JP6443192B2 - Slag reforming method using FeSi alloy grains - Google Patents

Slag reforming method using FeSi alloy grains Download PDF

Info

Publication number
JP6443192B2
JP6443192B2 JP2015080012A JP2015080012A JP6443192B2 JP 6443192 B2 JP6443192 B2 JP 6443192B2 JP 2015080012 A JP2015080012 A JP 2015080012A JP 2015080012 A JP2015080012 A JP 2015080012A JP 6443192 B2 JP6443192 B2 JP 6443192B2
Authority
JP
Japan
Prior art keywords
slag
fesi alloy
ladle
fesi
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015080012A
Other languages
Japanese (ja)
Other versions
JP2016199785A (en
Inventor
壮一 寺澤
壮一 寺澤
昌平 柿本
昌平 柿本
康之 須藤
康之 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2015080012A priority Critical patent/JP6443192B2/en
Publication of JP2016199785A publication Critical patent/JP2016199785A/en
Application granted granted Critical
Publication of JP6443192B2 publication Critical patent/JP6443192B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

本発明は、転炉等の精錬炉から取鍋への溶鋼の出鋼完了後にFeSi合金粒を投入してスラグを改質する方法に関する。   The present invention relates to a method of reforming slag by introducing FeSi alloy grains after completion of molten steel from a refining furnace such as a converter to a ladle.

転炉においては、転炉に溶鉄を装入し、転炉精錬によって主に脱りん脱炭精錬を行う。精錬完了後に溶鋼を取鍋に出鋼し、その後、転炉炉内のスラグをスラグ鍋に排滓し、次の精錬のために溶銑を装入するという操業サイクルを繰り返している。
精錬後に転炉から出鋼した取鍋内の溶鋼表面にはスラグが浮遊しており、このスラグ中にはMnO、FeO、Fe3、等の比較的還元されやすい酸化物を含有している。これらの酸化物は溶鋼中のAlなどと反応し、Alなどの非金属介在物を生成し、溶鋼清浄性を悪化させ、製品欠陥の原因となるおそれがある。
In the converter, molten iron is charged into the converter and dephosphorization and decarburization refining is performed mainly by converter refining. After the refining is completed, the molten steel is taken out into the ladle, and then the operation cycle is repeated in which the slag in the converter furnace is discharged into the slag pan and the molten iron is charged for the next refining.
Slag floats on the surface of the molten steel in the ladle that has been removed from the converter after refining, and this slag contains oxides that are relatively easily reduced , such as MnO, FeO, and Fe 2 O 3. Yes. These oxides react with Al or the like in the molten steel to generate non-metallic inclusions such as Al 2 O 3 , thereby deteriorating the cleanliness of the molten steel and causing product defects.

このため、スラグ中の酸素源となるFeOなどを極力還元し、スラグ中の酸素ポテンシャルを下げ、また、生成した非金属介在物を吸着し易いスラグ組成とする必要がある。スラグ中の酸素ポテンシャルが高いままだと後工程の連続鋳造工程まで非金属介在物の生成が継続し、鋼の清浄度をより悪化させる。
その対応として、スラグ中の酸素量を低減することと非金属介在物等を吸着し易いスラグ組成に改善することが重要で、従来、転炉から取鍋への出鋼中にCaO粉体を投入するとともに、出鋼完了後にスラグ表面に還元剤としてアルミニウム材を投入することがなされている。
For this reason, it is necessary to reduce FeO as an oxygen source in the slag as much as possible, lower the oxygen potential in the slag, and make the slag composition easy to adsorb the generated nonmetallic inclusions. If the oxygen potential in the slag remains high, the production of nonmetallic inclusions continues until the subsequent continuous casting process, which further deteriorates the cleanliness of the steel.
As a countermeasure, it is important to reduce the amount of oxygen in the slag and to improve the slag composition to easily adsorb non-metallic inclusions. In addition to charging, an aluminum material is added as a reducing agent to the slag surface after the completion of steel output.

例えば、スラグの還元を十分に行い、溶鋼の再酸化を抑制し、また生成したAlなどの脱酸生成物を効率良く吸収することができる組成のスラグを得るための技術として、従来、生石灰に加えてホタル石を混合したフラックスをスラグに添加し、出鋼後さらに酸化性スラグを改質するためにアルミ灰などのスラグ還元剤を添加してスラグ組成を調整する技術が知られている(特許文献1参照)。
また、高品質の極低炭素鋼を製造する方法において、精錬炉内のスラグを改質するために、転炉より鋼の脱酸出鋼時にCaOとアルミニウム材を投入し、CaO−Al系の低融点改質スラグを2kg/t・s以上存在させ、出鋼完了時に転炉スラグと改質スラグとの混合スラグを低融点とし、出鋼末期にAlとCaOを投入することにより出鋼完了後の酸素ポテンシャルを低減させる技術が知られている(特許文献2参照)。
For example, as a technique for obtaining slag having a composition capable of sufficiently reducing slag, suppressing reoxidation of molten steel, and efficiently absorbing deoxidation products such as generated Al 2 O 3 , A technology that adjusts the slag composition by adding a flux containing fluorite in addition to quick lime to the slag, and adding a slag reducing agent such as aluminum ash to further improve the oxidizing slag after steelmaking. (See Patent Document 1).
Moreover, in the method for producing a high quality ultra-low carbon steel, in order to modify the slag in the smelting furnace, CaO and aluminum material are introduced at the time of deoxidation of the steel from the converter, and CaO—Al 2 O By making 3 series low melting point slag more than 2kg / t · s, making the mixed slag of converter slag and reformed slag have low melting point at the completion of steel production, and adding Al and CaO at the end of steel production A technique for reducing the oxygen potential after completion of steel production is known (see Patent Document 2).

特開平6−228627号公報JP-A-6-228627 特開平5−222428号公報JP-A-5-222428

ところが、前述の出鋼中にCaO粉体を投入後、スラグ表面にアルミニウム材を投入した場合、アルミニウムの反応によって白煙が多量発生する問題があった。例えば、取鍋をクレーンで吊り上げる際、未反応のアルミニウムが振動によって反応し、急激な発煙を引き起こし、クレーン作業に支障をきたす恐れがあった。
その場合、取鍋を転炉の下に移動し、転炉の集塵機により白煙を吸引していた。しかし、その時間、転炉から炉内スラグを排出する排滓作業ができず、転炉のサイクルタイムが伸び、生産性を著しく低下させ、また、物流も乱していた。
このため、スラグ改質のための還元剤をスラグ表面に投入した場合であっても、発煙を生じさせることのない技術の登場が望まれていた。
However, when the aluminum material is introduced into the slag surface after the CaO powder is introduced into the above-described steel, there is a problem that a large amount of white smoke is generated due to the reaction of aluminum. For example, when a ladle is lifted by a crane, unreacted aluminum reacts by vibration, causing a sudden smoking, which may hinder crane operation.
In that case, the ladle was moved under the converter and white smoke was sucked by the dust collector of the converter. However, during that time, it was impossible to discharge the slag in the furnace from the converter, and the cycle time of the converter was increased, the productivity was remarkably lowered, and the physical distribution was also disturbed.
For this reason, even if it is a case where the reducing agent for slag modification | reformation is thrown into the slag surface, the appearance of the technique which does not produce smoke was desired.

