JP2005170417A - Food container - Google Patents

Food container Download PDF

Info

Publication number
JP2005170417A
JP2005170417A JP2003410403A JP2003410403A JP2005170417A JP 2005170417 A JP2005170417 A JP 2005170417A JP 2003410403 A JP2003410403 A JP 2003410403A JP 2003410403 A JP2003410403 A JP 2003410403A JP 2005170417 A JP2005170417 A JP 2005170417A
Authority
JP
Japan
Prior art keywords
lid
polylactic acid
container
tape
food
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003410403A
Other languages
Japanese (ja)
Inventor
Madoka Inagaki
まどか 稲垣
Chiemi Nishitani
千恵美 西谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP2003410403A priority Critical patent/JP2005170417A/en
Publication of JP2005170417A publication Critical patent/JP2005170417A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/90Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in food processing or handling, e.g. food conservation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/80Packaging reuse or recycling, e.g. of multilayer packaging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Landscapes

  • Containers Having Bodies Formed In One Piece (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a food container which does not adversely affect natural environments even if disposed of after use and is excellent in moldability and openability. <P>SOLUTION: In the food container, a container body for storing food, a lid and a tape for opening the lid are made of a polylactic acid based resin. The tape for opening the lid is made of a polylactic acid based stretched film. The container body for storing the food is heat-resistant. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、使い捨て用途における食品容器に関するものであり、さらに詳しくは、生分解性を有し、成形性、開封性の優れた食品容器に関するものである。   The present invention relates to a food container for disposable use, and more particularly to a food container having biodegradability and excellent moldability and openability.

従来、プラスチック製の食品容器の素材としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリスチレン、塩化ビニル等の樹脂が使用されている。しかしながら、このような樹脂は、使用後の廃棄処理の際に、例えば、焼却処理を行うと、焼却時の発熱量が高いためその処理中に焼却炉を傷める恐れがあり、埋め立てによる廃棄処理を行うと、化学的、生物学的安定性のためにほとんど分解せずに残留するという問題がある。そのため、近年の環境保全に対する社会的要求の高まりに伴い、微生物などにより分解可能な生分解性を有し、コンポストでの堆肥化処理が可能な生分解性を有する樹脂が要求されており、例えば、ポリ乳酸または乳酸と他のヒドロキシカルボン酸のコポリマー組成物からなる使い捨て食品容器(特許文献1参照)が開示されている。   Conventionally, as materials for plastic food containers, resins such as polyethylene, polypropylene, polyethylene terephthalate, polystyrene, and vinyl chloride have been used. However, such a resin has a risk of damaging the incinerator during the incineration process, for example, when incineration process is performed after use, there is a risk of damaging the incinerator during the process. Doing so has the problem of remaining almost undegradable due to chemical and biological stability. Therefore, with the recent increase in social demand for environmental protection, there is a demand for a biodegradable resin that has biodegradability that can be decomposed by microorganisms and that can be composted in compost. Disclosed is a disposable food container (see Patent Document 1) comprising a polylactic acid or a copolymer composition of lactic acid and another hydroxycarboxylic acid.

近年、コンビニエンスストアやスーパーマーケット等で調理麺や惣菜、弁当等が多数販売されており、これらの食品の包装に使用される食品容器は、使い捨てされることがほとんどである。また、このような食品容器は、食品を収容する容器本体とその蓋から構成され、それらをはめ合わせた状態で運搬・陳列・販売される。はめ合わせる方法としては、(1)凹部と凸部ではめ合わせる方法や、(2)蓋部をシュリンクさせる方法や、(3)容器本体と蓋の縁部を合わせて成形する方法等がある。(2)や(3)の方法により蓋がはめ合わせた容器では、密封性や装着安定性が高められており、蓋を開ける際は引き裂いて開封する必要がある。   In recent years, a large number of cooked noodles, side dishes, lunch boxes, and the like have been sold at convenience stores, supermarkets, and the like, and food containers used for packaging these foods are mostly disposable. Moreover, such a food container is comprised from the container main body which accommodates a foodstuff, and its cover, and is conveyed, displayed, and sold in the state which fitted them. Examples of the fitting method include (1) a method of fitting the concave portion and the convex portion, (2) a method of shrinking the lid portion, and (3) a method of molding the container body and the edge of the lid together. In a container fitted with a lid by the methods (2) and (3), the sealing performance and the mounting stability are improved, and it is necessary to tear and open the lid when opening the lid.

そこで、蓋を引き裂きやすくするために、タブ(引き手)を設置したものがあるが、タブが折れたり、引き裂き途中で切断したりするという問題があった。   In order to make it easy to tear the lid, there are some which are provided with a tab (a puller). However, there is a problem that the tab breaks or is cut during the tearing.

また、蓋を引き裂きやすくするために、開封テープを貼着する方法がある。例えば、少なくとも開封される側の部材を合成樹脂シートにて形成し、かつ、合成樹脂製の開封テープを上記開封材の端縁部間に跨がって貼着した食品容器が特許文献2に開示されている。しかしながら、開封テープを貼着したまま成形する場合には成形性が要求され、また蓋を引き裂く際には開封テープが切断しない程度の強力や、蓋とテープとの密着性等が必要であるため、この方法は成形性や開封性において十分満足するものではなかった。
特開平6−298236号公報 特開平9−169351号公報
In addition, there is a method of attaching an opening tape in order to easily tear the lid. For example, Patent Document 2 discloses a food container in which at least a member to be opened is formed of a synthetic resin sheet, and an opening tape made of synthetic resin is stuck across the edge of the opening material. It is disclosed. However, moldability is required when molding with the open tape attached, and when tearing the lid, it is necessary to have strength that does not cut the open tape, adhesion between the lid and tape, etc. This method was not satisfactory in terms of moldability and openability.
JP-A-6-298236 Japanese Patent Laid-Open No. 9-169351

本発明は、上記問題点を解決し、使用後に廃棄処理を行っても自然環境に悪影響を及ぼさない、成形性、開封性の優れた食品容器を提供するものである。   The present invention solves the above-mentioned problems and provides a food container excellent in moldability and openability that does not adversely affect the natural environment even when discarded after use.

