JP2005179762A - Method for producing extra-low sulfur steel - Google Patents

Method for producing extra-low sulfur steel Download PDF

Info

Publication number
JP2005179762A
JP2005179762A JP2003425345A JP2003425345A JP2005179762A JP 2005179762 A JP2005179762 A JP 2005179762A JP 2003425345 A JP2003425345 A JP 2003425345A JP 2003425345 A JP2003425345 A JP 2003425345A JP 2005179762 A JP2005179762 A JP 2005179762A
Authority
JP
Japan
Prior art keywords
cao
slag
molten steel
desulfurization
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003425345A
Other languages
Japanese (ja)
Inventor
Hiroaki Matsumoto
弘昭 松元
Seii Kimura
世意 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2003425345A priority Critical patent/JP2005179762A/en
Publication of JP2005179762A publication Critical patent/JP2005179762A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a new extra-low sulfur steel with which even in the case of increasing the stirring power to molten steel, a fixed slag composition having high desulfurizing efficiency can always be kept during desulfurizing treatment and the productivity is high. <P>SOLUTION: When the desulfurizing treatment is applied to the molten steel, this method is the one, in which during desulfurizing treatment, CaO quantity (W<SB>CaO</SB>) satisfying the formula: 1.5(0.037ω+0.28)W<SB>slag</SB>/100≤W<SB>CaO</SB>≤2.0(0.037ω+3.04)W<SB>slag</SB>/100 is charged at least at one time according to stirring power density (ω) into the slag. In the formula, W<SB>CaO</SB>: CaO quantity (kg) charged in the desulfurizing treatment, W<SB>slag</SB>: slag weight (kg) charged at the desulfurizing treatment, ω: stirring power density (watt/ton) and shown with ω=ä0.0285×Q(T+273)/W}log(1+Z/148). Wherein, Q: stirring gas flowing amount (Nl/min ton) per unit weight, T: molten steel temperature (°C) before desulfurizing treatment, W: molten steel weight (ton), Z: molten steel depth (cm). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、溶鋼の取鍋精錬における脱硫処理に当たり、極低硫鋼を製造する方法に関するものである。   The present invention relates to a method for producing ultra-low sulfur steel in desulfurization treatment in ladle refining of molten steel.

転炉から出鋼した溶鋼は、取鍋精錬炉(Ladle Furmace:LF)でスラグ精錬(脱硫処理等)され、鋼の清浄度が改善される。取鍋精錬によって極低硫鋼を得る方法としては、溶鋼中にフラックスを添加し、溶鋼撹拌時のスラグ組成を、脱硫効率の高いCaO−CaF2系、CaO−Al23系のスラグとする方法が古くから知られており(特許文献1等);更に取鍋の脱硫能力を一層高める目的で、溶鋼の撹拌力を大きくして溶鋼とスラグの反応性を促進する方法(非特許文献1や非特許文献2)が開示されている。 The molten steel discharged from the converter is slag refined (desulfurization treatment, etc.) in a ladle furnace (LF), and the cleanliness of the steel is improved. As a method of obtaining ultra-low sulfur steel by ladle refining, the flux is added to the molten steel, and the slag composition at the time of stirring the molten steel is changed to CaO-CaF 2 system and CaO-Al 2 O 3 system slag with high desulfurization efficiency. The method of doing this has been known for a long time (Patent Document 1, etc.); for the purpose of further increasing the desulfurization capacity of the ladle, a method of increasing the stirring force of the molten steel and promoting the reactivity of the molten steel and slag (Non-Patent Document) 1 and Non-Patent Document 2) are disclosed.

ところが、溶鋼の撹拌力を大きくすると、溶鋼中に脱酸剤として添加されたAlが、脱硫処理中に酸化されて多量のAl23が生成される為、スラグの組成が変化してしまい(スラグ中のAl23量が増加する)、脱硫能力が低下するという問題がある。 However, when the stirring force of the molten steel is increased, Al added as a deoxidizing agent in the molten steel is oxidized during the desulfurization treatment, and a large amount of Al 2 O 3 is generated, so that the composition of the slag changes. (Al 2 O 3 content increases in the slag), the desulfurization ability is lowered.

