JP2005164226A - Evaporator and manufacturing method of the same - Google Patents

Evaporator and manufacturing method of the same Download PDF

Info

Publication number
JP2005164226A
JP2005164226A JP2004324905A JP2004324905A JP2005164226A JP 2005164226 A JP2005164226 A JP 2005164226A JP 2004324905 A JP2004324905 A JP 2004324905A JP 2004324905 A JP2004324905 A JP 2004324905A JP 2005164226 A JP2005164226 A JP 2005164226A
Authority
JP
Japan
Prior art keywords
refrigerant
header
heat exchange
pipe
refrigerant inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004324905A
Other languages
Japanese (ja)
Other versions
JP4533726B2 (en
Inventor
Naohisa Higashiyama
直久 東山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2004324905A priority Critical patent/JP4533726B2/en
Publication of JP2005164226A publication Critical patent/JP2005164226A/en
Application granted granted Critical
Publication of JP4533726B2 publication Critical patent/JP4533726B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an evaporator that can be manufactured relatively easily and can prevent a short circuit between a refrigerant inlet header part and a refrigerant outlet header part. <P>SOLUTION: A refrigerant inlet/outlet tank 2 is arranged on a heat exchanger core part 4, and the interior of the tank 2 is divided in a front-back relation into the refrigerant inlet header part 5 and the refrigerant outlet header part 6. A front cap 19a and a back cap 19b of a closing member 19 for closing one end opening of the tank 2 are provided with a refrigerant inlet 43 in communication with the refrigerant inlet header part 5 and a refrigerant outlet 44 in communication with the refrigerant outlet header part 6 respectively. A pipe joint member 21 having a refrigerant inlet 45 in communication with the refrigerant inlet 43 and a refrigerant outlet 46 in communication with the refrigerant outlet 44 is brazed to both caps 19a and 19b so as to cover the refrigerant inlet header part 5 and the refrigerant outlet header part 6. A contracted portion 7a formed at an end of a refrigerant inlet pipe 7 is inserted in and brazed to the refrigerant inlet 45, and a refrigerant outlet pipe 8 is inserted in and brazed to the refrigerant outlet 46. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、たとえば自動車に搭載される冷凍サイクルであるカーエアコンに使用されるエバポレータに関する。   The present invention relates to an evaporator used for a car air conditioner that is a refrigeration cycle mounted on an automobile, for example.

この明細書および特許請求の範囲において、「アルミニウム」という用語には、純アルミニウムの他にアルミニウム合金を含むものとする。また、この明細書および特許請求の範囲において、隣接する熱交換管どうしの間の通風間隙を流れる空気の下流側(図1に矢印Xで示す方向、図4の右側)を前、これと反対側を後といい、図2の上下、左右を上下、左右というものとする。   In this specification and claims, the term “aluminum” includes aluminum alloys in addition to pure aluminum. In this specification and claims, the downstream side of the air flowing in the ventilation gap between adjacent heat exchange tubes (the direction indicated by the arrow X in FIG. 1, the right side in FIG. 4) is the front and opposite to this. The side is referred to as the rear, and the top and bottom in FIG.

従来、カーエアコン用エバポレータとして、1対の皿状プレートを対向させて周縁部どうしをろう付してなる複数の偏平中空体が並列状に配置されてなり、前後方向に並んで配置された冷媒入口ヘッダ部および冷媒出口ヘッダ部と、両ヘッダ部と間隔をおいて配置された冷媒ターン部と、冷媒入口ヘッダ部と冷媒ターン部とを連通させる複数の冷媒往き側冷媒流通部と、冷媒出口ヘッダ部と冷媒ターン部を連通させる複数の冷媒戻り側冷媒流通部とを備えており、冷媒入口ヘッダ部の一端に冷媒入口が形成されるとともに、冷媒出口ヘッダ部における冷媒入口と同一端に冷媒出口が形成され、冷媒入口から冷媒入口ヘッダ部内に流入した冷媒が、冷媒往き側冷媒流通部を通って冷媒ターン部に至り、ここで流れ方向を変えて冷媒戻り側冷媒流通部を通って冷媒出口ヘッダ部に戻り、冷媒出口から送り出されるようになっている積層型エバポレータであって、冷媒入口に通じる短筒状冷媒流入部および冷媒出口に通じる短筒状冷媒流出部を有するパイプジョイントプレートが、冷媒入口ヘッダ部および冷媒出口ヘッダ部に跨って接合され、冷媒流入部に、冷媒入口管の端部が差し込まれて接合され、冷媒流出部に、冷媒入口管よりも大径の冷媒出口管の端部に形成された縮径部が差し込まれて接合されているものが知られている(特許文献1参照)。   Conventionally, as an evaporator for a car air conditioner, a plurality of flat hollow bodies formed by brazing peripheral portions with a pair of plate-shaped plates facing each other are arranged in parallel, and are arranged side by side in the front-rear direction. An inlet header section, a refrigerant outlet header section, a refrigerant turn section spaced from both header sections, a plurality of refrigerant forward refrigerant distribution sections that communicate the refrigerant inlet header section and the refrigerant turn section, and a refrigerant outlet A plurality of refrigerant return side refrigerant circulation parts that communicate the header part and the refrigerant turn part; a refrigerant inlet is formed at one end of the refrigerant inlet header part; and a refrigerant at the same end as the refrigerant inlet in the refrigerant outlet header part An outlet is formed, and the refrigerant flowing into the refrigerant inlet header portion from the refrigerant inlet passes through the refrigerant forward refrigerant circulation portion to the refrigerant turn portion, where the flow direction is changed and the refrigerant return side refrigerant flow is changed. A laminated evaporator that is returned to the refrigerant outlet header portion through the portion and is sent out from the refrigerant outlet, and includes a short cylindrical refrigerant inflow portion that leads to the refrigerant inlet and a short cylindrical refrigerant outflow portion that leads to the refrigerant outlet. The pipe joint plate is joined across the refrigerant inlet header part and the refrigerant outlet header part, the end part of the refrigerant inlet pipe is inserted and joined to the refrigerant inflow part, and the refrigerant outlet part is larger than the refrigerant inlet pipe. There is known one in which a reduced diameter portion formed at an end of a refrigerant outlet pipe having a diameter is inserted and joined (see Patent Document 1).

通常、この種のエバポレータの冷媒入口管の直径は冷媒出口管の直径よりも小さいため、特許文献1記載のエバポレータにおいては、冷媒流入部を冷媒入口管の端部を縮径することなく差し込めるような寸法に形成し、一方、冷媒流出部を冷媒流入部とほぼ同じ寸法として冷媒出口管の端部に形成された縮径部を冷媒流出部に差し込んでいる。   Usually, the diameter of the refrigerant inlet pipe of this type of evaporator is smaller than the diameter of the refrigerant outlet pipe, and therefore, in the evaporator described in Patent Document 1, the refrigerant inflow portion can be inserted without reducing the diameter of the end portion of the refrigerant inlet tube. On the other hand, the reduced diameter portion formed at the end of the refrigerant outlet pipe is inserted into the refrigerant outflow portion with the refrigerant outflow portion being substantially the same size as the refrigerant inflow portion.

ところで、近年、エバポレータのさらなる小型軽量化および高性能化が要求されるようになってきた。そして、このような要求を満たすエバポレータとして、前後方向に並んで配置された冷媒入口ヘッダ部および冷媒出口ヘッダ部と、両ヘッダ部を通じさせる冷媒循環経路とを備えており、冷媒循環経路が、複数の中間ヘッダ部と複数の熱交換管により構成され、互いに対向して配置された冷媒入口ヘッダ部と中間ヘッダ部との間、互いに対向して配置された冷媒出口ヘッダ部と中間ヘッダ部との間、および互いに対向して配置された中間ヘッダ部どうしの間に、それぞれ間隔をおいて配置された複数の熱交換管からなる熱交換管群が少なくとも1列配置され、これらの熱交換管群を構成する熱交換管の両端部が互いに対向するヘッダ部に接続されており、冷媒入口ヘッダ部の一端に冷媒入口が形成されるとともに、冷媒出口ヘッダ部における冷媒入口と同一端に冷媒出口が形成され、冷媒入口から冷媒入口ヘッダ部内に流入した冷媒が、冷媒循環経路を通って冷媒出口ヘッダ部に戻り、冷媒出口から送り出されるようになっているエバポレータが提案されている(特許文献2参照)。   Incidentally, in recent years, there has been a demand for further reduction in size and weight and higher performance of the evaporator. The evaporator satisfying such a requirement includes a refrigerant inlet header section and a refrigerant outlet header section arranged side by side in the front-rear direction, and a refrigerant circulation path that passes through both header sections. The intermediate header portion and the plurality of heat exchange pipes are arranged between the refrigerant inlet header portion and the intermediate header portion arranged opposite to each other, and between the refrigerant outlet header portion and the intermediate header portion arranged opposite to each other. And at least one row of heat exchange tube groups composed of a plurality of heat exchange tubes arranged at intervals between each other and between the intermediate header portions arranged opposite to each other, and these heat exchange tube groups Both end portions of the heat exchange pipe constituting the refrigerant are connected to the header portions facing each other, a refrigerant inlet is formed at one end of the refrigerant inlet header portion, and the refrigerant outlet header portion An evaporator in which a refrigerant outlet is formed at the same end as the medium inlet, and the refrigerant flowing into the refrigerant inlet header portion from the refrigerant inlet returns to the refrigerant outlet header portion through the refrigerant circulation path and is sent out from the refrigerant outlet. It has been proposed (see Patent Document 2).

特許文献2記載のエバポレータにおいても、冷媒入口ヘッダ部に冷媒入口管を、冷媒出口ヘッダ部に冷媒出口管をそれぞれ接続する必要があり、そのためこのエバポレータにおいては、冷媒入口に通じる冷媒流入部および冷媒出口に通じる冷媒流出部を有する冷媒入出ブロックが、冷媒入口ヘッダ部および冷媒出口ヘッダ部に跨ってろう付されている。しかしながら、冷媒入出ブロックの熱容量が比較的大きくなってろう付性が低下するので、製造作業が面倒になる。   Also in the evaporator described in Patent Document 2, it is necessary to connect the refrigerant inlet pipe to the refrigerant inlet header part and the refrigerant outlet pipe to the refrigerant outlet header part. Therefore, in this evaporator, the refrigerant inflow part and the refrigerant leading to the refrigerant inlet are required. A refrigerant inlet / outlet block having a refrigerant outflow portion leading to the outlet is brazed across the refrigerant inlet header portion and the refrigerant outlet header portion. However, since the heat capacity of the refrigerant inlet / outlet block is relatively large and the brazing property is lowered, the manufacturing work becomes troublesome.

