレータによりさらに挟んでなる積層体を備える燃料電池において、前記電極構造体の燃料極に対向する前記セパレータの表面のCr濃度が、Cr/Fe質量比で0.7〜1.3であり、前記電極構造体の酸化極に対向する前記セパレータの表面のCr濃度が、Cr/Fe質量比で0.7未満であることを特徴とする燃料電池。   In a fuel cell comprising an electrode structure in which an electrolyte membrane is sandwiched between a fuel electrode and an oxidation electrode, and further sandwiched between stainless steel separators, a surface of the separator facing the fuel electrode of the electrode structure is provided. The Cr concentration is 0.7 to 1.3 in Cr / Fe mass ratio, and the Cr concentration on the surface of the separator facing the oxidation electrode of the electrode structure is less than 0.7 in Cr / Fe mass ratio. A fuel cell characterized by being.
JP2003426327A 2003-12-24 2003-12-24 Fuel cell Pending JP2005183338A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003426327A JP2005183338A (en) 2003-12-24 2003-12-24 Fuel cell
US11/019,563 US20050142416A1 (en) 2003-12-24 2004-12-23 Fuel cell
US12/579,520 US7981570B2 (en) 2003-12-24 2009-10-15 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003426327A JP2005183338A (en) 2003-12-24 2003-12-24 Fuel cell

Publications (1)

Publication Number Publication Date
JP2005183338A true JP2005183338A (en) 2005-07-07

Family

ID=34785894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003426327A Pending JP2005183338A (en) 2003-12-24 2003-12-24 Fuel cell

Country Status (1)

Country Link
JP (1) JP2005183338A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020153117A1 (en) * 2019-01-21 2020-07-30 Jfeスチール株式会社 Austenitic stainless steel sheet for fuel cell separator, and method for producing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020153117A1 (en) * 2019-01-21 2020-07-30 Jfeスチール株式会社 Austenitic stainless steel sheet for fuel cell separator, and method for producing same
JP6763501B1 (en) * 2019-01-21 2020-09-30 Jfeスチール株式会社 Austenitic stainless steel sheet for fuel cell separator and its manufacturing method

Similar Documents

Publication Publication Date Title
US7070877B2 (en) Stainless steel separator for low-temperature fuel cell
JP4920137B2 (en) Operation method of polymer electrolyte fuel cell
US8841045B2 (en) Method for fabricating bi-polar plate of fuel cell
EP1717329A1 (en) Ferritic stainless steel for solid polymer fuel cell separator and solid polymer fuel cell
CN1446383A (en) Stainless steel substrate treatment
US7981570B2 (en) Fuel cell
JPWO2006126613A1 (en) Fuel cell separator and method for producing the same
JP2005093172A (en) Separator for fuel cell and fuel cell
CN103717769A (en) Stainless steel for fuel cell separator
JP4331718B2 (en) Separator for fuel cell and fuel cell
JP2005150014A (en) Fuel cell and separator for cooling used for it
JP2004103296A (en) Solid polymer type fuel cell
EP1735865B1 (en) Fuel cell separator, fuel cell stack, fuel cell vehicle, and method of manufacturing the fuel cell separator
JP2004269969A (en) Separator for solid polymer type fuel cell and manufacturing method therefor
JP5375191B2 (en) Stainless steel and polymer electrolyte fuel cell for polymer electrolyte fuel cell separator with low ion elution
JP2005183338A (en) Fuel cell
EP3396758B1 (en) Stainless steel sheet for fuel cell separators and method for producing same
JP2002025579A (en) High polymer molecule electrolyte fuel cell
JP2002231262A (en) High polymer electrolyte fuel cell
CN110212210B (en) Stainless steel base material, separator for fuel cell, and fuel cell
JP4604302B2 (en) Polymer electrolyte fuel cell
JP4422507B2 (en) Fuel cell
JP4322137B2 (en) Ferritic stainless steel for polymer electrolyte fuel cell separator
JP4322135B2 (en) Ferritic stainless steel for polymer electrolyte fuel cell separator
JP2007073376A (en) Conductive member for fuel cell, fuel cell stack, fuel cell vehicle, and method of manufacturing conductive member for fuel cell