本発明者らは、鋭意検討の結果、ポリ乳酸系樹脂からなる食品容器が、上記課題を解決できることを見出し、本発明に到達した。すなわち、本発明の要旨は次の通りである。
(1)食品を収容する容器本体及び蓋、並びに前記蓋を開封するテープがポリ乳酸系樹脂からなることを特徴とする食品容器。
(2)蓋を開封するテープがポリ乳酸系延伸フィルムからなることを特徴とする(1)記載の食品容器。
(3)食品を収容する容器本体が耐熱性を有していることを特徴とする(1)または(2)記載の食品容器。
As a result of intensive studies, the present inventors have found that a food container made of a polylactic acid-based resin can solve the above problems, and have reached the present invention. That is, the gist of the present invention is as follows.
(1) A food container comprising a container main body and a lid for containing food, and a tape for opening the lid made of a polylactic acid resin.
(2) The food container according to (1), wherein the tape for opening the lid is made of a polylactic acid-based stretched film.
(3) The food container according to (1) or (2), wherein the container main body for containing the food has heat resistance.

本発明のポリ乳酸系樹脂からなる食品容器は、開封性に優れ、使用後はコンポスト化が可能であり自然環境に影響を与えないため、コンビニエンスストアやスーパーマーケット等で販売される調理麺や惣菜、弁当等の包装に好適に使用できる。   The food container comprising the polylactic acid-based resin of the present invention has excellent openability, can be composted after use and does not affect the natural environment, so cooked noodles and side dishes sold at convenience stores and supermarkets, It can be suitably used for packaging such as lunch boxes.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明において、容器本体、蓋、及び開封テープに用いられるポリ乳酸系樹脂としては、主成分が乳酸成分であればよく、ポリ乳酸、乳酸またはラクチドと少量の他のグリコール酸、ヒドロキシ酪酸、ヒドロキシ吉草酸、ヒドロキシカプロン酸等のヒドロキシカルボン酸、テレフタル酸、イソフタル酸等の芳香族ジカルボン酸や、コハク酸、アジピン酸等の脂肪族ジカルボン酸、エチレングリコール、ブタンジオール、ヘキサンジオール等の脂肪族ジオールや、ポリエチレングリコール、ポリプロピレングリコール等のポリエ−テルポリオールや、ビス−ヒドロキシメチルベンゼン、トルエンジオール等の芳香族ジオール、カプロラクトン、ブチロラクトン、グリコリド等の環状ラクトンとの共重合体及びこれらの混合物が挙げられる。乳酸としては、L−乳酸、D−乳酸が挙げられ、これらの単独の重合体、共重合体を用いることができる。   In the present invention, the polylactic acid resin used for the container body, the lid, and the opening tape only needs to have a lactic acid component as the main component. Polylactic acid, lactic acid or lactide and a small amount of other glycolic acid, hydroxybutyric acid, hydroxy Hydroxycarboxylic acids such as valeric acid and hydroxycaproic acid, aromatic dicarboxylic acids such as terephthalic acid and isophthalic acid, aliphatic dicarboxylic acids such as succinic acid and adipic acid, and aliphatic diols such as ethylene glycol, butanediol and hexanediol And polyether polyols such as polyethylene glycol and polypropylene glycol, aromatic diols such as bis-hydroxymethylbenzene and toluene diol, copolymers with cyclic lactones such as caprolactone, butyrolactone and glycolide, and mixtures thereof. . Examples of lactic acid include L-lactic acid and D-lactic acid, and a single polymer or copolymer thereof can be used.

本発明において用いられるポリ乳酸系樹脂としては、L−乳酸とD−乳酸との割合が、(L−乳酸)/(D−乳酸)=100/0〜94/6(モル%)であるポリ乳酸を主体とするポリ乳酸系樹脂にて構成されることが好ましい。ポリ乳酸に占めるD−乳酸の含有量が6モル%を超えると、ポリ乳酸系樹脂は融点が低下し、また、結晶性に乏しいものとなる。また、L−乳酸を単独で使用してもよいが、D−乳酸が配合されている方が、結晶性が緩和され、製膜性の良いものが得られる。従って、本発明においては、L−乳酸とD−乳酸とが、(L−乳酸)/(D−乳酸)=99/1〜97/3(モル%)の範囲で配合されていることが、より好ましい。なお、L−乳酸とD−乳酸とは、上記の割合で配合されていれば、共重合体であってもブレンド体であってもよい。   The polylactic acid resin used in the present invention is a poly having a ratio of L-lactic acid to D-lactic acid of (L-lactic acid) / (D-lactic acid) = 100/0 to 94/6 (mol%). It is preferably composed of a polylactic acid resin mainly composed of lactic acid. When the content of D-lactic acid in the polylactic acid exceeds 6 mol%, the polylactic acid resin has a low melting point and poor crystallinity. In addition, L-lactic acid may be used alone, but when D-lactic acid is blended, crystallinity is eased and a film having good film forming property is obtained. Therefore, in the present invention, L-lactic acid and D-lactic acid are blended in the range of (L-lactic acid) / (D-lactic acid) = 99/1 to 97/3 (mol%). More preferred. In addition, as long as L-lactic acid and D-lactic acid are mix | blended in said ratio, a copolymer or a blend may be sufficient.

本発明におけるポリ乳酸系樹脂には、生分解性に影響を与えない範囲で、ウレタン結合、アミド結合、エーテル結合などを導入することができる。また、ポリ乳酸系樹脂の数平均分子量は、5万〜30万の範囲にあることが好ましく、より好ましくは8万〜15万である。数平均分子量が5万未満であると、得られるフィルムは機械的強度に劣るものとなり、30万を超えると、加熱溶融時の流動性が乏しくなり、生産性が劣る。   A urethane bond, an amide bond, an ether bond, or the like can be introduced into the polylactic acid resin in the present invention as long as the biodegradability is not affected. The number average molecular weight of the polylactic acid-based resin is preferably in the range of 50,000 to 300,000, more preferably 80,000 to 150,000. If the number average molecular weight is less than 50,000, the resulting film is inferior in mechanical strength, and if it exceeds 300,000, the fluidity at the time of heating and melting becomes poor and the productivity is inferior.