そこで、特許文献2記載のエバポレータの冷媒入口ヘッダ部および冷媒出口ヘッダ部に跨って、特許文献1記載のパイプジョイントプレートがろう付され、パイプジョイントプレートの冷媒流入部に冷媒入口管の端部が差し込まれて接合され、同冷媒流出部に冷媒入口管よりも大径の冷媒出口管の端部に形成された縮径部が差し込まれて接合されることが容易に考えられる。しかしながら、この場合、エバポレータの前後方向の寸法が小さくなることから、パイプジョイントプレートの前後方向の長さも短く、たとえば50mm以下にする必要がある。パイプジョイントプレートの前後方向の長さを短く、たとえば50mm以下にすると、パイプジョイントプレートに形成された冷媒流入部および冷媒流出部の外径が同径であることから、次のような問題が生じる。すなわち、通常、パイプジョイントプレートの冷媒流入部および冷媒流出部と、冷媒入口管および冷媒出口管とは、冷媒流入部および冷媒流出部の周囲に配置された高周波加熱コイルを用いて高周波ろう付されているが、パイプジョイントプレートの前後方向の寸法が規制された場合に、冷媒流入部および冷媒流出部の外径をほぼ同径とするには、冷媒流入部と冷媒流出部との間隔が小さくなり、高周波加熱コイルを配置することが困難になって、ろう付作業の自動化を図ることができなくなり、製造が面倒である。また、冷媒流入部と冷媒流出部との間隔が小さくなるので、パイプジョイントプレートにおける冷媒流入部と冷媒流出部との間の部分と冷媒入口ヘッダ部および冷媒出口ヘッダ部とのろう付面積が小さくなり、この部分でろう付不良が発生するおそれがある。この部分でろう付不良が発生すると、冷媒入口ヘッダ部と冷媒出口ヘッダ部とが短絡し、その結果冷媒入口管から流入してきた冷媒が、熱交換管を通過することなく冷媒出口管に入り、冷媒が全く冷却に寄与することなく、冷却性能が著しく低下するおそれがある。
特開2001−241881号公報 特開2003−214794号公報
Therefore, the pipe joint plate described in Patent Document 1 is brazed across the refrigerant inlet header portion and the refrigerant outlet header portion of the evaporator described in Patent Document 2, and the end portion of the refrigerant inlet pipe is connected to the refrigerant inflow portion of the pipe joint plate. It is easily conceivable that the reduced diameter portion formed at the end of the refrigerant outlet pipe having a diameter larger than that of the refrigerant inlet pipe is inserted and joined to the refrigerant outflow part. However, in this case, since the dimension of the evaporator in the front-rear direction is reduced, the length of the pipe joint plate in the front-rear direction needs to be short, for example, 50 mm or less. If the length of the pipe joint plate in the front-rear direction is short, for example 50 mm or less, the outer diameters of the refrigerant inflow portion and the refrigerant outflow portion formed in the pipe joint plate are the same, and the following problems occur. . That is, normally, the refrigerant inflow portion and the refrigerant outflow portion of the pipe joint plate, and the refrigerant inlet pipe and the refrigerant outlet pipe are high-frequency brazed using a high-frequency heating coil disposed around the refrigerant inflow portion and the refrigerant outflow portion. However, when the dimension of the pipe joint plate in the front-rear direction is restricted, in order to make the outer diameter of the refrigerant inflow portion and the refrigerant outflow portion approximately the same diameter, the interval between the refrigerant inflow portion and the refrigerant outflow portion is small. Therefore, it becomes difficult to arrange the high-frequency heating coil, and it becomes impossible to automate the brazing operation, and the manufacturing is troublesome. Further, since the interval between the refrigerant inflow portion and the refrigerant outflow portion is reduced, the brazing area between the refrigerant inflow portion and the refrigerant outflow portion in the pipe joint plate and the refrigerant inlet header portion and the refrigerant outlet header portion is small. Therefore, there is a possibility that a brazing defect may occur at this portion. When brazing failure occurs in this part, the refrigerant inlet header part and the refrigerant outlet header part are short-circuited, and as a result, the refrigerant flowing in from the refrigerant inlet pipe enters the refrigerant outlet pipe without passing through the heat exchange pipe, There is a possibility that the cooling performance is significantly lowered without the refrigerant contributing to cooling at all.
JP 2001-241881 A JP 2003-214794 A

この発明の目的は、上記問題を解決し、比較的簡単に製造することができるとともに、冷媒入口ヘッダ部および冷媒出口ヘッダ部間での短絡を防止しうるエバポレータおよびその製造方法を提供することにある。   An object of the present invention is to provide an evaporator that can solve the above problems and can be manufactured relatively easily, and that can prevent a short circuit between the refrigerant inlet header portion and the refrigerant outlet header portion, and a method for manufacturing the same. is there.

本発明は、上記目的を達成するために以下の態様からなる。   In order to achieve the above object, the present invention comprises the following aspects.

1)前後方向に並んで配置された冷媒入口ヘッダ部および冷媒出口ヘッダ部と、両ヘッダ部を通じさせる冷媒循環経路とを備えており、冷媒入口ヘッダ部の一端に冷媒入口が形成されるとともに、冷媒出口ヘッダ部における冷媒入口と同一端に冷媒出口が形成され、冷媒入口から冷媒入口ヘッダ部内に流入した冷媒が、冷媒循環経路を通って冷媒出口ヘッダ部に戻り、冷媒出口から送り出されるようになっているエバポレータであって、
冷媒入口ヘッダ部および冷媒出口ヘッダ部の一端がそれぞれキャップにより閉鎖され、冷媒入口ヘッダ部のキャップに冷媒入口が形成されるとともに、冷媒出口ヘッダ部のキャップに冷媒出口が形成され、冷媒入口に通じる冷媒流入部および冷媒出口に通じる冷媒流出部を有するプレート状パイプジョイント部材が、冷媒入口ヘッダ部および冷媒出口ヘッダ部のキャップに跨って接合されているエバポレータ。
1) It is provided with a refrigerant inlet header portion and a refrigerant outlet header portion arranged side by side in the front-rear direction, and a refrigerant circulation path through both header portions, and a refrigerant inlet is formed at one end of the refrigerant inlet header portion, A refrigerant outlet is formed at the same end as the refrigerant inlet in the refrigerant outlet header, so that the refrigerant flowing into the refrigerant inlet header from the refrigerant inlet returns to the refrigerant outlet header through the refrigerant circulation path and is sent out from the refrigerant outlet. An evaporator,
One end of each of the refrigerant inlet header portion and the refrigerant outlet header portion is closed by a cap, a refrigerant inlet is formed in the cap of the refrigerant inlet header portion, and a refrigerant outlet is formed in the cap of the refrigerant outlet header portion, leading to the refrigerant inlet. An evaporator in which a plate-like pipe joint member having a refrigerant outflow part communicating with a refrigerant inflow part and a refrigerant outlet is joined across the caps of the refrigerant inlet header part and the refrigerant outlet header part.

2)冷媒循環経路が、複数の中間ヘッダ部と複数の熱交換管により構成され、互いに対向して配置された冷媒入口ヘッダ部と中間ヘッダ部との間、互いに対向して配置された冷媒出口ヘッダ部と中間ヘッダ部との間、および互いに対向して配置された中間ヘッダ部どうしの間に、それぞれ左右方向に間隔をおいて配置された複数の熱交換管からなる熱交換管群が少なくとも1列配置され、これらの熱交換管群を構成する熱交換管の両端部が互いに対向するヘッダ部に接続されている上記1)記載のエバポレータ。   2) The refrigerant circulation path includes a plurality of intermediate header portions and a plurality of heat exchange pipes, and is disposed between the refrigerant inlet header portion and the intermediate header portion arranged to face each other, and the refrigerant outlet arranged to face each other. There is at least a heat exchange tube group including a plurality of heat exchange tubes arranged at intervals in the left-right direction between the header portion and the intermediate header portion and between the intermediate header portions arranged to face each other. The evaporator according to the above 1), which is arranged in one row, and both end portions of the heat exchange tubes constituting these heat exchange tube groups are connected to the header portions facing each other.

3)パイプジョイント部材の冷媒流入部および冷媒流出部がそれぞれ短筒状であり、冷媒流入部に、冷媒入口管の端部に形成された縮径部が差し込まれて接合され、冷媒流出部に、冷媒出口管の端部が差し込まれて接合されている上記1)または2)記載のエバポレータ。   3) The refrigerant inflow part and the refrigerant outflow part of the pipe joint member are each in the shape of a short cylinder, and the reduced diameter part formed at the end of the refrigerant inlet pipe is inserted into and joined to the refrigerant inflow part. The evaporator according to 1) or 2), wherein an end of the refrigerant outlet pipe is inserted and joined.

4)冷媒流入部の外径が冷媒流出部の外径よりも小さくなっている上記3)記載のエバポレータ。   4) The evaporator according to 3) above, wherein an outer diameter of the refrigerant inflow portion is smaller than an outer diameter of the refrigerant outflow portion.

5)冷媒流出部に、冷媒出口管の端部に形成された縮径部が差し込まれて接合されている上記3)または4)記載のエバポレータ。   5) The evaporator according to 3) or 4) above, wherein a reduced diameter portion formed at an end of the refrigerant outlet pipe is inserted and joined to the refrigerant outflow portion.

6)パイプジョイント部材の冷媒流入部と冷媒流出部との間隔が6〜9mmである上記3)〜5)のうちのいずれかに記載のエバポレータ。   6) The evaporator according to any one of 3) to 5) above, wherein a distance between the refrigerant inflow portion and the refrigerant outflow portion of the pipe joint member is 6 to 9 mm.

7)冷媒入口管の縮径部の内径が3〜8.5mmである上記3)〜6)のうちのいずれかに記載のエバポレータ。   7) The evaporator according to any one of 3) to 6) above, wherein an inner diameter of the reduced diameter portion of the refrigerant inlet pipe is 3 to 8.5 mm.

8)パイプジョイント部材の前後方向の長さが50mm以下である上記3)〜7)のうちのいずれかに記載のエバポレータ。   8) The evaporator according to any one of 3) to 7) above, wherein the length of the pipe joint member in the front-rear direction is 50 mm or less.