この様な問題を解決すべく、特許文献2には、溶鋼脱硫処理の際、スラグ組成の分析を行いながら脱硫フラックスを少なくとも2回以上に分けて投入する方法が開示されている。しかしながら、この方法は、脱硫処理中に、スラグ組成の分析という新たな工程を付加するものであり、処理効率が低下する他、新たな工程付加に伴う作業負担やコスト増を招き、非効率的である。
特開昭52−35714号公報 特開昭60−224712号公報 電気製鋼 昭和59年4月発行、第55巻、第2号、p.93〜100 第75回特殊鋼部会資料、愛知製鋼株式会社、「LFにおけるガス撹拌の影響について」、昭和59年10月25・26日、p.1〜2
In order to solve such a problem, Patent Document 2 discloses a method in which a desulfurization flux is charged at least twice while analyzing a slag composition during a molten steel desulfurization process. However, this method adds a new process of analyzing the slag composition during the desulfurization process, which reduces the processing efficiency and increases the work load and cost associated with the addition of the new process, and is inefficient. It is.
JP 52-35714 A JP-A-60-224712 Electric Steelmaking Issued April 1984, Vol. 55, No. 2, p. 93-100 75th Special Steel Division Material, Aichi Steel Corporation, “About the Effect of Gas Stirring in LF”, October 25-26, 1984, p. 1-2

本発明は上記事情に鑑みてなされたものであり、その目的は、溶鋼の撹拌力を高めたとしても、脱硫処理中は常に脱硫効率の高い一定のスラグ組成を維持し得、且つ、生産効率の良い新規な極低硫鋼の製造方法を提供することにある。   The present invention has been made in view of the above circumstances, and its purpose is to always maintain a constant slag composition having a high desulfurization efficiency during the desulfurization process even if the stirring power of the molten steel is increased, and to improve the production efficiency. It is to provide a method for producing a novel ultra-low sulfur steel with good quality.

上記課題を解決し得た本発明に係る極低硫鋼の製造方法は、溶鋼を脱硫処理するに当たり、脱硫処理中に、撹拌動力密度(ω)に応じて少なくとも1回、下式[1]を満足するCaO量(WCaO)をスラグに投入するところに要旨を有するものである。 The method for producing ultra-low-sulfur steel according to the present invention that has solved the above-described problems is that, when desulfurizing molten steel, during the desulfurization treatment, at least once according to the stirring power density (ω), the following formula [1] The main point is that an amount of CaO (W CaO ) satisfying the above is introduced into the slag.

1.5(0.037ω+0.28)Wslag/100≦WCaO≦2.0(0.037ω+3.04)Wslag/100
………[1]
式中、
WCaO :脱硫処理中に投入するCaO量(kg),
Wslag:脱硫処理の際、投入したスラグ量(kg),
ω :撹拌動力密度(watt/ton)であり、
ω={0.0285×Q(T+273)/W}log (1+Z/148)で表される。
1.5 (0.037ω + 0.28) W slag / 100 ≦ W CaO ≦ 2.0 (0.037ω + 3.04) W slag / 100
……… [1]
Where
W CaO : CaO amount (kg) input during desulfurization treatment
W slag : The amount of slag that was input during desulfurization (kg)
ω: stirring power density (watt / ton),
ω = {0.0285 × Q (T + 273) / W} log (1 + Z / 148)

ここで、Q:単位重量当たりの撹拌ガス流量(Nl/分・ton),
T:脱硫処理前の溶鋼温度(℃),
W:溶鋼重量(ton),
Z:溶鋼深さ(cm)である。
Here, Q: stirring gas flow rate per unit weight (Nl / min · ton),
T: Temperature of molten steel (° C) before desulfurization treatment,
W: Molten steel weight (ton),
Z: Depth of molten steel (cm).

ここで、上記CaO量(WCaO)は、(脱硫処理開始後1分)〜(脱硫処理に要する総時間の1/2)の間に投入することが好ましく、これにより、脱硫率が一層向上する。 Here, the amount of CaO (W CaO ) is preferably added between (1 minute after the start of the desulfurization process) and (1/2 of the total time required for the desulfurization process), thereby further improving the desulfurization rate. To do.

本発明によれば、生産効率の高い新規な極低硫鋼の製造方法であって、溶鋼の撹拌力を高めたとしても、脱硫処理中は常に脱硫効率の高い一定のスラグ組成が維持されている極低硫鋼の製造方法を提供することができる。   According to the present invention, a novel ultra-low-sulfur steel manufacturing method with high production efficiency, even if the stirring power of molten steel is increased, a constant slag composition with high desulfurization efficiency is always maintained during the desulfurization process. It is possible to provide a method for producing ultra-low sulfur steel.