本発明におけるポリ乳酸系樹脂には、生分解性を有するものであればどのような樹脂を添加してもよい。例えば、ポリブチレンサクシネート、ポリブチレンアジペートやこれらの共重合体等の脂肪族ポリエステルや、ポリブチレンテレフタレートアジペート等の脂肪族芳香族共重合ポリエステルや、ポリエステルカーボネート等が挙げられる。   Any resin having biodegradability may be added to the polylactic acid resin in the present invention. Examples thereof include aliphatic polyesters such as polybutylene succinate, polybutylene adipate and copolymers thereof, aliphatic aromatic copolymer polyesters such as polybutylene terephthalate adipate, and polyester carbonate.

本発明において用いられるポリ乳酸系樹脂には、本発明の効果を阻害しない範囲で、物性や加工性等を調整する目的で、可塑剤、滑剤、無機フィラー、紫外線吸収剤等の添加剤、改質剤、架橋剤等を添加することも可能である。   In the polylactic acid resin used in the present invention, additives such as plasticizers, lubricants, inorganic fillers, ultraviolet absorbers, and the like are modified or modified for the purpose of adjusting physical properties, processability and the like within a range not impairing the effects of the present invention. It is also possible to add a quality agent, a crosslinking agent and the like.

耐熱性が要求される場合には、上記のポリ乳酸系樹脂に、残留ラクチドを0.1〜0.4質量%、結晶核剤を1〜20質量%を含有させることが好ましい。ポリ乳酸は結晶化速度の遅い樹脂であるため、前述のポリ乳酸中のD体含有率に加えて、残留ラクチド量や結晶核剤量を規制して、ポリ乳酸自体の結晶化(結晶化速度)を促進するとともに結晶化度を高めることにより、耐熱性に優れた成形体を得ることができる。   When heat resistance is required, it is preferable to contain 0.1 to 0.4% by mass of residual lactide and 1 to 20% by mass of a crystal nucleating agent in the polylactic acid resin. Since polylactic acid is a resin with a slow crystallization rate, in addition to the above-mentioned D-form content in polylactic acid, the amount of residual lactide and the amount of crystal nucleating agent are regulated to crystallize polylactic acid itself (crystallization rate) ) And the degree of crystallinity can be increased to obtain a molded article having excellent heat resistance.

一般に、ポリ乳酸中の残留ラクチドは、その量が多すぎるとポリ乳酸の加水分解を促進するが、低分子量のラクチドは高分子量のポリ乳酸よりも結晶化しやすく、このラクチドの結晶化が結晶化開始剤となってポリ乳酸の結晶化を促進する。残留ラクチド量が0.1質量%未満であると、ポリ乳酸の結晶化を促進する結晶化開始剤としての働きが十分に得られず、0.4質量%を超えると、結晶化は促進されるものの加水分解を促進する作用も強まってしまうため好ましくない。   In general, residual lactide in polylactic acid promotes hydrolysis of polylactic acid if its amount is too high, but low molecular weight lactide is easier to crystallize than high molecular weight polylactic acid, and this crystallization of lactide crystallizes. Becomes an initiator and promotes crystallization of polylactic acid. When the amount of residual lactide is less than 0.1% by mass, the function as a crystallization initiator for promoting crystallization of polylactic acid cannot be sufficiently obtained, and when it exceeds 0.4% by mass, crystallization is promoted. However, it is not preferable because the action of accelerating the hydrolysis is increased.

ポリ乳酸中の結晶核剤は、添加量が1質量%未満であると、結晶核剤としての効果を十分発揮できなくなり、添加量が20質量%を超えると、結晶核剤の含有量が多くなりすぎて成形品が脆くなるなど物性に悪影響を与えてしまう。好ましくは、5〜15質量%の範囲である。   When the addition amount of the crystal nucleating agent in polylactic acid is less than 1% by mass, the effect as the crystal nucleating agent cannot be sufficiently exerted. When the addition amount exceeds 20% by mass, the content of the crystal nucleating agent is large. If it becomes too much, the molded product becomes brittle and the physical properties are adversely affected. Preferably, it is the range of 5-15 mass%.

結晶核剤の平均粒径は、0.5〜5μmの範囲にあることが好ましい。平均粒径が0.5μm未満であると、分散不良や二次凝集を生じたりして結晶核剤としての効果が十分に得られなくなり、平均粒径が5μmを超えると、シートの物性に悪影響を与え、結果的に成形体の物性に悪影響を及ぼすこととなる。   The average particle size of the crystal nucleating agent is preferably in the range of 0.5 to 5 μm. If the average particle size is less than 0.5 μm, the effect as a crystal nucleating agent cannot be obtained due to poor dispersion or secondary aggregation, and if the average particle size exceeds 5 μm, the physical properties of the sheet are adversely affected. As a result, the physical properties of the molded article are adversely affected.

結晶核剤は特に限定されるものではないが、タルク、スメクタイト、バーミキュライト、膨潤性フッ素雲母などに代表される層状珪酸塩などが使用でき、中でもタルクは、ポリ乳酸に対して最も結晶化効率が高く、非常に安価で、しかも自然界に存在する無機物質であるため、結晶核剤として好適に使用できる。   The crystal nucleating agent is not particularly limited, but layered silicates such as talc, smectite, vermiculite, and swellable fluorine mica can be used. Among them, talc has the highest crystallization efficiency for polylactic acid. Since it is a high, very inexpensive and inorganic substance that exists in nature, it can be suitably used as a crystal nucleating agent.

結晶核剤を効率よく分散させるために本発明の特性を損なわない範囲で分散剤を配合してもよい。分散剤としては、ポリ乳酸との相溶性に優れるとともに結晶核剤との濡れ性にも優れているものがよく、例えば、エルカ酸アミド、ステアリン酸アミド、エチレンビスステアリン酸アミド等の脂肪酸アミドが挙げられる。   In order to disperse the crystal nucleating agent efficiently, a dispersing agent may be blended within a range that does not impair the characteristics of the present invention. As the dispersant, those having excellent compatibility with polylactic acid and excellent wettability with the crystal nucleating agent are preferable. For example, fatty acid amides such as erucic acid amide, stearic acid amide, and ethylene bis stearic acid amide are used. Can be mentioned.