9)キャップおよびパイプジョイント部材のうちのいずれか一方に、同他方側に突出した位置決め用凸部が形成されるとともに、同他方に位置決め用凸部が嵌る位置決め用凹所が形成されている上記1)〜8)のうちのいずれかに記載のエバポレータ。   9) The positioning convex portion protruding to the other side is formed on one of the cap and the pipe joint member, and the positioning recess into which the positioning convex portion is fitted is formed on the other side. The evaporator according to any one of 1) to 8).

10)両キャップが一体化されている上記1)〜9)のうちのいずれかに記載のエバポレータ。   10) The evaporator according to any one of 1) to 9), wherein both caps are integrated.

11)冷媒入口ヘッダ部と冷媒出口ヘッダ部とが、両ヘッダ部の冷媒循環経路側の部分を形成する第1部材と、両ヘッダ部の残りの部分を形成するとともに第1部材にろう付された第2部材とからなり、これにより両ヘッダ部が一体化され、両キャップに、それぞれ第1部材および第2部材に係合する係合爪が形成されている上記1)〜10)のうちのいずれかに記載のエバポレータ。   11) The refrigerant inlet header portion and the refrigerant outlet header portion are brazed to the first member that forms the refrigerant circulation path side portion of both header portions and the remaining portion of both header portions. Among the above 1) to 10), the header parts are integrated with each other, and both caps are formed with engaging claws that engage with the first member and the second member, respectively. The evaporator as described in any one of.

12)左右方向に間隔をおいて配置された複数の熱交換管からなる熱交換管群が前後方向に並んで複数列配置されることにより構成された熱交換コア部と、熱交換管の一端側に配置され、かつ少なくとも1列の熱交換管群の熱交換管が接続された冷媒入口ヘッダ部と、熱交換管の一端側において冷媒入口ヘッダ部と前後方向に並んで配置され、かつ少なくとも1列の熱交換管群の熱交換管が接続された冷媒出口ヘッダ部と、熱交換管の他端側に配置され、かつ冷媒入口ヘッダ部に接続されている熱交換管が接続された冷媒流入ヘッダ部と、熱交換管の他端側に配置され、かつ冷媒出口ヘッダ部に接続されている熱交換管群の熱交換管が接続された冷媒流出ヘッダ部とを備え、冷媒流入ヘッダ部と冷媒流出ヘッダ部とが連通させられて冷媒ターン部が形成され、冷媒入口ヘッダ部および冷媒出口ヘッダ部の一端がそれぞれキャップにより閉鎖され、冷媒入口ヘッダ部のキャップに冷媒入口が形成されるとともに、冷媒出口ヘッダ部のキャップに冷媒出口が形成され、冷媒入口に通じる冷媒流入部および冷媒出口に通じる冷媒流出部を有するプレート状パイプジョイント部材が、冷媒入口ヘッダ部および冷媒出口ヘッダ部のキャップに跨って接合されているエバポレータ。   12) A heat exchange core section formed by arranging a plurality of heat exchange tube groups, each of which is arranged in the front-rear direction, with a plurality of heat exchange tube groups arranged at intervals in the left-right direction, and one end of the heat exchange tube And a refrigerant inlet header portion to which heat exchange pipes of at least one row of heat exchange pipe groups are connected, and arranged side by side with the refrigerant inlet header portion in the front-rear direction on one end side of the heat exchange pipe, and at least Refrigerant outlet header part to which heat exchange pipes of one row of heat exchange pipe groups are connected, and refrigerant to which the heat exchange pipes arranged on the other end side of the heat exchange pipes and connected to the refrigerant inlet header part are connected. A refrigerant inflow header portion, and a refrigerant outflow header portion connected to a heat exchange tube of a heat exchange tube group disposed on the other end side of the heat exchange tube and connected to the refrigerant outlet header portion. And the refrigerant outflow header section are communicated with each other, and the refrigerant turn section One end of each of the refrigerant inlet header and the refrigerant outlet header is closed by a cap, a refrigerant inlet is formed in the cap of the refrigerant inlet header, and a refrigerant outlet is formed in the cap of the refrigerant outlet header. An evaporator in which a plate-like pipe joint member having a refrigerant inflow portion leading to an inlet and a refrigerant outflow portion leading to a refrigerant outlet is joined across the caps of the refrigerant inlet header portion and the refrigerant outlet header portion.

13)パイプジョイント部材の冷媒流入部および冷媒流出部がそれぞれ短筒状であり、冷媒流入部に、冷媒入口管の端部に形成された縮径部が差し込まれて接合され、冷媒流出部に、冷媒出口管の端部が差し込まれて接合されている上記12)記載のエバポレータ。   13) The refrigerant inflow part and the refrigerant outflow part of the pipe joint member are each in the shape of a short cylinder, and the reduced diameter part formed at the end of the refrigerant inlet pipe is inserted into and joined to the refrigerant inflow part. The evaporator according to 12) above, wherein the end of the refrigerant outlet pipe is inserted and joined.

14)冷媒流入部の外径が冷媒流出部の外径よりも小さくなっている上記13)記載のエバポレータ。   14) The evaporator according to 13) above, wherein an outer diameter of the refrigerant inflow portion is smaller than an outer diameter of the refrigerant outflow portion.

15)冷媒流出部に、冷媒出口管の端部に形成された縮径部が差し込まれて接合されている上記13)または14)記載のエバポレータ。   15) The evaporator according to 13) or 14) above, wherein a reduced diameter portion formed at an end of the refrigerant outlet pipe is inserted and joined to the refrigerant outflow portion.

16)パイプジョイント部材の冷媒流入部と冷媒流出部との間隔が6〜9mmである上記13)〜15)のうちのいずれかに記載のエバポレータ。   16) The evaporator according to any one of 13) to 15) above, wherein the interval between the refrigerant inflow portion and the refrigerant outflow portion of the pipe joint member is 6 to 9 mm.

17)冷媒入口管の縮径部の内径が3〜8.5mmである上記13)〜16)のうちのいずれかに記載のエバポレータ。   17) The evaporator according to any one of 13) to 16) above, wherein an inner diameter of the reduced diameter portion of the refrigerant inlet pipe is 3 to 8.5 mm.

18)パイプジョイント部材の前後方向の長さが50mm以下である上記13)〜17)のうちのいずれかに記載のエバポレータ。   18) The evaporator according to any one of 13) to 17) above, wherein the length of the pipe joint member in the front-rear direction is 50 mm or less.

19)キャップおよびパイプジョイント部材のうちのいずれか一方に、同他方側に突出した位置決め用凸部が形成されるとともに、同他方に位置決め用凸部が嵌る位置決め用凹所が形成されている上記12)〜18)のうちのいずれかに記載のエバポレータ。   19) The positioning convexity is formed on one of the cap and the pipe joint member. The positioning convexity is formed on the other side, and the positioning convexity is formed on the other side. The evaporator according to any one of 12) to 18).

20)パイプジョイント部材に、キャップ側に突出した位置決め用凸部が形成されるとともに、キャップに位置決め用凸部が嵌る位置決め用凹所が形成され、冷媒入口ヘッダ部および冷媒出口ヘッダ部の他端がそれぞれめくらキャップにより閉鎖され、めくらキャップは、キャップに形成されている位置決め用凹所を有していない上記12)〜18)のうちのいずれかに記載のエバポレータ。   20) A positioning projection that protrudes toward the cap is formed on the pipe joint member, and a positioning recess that fits the positioning projection on the cap is formed, and the other end of the refrigerant inlet header portion and the refrigerant outlet header portion. The evaporator according to any one of the above 12) to 18), wherein each is closed by a blind cap, and the blind cap does not have a positioning recess formed in the cap.

21)冷媒入口ヘッダ部と冷媒出口ヘッダ部とが、熱交換管が接続された第1部材と、第1部材における熱交換管とは反対側の部分にろう付された第2部材とからなり、これにより両ヘッダ部が一体化され、両キャップおよび両めくらキャップに、それぞれ第1部材および第2部材に係合する係合爪が形成されている上記20)記載のエバポレータ。   21) The refrigerant inlet header part and the refrigerant outlet header part are composed of a first member to which a heat exchange pipe is connected and a second member brazed to a part of the first member opposite to the heat exchange pipe. The evaporator according to the above 20), wherein both the header portions are thereby integrated, and the engaging claws that engage with the first member and the second member are formed on both caps and both blind caps, respectively.

22)冷媒入口ヘッダ部と冷媒出口ヘッダ部とが、1つの冷媒入出用タンク内を仕切手段によって前後に区画することにより設けられている上記21)記載のエバポレータ。   22) The evaporator according to 21) above, wherein the refrigerant inlet header portion and the refrigerant outlet header portion are provided by dividing one refrigerant inlet / outlet tank forward and backward by a partitioning means.

23)冷媒出口ヘッダ部内が区画手段により高さ方向に2つの空間に区画されるとともに、第1の空間に臨むように熱交換管が接続され、区画手段に冷媒通過穴が形成され、冷媒出口ヘッダ部の第2の空間が冷媒出口に通じている上記22)記載のエバポレータ。   23) The refrigerant outlet header is partitioned into two spaces in the height direction by the dividing means, and a heat exchange pipe is connected so as to face the first space, and a refrigerant passage hole is formed in the dividing means. The evaporator according to 22) above, wherein the second space of the header portion communicates with the refrigerant outlet.

24)仕切手段および区画手段が第2部材に一体に形成されている上記23)記載のエバポレータ。   24) The evaporator according to 23) above, wherein the partitioning means and the partitioning means are formed integrally with the second member.

25)両キャップおよび両めくらキャップがそれぞれ一体化されており、両キャップおよび両めくらキャップに、それぞれ冷媒入口ヘッダ内に嵌る第1突出部と、冷媒出口ヘッダ部の第1空間内に嵌る第2突出部と、冷媒出口ヘッダ部の第2空間内に嵌る第3突出部とが形成され、両キャップの第1突出部に冷媒入口が形成され、両キャップの第3突出部に冷媒出口が形成されている上記23)または24)記載のエバポレータ。   25) Both caps and both blind caps are integrated with each other, and both the caps and both blind caps are respectively fitted with a first protrusion that fits in the refrigerant inlet header and a second fitting that fits in the first space of the refrigerant outlet header. A protrusion and a third protrusion that fits in the second space of the refrigerant outlet header are formed, a refrigerant inlet is formed in the first protrusion of both caps, and a refrigerant outlet is formed in the third protrusion of both caps. The evaporator according to 23) or 24) above.