本発明は、前記従来の問題点に鑑みなされたものであって、転炉などの精錬炉から取鍋に出鋼した溶鋼の上に存在するスラグの改質を行う場合に、発煙を生じさせることなくスラグの改質ができる技術の提供を目的とする。   The present invention has been made in view of the above-described conventional problems, and generates smoke when reforming slag existing on molten steel that has been discharged from a refining furnace such as a converter to a ladle. It aims at providing the technique which can modify | reform slag without this.

本発明の特徴は以下の通りである。
本発明では、まず出鋼中にCaOを投入し、出鋼完了後に取鍋内スラグにFeSi粒を投入する。
CaOを投入するのは、取鍋内スラグ中の酸素ポテンシャルを低減すると同時に、スラグを非金属介在物を吸着し易い組成に改善するためである。
CaOは単体では融点が高いので早期に溶解するように出鋼中から投入する。
次に出鋼完了後、取鍋内スラグの表面にFeSi合金粒を投入する。
The features of the present invention are as follows.
In the present invention, first, CaO is introduced into the outgoing steel, and FeSi particles are introduced into the slag in the ladle after completion of the outgoing steel.
The reason for introducing CaO is to reduce the oxygen potential in the slag in the ladle and at the same time improve the slag to a composition that easily adsorbs non-metallic inclusions.
Since CaO has a high melting point as a simple substance, it is introduced from the steel to be dissolved early.
Next, after the completion of steeling, FeSi alloy grains are put on the surface of the slag in the ladle.

従来用いていたアルミニウム材の添加に代えてFeSi合金粒をスラグに投入することで、発煙することなくスラグの還元ができる。出鋼後の発煙が無いため、出鋼完了後、直ちに転炉炉下から取鍋を移動することができ、発煙によるロスタイムを生じないため、転炉の稼動サイクルを短縮することができる。また、白煙による炉下での待機時間のばらつきもなくなるため物流も安定する。   By introducing FeSi alloy grains into the slag instead of the conventionally used aluminum material, the slag can be reduced without generating smoke. Since there is no smoke after the steel is output, the ladle can be moved from the bottom of the converter immediately after the completion of the steel generation, and no loss time due to the smoke is generated, so the operation cycle of the converter can be shortened. In addition, the dispersion of waiting time in the furnace caused by white smoke is eliminated, so that the logistics are stable.

以上を本発明の基本とするが、FeSi合金粒は、粒径が10mm以上、30mm以下のものを90質量%以上含むことが望ましい。
粒径10mm未満のFeSi合金粒が大量に含まれていると、FeSi合金粒の投入量のばらつきが大きくなるおそれがある。粒径の小さいFeSi合金粒は秤量機に切り出す際に流れ込みがあり、それが投入量のばらつき要因となっている。また、粒径の小さいFeSi合金はスラグの上で焼結して未溶解のまま溶け残るおそれもある。溶け残ったFeSi合金を有したまま二次精錬を行うと、未溶解のFeSi合金と溶鋼とが反応し、例えば、溶鋼中の必要な酸素までも低減してしまうおそれがある。
一方、30mmを超えるFeSi合金粒では、スラグ表面に投入すると、FeSi合金粒が溶鋼まで到達し、溶鋼中のSiが増加する結果となり、あるいは、C≦0.01%である極低炭素鋼のような、脱炭のために必要な溶鋼中酸素までも低減してしまい、脱炭処理に支障をきたしてしまうおそれがあった。
このように、10〜30mmの適度な粒径のFeSi合金粒であるならば、溶鋼まで到達することを抑制し、溶鋼に悪影響を与えることなく、効率よくスラグの改質を行うことができる。
Although the above is the basis of the present invention, it is desirable that the FeSi alloy particles contain 90% by mass or more of particles having a particle size of 10 mm or more and 30 mm or less.
When a large amount of FeSi alloy grains having a particle size of less than 10 mm is contained, there is a possibility that the variation in the amount of FeSi alloy grains to be introduced becomes large. FeSi alloy grains having a small particle size flow into the weighing machine, which causes a variation in the amount charged. Further, the FeSi alloy having a small particle size may be sintered on the slag and remain undissolved. If secondary refining is performed with the FeSi alloy remaining undissolved, the undissolved FeSi alloy reacts with the molten steel, and for example, there is a risk that even the necessary oxygen in the molten steel is reduced.
On the other hand, when FeSi alloy grains exceeding 30 mm are added to the slag surface, the FeSi alloy grains reach the molten steel, resulting in an increase in Si in the molten steel, or C ≦ 0.01% of ultra-low carbon steel. As a result, the amount of oxygen in the molten steel necessary for decarburization is also reduced, which may hinder the decarburization process.
Thus, if it is a FeSi alloy grain with a moderate particle diameter of 10 to 30 mm, reaching to the molten steel can be suppressed, and the slag can be modified efficiently without adversely affecting the molten steel.

本発明は、溶鋼の出鋼時にCaOを投入し、出鋼完了後にスラグの表面にFeSi合金粒を投入するので、発煙することなくスラグの改質ができる。出鋼後の発煙が無いため、出鋼後直ちに取鍋の移動ができ、発煙によるロスタイムを生じないため、転炉の稼動サイクルを短縮することができる。
取鍋をクレーンで吊り上げる際、従来は未反応のアルミニウムが振動によって反応し、発煙することがあり、取鍋の周囲が発煙で見えなくなり、で問題があったが、発煙を無くすることで取鍋上方の視野が良好となり、取鍋の移動や吊り上げのための作業を問題なくできる。
In the present invention, CaO is introduced at the time of molten steel, and FeSi alloy grains are introduced on the surface of the slag after completion of the steel production, so that the slag can be modified without generating smoke. Since there is no smoke after the steel is extracted, the ladle can be moved immediately after the steel is output, and no loss time due to the smoke is generated, so that the operation cycle of the converter can be shortened.
When lifting a ladle with a crane, unreacted aluminum may react and generate smoke due to vibration, and the surrounding area of the ladle disappeared due to smoke. The field of view above the pan becomes good, and the work for moving and lifting the ladle can be performed without problems.

転炉を用いた精錬工程の一部を示すもので、(A)は精錬中の転炉を示す部分断面図、(B)は出鋼中の転炉を示す部分断面図。A part of the refining process using a converter is shown, (A) is a fragmentary sectional view showing the converter in refining, (B) is a fragmentary sectional view showing the converter in steelmaking. FeSi合金粒を取鍋中のスラグに添加した後の状態と二次精錬工程の一例状態を示すもので、(A)は取鍋内の溶鋼の上にFeSi合金粒が投入された状態を示す部分断面図、(B)は未溶解のFeSi合金粒を有したまま二次精錬処理を行った状態を示す部分断面図。The state after adding FeSi alloy grains to the slag in the ladle and an example of the secondary refining process are shown. (A) shows the state where the FeSi alloy grains are put on the molten steel in the ladle. Partial sectional drawing, (B) is a partial sectional view showing a state in which secondary refining treatment is performed with undissolved FeSi alloy grains. スラグに投入するFeSi合金粒の一例を示す模式図。The schematic diagram which shows an example of the FeSi alloy grain thrown into slag. スラグに投入するFeSi合金粒の一例を示すもので、(A)は10mm〜50mmの粒径のFeSi合金粒の一例を示す写真、(B)は10mm〜30mmの粒径のFeSi合金粒の一例を示す写真。An example of FeSi alloy grains to be put into slag, (A) is a photograph showing an example of FeSi alloy grains having a particle diameter of 10 mm to 50 mm, and (B) is an example of FeSi alloy grains having a particle diameter of 10 mm to 30 mm. Photo showing. CaO−SiO−Alの三元系状態図。Ternary phase diagram of CaO-SiO 2 -Al 2 O 3 . スラグにFeSi合金粒を投入した状態において鋼中酸素濃度と頻度の関係を示すグラフ。The graph which shows the relationship between the oxygen concentration in steel, and frequency in the state which injected the FeSi alloy grain into slag.