結晶化速度をより促進するために、有機過酸化物などの架橋剤や架橋助剤を併用することも可能である。例えば、架橋剤としては、有機過酸化物、多価カルボン酸、金属錯体、エポキシ化合物、イソシアネート化合物などが挙げられる。さらに、架橋助剤を用いることも可能である。   In order to further accelerate the crystallization rate, a crosslinking agent such as an organic peroxide or a crosslinking aid can be used in combination. For example, examples of the crosslinking agent include organic peroxides, polyvalent carboxylic acids, metal complexes, epoxy compounds, and isocyanate compounds. Furthermore, a crosslinking aid can be used.

本発明における食品容器の容器本体と蓋は、一般的な射出成形、プレス成形、真空成形、圧空成形あるいは真空圧空成形により製造することができる。また、蓋として用いる場合は、成形を行わずにシートを用いてもかまわない。   The container main body and lid of the food container in the present invention can be manufactured by general injection molding, press molding, vacuum molding, pressure molding, or vacuum / pressure molding. Moreover, when using as a lid | cover, you may use a sheet | seat, without forming.

例えば、真空成形の場合には、ポリ乳酸系樹脂を170〜240℃で溶融させ、Tダイ温度190〜230℃で押出し、50℃以下のキャストロールで冷却し、厚み100〜500μmの未延伸シートを得る。次に、真空成形機により金型温度100〜150℃で成形加工する。   For example, in the case of vacuum forming, a polylactic acid resin is melted at 170 to 240 ° C., extruded at a T die temperature of 190 to 230 ° C., cooled with a cast roll of 50 ° C. or less, and an unstretched sheet having a thickness of 100 to 500 μm. Get. Next, it molds with a mold temperature of 100-150 degreeC with a vacuum forming machine.

容器本体と蓋に耐熱性を付与するには、得られた未延伸シートを連続あるいは別工程にて、120〜150℃の温度で1〜30秒の熱処理をすることが好ましい。または、シートを成形加工する際に同時に金型内で120〜150℃の温度で、1〜30秒の熱処理を行っても同様の効果が得られる。熱処理温度が120℃未満であるとポリ乳酸の十分結晶化が進行しなくなり、熱処理温度が150℃を超えるとポリ乳酸の結晶化速度が極端に遅くなるとともに、ポリ乳酸の融点に近づくため結晶が融解してしまい、結果的に結晶化が不十分となる。従って、熱処理温度は120〜150℃の範囲であることが好ましく、125〜145℃の範囲がさらに好ましい。また、熱処理時間は実質的に生産サイクルに適用可能でしかも過不足無く結晶化できる時間である1〜30秒の範囲とすることが好ましい。熱処理時間が1秒未満であるとポリ乳酸が結晶化に要する時間が足りなくなり、熱処理時間が30秒を超えると実質的な生産サイクルに適応しなくなり、工業的に不具合が生じることとなる。従って、熱処理時間は2〜30秒の範囲であることがより好ましく、3〜20秒の範囲であることがとくに好ましい。   In order to impart heat resistance to the container body and the lid, the obtained unstretched sheet is preferably heat-treated at a temperature of 120 to 150 ° C. for 1 to 30 seconds in a continuous or separate process. Alternatively, the same effect can be obtained by performing heat treatment for 1 to 30 seconds at a temperature of 120 to 150 ° C. in the mold at the same time as forming the sheet. When the heat treatment temperature is less than 120 ° C, the polylactic acid does not sufficiently crystallize. When the heat treatment temperature exceeds 150 ° C, the crystallization speed of the polylactic acid is extremely slow and the melting point of the polylactic acid is approached. Melting will result, resulting in insufficient crystallization. Accordingly, the heat treatment temperature is preferably in the range of 120 to 150 ° C, more preferably in the range of 125 to 145 ° C. The heat treatment time is preferably in the range of 1 to 30 seconds, which is substantially applicable to the production cycle and can be crystallized without excess or deficiency. If the heat treatment time is less than 1 second, the polylactic acid will not have enough time to crystallize, and if the heat treatment time exceeds 30 seconds, it will not be adapted to a substantial production cycle, resulting in industrial problems. Therefore, the heat treatment time is more preferably in the range of 2 to 30 seconds, and particularly preferably in the range of 3 to 20 seconds.

本発明においては、開封テープもポリ乳酸系樹脂からなるものである。開封テープとしては、機械的特性、特に強度の点からポリ乳酸系延伸フィルムであることが好ましい。   In the present invention, the opening tape is also made of a polylactic acid resin. The opening tape is preferably a polylactic acid-based stretched film from the viewpoint of mechanical properties, particularly strength.