26)上記3)記載のエバポレータを製造する方法であって、前後方向に並んで配置された冷媒入口ヘッダ部および冷媒出口ヘッダ部と、両ヘッダ部を通じさせる冷媒循環経路とを形成するとともに、冷媒入口ヘッダ部の一端に冷媒入口を有するキャップを、冷媒出口ヘッダ部の一端に冷媒出口を有するキャップをそれぞれ接合し、さらに冷媒入口に通じる短筒状冷媒流入部および冷媒出口に通じる短筒状冷媒流出部を有するプレート状パイプジョイント部材を、冷媒入口ヘッダ部および冷媒出口ヘッダ部のキャップに跨って接合した後、パイプジョイント部材の冷媒流入部に冷媒入口管の端部に形成された縮径部を差し込むとともに、冷媒流出部に冷媒出口管の端部を差し込み、2つの環状部が一体となっためがね状の高周波加熱コイルにおける一方の環状部をパイプジョイント部材の冷媒流入部の周囲に、同じく他方の環状部を冷媒流出部の周囲に配置し、この高周波加熱コイルを用いてパイプジョイント部材の冷媒流入部および冷媒流出部と、冷媒入口管および冷媒出口管とを同時にろう付することを特徴とするエバポレータの製造方法。   26) A method of manufacturing the evaporator according to 3) above, wherein a refrigerant inlet header portion and a refrigerant outlet header portion arranged side by side in the front-rear direction, and a refrigerant circulation path that passes through both header portions are formed. A cap having a refrigerant inlet at one end of the inlet header portion, a cap having a refrigerant outlet at one end of the refrigerant outlet header portion, and a short cylindrical refrigerant inflow portion leading to the refrigerant inlet and a short cylindrical refrigerant leading to the refrigerant outlet portion. After the plate-shaped pipe joint member having the outflow portion is joined across the caps of the refrigerant inlet header portion and the refrigerant outlet header portion, the reduced diameter portion formed at the end of the refrigerant inlet pipe at the refrigerant inflow portion of the pipe joint member In addition, the end of the refrigerant outlet pipe is inserted into the refrigerant outflow part, and the two annular parts are integrated, so that in the glass-shaped high-frequency heating coil One annular part is arranged around the refrigerant inflow part of the pipe joint member, and the other annular part is arranged around the refrigerant outflow part, and the refrigerant inflow part and the refrigerant outflow part of the pipe joint member are arranged using this high-frequency heating coil. A method for producing an evaporator, wherein the refrigerant inlet pipe and the refrigerant outlet pipe are brazed simultaneously.

27)上記13)記載のエバポレータを製造する方法であって、左右方向に間隔をおいて配置された複数の熱交換管からなる熱交換管群が前後方向に並んで複数列配置されることにより構成された熱交換コア部と、熱交換管の一端側に配置され、かつ少なくとも1列の熱交換管群の熱交換管が接続された冷媒入口ヘッダ部と、熱交換管の一端側において冷媒入口ヘッダ部と前後方向に並んで配置され、かつ少なくとも1列の熱交換管群の熱交換管が接続された冷媒出口ヘッダ部と、熱交換管の他端側に配置され、かつ冷媒入口ヘッダ部に接続されている熱交換管が接続された冷媒流入ヘッダ部と、熱交換管の他端側に配置され、かつ冷媒出口ヘッダ部に接続されている熱交換管群の熱交換管が接続された冷媒流出ヘッダ部とを各部材を一括してろう付することにより形成し、このろう付と同時に、冷媒入口ヘッダ部の一端に冷媒入口を有するキャップを、冷媒出口ヘッダ部の一端に冷媒出口を有するキャップをそれぞれろう付するとともに、冷媒入口ヘッダ部および冷媒出口ヘッダ部の他端にめくらキャップをろう付し、さらに冷媒入口に通じる短筒状冷媒流入部および冷媒出口に通じる短筒状冷媒流出部を有するパイプジョイント部材を冷媒入口ヘッダ部および冷媒出口ヘッダ部のキャップに跨ってろう付した後、パイプジョイント部材の冷媒流入部に冷媒入口管の端部に形成された縮径部を差し込むとともに、冷媒流出部に冷媒出口管の端部を差し込み、2つの環状部が一体となっためがね状の高周波加熱コイルにおける一方の環状部をパイプジョイント部材の冷媒流入部の周囲に、同じく他方の環状部を冷媒流出部の周囲に配置し、この高周波加熱コイルを用いてパイプジョイント部材の冷媒流入部および冷媒流出部と、冷媒入口管および冷媒出口管とを同時にろう付することを特徴とするエバポレータの製造方法。   27) A method of manufacturing the evaporator according to 13) above, wherein a plurality of heat exchange tube groups including a plurality of heat exchange tubes arranged at intervals in the left-right direction are arranged in a row in the front-rear direction. A configured heat exchange core portion, a refrigerant inlet header portion disposed on one end side of the heat exchange tube and connected to a heat exchange tube of at least one row of heat exchange tube groups, and a refrigerant on one end side of the heat exchange tube A refrigerant outlet header portion arranged in line with the inlet header portion in the front-rear direction and connected to a heat exchange pipe of at least one row of heat exchange pipe groups; and a refrigerant inlet header arranged on the other end side of the heat exchange pipe Connected to the refrigerant inflow header part to which the heat exchange pipe connected to the part is connected, and the heat exchange pipe of the heat exchange pipe group arranged on the other end side of the heat exchange pipe and connected to the refrigerant outlet header part Brazing each member together with the refrigerant outlet header Simultaneously with this brazing, a cap having a refrigerant inlet at one end of the refrigerant inlet header portion and a cap having a refrigerant outlet at one end of the refrigerant outlet header portion are brazed, and the refrigerant inlet header portion and A pipe joint member having a short cylindrical refrigerant inflow portion leading to the refrigerant inlet and a short cylindrical refrigerant outflow portion leading to the refrigerant outlet is brazed with a blind cap to the other end of the refrigerant outlet header portion, and the refrigerant inlet header portion and the refrigerant outlet. After brazing across the cap of the header part, the reduced diameter part formed at the end of the refrigerant inlet pipe is inserted into the refrigerant inflow part of the pipe joint member, and the end of the refrigerant outlet pipe is inserted into the refrigerant outflow part, Since the two annular parts are integrated, one annular part in the high frequency heating coil having the shape of a coil is placed around the refrigerant inflow part of the pipe joint member. The other annular part is arranged around the refrigerant outflow part, and the refrigerant inflow part and the refrigerant outflow part of the pipe joint member, and the refrigerant inlet pipe and the refrigerant outlet pipe are brazed simultaneously using this high-frequency heating coil. A manufacturing method of an evaporator characterized.

28)圧縮機、コンデンサおよびエバポレータを備えており、エバポレータが、上記1)〜26)のうちのいずれかに記載のエバポレータからなる冷凍サイクル。   28) A refrigeration cycle comprising a compressor, a condenser, and an evaporator, wherein the evaporator is the evaporator according to any one of 1) to 26) above.

29)上記28)記載の冷凍サイクルが、エアコンとして搭載されている車両。   29) A vehicle on which the refrigeration cycle described in 28) above is mounted as an air conditioner.

上記1)、2)および12)のエバポレータによれば、冷媒入口ヘッダ部および冷媒出口ヘッダ部の一端がそれぞれキャップにより閉鎖され、冷媒入口ヘッダ部のキャップに冷媒入口が形成されるとともに、冷媒出口ヘッダ部のキャップに冷媒出口が形成され、冷媒入口に通じる冷媒流入部および冷媒出口に通じる冷媒流出部を有するプレート状パイプジョイント部材が、冷媒入口ヘッダ部および冷媒出口ヘッダ部のキャップに跨って接合されているので、パイプジョイント部材の熱容量が比較的小さくなり、パイプジョイント部材をたとえばろう付により冷媒入口ヘッダ部および冷媒出口ヘッダ部に接合する場合、ろう付性が向上し、エバポレータ全体の製造作業が簡単になる。   According to the evaporators 1), 2) and 12), one end of each of the refrigerant inlet header portion and the refrigerant outlet header portion is closed by the cap, and the refrigerant inlet is formed in the cap of the refrigerant inlet header portion. A refrigerant outlet is formed in the cap of the header part, and a plate-shaped pipe joint member having a refrigerant inflow part leading to the refrigerant inlet and a refrigerant outflow part leading to the refrigerant outlet is joined across the caps of the refrigerant inlet header part and the refrigerant outlet header part Therefore, when the heat capacity of the pipe joint member is relatively small and the pipe joint member is joined to the refrigerant inlet header portion and the refrigerant outlet header portion by, for example, brazing, the brazing performance is improved and the entire evaporator is manufactured. Becomes easier.