以下、第1実施形態に係るスラグの改質方法について図面に基づいて説明する。
図1は精錬炉として転炉1を用いた精錬工程の概要を示す。図1(A)に示すように転炉1に溶銑2を収容するとともに、転炉1の炉頂から転炉1内に挿入したランス3によって溶銑2に酸素ガスを吹き込んで脱炭するとともに、リンなどの不純物の除去を行う。
Hereinafter, the slag reforming method according to the first embodiment will be described with reference to the drawings.
FIG. 1 shows an outline of a refining process using a converter 1 as a refining furnace. As shown in FIG. 1 (A), the molten metal 2 is accommodated in the converter 1 and decarburized by blowing oxygen gas into the molten metal 2 with a lance 3 inserted into the converter 1 from the top of the converter 1. Remove impurities such as phosphorus.

転炉1による精錬が終了したならば、図1(B)のように転炉1を傾動し、炉壁上側部に形成されている出鋼孔から転炉1の下方に配置されている取鍋5に溶鋼6を出鋼する。取鍋5に溶鋼6を出鋼する際、本発明ではCaO(生石灰)を投入する。例えば、300t規模の転炉1から出鋼する場合、50トン程度出鋼してからCaOの添加を開始することが好ましい。
取鍋5に溶鋼6を出鋼する際、転炉炉内の溶鋼6の上に存在しているFeOなどの酸化性スラグ7の一部も取鍋5に流出する。CaOの投入量は、300トン規模の転炉1から溶鋼6を出鋼している場合、0.9kg/t.s.〜1.0kg/t.s.(ton-steel:1tonの溶鋼当たり)の範囲とすることができる。なお、上述のCaO投入量は操業上の一例であり、上述の範囲に限るものではない。転炉からの流出スラグ量等に応じて適宜増減すれば良い。
出鋼が終了した時点において、図2(A)に示すように取鍋5には溶鋼6が収容され、その上にスラグ7aが浮遊している。本実施形態では、このスラグ7aに対し以下に説明するようにFeSi合金粒を極力均一に散布して、スラグの改質を行う。
取鍋5に流出されるスラグ7aは転炉内のスラグ7の一部であるが、図2(A)に示すように取鍋5溶鋼6の上に30〜50mm程度の厚さのスラグ7aが形成され、その上、あるいは中に投入したFeSiが存在する。
When the refining by the converter 1 is completed, the converter 1 is tilted as shown in FIG. 1 (B), and the take-up arranged below the converter 1 from the outlet hole formed in the upper portion of the furnace wall. The molten steel 6 is put out into the pan 5. When the molten steel 6 is removed from the ladle 5, CaO (quick lime) is introduced in the present invention. For example, when steel is output from the 300-ton scale converter 1, it is preferable to start adding CaO after about 50 tons.
When the molten steel 6 is discharged from the ladle 5, part of the oxidizing slag 7 such as FeO existing on the molten steel 6 in the converter furnace also flows out to the ladle 5. The input amount of CaO is 0.9 kg / ts. To 1.0 kg / ts. (Ton-steel: 1 ton of molten steel when the molten steel 6 is discharged from the converter 1 having a scale of 300 tons. ). In addition, the above-mentioned CaO input amount is an example in operation, and is not limited to the above-described range. What is necessary is just to increase / decrease suitably according to the amount of outflow slag, etc. from a converter.
As shown in FIG. 2A, molten steel 6 is accommodated in the ladle 5 and the slag 7a is floating on it. In the present embodiment, the FeSi alloy particles are uniformly dispersed as much as possible on the slag 7a as described below, thereby modifying the slag.
Although the slag 7a which flows out into the ladle 5 is a part of the slag 7 in the converter, as shown in FIG. 2 (A), the slag 7a having a thickness of about 30 to 50 mm is formed on the ladle 5 molten steel 6. Is formed, and there is FeSi charged in or on the inside.

FeSi合金粒8の投入量(散布量)は、300トン規模の転炉1から溶鋼6を出鋼した場合、0.3kg/t.s.〜0.4kg/t.s.の範囲を選択できる。
スラグ7aに投入するFeSi合金粒8は、市販のものは、FeSi合金を粉砕して得た種々の粒径のFeSi合金粒の集合体であるが、本実施形態では10mm〜30mmの粒径のFeSi合金粒を90質量%以上含むFeSi合金粒8を用いる。より好ましくは95質量%以上含むFeSi合金粒8を用いる。
図3に10mm〜30mmの粒径のFeSi合金粒8の一例を示す。
FeSi合金粒8において、10mm未満の粒径のFeSi合金粒を10質量%未満含有していても良い。より好ましくは5質量%未満とする。
また、更に好ましくは30mmを超える粒径のFeSi合金粒を含有する場合、1質量%以下とする。更に好ましくは全くなくする方が良い。
FeSi合金粒8をスラグ7aに投入する場合、スラグ7の表面にできるだけ均一に散布することが好ましい。
The input amount (dispersion amount) of the FeSi alloy grains 8 is selected in the range of 0.3 kg / ts. To 0.4 kg / ts when the molten steel 6 is discharged from the converter 1 having a scale of 300 tons. it can.
The commercially available FeSi alloy particles 8 to be put into the slag 7a are aggregates of FeSi alloy particles having various particle diameters obtained by pulverizing the FeSi alloy. In this embodiment, the particle diameters are 10 mm to 30 mm. FeSi alloy grains 8 containing 90 mass% or more of FeSi alloy grains are used. More preferably, FeSi alloy grains 8 containing 95% by mass or more are used.
FIG. 3 shows an example of FeSi alloy particles 8 having a particle diameter of 10 mm to 30 mm.
FeSi alloy grain 8 may contain less than 10% by mass of FeSi alloy grains having a particle size of less than 10 mm. More preferably, the content is less than 5% by mass.
More preferably, when FeSi alloy grains having a particle diameter exceeding 30 mm are contained, the content is 1% by mass or less. More preferably, it is better to eliminate it at all.
When the FeSi alloy particles 8 are charged into the slag 7a, it is preferable that the FeSi alloy particles 8 be dispersed as uniformly as possible on the surface of the slag 7.