本発明における開封テープの製造方法は特に限定されない。例えば、Tダイ法により製造する場合には、ポリ乳酸系樹脂を温度180〜250℃で溶融し、Tダイより200〜230℃で押出し、35℃以下に制御されたキャストロールで冷却し、厚さ100〜500μmの未延伸シートを得る。未延伸シートの延伸方法としては、ロールによる一軸延伸法、テンター方式による同時二軸延伸法、ロールとテンターによる逐次二軸延伸法のいずれでもかまわない。例えば、未延伸フィルムを同時二軸延伸法によって製造する場合には、未延伸シートを60〜90℃で予熱し、延伸温度70〜100℃で縦、横方向へ同時に延伸する。延伸倍率は、特に限定されるものではないが、機械的特性などを考慮すると、その延伸倍率を、縦延伸倍率と横延伸倍率とがそれぞれ2.5倍以上であり、かつ面倍率が4.0倍以上となるように二軸延伸することが好ましい。縦延伸倍率および横延伸倍率が2.5倍未満であると、十分な機械的強力が得られず、実用性に劣るものとなる。また、縦延伸倍率および横延伸倍率の上限は特に限定されるものではないが、8.0倍を超えるとフィルム破れが発生しやすくなるため、縦延伸倍率および横延伸倍率は2.5〜8.0倍とすることが好ましく、縦延伸倍率が2.5〜5.0倍、横延伸倍率が2.5〜8.0倍であることがより好ましい。延伸後、温度100〜150℃で熱処理が施され、リラックス率2〜8%の条件下で熱弛緩処理が施される。   The manufacturing method of the opening tape in this invention is not specifically limited. For example, when manufacturing by the T-die method, the polylactic acid resin is melted at a temperature of 180 to 250 ° C., extruded from a T die at 200 to 230 ° C., cooled with a cast roll controlled to 35 ° C. or less, An unstretched sheet having a thickness of 100 to 500 μm is obtained. The stretching method for the unstretched sheet may be any of a uniaxial stretching method using a roll, a simultaneous biaxial stretching method using a tenter method, and a sequential biaxial stretching method using a roll and a tenter. For example, when an unstretched film is produced by a simultaneous biaxial stretching method, the unstretched sheet is preheated at 60 to 90 ° C. and stretched simultaneously in the longitudinal and lateral directions at a stretching temperature of 70 to 100 ° C. The draw ratio is not particularly limited, but considering the mechanical properties and the like, the draw ratio is 2.5 times or more for the longitudinal draw ratio and the transverse draw ratio, and the surface magnification is 4. Biaxial stretching is preferably performed so as to be 0 times or more. When the longitudinal draw ratio and the transverse draw ratio are less than 2.5 times, sufficient mechanical strength cannot be obtained, resulting in poor practicality. Moreover, although the upper limit of a longitudinal draw ratio and a transverse draw ratio is not specifically limited, since it will become easy to generate | occur | produce a film tear when it exceeds 8.0 times, longitudinal draw ratio and transverse draw ratio are 2.5-8. The longitudinal draw ratio is preferably 2.5 to 5.0 times, and the transverse draw ratio is more preferably 2.5 to 8.0 times. After stretching, a heat treatment is performed at a temperature of 100 to 150 ° C., and a thermal relaxation treatment is performed under a condition of a relaxation rate of 2 to 8%.

なお、本発明においてポリ乳酸系樹脂から得られるシート及びフィルムには、例えばガスバリアー性を付与するためにポリビニルアルコール、金属あるいは金属酸化物蒸着層等を設けてもよい。また、印刷性や接着性、帯電防止性、滑り性、離型性の向上のために、コロナ処理、プラズマ処理、コート等の表面処理を行ってもよい。   In the present invention, the sheet and film obtained from the polylactic acid-based resin may be provided with, for example, a polyvinyl alcohol, metal or metal oxide vapor deposition layer in order to impart gas barrier properties. In addition, surface treatment such as corona treatment, plasma treatment, and coating may be performed to improve printability, adhesiveness, antistatic properties, slipperiness, and releasability.

本発明における開封テープは、粘着剤または熱圧着により蓋に貼着することができる。開封テープに付与する粘着剤としては、特に限定されないが、天然ゴムもしくは合成ゴムなどを主成分とするゴム系粘着剤、シリコーン系樹脂、ウレタン系樹脂、アクリル系樹脂、エポキシ系樹脂、メラミン系樹脂、フェノール系樹脂、酢酸ビニル系樹脂を主成分とする合成樹脂系粘着剤が挙げられる。中でも、生分解性を有しているものが好ましい。また粘着剤は、必要に応じて、架橋剤、溶剤などを添加してもよい。   The opening tape in this invention can be stuck to a lid | cover with an adhesive or thermocompression bonding. The adhesive to be applied to the opening tape is not particularly limited, but rubber-based adhesives mainly composed of natural rubber or synthetic rubber, silicone-based resins, urethane-based resins, acrylic resins, epoxy-based resins, melamine-based resins. And a synthetic resin-based adhesive mainly composed of a phenol-based resin and a vinyl acetate-based resin. Among them, those having biodegradability are preferable. Moreover, you may add a crosslinking agent, a solvent, etc. to an adhesive as needed.

粘着剤の積層・塗布方法は、特に限定されないが、溶液法、熱カレンダー法が例示される。例えば、溶液法では、主成分である前記粘着剤成分を石油系溶剤、トルエン等の有機溶剤または水、アルコールに溶解し、必要に応じて、界面活性剤などの添加剤を加えた溶液を、ベースとなるフィルムに、ナイフコーター、ロールコーター、グラビアコーター等により積層・塗布し、次いで赤外線、熱風、蒸気などにより乾燥する。   The method for laminating and applying the pressure-sensitive adhesive is not particularly limited, and examples thereof include a solution method and a thermal calendar method. For example, in the solution method, the adhesive component as a main component is dissolved in a petroleum solvent, an organic solvent such as toluene or water, alcohol, and a solution to which an additive such as a surfactant is added as necessary. It is laminated and coated on a base film using a knife coater, roll coater, gravure coater or the like, and then dried by infrared rays, hot air, steam or the like.

粘着剤層の厚みは、1〜50μmの範囲が好ましい。粘着剤層の厚みが1μmより薄い場合は、接着力も低くなり、また粘着剤層の積層・塗布時の厚み制御が困難となる。また50μmより厚くても、性能過多でありコスト高となる。   The thickness of the pressure-sensitive adhesive layer is preferably in the range of 1 to 50 μm. When the thickness of the pressure-sensitive adhesive layer is thinner than 1 μm, the adhesive force is also low, and it becomes difficult to control the thickness of the pressure-sensitive adhesive layer during lamination and application. Even if it is thicker than 50 μm, the performance is excessive and the cost is high.

本発明における容器の密閉方法としては、(1)容器本体のフランジ部に、開封テープが貼着した蓋のフランジ部を巻きつかせる方法、(2)フランジ部どうしを嵌め合わせる方法、(3)フランジ部どうしをヒートシールする方法等が挙げられる。開口部には、タブや、開封テープの両側に切込みを設けてもよい。開封テープは蓋材を横断する状態で貼着するが、必ずしも中央部を横断しなくともよい。   As a container sealing method in the present invention, (1) a method of winding a flange portion of a lid attached with an opening tape around a flange portion of a container body, (2) a method of fitting flange portions together, (3) For example, a method of heat-sealing the flange portions. The opening may be provided with notches on both sides of the tab and the opening tape. The opening tape is stuck in a state of crossing the lid member, but it is not always necessary to cross the center portion.