本発明者らは、「溶鋼の撹拌力を大きくして脱硫処理すると、多量のAl23が生成する為、処理中にスラグ組成(脱硫効率の高いスラグ組成)が変化してしまい、脱硫能が低下する」という問題を解決するに当たり、非特許文献2の如く脱硫処理中にスラグ組成の分析をわざわざ行わなくとも、生産性良く簡易に、最適な脱硫スラグ組成を長時間維持し得る極低硫鋼の製造方法を提供すべく、鋭意検討してきた。その結果、溶鋼の撹拌力(溶鋼の撹拌動力密度ω)と、溶鋼の脱硫処理中に生成するアルミナ増加量(ΔAl23)とは、一定の関係式を満たしていること;当該関係式に基づき、ΔAl23のバラツキをも考慮して定められるCaO量(WCaO)であって、脱硫能の高いスラグ組成を長時間維持し得るCaO量をスラグに投入すれば、ΔAl23に伴うスラグ組成のズレ(変化)を簡便に是正し得ること:従って、溶鋼の撹拌力(ω)を高めた場合であっても、該溶鋼の撹拌力に応じて、脱硫効率の高いスラグ組成を維持し得るCaO量を予め算出しておくことが可能となり、脱硫処理中にスラグ組成をチェックするといった手間も不要で、生産性の高い極低硫鋼の製造方法を提供できることを見出し、本発明を完成した。 The inventors of the present invention have stated that “When desulfurization treatment is performed by increasing the stirring force of molten steel, a large amount of Al 2 O 3 is generated, so the slag composition (slag composition having high desulfurization efficiency) changes during the treatment, and desulfurization is performed. In order to solve the problem of “decrease in performance”, it is possible to maintain the optimum desulfurized slag composition for a long period of time easily and with good productivity without performing a slag composition analysis during desulfurization treatment as in Non-Patent Document 2. In order to provide a method for producing low-sulfur steel, intensive studies have been conducted. As a result, the stirring power of molten steel (stirring power density ω of molten steel) and the amount of increase in alumina (ΔAl 2 O 3 ) generated during the desulfurization treatment of molten steel satisfy a certain relational expression; the basis, a CaO amount determined in consideration of the variation in ΔAl 2 O 3 (W CaO) , the amount of CaO can maintain a high slag composition desulfurization ability long if put into slag, ΔAl 2 O The slag composition deviation (change) associated with 3 can be easily corrected: Therefore, even when the stirring power (ω) of the molten steel is increased, the slag having a high desulfurization efficiency is obtained according to the stirring power of the molten steel. It becomes possible to calculate in advance the amount of CaO that can maintain the composition, and it is unnecessary to check the slag composition during the desulfurization process, and it can be found that a method for producing a highly productive ultra-low sulfur steel can be provided. The present invention has been completed.

以下、本発明に到達した実験経緯に基づき、本発明法を詳細に説明する。   Hereinafter, the method of the present invention will be described in detail based on the experimental background that has reached the present invention.

一般に取鍋精錬脱硫処理の際、脱硫能を高める目的で溶鋼撹拌を行うと、脱酸剤の目的で鋼中に添加されたAlの一部は、周囲の雰囲気、またはスラグ(取鍋スラグ)中のFeOやMnO等によって酸化されてアルミナ(Al23)となり、スラグに取り込まれる為、脱硫処理の際、スラグ中のAl23濃度が増加する。その結果、脱硫処理前には、脱硫効率の高いスラグ組成であっても、脱硫処理中に、Al23濃度の増加に伴ってスラグ組成が変化してしまい、脱硫能力が低下する様になる。 In general, during the ladle refining desulfurization treatment, when molten steel is stirred for the purpose of enhancing the desulfurization ability, a part of Al added to the steel for the purpose of deoxidizer is the ambient atmosphere or slag (ladder slag) Since it is oxidized by FeO, MnO, etc. in the inside to become alumina (Al 2 O 3 ) and taken into the slag, the concentration of Al 2 O 3 in the slag increases during the desulfurization treatment. As a result, even if the slag composition has high desulfurization efficiency before the desulfurization treatment, the slag composition changes with the increase of the Al 2 O 3 concentration during the desulfurization treatment, and the desulfurization capacity is lowered. Become.

この様な問題を解決するに当たり、本発明者らはまず、脱硫処理中に生成するAl23増加量(ΔAl23)に着目し、溶鋼の撹拌力ω(溶鋼の撹拌動力密度)を変化させた場合における、ΔAl23の変化について調べた。ΔAl23に着目したのは、これにより、処理中に増加するスラグ中のAl23生成量(ΔWAl2O3)が定まるからである。 In solving such problems, the inventors first focused on the amount of increase in Al 2 O 3 (ΔAl 2 O 3 ) generated during the desulfurization process, and the stirring power ω of the molten steel (stirring power density of the molten steel). The change in ΔAl 2 O 3 was investigated when the value was changed. The reason for paying attention to ΔAl 2 O 3 is that this determines the amount of Al 2 O 3 produced (ΔW Al2O3 ) in the slag that increases during processing.