スラグ7aの上に散布した10〜30mmの粒径のFeSi合金粒8は、スラグ7aの熱により溶融し、スラグ7a中に拡散してスラグ7aの還元を行う。ここで、30mm超の粒径のFeSi合金粒を用いるとスラグ7aで溶融しきれなかったFeSi合金粒の一部が沈降して溶鋼6まで到達するので、溶鋼中のSiが所望以上に増加してしまう。あるいは、未脱酸溶鋼の場合、溶鋼6中の酸素と反応し、鋼中酸素量を低下させてしまう。
特に溶鋼6が極低炭素鋼(C≦0.01%)のような二次精錬で脱炭処理が必要な鋼種の場合、脱炭を促進するために所定量の溶鋼中酸素が必要である。前記のように溶鋼中酸素が低減されると脱炭効率が低下する。
また、FeSi合金の融点が約1000℃で、従来のAlの融点が660℃と高く、FeSi合金粒8をスラグ7aに投入した際に、FeSi合金粒8の一部が図2(B)に示すように未溶解合金12として残留するおそれがあるので、FeSi合金粒8の粒径はより小さくすることが望ましい。
逆に、10mm未満の粒径でも、スラグ上で焼結してしまう場合があり、有効にスラグ還元に供されない。また、図2(B)のように二次精錬で浸漬管を溶鋼に浸漬するなどの際に、焼結したFeSiを未溶解合金12として溶鋼中に押し込んでしまい、上記と同様に溶鋼中のSiが所望以上に増加したり、あるいは未脱酸溶鋼の場合、鋼中酸素量を低下させてしまう。
The FeSi alloy particles 8 having a particle size of 10 to 30 mm dispersed on the slag 7a are melted by the heat of the slag 7a, diffused in the slag 7a, and reduce the slag 7a. Here, when FeSi alloy particles having a particle diameter of more than 30 mm are used, part of the FeSi alloy particles that could not be melted by the slag 7a settles and reaches the molten steel 6, so that Si in the molten steel increases more than desired. End up. Or in the case of non-deoxidized molten steel, it reacts with oxygen in the molten steel 6 and reduces the amount of oxygen in the steel.
In particular, in the case where the molten steel 6 is a steel type that requires decarburization treatment by secondary refining such as extremely low carbon steel (C ≦ 0.01%), a predetermined amount of oxygen in the molten steel is required to promote decarburization. . As described above, the decarburization efficiency decreases when oxygen in the molten steel is reduced.
Further, the melting point of the FeSi alloy is about 1000 ° C., and the melting point of the conventional Al is as high as 660 ° C. When the FeSi alloy particles 8 are put into the slag 7a, a part of the FeSi alloy particles 8 is shown in FIG. As shown, since it may remain as an undissolved alloy 12, it is desirable to make the particle size of the FeSi alloy particles 8 smaller.
Conversely, even a particle size of less than 10 mm may sinter on slag and is not effectively subjected to slag reduction. In addition, when the dip tube is immersed in the molten steel by secondary refining as shown in FIG. 2 (B), the sintered FeSi is pushed into the molten steel as the unmelted alloy 12, and the molten steel in the same manner as above. When Si increases more than desired or in the case of non-deoxidized molten steel, the amount of oxygen in the steel is reduced.

このようにスラグ7aに対し改質のために添加する還元剤として、従来投入していたアルミニウム材に替えてFeSi合金粒8とするならば、発煙を生じない。そのため、従来、発煙が終了するまで取鍋5が転炉炉下に待機する必要がなく、取鍋5の移動を従来よりも早く開始できるので、転炉1の操業サイクルタイムを短縮することができる。   In this way, if the FeSi alloy grain 8 is used instead of the conventionally introduced aluminum material as a reducing agent added to the slag 7a for reforming, no smoke is generated. Therefore, conventionally, the ladle 5 does not have to wait under the converter furnace until smoke generation is completed, and the movement of the ladle 5 can be started earlier than before, so that the operation cycle time of the converter 1 can be shortened. it can.

例えば、300トン転炉から取鍋に出鋼し、出鋼完了から、取鍋の溶鋼上のスラグにアルミニウム塊を投入し、発煙した場合、発煙終了まで待機する時間は、80秒程度あり、この間、取鍋を移動できない。それに対して、FeSi合金粒8をスラグに投入することで、発煙が無くなるので、取鍋移動開始までの時間を80秒程度短縮できる。この80秒程度の時間は、従来の300トン転炉の操業において、出鋼完了からアルミニウム材の投入、待機、サンプル回収位置までの取鍋移動時間の合計時間に対し、約70%を占めるので、転炉サイクル時間に対し極めて大きなサイクルタイムの短縮となる。また、一般的な転炉サイクルタイムが30〜40分と考えても数%に相当し、短縮の効果は大きい。   For example, when steel is discharged from a 300-ton converter to the ladle, and after completion of the steel extraction, aluminum lump is put into the slag on the molten steel in the ladle and smoke is generated, the time to wait until the end of smoke is about 80 seconds, During this time, the ladle cannot be moved. On the other hand, by introducing the FeSi alloy particles 8 into the slag, smoke generation is eliminated, so that the time to start the ladle movement can be shortened by about 80 seconds. This time of about 80 seconds occupies about 70% of the total time of the ladle movement from the completion of steel output to the introduction of aluminum material, standby, and the sample collection position in the operation of the conventional 300-ton converter. The cycle time is extremely shortened with respect to the converter cycle time. Moreover, even if it considers that a general converter cycle time is 30 to 40 minutes, it corresponds to several%, and the effect of shortening is large.

鋼中酸素量を減少させることなく二次精錬ができるならば、極低炭素鋼などの高品位鋼を効率よく製造でき、且つ、好適な溶鋼6が得られる。
前述の二次精錬は、真空脱ガス装置(RH(Ruhrstahl-Heraeus)による二次精錬について例示したが、二次精錬については、DH (Dortmund-Horde)、LF(Ladle Furnace)あるいは、AOD(Argon Oxygen Decarburization)炉、VOD(Vacuum Oxygen Decarburization)炉などを用いた二次精錬を適用しても良いのは勿論である。
ここで用いるFeSi合金粒8は、Siを70質量%以上含むものが好ましい。
また、FeSi合金粒8は、C含有量の低いものを用いることが好ましい。一例として、C含有量1.0質量%以下のFeSi合金粒8を用いることが好ましい。FeSi合金粒8において、C含有量の多いもの、例えば、C含有量3質量%以上のFeSi合金粒8を用いると、Cが酸化してCOガスを発生し、スラグ7aにふくれを発生する。スラグ7aは粘度が高いため、内部でガスが発生するとスラグ7aがふくれることとなり、結果的に取鍋5からスラグ7aが溢れるおそれがある。スラグ7aのふくれを無くするためにC含有量はできるだけ低いことが望ましく、1.0質量%以下であっても、0.5質量%以下が好ましく、0.2質量%以下がより好ましい。
If secondary refining can be performed without reducing the amount of oxygen in the steel, high-grade steel such as ultra-low carbon steel can be produced efficiently and a suitable molten steel 6 can be obtained.
The above-mentioned secondary refining has been exemplified for the secondary refining by a vacuum degassing apparatus (RH (Ruhrstahl-Heraeus)). It goes without saying that secondary refining using an Oxygen Decarburization (Oxygen Decarburization) furnace, a VOD (Vacuum Oxygen Decarburization) furnace, or the like may be applied.
The FeSi alloy grains 8 used here preferably contain 70% by mass or more of Si.
Moreover, it is preferable to use the FeSi alloy grain 8 having a low C content. As an example, it is preferable to use FeSi alloy grains 8 having a C content of 1.0 mass% or less. When FeSi alloy grains 8 having a high C content, for example, FeSi alloy grains 8 having a C content of 3% by mass or more are used, C is oxidized to generate CO gas and blisters are generated in slag 7a. Since the slag 7a has a high viscosity, when gas is generated inside, the slag 7a is swollen, and as a result, the slag 7a may overflow from the ladle 5. In order to eliminate blistering of the slag 7a, the C content is desirably as low as possible. Even if it is 1.0% by mass or less, 0.5% by mass or less is preferable, and 0.2% by mass or less is more preferable.