次に、実施例に基づいて本発明を具体的に説明するが、必ずしもこれらの実施例に限定されるものではない。なお、本発明における評価方法は以下の通りである。   Next, the present invention will be specifically described based on examples, but is not necessarily limited to these examples. In addition, the evaluation method in this invention is as follows.

(1)引張強度(MPa)、引張伸度(%)
島津製作社製オートグラフ(AG−100E)を用い、JIS C 2318に準じて測定を行った。長さ100mm、幅10mmの試料で測定した。
(1) Tensile strength (MPa), tensile elongation (%)
Measurement was performed in accordance with JIS C 2318 using an autograph (AG-100E) manufactured by Shimadzu Corporation. Measurement was performed on a sample having a length of 100 mm and a width of 10 mm.

(2)耐熱性
成形体(容器本体)に約100℃の熱湯を注ぎ、5分後に容器の変形を目視にて観察し、以下のように評価した。
○:変形が認められなかった。
×:変形していた。
(2) Heat resistance About 100 ° C. hot water was poured into the molded body (container body), and after 5 minutes, the deformation of the container was visually observed and evaluated as follows.
○: Deformation was not recognized.
X: Deformed.

(3)成形性
蓋の成形時及び容器の作製時に開封テープの状態を観察し、以下のように評価した。
○:テープにしわや浮きなどの変化がなかった。
×:変化があった。
(3) Formability The state of the opening tape was observed when the lid was molded and when the container was produced, and evaluated as follows.
○: The tape did not change such as wrinkles or floats.
X: There was a change.

(4)開封性
開封テープを貼着した蓋材と、成形体(容器本体)とから作製した容器において、開封テープの両側に切込みを設けて開封し、以下のように評価した。
○:端から端までテープに沿って引裂けた。
×:途中で切断したり端まで引裂けなかった。
(4) Openability In the container produced from the cover material which stuck the opening tape and the molded object (container main body), it opened by providing a cut | incision on both sides of the opening tape, and evaluated as follows.
○: Tear along the tape from end to end.
X: It was not cut | disconnected in the middle or torn to the end.

(5)分解性
蓋を60℃のコンポスト中に入れ、7日後に取り出し、以下のように評価した。
○:形状が確認できなかった。
×:形状が残っていた。
(5) Degradability The lid was placed in a compost at 60 ° C., taken out after 7 days, and evaluated as follows.
○: The shape could not be confirmed.
X: The shape remained.

成形体1
ポリ乳酸(カーギル・ダウ社製 ネイチャーワークス、融点165℃、L−乳酸/D−乳酸=99/1(モル%)、分子量20万)を用い、押出温度215℃にてTダイより溶融押出し、45℃に設定されたキャストロールに密着させて厚み350μmの未延伸シートを得た。得られたシートを真空成形により、直径200mm、深さ50mm、フランジ幅20mmの容器本体を作製した。なお、真空成形時の金型内温度は140℃とした。
Molded body 1
Polylactic acid (Natural Works manufactured by Cargill Dow, melting point 165 ° C., L-lactic acid / D-lactic acid = 99/1 (mol%), molecular weight 200,000) was melt-extruded from a T-die at an extrusion temperature of 215 ° C., An unstretched sheet having a thickness of 350 μm was obtained by closely contacting a cast roll set at 45 ° C. A container body having a diameter of 200 mm, a depth of 50 mm, and a flange width of 20 mm was produced from the obtained sheet by vacuum forming. Note that the temperature in the mold during vacuum forming was set to 140 ° C.

成形体2
ポリ乳酸(カーギル・ダウ社製 ネイチャーワークス、融点が165℃、L−乳酸/D−乳酸=99/1(モル%)、分子量20万)90質量%と、結晶核剤としてタルク(林化成社製 MW HS−T、平均粒径2.8μm)10質量%とを用い、二軸混練押出機(日本製鋼所社製 型番TEX44α)を用いて溶融混練し、押出温度230℃にてポリ乳酸コンパウンド原料を作製した。次いで、このポリ乳酸コンパウンド原料をTダイより押出温度215℃にて溶融押出し、45℃に設定されたキャストロールに密着させて厚み350μmの未延伸シートを得た。得られたシートを、成形体1と同様に真空成形を行い、さらに成形時に熱処理を10秒行い、容器本体を作製した。
Molded body 2
Polylactic acid (Nature Works, manufactured by Cargill Dow, melting point 165 ° C., L-lactic acid / D-lactic acid = 99/1 (mol%), molecular weight 200,000) 90% by mass, and talc (Hayashi Kasei Co., Ltd.) as a crystal nucleating agent MW HS-T, manufactured by MW HS-T, average particle size 2.8 μm) 10% by mass, melt kneaded using a twin-screw kneading extruder (model number TEX44α manufactured by Nippon Steel Works), and polylactic acid compound at an extrusion temperature of 230 ° C. The raw material was produced. Subsequently, this polylactic acid compound raw material was melt-extruded from a T-die at an extrusion temperature of 215 ° C., and adhered to a cast roll set at 45 ° C. to obtain an unstretched sheet having a thickness of 350 μm. The obtained sheet was vacuum formed in the same manner as the molded body 1 and further subjected to heat treatment for 10 seconds at the time of molding to produce a container body.

蓋材シート1
成形体1と同様にして厚み100μmの未延伸シートを得た。
Lid sheet 1
An unstretched sheet having a thickness of 100 μm was obtained in the same manner as the molded body 1.