このうちωは、下式で表され、K. Nakanishi, T. Fuji : Iron and steel making, 1975, vol.2, p193に掲載されている既知の式を適用した。   Of these, ω is represented by the following formula, and a known formula published in K. Nakanishi, T. Fuji: Iron and steel making, 1975, vol.

ω={0.0285×Q(T+273)/W}・log(1+Z/148)
ここで、Q:単位重量当たりの撹拌ガス流量(Nl/分・ton),
T:脱硫処理前の溶鋼温度(℃),
W:溶鋼重量(ton),
Z:溶鋼深さ(cm)である。
ω = {0.0285 × Q (T + 273) / W} · log (1 + Z / 148)
Here, Q: stirring gas flow rate per unit weight (Nl / min · ton),
T: Temperature of molten steel (° C) before desulfurization treatment,
W: Molten steel weight (ton),
Z: Depth of molten steel (cm).

その結果を図1に示す。   The result is shown in FIG.

図1より、ΔAl23とωは、下記の回帰式[2]を満足することが分った。 From FIG. 1, it was found that ΔAl 2 O 3 and ω satisfy the following regression equation [2].

ΔAl23(%)=(0.037×ω)+1.66 ……………[2]
但し、バラツキ(1σ=1.38)を考慮すると、最終的にΔAl23とωは、下記の回帰式[3](上限)と、下記の回帰式[4](下限)の範囲を満足することが分かった。
ΔAl 2 O 3 (%) = (0.037 × ω) +1.66 …………… [2]
However, in consideration of variation (1σ = 1.38), ΔAl 2 O 3 and ω finally have a range of the following regression equation [3] (upper limit) and the following regression equation [4] (lower limit). I was satisfied.

ΔAl23(%)=(0.037×ω)+3.04 ……………[3]
ΔAl23(%)=(0.037×ω)+0.28 ……………[4]
換言すれば、ΔAl23とωは、下記関係式[5]を満足するものである。
ΔAl 2 O 3 (%) = (0.037 × ω) +3.04 (3)
ΔAl 2 O 3 (%) = (0.037 × ω) +0.28 …………… [4]
In other words, ΔAl 2 O 3 and ω satisfy the following relational expression [5].

(0.037×ω)+0.28≦ΔAl23(%)≦(0.037×ω)+3.04
……………[5]
次いで、この様にして得られるΔAl23と、脱硫効率に最適なスラグ組成(既知)と、脱硫処理中に増加するスラグ中のAl23量[ΔWAl2O3(kg)]に基づき、最終的に本発明で規定する上記関係式[1];即ち、脱硫効率に最適なスラグ組成とする為の、撹拌動力密度(ω)と、脱硫処理中に投入すべきCaO量[WCaO(kg)]との関係式を、以下の様にして決定した。
(0.037 × ω) + 0.28 ≦ ΔAl 2 O 3 (%) ≦ (0.037 × ω) +3.04
…………… [5]
Next, based on ΔAl 2 O 3 obtained in this way, the optimal slag composition for desulfurization efficiency (known), and the amount of Al 2 O 3 in the slag that increases during the desulfurization treatment [ΔW Al2O3 (kg)], The above relational expression [1] finally defined in the present invention; that is, the stirring power density (ω) and the amount of CaO to be charged during the desulfurization treatment [W CaO ( kg)] was determined as follows.

溶鋼の脱硫処理に最適なスラグ組成は概ね、CaO:Al23=1.5〜2:1であることが知られている。即ち、脱硫処理中に増加するスラグ中のAl23量[ΔWAl2O3(kg)]と、当該Al23量の増加に伴い、脱硫処理中に投入すべきCaO量[WCaO(kg)]は、
1.5×ΔWAl2O3≦WCaO≦2×ΔWAl2O3 …………[6]
の関係を満足すれば良い。
It is known that the optimum slag composition for the desulfurization treatment of molten steel is generally CaO: Al 2 O 3 = 1.5-2: 1. That is, the amount of Al 2 O 3 in the slag that increases during the desulfurization treatment [ΔW Al2O3 (kg)] and the amount of CaO that should be input during the desulfurization treatment with the increase in the amount of Al 2 O 3 [W CaO (kg ]]
1.5 × ΔW Al2O3 ≦ W CaO ≦ 2 × ΔW Al2O3 ………… [6]
Satisfy the relationship.