上記3)および13)のエバポレータによれば、パイプジョイント部材の冷媒流入部および冷媒流出部がそれぞれ短筒状であり、冷媒流入部に、冷媒入口管の端部に形成された縮径部が差し込まれて接合されているので、冷媒流入部の外径を小さくすることができ、その結果冷媒流入部と冷媒流出部との間隔を比較的大きくすることができる。すなわち、エバポレータにおいて、通常、小径である冷媒入口管の端部をさらに縮径し、この縮径部を冷媒流入部に差し込むのであるから、冷媒流入部の外径をかなり小さくすることができ、その結果冷媒流入部と冷媒流出部との間隔を比較的大きくすることができる。したがって、パイプジョイント部材の前後方向の寸法が規制された場合であっても、冷媒流入部および冷媒流出部の周囲に高周波加熱コイルを簡単に配置することができ、ろう付作業の自動化を図ることが可能になって、エバポレータ全体の製造作業も簡単になる。また、冷媒流入部と冷媒流出部との間隔が比較的大きくなるので、パイプジョイント部材における冷媒流入部と冷媒流出部との間の部分と冷媒入口ヘッダ部および冷媒出口ヘッダ部との接合面積が大きくなり、接合不良の発生を防止することが可能となって、冷媒入口ヘッダ部と冷媒出口ヘッダ部との短絡が防止される。その結果、冷媒入口管から冷媒入口ヘッダ部内に流入してきた冷媒が、冷媒循環経路内(上記1)および2)の場合)または熱交換管内(上記12)の場合)を通過することなく冷媒出口ヘッダから冷媒出口管に流出することが防止され、エバポレータの冷却性能の低下が防止される。さらに、冷媒入口管の端部に縮径部が形成されているので、冷媒入口管から冷媒入口ヘッダ部内に流入する際の冷媒の流速が高速になって冷媒入口ヘッダ部の他端部まで行き渡る。そして、上記1)および2)のエバポレータの場合にあっては、冷媒がすべての冷媒循環経路に均一に分流されるので、すべての冷媒循環経路の冷媒流通量が均一化され、エバポレータの冷却性能が向上する。冷媒の流速が遅いと、冷媒入口に近い位置にある冷媒循環経路内に流入する冷媒の量が、冷媒入口から遠い位置にある冷媒循環経路内に流入する冷媒の量よりも多くなり、すべての冷媒循環経路の冷媒流通量が不均一となって、エバポレータの冷却性能が低下する。これは、冷媒の流量が少ない場合に顕著である。上記12)のエバポレータにあっては、冷媒が冷媒入口ヘッダ部に接続されたすべての熱交換管に均一に分流されるので、すべての熱交換管の冷媒流通量が均一化され、エバポレータの冷却性能が向上する。冷媒の流速が遅いと、冷媒入口に近い位置にある熱交換管内に流入する冷媒の量が、冷媒入口から遠い位置にある熱交換管内に流入する冷媒の量よりも多くなり、すべての熱交換管の冷媒流通量が不均一となって、エバポレータの冷却性能が低下する。これは、冷媒の流量が少ない場合に顕著である。   According to the evaporators of the above 3) and 13), the refrigerant inflow portion and the refrigerant outflow portion of the pipe joint member are each in the shape of a short cylinder, and the reduced diameter portion formed at the end of the refrigerant inlet pipe is formed in the refrigerant inflow portion. Since it is inserted and joined, the outer diameter of the refrigerant inflow portion can be reduced, and as a result, the interval between the refrigerant inflow portion and the refrigerant outflow portion can be made relatively large. That is, in the evaporator, since the end of the refrigerant inlet pipe, which is usually a small diameter, is further reduced in diameter, and the reduced diameter portion is inserted into the refrigerant inflow portion, the outer diameter of the refrigerant inflow portion can be considerably reduced. As a result, the interval between the refrigerant inflow portion and the refrigerant outflow portion can be made relatively large. Therefore, even when the longitudinal dimension of the pipe joint member is restricted, the high-frequency heating coil can be easily arranged around the refrigerant inflow portion and the refrigerant outflow portion, and the brazing operation can be automated. This makes it possible to easily manufacture the entire evaporator. Further, since the interval between the refrigerant inflow portion and the refrigerant outflow portion becomes relatively large, the joint area between the refrigerant inflow portion and the refrigerant outflow portion in the pipe joint member and the refrigerant inlet header portion and the refrigerant outlet header portion is increased. It becomes large and it becomes possible to prevent generation | occurrence | production of a joining defect, and the short circuit with a refrigerant | coolant inlet header part and a refrigerant | coolant outlet header part is prevented. As a result, the refrigerant flowing into the refrigerant inlet header from the refrigerant inlet pipe does not pass through the refrigerant circulation path (in the case of 1) and 2) above or in the heat exchange pipe (in the case of 12 above). Outflow from the header to the refrigerant outlet pipe is prevented, and deterioration of the cooling performance of the evaporator is prevented. Further, since the reduced diameter portion is formed at the end portion of the refrigerant inlet pipe, the flow velocity of the refrigerant when flowing from the refrigerant inlet pipe into the refrigerant inlet header portion becomes high and reaches the other end portion of the refrigerant inlet header portion. . In the case of the evaporators 1) and 2) above, since the refrigerant is evenly divided into all the refrigerant circulation paths, the refrigerant circulation amount in all the refrigerant circulation paths is made uniform, and the cooling performance of the evaporator Will improve. If the flow rate of the refrigerant is slow, the amount of refrigerant flowing into the refrigerant circulation path located near the refrigerant inlet becomes larger than the amount of refrigerant flowing into the refrigerant circulation path far from the refrigerant inlet, The refrigerant circulation amount in the refrigerant circulation path becomes uneven, and the cooling performance of the evaporator is lowered. This is remarkable when the flow rate of the refrigerant is small. In the evaporator of the above 12), the refrigerant is evenly divided into all the heat exchange pipes connected to the refrigerant inlet header, so that the refrigerant circulation amount in all the heat exchange pipes is made uniform, and the evaporator is cooled. Performance is improved. If the flow rate of the refrigerant is slow, the amount of refrigerant flowing into the heat exchange pipe located near the refrigerant inlet will be larger than the amount of refrigerant flowing into the heat exchange pipe located far from the refrigerant inlet, and all heat exchange will occur. The refrigerant circulation amount in the pipe becomes uneven, and the cooling performance of the evaporator is lowered. This is remarkable when the flow rate of the refrigerant is small.

上記4)および14)のエバポレータによれば、パイプジョイント部材の冷媒流入部と冷媒流出部との間隔を一層大きくすることができる。   According to the evaporators 4) and 14), the interval between the refrigerant inflow portion and the refrigerant outflow portion of the pipe joint member can be further increased.

上記5)および15)のエバポレータによれば、冷媒流出部の外径を小さくすることができ、パイプジョイント部材の冷媒流入部と冷媒流出部との間隔をより一層大きくすることができる。   According to the evaporators 5) and 15), the outer diameter of the refrigerant outflow portion can be reduced, and the interval between the refrigerant inflow portion and the refrigerant outflow portion of the pipe joint member can be further increased.

上記6)および16)のエバポレータによれば、冷媒流入部および冷媒流出部の周囲に高周波加熱コイルを、一層簡単に配置することができる。   According to the evaporators 6) and 16), it is possible to more easily arrange the high-frequency heating coil around the refrigerant inflow portion and the refrigerant outflow portion.

上記7)および17)のエバポレータによれば、冷媒入口管から冷媒入口ヘッダ部内に流入する際の冷媒の流速を、冷媒が確実に冷媒入口ヘッダ部に行き渡るような速さにすることができる。   According to the evaporators 7) and 17), the flow rate of the refrigerant when flowing from the refrigerant inlet pipe into the refrigerant inlet header portion can be set so that the refrigerant surely reaches the refrigerant inlet header portion.

上記8)および18)のエバポレータのように、パイプジョイントプレートの前後方向の長さが50mm以下である場合に、特に、冷媒流入部と冷媒流出部との間隔を大きくしにくいが、この場合であっても上記3)〜7)および13)〜17)のように構成されていると、上記間隔を比較的大きくすることができる。   As in the evaporators 8) and 18) above, when the length of the pipe joint plate in the front-rear direction is 50 mm or less, it is difficult to increase the interval between the refrigerant inflow part and the refrigerant outflow part. Even if it is configured as in the above 3) to 7) and 13) to 17), the interval can be made relatively large.

上記9)および19)のエバポレータによれば、エバポレータを製造するにあたり、キャップとパイプジョイント部材との位置決めを正確に行うことができる。   According to the evaporators 9) and 19), when the evaporator is manufactured, the cap and the pipe joint member can be accurately positioned.

上記10)のエバポレータによれば、キャップの取り扱いが容易になる。   According to the evaporator 10), the cap can be easily handled.

上記11)のエバポレータによれば、エバポレータを製造するにあたって各部品を仮組みする際に、キャップの係合爪を利用して第1部材と第2部材とを仮止めすることができ、作業性が向上する。   According to the evaporator of the above 11), when the parts are temporarily assembled in manufacturing the evaporator, the first member and the second member can be temporarily fixed using the engaging claws of the cap. Will improve.

上記20)のエバポレータによれば、エバポレータを製造するにあたり、キャップとパイプジョイント部材との位置決めを正確に行うことができる。さらに、エバポレータを製造するにあたって各部品を仮組みする際に、めくらキャップを冷媒入口ヘッダ部および冷媒出口ヘッダ部のパイプジョイント部材を接合する側に配置することが防止される。すなわち、めくらキャップをパイプジョイント部材を接合する側に配置すると、パイプジョイント部材の位置決め用凸部がめくらキャップに当たって所定位置に組み合わせることができない。したがって、めくらキャップを冷媒入口ヘッダ部および冷媒出口ヘッダ部のパイプジョイント部材を接合する側に配置することが防止される。   According to the evaporator of the above 20), when the evaporator is manufactured, the cap and the pipe joint member can be accurately positioned. Furthermore, when the parts are temporarily assembled in manufacturing the evaporator, the blind cap is prevented from being arranged on the side where the pipe joint members of the refrigerant inlet header and the refrigerant outlet header are joined. That is, when the blind cap is disposed on the side where the pipe joint member is joined, the positioning convex portion of the pipe joint member hits the blind cap and cannot be combined at a predetermined position. Therefore, it is prevented that the blind cap is disposed on the side where the pipe joint members of the refrigerant inlet header part and the refrigerant outlet header part are joined.

上記21)のエバポレータによれば、エバポレータを製造するにあたって各部品を仮組みする際に、キャップおよびめくらキャップの係合爪を利用して第1部材と第2部材とを仮止めすることができ、作業性が向上する。   According to the evaporator of 21), when the parts are temporarily assembled in manufacturing the evaporator, the first member and the second member can be temporarily fixed using the engaging claws of the cap and the blind cap. , Workability is improved.

上記22)のエバポレータによれば、エバポレータ全体の部品点数を少なくすることができる。   According to the evaporator of the above 22), the number of parts of the whole evaporator can be reduced.

上記23)のエバポレータによれば、区画手段の働きにより、冷媒入口ヘッダ部に接続されたすべての熱交換管の冷媒流通量が一層均一化されるとともに、冷媒出口ヘッダ部に接続されたすべての熱交換管の冷媒流通量が均一化され、エバポレータの冷却性能が一層向上する。   According to the evaporator of the above 23), the flow of the refrigerant in all the heat exchange pipes connected to the refrigerant inlet header is made more uniform by the function of the partition means, and all the refrigerant connected to the refrigerant outlet header is The refrigerant circulation amount in the heat exchange pipe is made uniform, and the cooling performance of the evaporator is further improved.

上記24)のエバポレータによれば、冷媒入出用タンクの仕切手段および区画手段が第2部材に一体に形成されているので、冷媒入出用タンク内に仕切手段および区画手段を設ける作業が簡単になる。   According to the evaporator of 24), since the partitioning means and the partitioning means of the refrigerant inlet / outlet tank are formed integrally with the second member, the work of providing the partitioning means and the partitioning means in the refrigerant inlet / outlet tank is simplified. .