蓋材シート2
蓋材シート1を、予熱温度60℃、延伸温度70℃の延伸ロールで縦方向に1.3倍延伸し、予熱温度70℃、延伸温度80℃のテンターで横方向に1.5倍に延伸した後、135℃で熱処理を施し、厚み100μmのシートを得た。
Lid sheet 2
The lid material sheet 1 is stretched 1.3 times in the machine direction with a stretching roll having a preheating temperature of 60 ° C. and a stretching temperature of 70 ° C., and stretched 1.5 times in the transverse direction with a tenter having a preheating temperature of 70 ° C. and a stretching temperature of 80 ° C. After that, heat treatment was performed at 135 ° C. to obtain a sheet having a thickness of 100 μm.

開封テープ1
ポリ乳酸(カーギル・ダウ社製 ネイチャーワークス、融点165℃、L−乳酸/D−乳酸=99/1(モル%)、分子量20万)に、不定形シリカ(富士シリシア化学社製 サイリシア310P、平均粒径1.4μm)0.1質量%を含有させたポリマーを用い、230℃で溶融してTダイ温度220℃で押出し、表面温度が25℃に温度制御されたキャストロールに密着急冷させて、厚み315μmの未延伸シートを作製した。ポリマーの押出し量は、後述の延伸倍率を考慮して、延伸後のフィルム厚みが35μmとなるように調整した。
Opening tape 1
Polylactic acid (Nature Works, Cargill Dow, melting point 165 ° C., L-lactic acid / D-lactic acid = 99/1 (mol%), molecular weight 200,000), amorphous silica (Silicia 310P, Fuji Silysia Chemical Ltd., average) Using a polymer containing 0.1% by mass of a particle size of 1.4 μm), melting at 230 ° C., extruding at a T-die temperature of 220 ° C., and closely contacting and quenching to a cast roll whose surface temperature is controlled at 25 ° C. An unstretched sheet having a thickness of 315 μm was prepared. The polymer extrusion amount was adjusted so that the film thickness after stretching was 35 μm in consideration of the stretching ratio described later.

得られた未延伸シートを同時二軸延伸機に供給して、予熱温度70℃、延伸温度80℃で縦方向に3.0倍、横方向に3倍に同時二軸延伸した後、135℃で熱処理を施し、両面にコロナ処理を施して、厚み35μmの二軸延伸フィルムを得た。   The obtained unstretched sheet was supplied to a simultaneous biaxial stretching machine, and was simultaneously biaxially stretched 3.0 times in the longitudinal direction and 3 times in the transverse direction at a preheating temperature of 70 ° C and a stretching temperature of 80 ° C, and then 135 ° C The biaxially stretched film with a thickness of 35 micrometers was obtained by heat-treating and giving corona treatment to both surfaces.

この二軸延伸フィルムに、天然ゴムのトルエン溶液に紫外線重合反応開始剤を添加した粘着剤を塗布し、80℃で乾燥させ、厚さ10μmの粘着剤層を形成させた。さらに、逆面にシリコンコートを行い、幅20mmにスリットして、開封テープ1を得た。   On this biaxially stretched film, a pressure-sensitive adhesive obtained by adding an ultraviolet polymerization reaction initiator to a toluene solution of natural rubber was applied and dried at 80 ° C. to form a pressure-sensitive adhesive layer having a thickness of 10 μm. Furthermore, silicon coating was performed on the reverse side, and slitting was performed to a width of 20 mm to obtain an opening tape 1.

開封テープ2
開封テープ1と同様に未延伸シートを得た後、ポリエステルウレタン系水溶液をマイヤーバーコートにより塗布した。引き続いて開封テープ1と同様に二軸延伸した後、熱処理を行い、非コート面にコロナ処理を施し二軸延伸フィルムを得た。
Opening tape 2
After an unstretched sheet was obtained in the same manner as the opening tape 1, a polyester urethane aqueous solution was applied by Meyer bar coating. Subsequently, the film was biaxially stretched in the same manner as the opening tape 1 and then heat-treated, and the uncoated surface was subjected to corona treatment to obtain a biaxially stretched film.

この二軸延伸フィルムのポリエステルウレタン系水溶液処理面に、天然ゴムのトルエン溶液に紫外線重合反応開始剤を添加した粘着剤を塗布し、80℃で乾燥させ、厚さ10μmの粘着剤層を形成させた。さらに、逆面のコロナ処理面にシリコンコートを行い、幅20mmにスリットして、開封テープ2を得た。   An adhesive obtained by adding an ultraviolet polymerization initiator to a natural rubber toluene solution is applied to the polyester urethane aqueous solution treated surface of the biaxially stretched film and dried at 80 ° C. to form an adhesive layer having a thickness of 10 μm. It was. Further, silicon coating was performed on the reverse corona-treated surface, and slitting to a width of 20 mm was performed to obtain an opening tape 2.

実施例1
蓋材シート1に開封テープ1を貼着したのち、成形体1とヒートシールを行い、容器を作製した。その際、開封テープの両側に切込みを設けた。
Example 1
After sticking the opening tape 1 on the lid sheet 1, heat sealing was performed with the molded body 1 to produce a container. At that time, notches were provided on both sides of the opening tape.

実施例2
蓋材シート2に開封テープ2を貼着したのち、真空成形により直径200mm、深さ15mm、フランジ幅30mmの蓋を作製した。蓋のフランジ部を成形体2のフランジ部に熱収縮により巻きつけて容器を作製した。その際、開封テープの両側に切込みを設けた。
Example 2
After the opening tape 2 was adhered to the lid material sheet 2, a lid having a diameter of 200 mm, a depth of 15 mm, and a flange width of 30 mm was produced by vacuum forming. The flange part of the lid was wound around the flange part of the molded body 2 by heat shrinkage to produce a container. At that time, notches were provided on both sides of the opening tape.

実施例3
蓋材シート1に開封テープ2を貼着したのち、真空成形により直径200mm、深さ15mm、フランジ幅20mmの蓋を作製した。蓋のフランジ部と成形体1のフランジ部とを熱でかしめて容器を作製した。その際、開封テープの両側に切込みを設けた。
Example 3
After sticking the opening tape 2 on the lid sheet 1, a lid having a diameter of 200 mm, a depth of 15 mm, and a flange width of 20 mm was produced by vacuum forming. The flange part of the lid and the flange part of the molded body 1 were caulked with heat to produce a container. At that time, notches were provided on both sides of the opening tape.