ここで、ΔWAl2O3[脱硫処理中に増加するスラグ中のAl23量(kg)]と、ΔAl23[脱硫処理中に生成するAl23増加量(%)]の関係は、
ΔWAl2O3=ΔAl23×Wslag/100 ……………[7]
式中、Wslag:スラグ量(kg)
で表されることから、この関係式[7]を前述の関係式[6]に代入すると、
1.5×(ΔAl23×Wslag/100)≦WCaO
2×(ΔAl23×Wslag/100) …………[8]
となる。
Here, the relationship between ΔW Al2O3 [the amount of Al 2 O 3 in slag increasing during desulfurization (kg)] and ΔAl 2 O 3 [the amount of increase in Al 2 O 3 generated during desulfurization (%)] is ,
ΔW Al2O3 = ΔAl 2 O 3 × W slag / 100 …………… [7]
In the formula, W slag : Slag amount (kg)
When this relational expression [7] is substituted into the above-mentioned relational expression [6],
1.5 × (ΔAl 2 O 3 × W slag / 100) ≦ W CaO
2 × (ΔAl 2 O 3 × W slag / 100) ………… [8]
It becomes.

この関係式[8]に、前述の式[5]を代入すると、
1.5×[0.037×ω+0.28]×Wslag/100≦WCaO
2×[0.037×ω+3.04]3×Wslag/100……………[1]
となり、本発明で規定する式[1]が得られる。
Substituting the above equation [5] into this relational equation [8],
1.5 × [0.037 × ω + 0.28] × W slag / 100 ≦ W CaO
2 × [0.037 × ω + 3.04] 3 × W slag / 100 ………… [1]
Thus, the formula [1] defined in the present invention is obtained.

即ち、脱硫処理中に、上記範囲のCaO量(WCaO)をスラグに投入すれば、ΔAl23によるスラグ組成のズレを修正することができるので、脱硫効率の高いスラグ組成を長時間、維持することができ、脱硫効率に優れた極低硫鋼の製造方法を提供することができる(後記する実施例で確認している)。 That is, if a CaO amount (W CaO ) in the above range is introduced into the slag during the desulfurization treatment, the deviation of the slag composition due to ΔAl 2 O 3 can be corrected. It can be maintained, and a method for producing an ultra-low sulfur steel excellent in desulfurization efficiency can be provided (confirmed in Examples described later).

尚、CaO量(WCaO)の投入時期は、(脱硫処理開始後1分)〜(脱硫処理に要する総時間の1/2)の間とすることが推奨され、これにより、脱硫効率を高めることができる。ここで、脱硫処理後1分よりも前(例えば脱硫開始前、脱硫処理と同時等)にCaOを投入すると、スラグの融点が高くなって、脱硫処理に効率的な液相スラグ組成となるのに長時間要してしまう。一方、CaOの投入時期が遅くなると、スラグ中のAl23が増加した状態、即ち、脱硫効率が低下したスラグで脱硫処理する状態が長くなり、脱硫効率が低下する為、その上限を、(脱硫処理に要する総時間の1/2)とするのが好ましい。ここで、本発明における「脱硫処理に要する総時間(tとする)」は、下記[9]式により定めた。 It is recommended that the CaO amount (W CaO ) input time be between (1 minute after the start of the desulfurization process) and (1/2 of the total time required for the desulfurization process), thereby increasing the desulfurization efficiency. be able to. Here, when CaO is introduced before 1 minute after the desulfurization treatment (for example, before the start of the desulfurization, simultaneously with the desulfurization treatment, etc.), the melting point of the slag becomes high, and the liquid phase slag composition becomes effective for the desulfurization treatment. Takes a long time. On the other hand, when the CaO charging time is delayed, the state in which Al 2 O 3 in the slag is increased, that is, the state of desulfurization treatment with slag having reduced desulfurization efficiency is lengthened, and the desulfurization efficiency is decreased. (1/2 of the total time required for the desulfurization treatment) is preferable. Here, the “total time (denoted by t) required for the desulfurization treatment” in the present invention is determined by the following equation [9].

t(分)=3829×ΔS+108−9.7×Q ……………[9]
式中、
ΔS(質量%)
=[脱硫処理前(LF投入前)の鋼中S量]−[脱硫処理後の目標鋼中S量]
Q :単位重量当たりの撹拌ガス量(Nl/分・ton)
脱硫処理に要する時間(t)は、概ね、ΔSとQの関係で決定されることが知られており、本発明では、種々の基礎実験を通じて上式[9]を決定した。
t (minutes) = 3829 × ΔS + 108−9.7 × Q (9)
Where
ΔS (mass%)
= [S content in steel before desulfurization treatment (before LF introduction)]-[S content in target steel after desulfurization treatment]
Q: Stirring gas amount per unit weight (Nl / min · ton)
It is known that the time (t) required for the desulfurization treatment is generally determined by the relationship between ΔS and Q. In the present invention, the above formula [9] is determined through various basic experiments.