ところで、上述のFeSi合金粒8を投入する際、FeSi合金粒8の投入量に対し、発煙が問題にならない程度少ないようであれば、アルミニウム塊を一部添加しても良い。
取鍋5の内径を4mと仮定し、1回の投入時にCaO投入量300kg、溶鋼6の上にスラグ7aが層厚として30〜50mm流出していると仮定することができ、スラグ比重を3.0〜4.0と仮定すると、スラグボリュームは、1.0〜2.5トンとなる。
この条件に対し、10〜30mmの粒径のFeSi合金粒8ならば80kgを投入し、更に加えてアルミニウム塊を30kg程度投入することができる。この割合では、スラグ7aのスラグに対し、FeSi合金粒:0.032〜0.08kg/kgの割合で投入し、アルミニウム塊:0.012〜0.03kg/kgの割合で投入したこととなる。
スラグにアルミニウム塊を投入する場合、スラグボリューム1.0トンに対し、10〜20kgの範囲で投入することが好ましい。ただし、操業の規模に応じてスラグ量が多いからといってアルミニウム塊を100kgも投入すると当然発煙が多量に発生するので、上述の30kg程度を上限とすることが好ましい。
By the way, when the above-described FeSi alloy grains 8 are charged, a part of the aluminum lump may be added as long as the amount of smoke generation does not become a problem with respect to the amount of FeSi alloy grains 8 charged.
Assuming that the inner diameter of the ladle 5 is 4 m, it is possible to assume that the slag 7a flows out as a layer thickness of 30 to 50 mm on the molten steel 6 when the input amount of CaO is 300 kg and the slag specific gravity is 3 Assuming 0.0 to 4.0, the slag volume is 1.0 to 2.5 tons.
With respect to this condition, if FeSi alloy particles 8 having a particle diameter of 10 to 30 mm, 80 kg can be added, and in addition, about 30 kg of aluminum lump can be added. At this ratio, the FeSi alloy grains: 0.032 to 0.08 kg / kg and the aluminum lump: 0.012 to 0.03 kg / kg were added to the slag of the slag 7a. .
When the aluminum lump is thrown into the slag, it is preferably thrown in the range of 10 to 20 kg with respect to 1.0 ton of slag volume. However, if the amount of slag is large depending on the scale of operation, if 100 kg of aluminum lump is added, naturally a large amount of smoke is generated. Therefore, the above upper limit of about 30 kg is preferable.

前述のようにCaOとFeSi合金8に加え、アルミニウム材を投入する場合、スラグ7aの酸化性の改質のために、投入した結果においてスラグ7aの中にCaOとAlの比率において、CaO/Alの比で0.7以上、1.7以下の範囲で含まれていることが好ましく、0.9〜1.35の範囲がより好ましい。
CaO/Alの比を上述のように設定することが好ましい理由は、図5に示すCaO−SiO−Alの三元系状態図に太い実線で示す1600℃の等温線に示すように、この1600℃等温線の内側であればすべて液相領域となる。溶鋼清浄性の向上、つまり、溶鋼中の介在物を減少させるには、溶鋼表面に浮上してきた介在物をスラグでいかに捕らえて吸着するかが肝心となる。この点、スラグメタルが強攪拌されないRH処理では、特に液相率が重視される。また、スラグメタルが強攪拌される工程ではCaO/Alの値が1.6と高い方が望ましいといえる。上述の0.9〜1.35の範囲は上述の液相領域に完全に含まれる範囲にあり、スラグが液相であると介在物吸着能が高いと考えられるため、上述の範囲が好ましい。
As described above, when an aluminum material is added in addition to CaO and FeSi alloy 8, in order to improve the oxidizing property of the slag 7a, in the ratio of CaO and Al 2 O 3 in the slag 7a, The CaO / Al 2 O 3 ratio is preferably within the range of 0.7 or more and 1.7 or less, and more preferably within the range of 0.9 to 1.35.
The reason why it is preferable to set the ratio of CaO / Al 2 O 3 as described above is that the isotherm of 1600 ° C. indicated by a thick solid line in the ternary phase diagram of CaO—SiO 2 —Al 2 O 3 shown in FIG. As shown in FIG. 2, the liquid phase region is entirely inside the 1600 ° C. isotherm. In order to improve the cleanliness of the molten steel, that is, to reduce the inclusions in the molten steel, it is important how the inclusions floating on the surface of the molten steel are captured and adsorbed by the slag. In this regard, in the RH process in which the slag metal is not strongly stirred, the liquid phase ratio is particularly important. Further, in the process of slag metal is strongly stirred it can be said that people the value of CaO / Al 2 O 3 is high, 1.6 is desirable. The above range of 0.9 to 1.35 is in the range completely contained in the above liquid phase region, and the above range is preferable because the inclusion adsorbing ability is considered to be high when the slag is in the liquid phase.

300トン転炉を用い、転炉から内径4mの取鍋に溶鋼を出鋼している最中にCaO粒体を300kg投入した。この出鋼時、取鍋内の溶鋼の上に厚さ30〜50mmのスラグが生成される。スラグの比重は約3.0〜4.0であり、取鍋内のスラグボリュームは1.0〜2.5トンとなる。
取鍋に対する出鋼完了後に行うスラグ改質試験のために、粒径10〜50mmのFeSi合金粒と粒径10〜30mmのFeSi合金粒を用意した。
用いたFeSi合金粒を構成するFeSi合金は、Si:75.45質量%、C:0.11質量%、P:0.013質量%、S<0.005質量%、Al:1.05質量%、残部Feの組成である。
A 300-ton converter was used, and 300 kg of CaO particles were put into the ladle from the converter into a ladle having an inner diameter of 4 m. At the time of steeling, a slag having a thickness of 30 to 50 mm is generated on the molten steel in the ladle. The specific gravity of the slag is about 3.0 to 4.0, and the slag volume in the ladle is 1.0 to 2.5 tons.
For the slag modification test performed after the completion of steeling for the ladle, FeSi alloy particles having a particle size of 10 to 50 mm and FeSi alloy particles having a particle size of 10 to 30 mm were prepared.
The FeSi alloy constituting the FeSi alloy grains used is as follows: Si: 75.45 mass%, C: 0.11 mass%, P: 0.013 mass%, S <0.005 mass%, Al: 1.05 mass %, The composition of the balance Fe.