上記26)および27)のエバポレータの製造方法によれば、パイプジョイント部材の冷媒流入部および冷媒流出部に、冷媒入口管および冷媒出口管を同時にろう付することができるので、上記3)および13)のエバポレータを比較的簡単に製造することができる。   According to the evaporator manufacturing method of the above 26) and 27), since the refrigerant inlet pipe and the refrigerant outlet pipe can be simultaneously brazed to the refrigerant inflow part and the refrigerant outflow part of the pipe joint member, the above 3) and 13 ) Evaporator can be manufactured relatively easily.

以下、この発明の実施形態を、図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1および図2はこの発明によるカーエアコン用エバポレータを示し、図3〜図10は要部の構成を示し、図11および図12はパイプジョイント部材への冷媒入口管および冷媒出口管の接合方法を示す。また、図13はエバポレータにおける冷媒の流れ方を示す。   1 and 2 show an evaporator for a car air conditioner according to the present invention, FIGS. 3 to 10 show the configuration of the main part, and FIGS. 11 and 12 show a method of joining a refrigerant inlet pipe and a refrigerant outlet pipe to a pipe joint member. Indicates. FIG. 13 shows how the refrigerant flows in the evaporator.

図1および図2において、フロン系冷媒を使用するカーエアコンに用いられるエバポレータ(1)は、上下方向に間隔をおいて配置されたアルミニウム製冷媒入出用タンク(2)およびアルミニウム製冷媒ターン用タンク(3)と、両タンク(2)(3)間に設けられた熱交換コア部(4)とを備えている。   1 and 2, an evaporator (1) used in a car air conditioner using a chlorofluorocarbon refrigerant is composed of an aluminum refrigerant inlet / outlet tank (2) and an aluminum refrigerant turn tank arranged at intervals in the vertical direction. (3) and a heat exchange core section (4) provided between both tanks (2) and (3).

冷媒入出用タンク(2)は、前側(通風方向下流側)に位置する冷媒入口ヘッダ部(5)と後側(通風方向上流側)に位置する冷媒出口ヘッダ部(6)とを備えている。両ヘッダ部(5)(6)は一体化されており、後述する仕切手段を介して前後に並んで配置されている。冷媒入出用タンク(2)の冷媒入口ヘッダ部(5)にアルミニウム製冷媒入口管(7)が接続され、同じく冷媒出口ヘッダ部(6)にアルミニウム製冷媒出口管(8)が接続されている。冷媒ターン用タンク(3)は、前側に位置する冷媒流入ヘッダ部(9)と後側に位置する冷媒流出ヘッダ部(11)とを備えている。両ヘッダ部(9)(11)は一体化されており、後述する仕切手段を介して前後に並んで配置されている。   The refrigerant inlet / outlet tank (2) includes a refrigerant inlet header portion (5) located on the front side (downstream side in the ventilation direction) and a refrigerant outlet header portion (6) located on the rear side (upstream side in the ventilation direction). . Both header parts (5) and (6) are integrated, and are arranged side by side through a partitioning means described later. An aluminum refrigerant inlet pipe (7) is connected to the refrigerant inlet header (5) of the refrigerant inlet / outlet tank (2), and an aluminum refrigerant outlet pipe (8) is also connected to the refrigerant outlet header (6). . The refrigerant turn tank (3) includes a refrigerant inflow header portion (9) located on the front side and a refrigerant outflow header portion (11) located on the rear side. Both header portions (9) and (11) are integrated, and are arranged side by side through a partitioning means described later.

熱交換コア部(4)は、左右方向に間隔をおいて並列状に配置された複数の熱交換管(12)からなる熱交換管群(13)が、前後方向に並んで複数列、ここでは2列配置されることにより構成されている。各熱交換管群(13)の隣接する熱交換管(12)どうしの間の通風間隙、および各熱交換管群(13)の左右両端の熱交換管(12)の外側にはそれぞれコルゲートフィン(14)が配置されて熱交換管(12)にろう付されている。左右両端のコルゲートフィン(14)の外側にはそれぞれアルミニウム製サイドプレート(15)が配置されてコルゲートフィン(14)にろう付されている。そして、前側熱交換管群(13)の熱交換管(12)の上下両端は冷媒入口ヘッダ部(5)および冷媒流入ヘッダ部(9)に接続され、往き側冷媒流通部となっている。後側熱交換管群(13)の熱交換管(12)の上下両端部は冷媒出口ヘッダ部(6)および冷媒流出ヘッダ部(11)に接続され、戻り側冷媒流通部となっている。   The heat exchange core section (4) is composed of a plurality of heat exchange pipe groups (13) each including a plurality of heat exchange pipes (12) arranged in parallel at intervals in the left-right direction. Then, it is configured by arranging two rows. Corrugated fins on the outside of the heat exchange pipes (12) at the left and right ends of each heat exchange pipe group (13) and the ventilation gap between adjacent heat exchange pipes (12) of each heat exchange pipe group (13) (14) is arranged and brazed to the heat exchange pipe (12). Aluminum side plates (15) are respectively arranged outside the corrugated fins (14) at the left and right ends and brazed to the corrugated fins (14). Then, the upper and lower ends of the heat exchange pipe (12) of the front heat exchange pipe group (13) are connected to the refrigerant inlet header part (5) and the refrigerant inflow header part (9) to form a forward refrigerant circulation part. The upper and lower ends of the heat exchange pipe (12) of the rear heat exchange pipe group (13) are connected to the refrigerant outlet header part (6) and the refrigerant outflow header part (11) to form a return side refrigerant circulation part.

図3〜図6に示すように、冷媒入出用タンク(2)は、両面にろう材層を有するアルミニウムブレージングシートから形成されかつ熱交換管(12)が接続されたプレート状の第1部材(16)と、アルミニウム押出形材から形成されたベア材よりなりかつ第1部材(16)の上側を覆う第2部材(17)と、両面にろう材層を有するアルミニウムブレージングシートから形成されかつ両部材(16)(17)の右端に接合されて右端開口を閉鎖するアルミニウム製右側閉鎖部材(19)と、冷媒入口ヘッダ部(5)および冷媒出口ヘッダ部(6)に跨るように、右側閉鎖部材(19)の外面にろう付された前後方向に長いアルミニウム製のプレート状パイプジョイント部材(21)と、両部材(16)(17)の左端に接合されて左端開口を閉鎖するアルミニウム製左側閉鎖部材(18)とよりなる。   As shown in FIGS. 3 to 6, the refrigerant inlet / outlet tank (2) is a plate-shaped first member formed of an aluminum brazing sheet having a brazing filler metal layer on both sides and connected to a heat exchange pipe (12). 16), a second member (17) made of a bare material formed from an aluminum extruded shape and covering the upper side of the first member (16), and an aluminum brazing sheet having a brazing filler metal layer on both sides. The right side closing member (19) joined to the right end of the members (16) (17) and closing the right end opening, and the right side closing member (19), straddling the refrigerant inlet header part (5) and the refrigerant outlet header part (6) A plate-like pipe joint member (21) made of aluminum, which is brazed to the outer surface of the member (19), and an aluminum left side which is joined to the left ends of both members (16) and (17) and closes the left end opening. It consists of a closure member (18).

第1部材(16)は、その前後両側部分に、それぞれ中央部が下方に突出した曲率の小さい横断面円弧状の湾曲部(22)を有している。各湾曲部(22)に、前後方向に長い複数の管挿通穴(23)が、左右方向に間隔をおいて形成されている。前後両湾曲部(22)の管挿通穴(23)は、それぞれ左右方向に関して同一位置にある。前側湾曲部(22)の前縁および後側湾曲部(22)の後縁に、それぞれ立ち上がり壁(22a)が全長にわたって一体に形成されている。また、第1部材(16)の両湾曲部(22)間の平坦部(24)に、複数の貫通穴(25)が左右方向に間隔をおいて形成されている。   The first member (16) has curved portions (22) having a small cross-sectional arc shape with a central portion projecting downward at both front and rear side portions thereof. A plurality of tube insertion holes (23) that are long in the front-rear direction are formed in each bending portion (22) at intervals in the left-right direction. The tube insertion holes (23) of the front and rear curved portions (22) are at the same position in the left-right direction. Standing walls (22a) are integrally formed over the entire length at the front edge of the front curved portion (22) and the rear edge of the rear curved portion (22), respectively. In addition, a plurality of through holes (25) are formed at intervals in the left-right direction in the flat portion (24) between the curved portions (22) of the first member (16).

第2部材(17)は下方に開口した横断面略m字状であり、左右方向に伸びる前後両壁(26)と、前後両壁(26)間の中央部に設けられかつ左右方向に伸びるとともに冷媒入出用タンク(2)内を前後2つの空間に仕切る前述した仕切手段としての垂直状仕切壁(27)と、前後両壁(26)および仕切壁(27)の上端どうしをそれぞれ一体に連結する上方に突出した2つの略円弧状連結壁(28)とを備えている。第2部材(17)の前後両壁(26)の下端部と仕切壁(27)の下端部とは、冷媒出口ヘッダ部(6)内を上下に区画する区画手段としての分流用抵抗板(29)により全長にわたって一体に連結されている。分流用抵抗板(29)の後側部分における左右両端部を除いた部分には、左右方向に長い複数の冷媒通過穴(31A)(31B)が左右方向に間隔をおいて貫通状に形成されている。仕切壁(27)の下端は前後両壁(26)の下端よりも下方に突出しており、その下縁に、下方に突出しかつ第1部材(16)の貫通穴(25)に嵌め入れられる複数の突起(27a)が左右方向に間隔をおいて一体に形成されている。突起(27a)は、仕切壁(27)の所定部分を切除することにより形成されている。   The second member (17) has a substantially m-shaped cross section that opens downward, and is provided in the center between the front and rear walls (26) extending in the left-right direction and the front and rear walls (26) and extends in the left-right direction. At the same time, the vertical partition wall (27) as the partitioning means for partitioning the refrigerant inlet / outlet tank (2) into two front and rear spaces, and the upper and lower walls (26) and the upper ends of the partition walls (27) are integrated with each other. Two generally arcuate connecting walls (28) projecting upward are connected. The lower end portion of the front and rear walls (26) of the second member (17) and the lower end portion of the partition wall (27) are a resistance plate for shunting as partition means for partitioning the refrigerant outlet header portion (6) vertically. 29) are connected together over the entire length. A plurality of refrigerant passage holes (31A) (31B) that are long in the left-right direction are formed in a penetrating manner at intervals in the left-right direction in the portion excluding the left and right end portions in the rear portion of the shunt resistor plate (29). ing. The lower end of the partition wall (27) protrudes downward from the lower ends of the front and rear walls (26), and a plurality of lower walls protrude downward and are fitted into the through holes (25) of the first member (16). The protrusions (27a) are integrally formed with an interval in the left-right direction. The protrusion (27a) is formed by cutting a predetermined portion of the partition wall (27).