また、CaOの投入回数は、好ましくは上記投入時期の間に、少なくとも1回とする。即ち、本発明では、上記関係式[1]に基づいて定められるCaO量(WCaO)を、上述した好ましい投入時期の間に、1回で投入しても良いが、或いは、当該CaO量(WCaO)を、2回、3回、4回等と分けて投入しても良い。尚、その上限は特に限定しないが、生産効率や作業負荷等を考慮すると、上限を3回とすることが好ましく、最も好ましくは1回である。 Further, the number of CaO injections is preferably at least once during the above injection period. That is, in the present invention, the CaO amount (W CaO ) determined based on the relational expression [1] may be charged once during the above-described preferable charging time, or alternatively, the CaO amount ( W CaO ) may be added in two, three, four, etc. The upper limit is not particularly limited, but considering the production efficiency, work load, etc., the upper limit is preferably 3 times, and most preferably 1 time.

尚、本発明における撹拌動力密度(ω)の範囲は特に限定されず、溶鋼の脱硫処理に当たり、通常採用される溶鋼撹拌条件の範囲であれば全て本発明で定める式[I]を適用することができる。   In addition, the range of the stirring power density (ω) in the present invention is not particularly limited, and the formula [I] defined in the present invention is applied to all the molten steel stirring conditions normally employed in the desulfurization treatment of molten steel. Can do.

以上、本発明に係る極低硫鋼の製造方法について記載した。尚、本発明の製造方法は、上述した様に脱硫処理中に、溶鋼の撹拌力に応じて上記関係式[1]で定められるCaO量を投入するところに特徴があるのであって、使用する取鍋精錬炉は特に限定されない。従って、後記する実施例に記載の通り、加熱精錬装置を備えた取鍋精錬を用いて脱硫処理しも良いし、或いは、当該加熱装置を有しない(即ち、溶鋼撹拌のみ行う)簡易式溶鋼処理設備を備えた取鍋精錬を用いても良い。   The manufacturing method of the ultra-low sulfur steel according to the present invention has been described above. The production method of the present invention is characterized in that the amount of CaO defined by the above relational expression [1] is charged according to the stirring force of the molten steel during the desulfurization treatment as described above. The ladle refining furnace is not particularly limited. Therefore, as described in the examples described later, desulfurization treatment may be performed using a ladle refining equipped with a heating refining device, or a simple molten steel treatment not having the heating device (that is, performing only molten steel stirring). Ladle refining with equipment may be used.

また、使用するフラックスの種類や量等も特に限定されず、取鍋精錬に通常使用されるもの(CaO−Al23系、CaO−CaF2系、CaO−Al23−CaF2系等)を適宜選択すれば良い。 Also, the type and amount of the flux to be used are not particularly limited, and those usually used for ladle refining (CaO—Al 2 O 3 series, CaO—CaF 2 series, CaO—Al 2 O 3 —CaF 2 series) Etc.) may be selected as appropriate.

以下、実施例を挙げて本発明を更に詳細に説明するが、下記実施例は本発明を限定する性質のものではなく、前・後記の主旨に適合し得る範囲で適当に変更して実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the following examples are not intended to limit the present invention, and are implemented with appropriate modifications within a range that can meet the gist of the preceding and following descriptions. All of which are within the scope of the present invention.

本実施例では、取鍋加熱精錬装置を用いて以下の脱硫精錬を行った。まず、溶銑を240トン転炉で一次精錬した後、該転炉から取鍋へ出鋼し、更に転炉から持ち込まれるスラグを除滓する。その後、所定量のフラックス(CaO64%、Al2328%、MgO8%)3400kgを取鍋に投入し、表1に記載の条件に基づいてNo.1〜11の溶鋼を脱硫処理した。その結果を表1に示す。尚、本実施例では、Wslagは3400kg、Zは200cm、Wは240tonであり、脱硫処理後の鋼中S量が0.001%になるまでの脱硫時間を測定した。 In the present Example, the following desulfurization refining was performed using the ladle heating refining apparatus. First, after the hot metal is first refined in a 240-ton converter, steel is removed from the converter to a ladle, and slag brought from the converter is removed. Thereafter, 3400 kg of a predetermined amount of flux (CaO 64%, Al 2 O 3 28%, MgO 8%) was placed in a ladle. 1-11 molten steel was desulfurized. The results are shown in Table 1. In this example, W slag was 3400 kg, Z was 200 cm, and W was 240 ton, and the desulfurization time until the S amount in the steel after desulfurization was 0.001% was measured.

Figure 2005179762
Figure 2005179762

表1の結果より、以下の様に考察することができる。   From the results in Table 1, it can be considered as follows.