実施例1〜3では、問題なく容器が作製でき、簡単に開封できた。   In Examples 1 to 3, the container could be produced without any problem and opened easily.

比較例1
開封テープとして無延伸ポリプロピレンフィルム(CPPフィルム、厚み50μm)を用い、これを蓋材シート1に貼着したのち、実施例2と同様にして蓋を作製した。この蓋のフランジ部と成形体1のフランジ部とをヒートシールして容器を作製した。しかし、開封する際に、途中で蓋材が切断し、最後まで引裂けなかった。
Comparative Example 1
An unstretched polypropylene film (CPP film, thickness 50 μm) was used as the opening tape, and this was attached to the lid material sheet 1, and then a lid was produced in the same manner as in Example 2. The flange portion of the lid and the flange portion of the molded body 1 were heat sealed to produce a container. However, when opening, the lid material was cut in the middle and did not tear to the end.

比較例2
開封テープとして二軸延伸PETフィルム(厚み25μm)を用い、実施例2と同様に容器を作製した。しかし、蓋材シートを成形する際及び容器本体と蓋を密閉する際に、成形性が劣るものであった。
Comparative Example 2
A container was prepared in the same manner as in Example 2 using a biaxially stretched PET film (thickness: 25 μm) as an opening tape. However, when the lid material sheet is molded and when the container body and the lid are sealed, the moldability is poor.

Figure 2005170417
Figure 2005170417

容器の蓋取付け前の斜視図である。It is a perspective view before the lid | cover attachment of a container.

符号の説明Explanation of symbols

1 容器本体
1a 本体のフランジ部
2 蓋
2a 蓋のフランジ部
3 開封テープ
4 切込み
DESCRIPTION OF SYMBOLS 1 Container body 1a Flange part 2 of a main body 2 Lid 2a Flange part 3 of a lid 3 Opening tape 4 Cutting

Claims (3)

食品を収容する容器本体及び蓋、並びに前記蓋を開封するテープがポリ乳酸系樹脂からなることを特徴とする食品容器。 A food container comprising a container main body and a lid for containing food, and a tape for opening the lid made of a polylactic acid resin. 蓋を開封するテープがポリ乳酸系延伸フィルムからなることを特徴とする請求項1記載の食品容器。 The food container according to claim 1, wherein the tape for opening the lid is made of a polylactic acid-based stretched film. 食品を収容する容器本体が耐熱性を有していることを特徴とする請求項1または2記載の食品容器。 The food container according to claim 1 or 2, wherein the container main body for containing the food has heat resistance.
JP2003410403A 2003-12-09 2003-12-09 Food container Pending JP2005170417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003410403A JP2005170417A (en) 2003-12-09 2003-12-09 Food container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003410403A JP2005170417A (en) 2003-12-09 2003-12-09 Food container

Publications (1)

Publication Number Publication Date
JP2005170417A true JP2005170417A (en) 2005-06-30

Family

ID=34731510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003410403A Pending JP2005170417A (en) 2003-12-09 2003-12-09 Food container

Country Status (1)

Country Link
JP (1) JP2005170417A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007099330A (en) * 2005-10-03 2007-04-19 Yoshimura Kasei Kk Thermally insulated container
WO2007046174A1 (en) * 2005-10-17 2007-04-26 Asahi Kasei Chemicals Corporation Biodegradable multilayered film with sealant layer
JP2015000737A (en) * 2013-06-14 2015-01-05 リスパック株式会社 Heat resistant adiabatic container for packaging

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007099330A (en) * 2005-10-03 2007-04-19 Yoshimura Kasei Kk Thermally insulated container
WO2007046174A1 (en) * 2005-10-17 2007-04-26 Asahi Kasei Chemicals Corporation Biodegradable multilayered film with sealant layer
JP4916447B2 (en) * 2005-10-17 2012-04-11 旭化成ケミカルズ株式会社 Multilayer film with biodegradable sealant layer
JP2015000737A (en) * 2013-06-14 2015-01-05 リスパック株式会社 Heat resistant adiabatic container for packaging

Similar Documents

Publication Publication Date Title
JP4794187B2 (en) Film cutter and storage box with film cutter
WO2005032818A1 (en) Biodegradable layered sheet
JP4210492B2 (en) Biodegradable film and biodegradable bag comprising the film
JP4243926B2 (en) Biodegradable heat shrinkable film and shrink package using the same
JP5354848B2 (en) Heat-shrinkable pore-containing film, molded product based on the film, heat-shrinkable label, and container
JP4949604B2 (en) Heat-shrinkable polylactic acid-based laminated film
JP3790399B2 (en) Polylactic acid heat-shrinkable sheet
JP2009012481A (en) Polylactic acid-based laminated sheet for thermo-bending shaping
JP6973687B2 (en) Laminated film and lid material
JP4118038B2 (en) Method for producing heat-shrinkable polylactic acid film and heat-shrinkable polylactic acid film obtained by the method
JP2005170417A (en) Food container
JP4117083B2 (en) Polylactic acid-based shrinkable sheet material, and packaging material or shrinkable label material using the same
JP4836194B2 (en) Transparent biodegradable resin stretched film and resin product with improved gas barrier properties
JP4959077B2 (en) Method for producing heat-shrinkable polylactic acid film and heat-shrinkable polylactic acid film obtained by the method
JP2004217289A (en) Biodegradable blister pack
JP2005007610A (en) Biodegradable multilayered heat-shrinkable film and package
JP3773440B2 (en) Biodegradable resin products
JP2008087181A (en) Easily openable laminated film, laminated film and lid material
JP2007106996A (en) Wrap film and its manufacturing method
JP2006131895A (en) Aliphatic or aromatic polyester composition and use thereof
JP4080953B2 (en) Polylactic acid-based heat-folded molded body and method for producing the same
JP2005144726A (en) Laminated film
JP2009179400A (en) Biodegradable blister pack
JP4288088B2 (en) Biaxially stretched laminated film and use thereof
JP4430528B2 (en) Heat shrinkable biodegradable film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100105