図7に示すように、右側閉鎖部材(19)は、冷媒入口ヘッダ部(5)の右端開口を閉鎖する前キャップ(19a)と冷媒出口ヘッダ部(6)の右端開口を閉鎖する後キャップ(19b)とが一体化されたものであり、閉鎖部材(19)の前側、すなわち前キャップ(19a)の左側面には、冷媒入口ヘッダ部(5)内に嵌め入れられる左方突出部(37)が一体に形成され、同じく後側、すなわち後キャップ(19b)の左側面には、冷媒出口ヘッダ部(6)の分流用抵抗板(29)よりも上側の部分内に嵌め入れられる上側左方突出部(38)と分流用抵抗板(29)よりも下側の部分内に嵌め入れられる下側左方突出部(39)とが上下に間隔をおいて一体に形成されている。右側閉鎖部材(19)の前側の左方突出部(37)の底壁に冷媒入口(43)が形成され、同じく後側の上側左方突出部(38)の底壁に冷媒出口(44)が形成されている。また、右側閉鎖部材(19)の前後両側縁と上縁との間の円弧状部に、それぞれ左方に突出しかつ第2部材(16)の連結壁(28)に係合する係合爪(41)が一体に形成されている。また、右側閉鎖部材(19)の下縁の前側部分および後側部分に、それぞれ左方に突出しかつ第1部材(16)の湾曲部(22)に係合する係合爪(42)が一体に形成されている。さらに、右側閉鎖部材(19)の下縁における係合爪(42)よりも前後方向外側部分に、後述するパイプジョイント部材(21)の位置決め用凸部(50)が嵌る位置決め用凹所(40)が形成されている。   As shown in FIG. 7, the right closing member (19) includes a front cap (19a) for closing the right end opening of the refrigerant inlet header (5) and a rear cap (for closing the right end opening of the refrigerant outlet header (6)). 19b) is integrated, and on the front side of the closing member (19), that is, on the left side surface of the front cap (19a), a left protrusion (37) fitted into the refrigerant inlet header (5). ) Are integrally formed, and on the rear side, that is, on the left side surface of the rear cap (19b), the upper left side that is fitted into the upper part of the refrigerant outlet header (6) above the shunting resistance plate (29). A side protrusion (38) and a lower left protrusion (39) fitted in a portion below the shunt resistor plate (29) are integrally formed with a space in the vertical direction. A refrigerant inlet (43) is formed in the bottom wall of the front left protrusion (37) of the right closing member (19), and a refrigerant outlet (44) is also formed in the bottom wall of the rear upper left protrusion (38). Is formed. Further, engaging claws that protrude to the left and engage with the connecting wall (28) of the second member (16) are formed in the arc-shaped portions between the front and rear side edges and the upper edge of the right closing member (19). 41) is integrally formed. Further, an engaging claw (42) that protrudes to the left and engages with the curved portion (22) of the first member (16) is integrated with the front and rear portions of the lower edge of the right closing member (19). Is formed. Further, a positioning recess (40) in which a positioning projection (50) of a pipe joint member (21) to be described later fits on the outer side in the front-rear direction than the engaging claw (42) at the lower edge of the right closing member (19). ) Is formed.

図7に示すように、パイプジョイント部材(21)には、右側閉鎖部材(19)の冷媒入口(43)に通じる短円筒状冷媒流入口(45)(冷媒流入部)と、同じく冷媒出口(44)に通じる短円筒状冷媒流出口(46)(冷媒流出部)とが一体に形成されている。冷媒流入口(45)の外径は冷媒流出口(46)の外径よりも小さくなっている。パイプジョイント部材(21)の前後方向の長さは50mm以下であることが好ましく、冷媒流入口(45)と冷媒流出口(46)との間隔(S)は6〜9mmであることが好ましい。また、パイプジョイント部材(21)の下縁には、左方に突出しかつ右側閉鎖部材(19)の位置決め用凹所(40)内に嵌る位置決め用凸部(50)が一体に形成されている。   As shown in FIG. 7, the pipe joint member (21) has a short cylindrical refrigerant inlet (45) (refrigerant inflow portion) leading to the refrigerant inlet (43) of the right closing member (19), and the refrigerant outlet ( A short cylindrical refrigerant outlet (46) (refrigerant outflow portion) leading to 44) is integrally formed. The outer diameter of the refrigerant inlet (45) is smaller than the outer diameter of the refrigerant outlet (46). The length in the front-rear direction of the pipe joint member (21) is preferably 50 mm or less, and the interval (S) between the refrigerant inlet (45) and the refrigerant outlet (46) is preferably 6 to 9 mm. In addition, a positioning projection (50) that protrudes to the left and fits into the positioning recess (40) of the right closing member (19) is integrally formed on the lower edge of the pipe joint member (21). .

パイプジョイント部材(21)の冷媒流入口(45)に、冷媒入口管(7)の一端部に形成された縮径部(7a)が差し込まれてろう付され、同じく冷媒流出口(46)に、冷媒出口管(8)の一端部に形成された縮径部(8a)が差し込まれてろう付されている(図6参照)。冷媒入口管(7)の縮径部(7a)の内径は3〜8.5mmであることが好ましい。図示は省略したが、冷媒入口管(7)および冷媒出口管(8)の他端部には、両管(7)(8)に跨るように膨張弁取付部材が接合されている。   The reduced diameter portion (7a) formed at one end of the refrigerant inlet pipe (7) is inserted into the refrigerant inlet (45) of the pipe joint member (21) and brazed, and also to the refrigerant outlet (46). A reduced diameter portion (8a) formed at one end of the refrigerant outlet pipe (8) is inserted and brazed (see FIG. 6). The inner diameter of the reduced diameter portion (7a) of the refrigerant inlet pipe (7) is preferably 3 to 8.5 mm. Although not shown, an expansion valve mounting member is joined to the other ends of the refrigerant inlet pipe (7) and the refrigerant outlet pipe (8) so as to straddle both pipes (7) and (8).

図8に示すように、左側閉鎖部材(18)は右側閉鎖部材(19)と左右対称形であり、冷媒入口ヘッダ部(5)の左端開口を閉鎖する前めくらキャップ(18a)と冷媒出口ヘッダ部(6)の左端開口を閉鎖する後めくらキャップ(18b)とが一体化されたものであり、冷媒入口ヘッダ部(5)内に嵌め入れられる右方突出部(32)、冷媒出口ヘッダ部(6)の分流用抵抗板(29)よりも上側の部分内に嵌め入れられる上側右方突出部(33)、分流用抵抗板(29)よりも下側の部分内に嵌め入れられる下側右方突出部(34)、右方に突出しかつ第2部材(16)の連結壁(28)に係合する係合爪(35)、および右方に突出しかつ第1部材(16)の湾曲部(22)に係合する係合爪(36)が一体に形成されている。左側閉鎖部材(18)の前側の右方突出部(32)には冷媒入口は形成されておらず、同じく後側の上側右方突出部(33)の底壁には冷媒出口は形成されていない。また、左側閉鎖部材(18)の下縁には位置決め用凹所は形成されていない。   As shown in FIG. 8, the left closing member (18) is symmetrical with the right closing member (19), and the front blind cap (18a) and the refrigerant outlet header for closing the left end opening of the refrigerant inlet header (5). A right projection (32) fitted into the refrigerant inlet header (5), and a refrigerant outlet header that is integrated with a rear blind cap (18b) that closes the left end opening of the portion (6). The upper right protrusion (33) fitted into the upper part of the shunt resistor plate (29) of (6), the lower side fitted into the lower part of the shunt resistor plate (29) The right protrusion (34), the engaging claw (35) protruding rightward and engaging the connecting wall (28) of the second member (16), and the curve of the first member (16) protruding rightward An engaging claw (36) that engages with the portion (22) is integrally formed. No refrigerant inlet is formed in the front right protrusion (32) of the left closing member (18), and a refrigerant outlet is also formed in the bottom wall of the rear upper right protrusion (33). Absent. Further, the positioning recess is not formed in the lower edge of the left closing member (18).