まず、No.1〜5は、本発明で定める式[1]に規定するCaO量(WCaO)を、本発明の好ましい投入時期(脱硫処理開始後1分後から、脱硫処理に要する総時間の1/2までの間)に投入した本発明例であり、いずれも脱硫処理時間は60分以下と、短時間に極低硫鋼を製造することができる。このうちNo.4は、WCaOを2回に分けて投入した例であるが、他の件発明と同程度の、優れた脱硫効率を有していることが分かる。 First, no. 1 to 5 represents the CaO amount (W CaO ) defined in the formula [1] defined in the present invention at a preferable charging time of the present invention (one minute after the start of the desulfurization treatment, ½ of the total time required for the desulfurization treatment In all of the examples of the present invention, the desulfurization treatment time is 60 minutes or less, and extremely low sulfur steel can be produced in a short time. Of these, No. No. 4 is an example in which W CaO was added in two portions, and it can be seen that it has excellent desulfurization efficiency comparable to other inventions.

尚、表1には、本発明で定める式[1]の範囲のうち、ワンポイントについてのみ実施した結果を示したが、これに限定されず、当該式[1]の範囲の任意の点においても優れた脱硫効率が得られることを実験により確認している(表1には示さず)。   Table 1 shows the result of the implementation of only one point in the range of the formula [1] defined in the present invention. However, the present invention is not limited to this, and at any point in the range of the formula [1]. It was confirmed by experiments that excellent desulfurization efficiency was obtained (not shown in Table 1).

これに対し、No.6〜7は、WCaOの投入量は本発明で定める式[1]を満足しているが、CaOの投入時期が本発明の好ましい範囲を外れている参考例であり、No.7(脱硫処理に要する総時間の1/2以降)では脱硫処理時間が63分と、本発明例に比べて若干長くなった。また、No.6(脱硫処理と同時に投入)の脱硫処理時間は55分であり、No.6と同じ撹拌力(Q)で脱硫処理したNo.2の脱硫処理時間(43分)に比べて、10分以上も長くなった。 In contrast, no. Nos. 6 to 7 are reference examples in which the input amount of W CaO satisfies the formula [1] defined in the present invention, but the input timing of CaO is out of the preferred range of the present invention. 7 (after 1/2 of the total time required for the desulfurization treatment), the desulfurization treatment time was 63 minutes, which was slightly longer than that of the present invention example. No. No. 6 (added simultaneously with the desulfurization treatment) has a desulfurization treatment time of 55 minutes. No. 6 subjected to desulfurization treatment with the same stirring force (Q) as in No. 6. Compared with the desulfurization treatment time of 2 (43 minutes), it was longer than 10 minutes.

また、No.8〜9は、CaO量を添加しない従来例;No.10〜11は、WCaOが本発明で定める式[1]上限を超える比較例であり、いずれも脱硫処理時間は70分以上と長時間を要している。 No. Nos. 8 to 9 are conventional examples in which no CaO amount is added; Nos. 10 to 11 are comparative examples in which W CaO exceeds the upper limit of the formula [1] defined by the present invention, and all of them require a long time of 70 minutes or more for the desulfurization treatment time.

溶鋼の撹拌動力密度ωと、ΔAl23との関係を示すグラフである。A stirring power density ω of the molten steel is a graph showing the relationship between ΔAl 2 O 3.

Claims (2)

溶鋼を脱硫処理するに当たり、
脱硫処理中に、撹拌動力密度(ω)に応じて少なくとも1回、下式[1]を満足するCaO量(WCaO)をスラグに投入することを特徴とする極低硫鋼の製造方法。
1.5(0.037ω+0.28)Wslag/100≦WCaO≦2.0(0.037ω+3.04)Wslag/100
………[1]
式中、
WCaO :脱硫処理中に投入するCaO量(kg),
Wslag:脱硫処理の際、投入したスラグ量(kg),
ω :撹拌動力密度(watt/ton)であり、
ω={0.0285×Q(T+273)/W}log (1+Z/148)で表される。
ここで、Q:単位重量当たりの撹拌ガス流量(Nl/分・ton),
T:脱硫処理前の溶鋼温度(℃),
W:溶鋼重量(ton),
Z:溶鋼深さ(cm)である。
In desulfurizing molten steel,
A method for producing an ultra-low sulfur steel, characterized in that, during the desulfurization treatment, an amount of CaO (W CaO ) satisfying the following formula [1] is introduced into the slag at least once according to the stirring power density (ω).
1.5 (0.037ω + 0.28) W slag / 100 ≦ W CaO ≦ 2.0 (0.037ω + 3.04) W slag / 100
……… [1]
Where
W CaO : CaO amount (kg) input during desulfurization treatment
W slag : The amount of slag that was input during desulfurization (kg)
ω: stirring power density (watt / ton),
ω = {0.0285 × Q (T + 273) / W} log (1 + Z / 148)
Here, Q: stirring gas flow rate per unit weight (Nl / min · ton),
T: Temperature of molten steel (° C) before desulfurization treatment,
W: Molten steel weight (ton),
Z: Depth of molten steel (cm).
前記CaO量(WCaO)は、(脱硫処理開始後1分)〜(脱硫処理に要する総時間の1/2)の間に投入するものである請求項1に記載の脱硫方法。 The desulfurization method according to claim 1, wherein the CaO amount (W CaO ) is charged between (1 minute after the start of the desulfurization treatment) and (1/2 of the total time required for the desulfurization treatment).
JP2003425345A 2003-12-22 2003-12-22 Method for producing extra-low sulfur steel Withdrawn JP2005179762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003425345A JP2005179762A (en) 2003-12-22 2003-12-22 Method for producing extra-low sulfur steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003425345A JP2005179762A (en) 2003-12-22 2003-12-22 Method for producing extra-low sulfur steel