粒径10〜50mmのFeSi合金粒とは、粒度選別を行っていない原料合金粒に対し、10mmの目開きの篩にかけて残留した合金粒を再度50mmの篩にかけて篩を通過したFeSi合金粒の集合体である。
粒径10〜30mmのFeSi合金粒とは、粒度選別を行っていない原料合金粒に対し、10mmの目開きの篩にかけて残留した合金粒を再度30mmの篩にかけて篩を通過したFeSi合金粒の集合体である。
篩にかける前の原料合金粒は、10mm以下のFeSi合金粒が10%、10〜20mmのFeSi合金粒が15%、20〜30mmのFeSi合金粒が15%、30mm以上のFeSi合金粒が60%含まれていると表記されている市販品の原料合金粒である。
FeSi alloy particles having a particle size of 10 to 50 mm are aggregates of FeSi alloy particles that have passed through a sieve of 50 mm and the remaining alloy particles after passing through a sieve of 10 mm with respect to the raw material alloy particles that have not been subjected to particle size selection. Is the body.
The FeSi alloy particles having a particle size of 10 to 30 mm are aggregates of FeSi alloy particles that have passed through a sieve with a 30 mm sieve after the remaining alloy particles are passed through a sieve with an opening of 10 mm with respect to raw material alloy particles that have not been subjected to particle size selection. Is the body.
The raw material alloy grains before sieving are 10% of FeSi alloy grains of 10 mm or less, 15% of FeSi alloy grains of 10-20 mm, 15% of FeSi alloy grains of 20-30 mm, and 60 FeSi alloy grains of 30 mm or more. % Is a commercially available raw material alloy grain described as being contained.

粒径10〜50mmのFeSi合金粒の一例を図4(A)の写真に示し、粒径10〜30mmのFeSi合金粒の一例を図4(B)の写真に示す。図4(A)の写真から判るように、目開き50mmの篩を通過する粒で側面視略楕円形状の粒は、50mmより若干長い粒が通過するので、図4(A)に示す粒の中には50mmを若干超える長さの略楕円形状の粒等が含まれている。同様に図4(B)の写真から判るように、目開き30mmの篩を通過した粒の中には30mmを若干超える長さの粒が含まれ、目開き10mmの篩で選別された粒の中には10mm未満の粒も一部含まれている。
粒径10〜30mmのFeSi合金粒を得る場合に、表1に示すように各重量の合金粒を粒度選別して得たFeSi合金粒の粒度分布測定結果を以下の表1に示す。
An example of FeSi alloy grains having a particle size of 10 to 50 mm is shown in the photograph of FIG. 4A, and an example of FeSi alloy grains having a particle diameter of 10 to 30 mm is shown in the photograph of FIG. As can be seen from the photograph in FIG. 4 (A), the particles passing through the sieve having an opening of 50 mm and having a substantially elliptical shape when viewed from the side pass slightly longer than 50 mm. Some of them have a substantially elliptical shape with a length slightly exceeding 50 mm. Similarly, as can be seen from the photograph in FIG. 4 (B), the grains that have passed through the sieve having a mesh size of 30 mm include grains having a length slightly exceeding 30 mm. Some grains less than 10 mm are also included.
When obtaining FeSi alloy grains having a particle size of 10 to 30 mm, Table 1 shows the particle size distribution measurement results of FeSi alloy grains obtained by selecting the grain sizes of the alloy grains as shown in Table 1.

FeSi合金粒の粒度については、10−30mm粒径のFeSi合金粒1000kgをタンクに投入し、該タンクからコンテナバックに5回に分けて排出した際、排出開始(0kg)〜20kg、200〜220kg、400〜420kg、600〜620kg、800〜820kgの各回で排出した20kgを篩にかけて粒度分布を測定した。
その結果が以下の表2であり、この実績を%に換算した値が表1の%に相当する。
Regarding the grain size of the FeSi alloy grains, when 1000 kg of FeSi alloy grains having a particle size of 10-30 mm are put into a tank and discharged into the container bag in five times, the discharge starts (0 kg) to 20 kg, 200 to 220 kg. , 400 to 420 kg, 600 to 620 kg, 800 to 820 kg, and 20 kg discharged each time were sieved to measure the particle size distribution.
The result is shown in Table 2 below, and a value obtained by converting this result into% corresponds to% in Table 1.

いずれの量の粒径10〜30mmのFeSi合金粒であっても、粒径10〜30mmのFeSi合金粒が95〜98%含まれており、試験目的に合致するFeSi合金粒であると判断できる。   Any amount of FeSi alloy particles having a particle size of 10 to 30 mm contains 95 to 98% of FeSi alloy particles having a particle size of 10 to 30 mm, and can be judged to be FeSi alloy particles that meet the test purpose. .

従来から、300t転炉から内径4mの取鍋に出鋼した溶鋼に対し、アルミニウム材(アルミニウム滓)を80〜160kg添加してスラグ改質を行っている。この場合、大量の白煙が発生し、転炉設備に常備されている集塵装置により白煙を処理し、発煙が終了するまで、80秒程度要している。
上述のアルミニウム材に替えて、粒径10〜50mmのFeSi合金粒を、必要量に応じて160kg、120kg、80kg投入するケースに分けて実施してみた。
その結果、いずれの場合も、脱Cモデルにより推定した脱炭後C値と実績C値との乖離が大きく、脱Cが推定よりも進行しないケースが多い結果となった。これは、脱C処理中に脱C反応以外の反応(2Al+3O→AlあるいはSi+2O→SiOの反応)により鋼中酸素濃度が低くなって脱炭速度が低下したためと思われる。
Conventionally, slag reforming is performed by adding 80 to 160 kg of aluminum material (aluminum iron) to the molten steel that has been discharged from a 300 t converter into a ladle having an inner diameter of 4 m. In this case, a large amount of white smoke is generated, and it takes about 80 seconds for the white smoke to be processed by the dust collector that is always installed in the converter facility and the smoke generation is completed.
Instead of the above-mentioned aluminum material, FeSi alloy particles having a particle size of 10 to 50 mm were divided into cases where 160 kg, 120 kg, and 80 kg were charged according to the required amount.
As a result, in any case, the difference between the post-decarburization C value estimated by the de-C model and the actual C value was large, and de-C did not progress more than the estimation in many cases. This is presumably because during the de-C treatment, the oxygen concentration in the steel was lowered due to a reaction other than the de-C reaction (reaction of 2Al + 3O → Al 2 O 3 or Si + 2O → SiO 2 ) and the decarburization rate decreased.

次に、上述のアルミニウム材に替えて、粒径10〜30mmのFeSi合金粒を必要量に応じて、160kg、120kg、80kg投入するケースに分けて実施してみたが、いずれの場合も、粒径10〜50mmのFeSi合金粒を使用した場合よりも脱炭モデルで推定したC値と実績C値との乖離は小さかった。   Next, instead of the above-described aluminum material, FeSi alloy particles having a particle size of 10 to 30 mm were divided into cases where 160 kg, 120 kg, and 80 kg were charged according to the required amount. The difference between the C value estimated by the decarburization model and the actual C value was smaller than when FeSi alloy grains having a diameter of 10 to 50 mm were used.

前記転炉を用いた試験において脱炭モデルから脱炭後C値と実績C値とが乖離した原因について考察した。
図6は、取鍋に出鋼した溶鋼のスラグに対し、粒径10〜50mmのFeSi合金粒を投入してスラグ改質を行った場合に得られた鋼中酸素濃度と、粒径10〜30mmのFeSi合金粒を投入してスラグ改質を行った場合に得られた鋼中酸素濃度を対比して示すグラフである。
300トン転炉を用いて取鍋に溶鋼を出鋼し、溶鋼の上に積層しているスラグに対し、粒径10〜50mmのFeSi合金粒を160kg投入する試験と、120kg投入する試験と、80kg投入する試験を転炉精錬操業に合わせて出鋼の度に222回繰り返し、投入量に応じて得られた鋼中酸素濃度の出現頻度を図6に示す。
また、300トン転炉を用いて取鍋に溶鋼を出鋼し、溶鋼の上に生成しているスラグに対し、粒径10〜30mmのFeSi合金粒を160kg投入する試験と、110〜120kg投入する試験を転炉精錬操業に合わせて取鍋に出鋼する度に203回繰り返し、投入量に応じて得られた鋼中酸素濃度の出現頻度を図6に示す。
The reason why the C value after decarburization and the actual C value deviated from the decarburization model in the test using the converter was considered.
FIG. 6 shows the oxygen concentration in steel obtained when FeSi alloy grains having a particle size of 10 to 50 mm are added to the slag of molten steel that has been put out in the ladle, and the particle size of 10 to 10 is obtained. It is a graph which compares and shows the oxygen concentration in steel obtained when throwing 30 mm FeSi alloy grain | grain and performing slag modification | reformation.
Using a 300-ton converter, the molten steel is taken out from the ladle, and a test in which 160 kg of FeSi alloy grains having a particle size of 10 to 50 mm are added to a slag laminated on the molten steel, a test in which 120 kg is added, FIG. 6 shows the frequency of appearance of the oxygen concentration in the steel obtained according to the amount of charging, and the test of charging 80 kg was repeated 222 times each time the steel was extracted in accordance with the converter refining operation.
In addition, a test in which 160 kg of FeSi alloy grains having a particle size of 10 to 30 mm is added to the slag produced on the ladle using a 300-ton converter, and 110 to 120 kg is added. FIG. 6 shows the frequency of occurrence of the oxygen concentration in the steel, which was repeated 203 times each time the test was performed in the ladle according to the converter refining operation, and was obtained according to the input amount.

鋼中酸素濃度(ppm)は粒径10〜50mmのFeSi合金粒の場合、平均459ppm、偏差91であり、粒径10〜30mmのFeSi合金粒の場合、平均507ppm、偏差86である。
図6に示す結果から、粒径10〜50mmのFeSi合金粒の場合、鋼中酸素濃度が280〜420ppmの比較的低濃度領域において頻度が高くなった。これは、粒径10〜50mmのFeSi合金粒を用いてスラグ改質を行った場合、鋼中酸素濃度が低くなる確率が高く、粒径10〜30mmのFeSi合金粒を用いてスラグ改質を行った場合、鋼中酸素濃度が低位とならず、高位のまま保持可能であることを意味する。
In the case of FeSi alloy grains having a particle size of 10 to 50 mm, the oxygen concentration (ppm) in the steel has an average of 459 ppm and deviation 91, and in the case of FeSi alloy grains having a particle diameter of 10 to 30 mm, the average is 507 ppm and deviation 86.
From the results shown in FIG. 6, in the case of FeSi alloy grains having a particle size of 10 to 50 mm, the frequency increased in a relatively low concentration region where the oxygen concentration in the steel was 280 to 420 ppm. This is because, when slag reforming is performed using FeSi alloy grains having a particle size of 10 to 50 mm, there is a high probability that the oxygen concentration in the steel will be low, and slag reforming is performed using FeSi alloy grains having a particle size of 10 to 30 mm. If done, it means that the oxygen concentration in the steel is not low and can be kept high.

図6に示す結果から、スラグの改質を行う場合、粒径10〜30mmのFeSi合金粒を用いてスラグ改質を行う方が、粒径10〜50mmのFeSi合金粒を用いてスラグ改質を行う場合よりも鋼中酸素濃度を低下させないという利点があることがわかる。
鋼中酸素濃度を低下させないということは、特に脱炭を要する極低炭素鋼などのように二次精錬処理がなされる鋼種を製造する場合に有利となる。
即ち、FeSi合金粒の粒径差で処理前の溶鋼中酸素濃度の差があるため、二次精錬処理中もFeSi合金粒の粒径が大きいと溶鋼中酸素濃度が消費され易くなるので、脱Cモデルと実績に乖離が生じ易くなる。このため、FeSi合金粒は前述の如く粒径の小さいものが好ましい。
また、上述のアルミニウム材に替えて、Cを4質量%含むFeSi合金粒を140kg投入したところスラグにふくれを生じた。このため、Cを多く含むFeSi合金粒を添加することはスラグ膨れにつながるので適用できないことがわかった。
From the results shown in FIG. 6, when slag modification is performed, slag modification using FeSi alloy particles having a particle size of 10 to 30 mm is performed using FeSi alloy particles having a particle size of 10 to 50 mm. It can be seen that there is an advantage that the oxygen concentration in the steel is not lowered as compared with the case of performing the above.
The fact that the oxygen concentration in the steel is not reduced is particularly advantageous when producing a steel type that is subjected to secondary refining treatment, such as extremely low carbon steel that requires decarburization.
That is, since there is a difference in the oxygen concentration in the molten steel before the treatment due to the difference in the particle size of the FeSi alloy particles, if the particle size of the FeSi alloy particles is large even during the secondary refining treatment, the oxygen concentration in the molten steel is easily consumed. Deviation tends to occur between the C model and results. For this reason, it is preferable that the FeSi alloy grains have a small particle diameter as described above.
In addition, when 140 kg of FeSi alloy grains containing 4% by mass of C was added instead of the above-described aluminum material, the slag was blistered. For this reason, it has been found that adding FeSi alloy grains containing a large amount of C leads to slag swelling and cannot be applied.

上述の粒径10〜30mmのFeSi合金粒を80kg投入するケースに加え、アルミニウム塊30kgを付加して投入する試験を行った。対スラグ原単位はFeSi:0.032〜0.08kg/kgの割合であり、アルミニウム塊:0.012〜0.03kg/kgの割合である。スラグ改質材としての合計の対スラグ原単位は、0.044〜0.11kg/kgとなる。
アルミニウム塊をFeSi合金粒に対し追加して投入する場合、30kgが転炉サイクルタイムを延長させない程度の発煙(発煙がほとんど無く集塵の必要がない程度の発煙)を前提とした上限であり、アルミニウム塊をこれ以上投入すると発煙することを確認している。
上述の割合でFeSi合金粒に対しアルミニウム塊を添加してスラグに投入した場合、発煙を生じることが無く、鋼中酸素濃度が目標の脱炭モデルから乖離しなかったので、良好な結果が得られた。
In addition to the case where 80 kg of the FeSi alloy particles having a particle diameter of 10 to 30 mm were added, a test was performed in which 30 kg of aluminum lump was added and added. The basic unit of slag is FeSi: 0.032 to 0.08 kg / kg, and the aluminum lump: 0.012 to 0.03 kg / kg. The total slag basic unit as the slag modifier is 0.044 to 0.11 kg / kg.
When adding an aluminum lump to FeSi alloy grains and adding it, it is the upper limit based on the premise of 30 kg of fuming to the extent that the converter cycle time is not extended (fuming to the extent that there is almost no fuming and no dust collection is necessary) It has been confirmed that smoking occurs when more aluminum lump is added.
When the aluminum lump is added to the FeSi alloy grains at the above-mentioned ratio and put into the slag, no smoke is generated, and the oxygen concentration in the steel does not deviate from the target decarburization model, so a good result is obtained. It was.