Publications (1)

Publication Number Publication Date
JP2005179762A true JP2005179762A (en) 2005-07-07

Family

ID=34785253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003425345A Withdrawn JP2005179762A (en) 2003-12-22 2003-12-22 Method for producing extra-low sulfur steel

Country Status (1)

Country Link
JP (1) JP2005179762A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008081763A1 (en) * 2006-12-22 2008-07-10 Yoshizawa Lime Industry Co., Ltd. Flux for obtaining steel reduced in nitrogen, oxygen, and sulfur contents through smelting
JP2008285709A (en) * 2007-05-16 2008-11-27 Kobe Steel Ltd Method for secondarily refining low-sulfur steel while inhibiting sulfur-returning phenomenon in vacuum degassing process
US10287644B2 (en) 2011-08-12 2019-05-14 Jfe Steel Corporation Molten steel desulfurization method, molten steel secondary refining method, and molten steel manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008081763A1 (en) * 2006-12-22 2008-07-10 Yoshizawa Lime Industry Co., Ltd. Flux for obtaining steel reduced in nitrogen, oxygen, and sulfur contents through smelting
JP2008285709A (en) * 2007-05-16 2008-11-27 Kobe Steel Ltd Method for secondarily refining low-sulfur steel while inhibiting sulfur-returning phenomenon in vacuum degassing process
US10287644B2 (en) 2011-08-12 2019-05-14 Jfe Steel Corporation Molten steel desulfurization method, molten steel secondary refining method, and molten steel manufacturing method
US11035014B2 (en) 2011-08-12 2021-06-15 Jfe Steel Corporation Molten steel desulfurization method, molten steel secondary refining method, and molten steel manufacturing method

Similar Documents

Publication Publication Date Title
JP5406516B2 (en) Method for producing high nitrogen content stainless steel
JP4499969B2 (en) Desulfurization method by ladle refining of molten steel
JP6410311B2 (en) Stainless steel refining method
JP2005179762A (en) Method for producing extra-low sulfur steel
JP4765374B2 (en) Desulfurization treatment method for chromium-containing hot metal
JP2002339014A (en) Method for producing extra low sulfur steel
JP4714655B2 (en) Desulfurization method for chromium-containing molten iron
JP2014058728A (en) Desulfurization method of molten steel
JP5509913B2 (en) Method of melting high Si steel with low S and Ti content
JP6627601B2 (en) Hot metal dephosphorizer and method
JP2017145474A (en) Steel making method of low carbon steel
JP5286892B2 (en) Dephosphorization method of hot metal
JP4411934B2 (en) Method for producing low phosphorus hot metal
JP2007197825A (en) Flux used in smelting low-nitrogen, low-oxygen, and low-sulfur steel
KR101356937B1 (en) Method for refining stainless steel
JP2000212633A (en) Desulfurization of molten steel in ladle refining
JP6443192B2 (en) Slag reforming method using FeSi alloy grains
JP2007119813A (en) Method for refining molten iron
JP7020601B1 (en) Manufacturing method of low phosphorus molten iron
JP7248195B2 (en) Converter steelmaking method
JP2019151535A (en) Method of producing phosphate slag fertilizer
JP5454313B2 (en) Blowing acid decarburization method for chromium-containing steel
KR101412546B1 (en) Desurfurization method for hot metal
JP6627433B2 (en) Cold recycling method
JP2020105544A (en) Molten iron desulfurization method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051221

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060929