1…転炉(精錬炉)、2…溶銑、3…ランス、5…取鍋、6…溶鋼、7…スラグ、7a…スラグ、8…FeSi合金粒、10…浸漬管、11…真空槽、12…未溶解合金。   DESCRIPTION OF SYMBOLS 1 ... Converter (smelting furnace), 2 ... Hot metal, 3 ... Lance, 5 ... Ladle, 6 ... Molten steel, 7 ... Slag, 7a ... Slag, 8 ... FeSi alloy grain, 10 ... Dip tube, 11 ... Vacuum tank, 12: Undissolved alloy.

Claims (5)

転炉等の精錬炉から取鍋への溶鋼の出鋼時にCaOを投入し、前記精錬炉から取鍋への溶鋼の出鋼完了後に取鍋内の溶鋼の上に存在するスラグの表面にFeSi合金粒を投入することを特徴とするFeSi合金粒を用いたスラグの改質方法。   When the molten steel is discharged from the refining furnace such as a converter to the ladle, CaO is added to the surface of the slag existing on the molten steel in the ladle after the molten steel is discharged from the refining furnace to the ladle. A method for reforming slag using FeSi alloy grains, characterized by introducing alloy grains. 前記FeSi合金粒の粒径が10mm以上、30mm以下のものが90質量%以上であり、C≦0.01質量%の極低炭素鋼を製造する場合に用いることを特徴とする請求項1に記載のFeSi合金粒を用いたスラグの改質方法。   2. The FeSi alloy grain having a particle size of 10 mm or more and 30 mm or less is 90% by mass or more, and is used when producing an ultra-low carbon steel having C ≦ 0.01% by mass. A method for modifying slag using the FeSi alloy particles described above. 前記FeSi合金粒の粒径が10mm以上、30mm以下のものが95質量%以上、10mm未満のものが5質量%以下、30mm超のものが1質量%以下であることを特徴とする請求項1または請求項2に記載のFeSi合金粒を用いたスラグの改質方法。     2. The FeSi alloy grains having a particle diameter of 10 mm or more and 30 mm or less are 95 mass% or more and less than 10 mm are 5 mass% or less, and those having a particle diameter of more than 30 mm are 1 mass% or less. Alternatively, a method for modifying slag using the FeSi alloy grains according to claim 2. 前記FeSi合金粒のC含有量が1%以下であることを特徴とする請求項1乃至3のいずれかに記載のFeSi合金粒を用いたスラグの改質方法。   The slag reforming method using FeSi alloy grains according to any one of claims 1 to 3, wherein a C content of the FeSi alloy grains is 1% or less. 前記取鍋内のスラグの表面にFeSi合金粒とアルミニウム塊を投入し、且つ、前記スラグ中のCaO/Alの比を0.70以上、1.70以下とすることを特徴とする請求項1〜請求項4のいずれか一項に記載のFeSi合金粒を用いたスラグの改質方法。
なお、CaO、Alは、それぞれスラグ中のCaO、Al含有量(質量%)とする。
FeSi alloy grains and aluminum lump are put on the surface of the slag in the ladle, and the ratio of CaO / Al 2 O 3 in the slag is 0.70 or more and 1.70 or less. A slag reforming method using the FeSi alloy grain according to any one of claims 1 to 4.
Incidentally, CaO, Al 2 O 3 is, CaO respectively in the slag, and content of Al 2 O 3 (wt%).
JP2015080012A 2015-04-09 2015-04-09 Slag reforming method using FeSi alloy grains Active JP6443192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015080012A JP6443192B2 (en) 2015-04-09 2015-04-09 Slag reforming method using FeSi alloy grains

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015080012A JP6443192B2 (en) 2015-04-09 2015-04-09 Slag reforming method using FeSi alloy grains

Publications (2)

Publication Number Publication Date
JP2016199785A JP2016199785A (en) 2016-12-01
JP6443192B2 true JP6443192B2 (en) 2018-12-26

Family

ID=57423736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015080012A Active JP6443192B2 (en) 2015-04-09 2015-04-09 Slag reforming method using FeSi alloy grains

Country Status (1)

Country Link
JP (1) JP6443192B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6848429B2 (en) * 2016-12-28 2021-03-24 日本製鉄株式会社 Steelmaking slag reforming method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60152611A (en) * 1984-01-18 1985-08-10 Nippon Steel Corp Method for modifying slag
JPH07122090B2 (en) * 1991-10-09 1995-12-25 川崎製鉄株式会社 Method of melting directional silicon steel material
JPH08325627A (en) * 1995-05-31 1996-12-10 Kawasaki Steel Corp Production of grain-oriented silicon steel sheet
KR20060035274A (en) * 2004-10-22 2006-04-26 주식회사 포스코 Method for manufacturing molten steel for galvanized steel plate
JP5509913B2 (en) * 2010-02-23 2014-06-04 Jfeスチール株式会社 Method of melting high Si steel with low S and Ti content

Also Published As

Publication number Publication date
JP2016199785A (en) 2016-12-01

Similar Documents

Publication Publication Date Title
JP6743915B2 (en) Method for desulfurizing molten steel and desulfurizing agent
JP5958152B2 (en) Manufacturing method of high cleanliness steel
JP5910579B2 (en) Melting method of ultra-low nitrogen pure iron
JP2021511436A (en) Method of waste in the production process of ultra-low phosphorus steel and method of production of ultra-low phosphorus steel Alternate citation of related applications The application number of this application submitted to the Priority Bureau of China on December 3, 2018 is 2018114635554. Priority is claimed based on a Chinese application whose name is &#34;Method of Elimination in the Production Process of Ultra-Low Phosphate Steel and Method of Production of Ultra-Low Phosphate Steel&#34;, the entire contents of which are incorporated herein by reference. Is done.
JP6028755B2 (en) Method for melting low-sulfur steel
JP2000129335A (en) Production of extra-low sulfur steel excellent in cleanliness
JP6443192B2 (en) Slag reforming method using FeSi alloy grains
JP5888194B2 (en) Desulfurization method for molten steel
JP6604226B2 (en) Melting method of low carbon steel
JP2009191290A (en) Method for producing ingot of extra-low carbon steel
JP2008169407A (en) Method for desulfurizing molten steel
KR102454518B1 (en) Method for producing Ti-containing ultralow-carbon steel
JP5096779B2 (en) Method of adding rare earth elements to molten steel
JP6238019B2 (en) Hot metal desulfurization method with less recuperation
JP5387045B2 (en) Manufacturing method of bearing steel
JP6744600B1 (en) Method for producing Ti-containing ultra low carbon steel
JP4360239B2 (en) Method for desulfurization of molten steel in vacuum degassing equipment
JP4352898B2 (en) Method of melting high cleanliness steel
JP2005200762A (en) Method for desulfurizing molten pig iron
JP6731763B2 (en) Method for producing molten iron containing chromium
JPH10298629A (en) Method for melting extra-low carbon steel having high cleanliness
JP6126355B2 (en) Hot metal desulfurization treatment method
JP2009173994A (en) Method for producing al-less extra-low carbon steel
JP2000144232A (en) Production of highly cleaned steel
JP2003160807A (en) Preliminary treatment method for molten pig iron

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171206

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181112

R151 Written notification of patent or utility model registration

Ref document number: 6443192

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350