冷媒入出用タンク(2)の第1および第2部材(16)(17)と、両閉鎖部材(18)(19)と、パイプジョイント部材(21)とは次のようにしてろう付されている。すなわち、第1および第2部材(16)(17)は、第2部材(17)の突起(27a)が第1部材(16)の貫通穴(25)に挿通されてかしめられることにより、第1部材(16)の前後の立ち上がり壁(22a)の上端部と第2部材(17)の前後両壁(26)の下端部とが係合した状態で、第1部材(16)のろう材層を利用して相互にろう付されている。両閉鎖部材(18)(19)は、前キャップ(18a)(19a)の突出部(32)(37)が両部材(16)(17)における仕切壁(27)よりも前側の空間内に、後キャップ(18b)(19b)の上突出部(33)(38)が両部材(16)(17)における仕切壁(27)よりも後側でかつ分流用抵抗板(29)よりも上側の空間内に、および後キャップ(18b)(19b)の下突出部(34)(39)が仕切壁(17)よりも後側でかつ分流用抵抗板(29)よりも下側の空間内にそれぞれ嵌め入れられ、上側の係合爪(35)(41)が第2部材(17)の連結壁(28)に係合させられ、下側の係合爪(36)(42)が第1部材(16)の湾曲部(22)に係合させられた状態で、両閉鎖部材(18)(19)のろう材層を利用して第1および第2部材(16)(17)にろう付されている。パイプジョイント部材(21)は、位置決め用凸部(50)が右側閉鎖部材(19)の位置決め用凹所(40)内に嵌められた状態で、右側閉鎖部材(19)のろう材層を利用して右側閉鎖部材(19)にろう付されている。こうして、冷媒入出用タンク(2)が形成されており、第2部材(17)の仕切壁(27)よりも前側が冷媒入口ヘッダ部(5)、同じく仕切壁(27)よりも後側が冷媒出口ヘッダ部(6)となっている。また、冷媒出口ヘッダ部(6)は分流用抵抗板(29)により上下両空間(6a)(6b)に区画されており、これらの空間(6a)(6b)は冷媒通過穴(31A)(31B)により連通させられている。右側閉鎖部材(19)の冷媒出口(44)は冷媒出口ヘッダ部(6)の上部空間(6a)内に通じている。さらに、パイプジョイント部材(21)の冷媒流入口(45)が冷媒入口(43)に、冷媒流出口(46)が冷媒出口(44
)にそれぞれ連通させられている。
The first and second members (16), (17), the closing members (18), (19), and the pipe joint member (21) of the refrigerant inlet / outlet tank (2) are brazed as follows. Yes. That is, the first and second members (16), (17) are inserted into the through holes (25) of the first member (16) by the protrusions (27a) of the second member (17) and caulked. The brazing material of the first member (16) in a state where the upper ends of the rising walls (22a) before and after the one member (16) and the lower ends of both front and rear walls (26) of the second member (17) are engaged. They are brazed together using layers. Both closing members (18) and (19) are such that the protrusions (32) and (37) of the front caps (18a) and (19a) are in the space in front of the partition walls (27) in both members (16) and (17). The upper protrusions (33) and (38) of the rear caps (18b) and (19b) are located on the rear side of the partition wall (27) in both members (16) and (17) and on the upper side of the shunt resistor plate (29). And the lower protrusions (34) and (39) of the rear caps (18b) and (19b) are located behind the partition wall (17) and below the shunt resistor plate (29). The upper engaging claws (35) and (41) are engaged with the connecting wall (28) of the second member (17), and the lower engaging claws (36) and (42) are The first and second members (16), (17) are applied to the first member (16), (17) using the brazing filler metal layers of the closing members (18), (19) in a state of being engaged with the curved portion (22) of the one member (16). It is brazed. The pipe joint member (21) uses the brazing material layer of the right closing member (19) in a state where the positioning convex portion (50) is fitted in the positioning recess (40) of the right closing member (19). The right closing member (19) is brazed. Thus, the refrigerant inlet / outlet tank (2) is formed, the refrigerant inlet header portion (5) on the front side of the partition wall (27) of the second member (17) and the refrigerant on the rear side of the partition wall (27). It is the exit header (6). The refrigerant outlet header (6) is divided into upper and lower spaces (6a) and (6b) by a shunt resistor plate (29), and these spaces (6a) and (6b) are formed in the refrigerant passage holes (31A) ( 31B). The refrigerant outlet (44) of the right closing member (19) communicates with the upper space (6a) of the refrigerant outlet header (6). Further, the refrigerant inlet (45) of the pipe joint member (21) is at the refrigerant inlet (43), and the refrigerant outlet (46) is at the refrigerant outlet (44).
).

図4および図9に示すように、冷媒ターン用タンク(3)は、両面にろう材層を有するアルミニウムブレージングシートから形成されかつ熱交換管(12)が接続されたプレート状の第1部材(48)と、アルミニウム押出形材から形成されたベア材よりなりかつ第1部材(48)の下側を覆う第2部材(49)と、両面にろう材層を有するアルミニウムブレージングシートから形成されかつ左右両端開口を閉鎖するアルミニウム製閉鎖部材(51)とよりなる。   As shown in FIGS. 4 and 9, the refrigerant turn tank (3) is formed of an aluminum brazing sheet having a brazing filler metal layer on both sides and a plate-shaped first member (12) connected with a heat exchange pipe (12). 48), a second member (49) made of a bare material formed from an extruded aluminum material and covering the lower side of the first member (48), an aluminum brazing sheet having a brazing filler metal layer on both sides and It comprises an aluminum closing member (51) for closing the left and right opening.

冷媒ターン用タンク(3)の頂面(3a)は、前後方向の中央部が最高位部(52)となるとともに、最高位部(52)から前後両側に向かって徐々に低くなるように全体に横断面円弧状に形成されている。冷媒ターン用タンク(3)の前後両側部分に、頂面(3a)における最高位部(52)の前後両側から前後両側面(3b)まで伸びる溝(53)が、左右方向に間隔をおいて複数形成されている。   The top surface (3a) of the refrigerant turn tank (3) has a central portion in the front-rear direction as the highest portion (52) and gradually decreases from the highest portion (52) toward the front and rear sides. The cross section is formed in a circular arc shape. Grooves (53) extending from the front and rear sides of the highest portion (52) on the top surface (3a) to the front and rear sides (3b) are spaced at the left and right sides of the front and rear sides of the refrigerant turn tank (3). A plurality are formed.

第1部材(48)は、前後方向の中央部が上方に突出した横断面円弧状であり、その前後両側縁に垂下壁(48a)が全長にわたって一体に形成されている。そして、第1部材(48)の上面が冷媒ターン用タンク(3)の頂面(3a)となり、垂下壁(48a)の外面が冷媒ターン用タンク(3)の前後両側面(3b)となっている。第1部材(48)の前後両側において、前後方向中央の最高位部(52)から垂下壁(48a)の下端にかけて溝(53)が形成されている。第1部材(48)の最高位部(52)を除いた前後両側部分における隣接する溝(53)どうしの間に、それぞれ前後方向に長い管挿通穴(54)が形成されている。前後の管挿通穴(54)は左右方向に関して同一位置にある。第1部材(48)の最高位部(52)に、複数の貫通穴(55)が左右方向に間隔をおいて形成されている。第1部材(48)は、アルミニウムブレージングシートにプレス加工を施すことによって、垂下壁(48a)、溝(53)、管挿通穴(54)および貫通穴(55)を同時に形成することによりつくられる。   The first member (48) has a cross-sectional arc shape in which a central portion in the front-rear direction protrudes upward, and a hanging wall (48a) is integrally formed over the entire length at both front and rear side edges. The upper surface of the first member (48) is the top surface (3a) of the refrigerant turn tank (3), and the outer surface of the hanging wall (48a) is the front and rear side surfaces (3b) of the refrigerant turn tank (3). ing. On both the front and rear sides of the first member (48), a groove (53) is formed from the highest position (52) at the center in the front-rear direction to the lower end of the hanging wall (48a). A long tube insertion hole (54) is formed in the front-rear direction between adjacent grooves (53) in the front and rear side portions excluding the highest portion (52) of the first member (48). The front and rear pipe insertion holes (54) are at the same position in the left-right direction. A plurality of through holes (55) are formed in the highest position (52) of the first member (48) at intervals in the left-right direction. The first member (48) is formed by simultaneously forming a hanging wall (48a), a groove (53), a tube insertion hole (54) and a through hole (55) by pressing an aluminum brazing sheet. .

第2部材(49)は上方に開口した横断面略w字状であり、前後方向外側に向かって上方に湾曲した左右方向に伸びる前後両壁(56)と、前後両壁(56)間の中央部に設けられかつ左右方向に伸びるとともに冷媒ターン用タンク(3)内を前後2つの空間に仕切る前述した仕切手段としての垂直状仕切壁(57)と、前後両壁(56)および仕切壁(57)の下端どうしをそれぞれ一体に連結する2つの連結壁(58)とを備えている。仕切壁(57)の上端は前後両壁(56)の上端よりも上方に突出しており、その上縁に、上方に突出しかつ第1部材(48)の貫通穴(55)に嵌め入れられる複数の突起(57a)が左右方向に間隔をおいて一体に形成されている。また、仕切壁(57)における隣り合う突起(57a)間には、それぞれその上縁から冷媒通過用切り欠き(57b)が形成されている。突起(57a)および切り欠き(57b)は、仕切壁(57)の所定部分を切除することにより形成されている。   The second member (49) has a substantially w-shaped cross section opened upward, and extends between the front and rear walls (56) extending in the left-right direction and curved upward toward the outer side in the front-rear direction, and the front and rear walls (56). A vertical partition wall (57) as the above-mentioned partitioning means provided in the center and extending in the left-right direction and partitioning the refrigerant turn tank (3) into two front and rear spaces, both front and rear walls (56) and partition walls And two connecting walls (58) for connecting the lower ends of (57) together. The upper end of the partition wall (57) protrudes upward from the upper ends of the front and rear walls (56), and the upper edge protrudes upward and is fitted into the through hole (55) of the first member (48). The protrusions (57a) are integrally formed at intervals in the left-right direction. In addition, a refrigerant passage notch (57b) is formed from the upper edge between adjacent protrusions (57a) in the partition wall (57). The protrusion (57a) and the notch (57b) are formed by cutting a predetermined portion of the partition wall (57).

第2部材(49)は、前後両壁(56)、仕切壁(57)および連結壁(58)を一体に押出成形した後、仕切壁(57)を切除して突起(57a)および切り欠き(57b)を形成することにより製造される。   The second member (49) is formed by integrally extruding the front and rear walls (56), the partition wall (57), and the connecting wall (58), and then cutting the partition wall (57) to form a protrusion (57a) and a notch Manufactured by forming (57b).

図10に示すように、各閉鎖部材(51)は冷媒流入ヘッダ部(9)の開口を閉鎖する前キャップ(51a)と冷媒流出ヘッダ部(11)の開口を閉鎖する後キャップ(51b)とが一体化されたものであり、閉鎖部材(51)の前側、すなわち前キャップ(51a)の左右方向内面には、冷媒流入ヘッダ部(9)内に嵌め入れられる左右方向内方への突出部(59)が一体に形成され、同じく後側、すなわち後キャップ(51b)の左右方向内面には、冷媒流出ヘッダ部(11)内に嵌め入れられる左右方向内方への突出部(61)が一体に形成されている。また、各閉鎖部材(51)の前後両側縁と下縁との間の円弧状部に、それぞれ左右方向内方に突出しかつ第2部材(49)の前後両壁(56)に係合する係合爪(62)が一体に形成され、同じく上縁に、それぞれ左右方向内方に突出しかつ第1部材(48)に係合する複数の係合爪(63)が前後方向に間隔をおいて一体に形成されている。   As shown in FIG. 10, each closing member (51) includes a front cap (51a) for closing the opening of the refrigerant inflow header portion (9) and a rear cap (51b) for closing the opening of the refrigerant outflow header portion (11). Are integrated into the front side of the closing member (51), that is, the inner surface in the left-right direction of the front cap (51a). (59) is integrally formed, and also on the rear side, that is, on the inner surface in the left-right direction of the rear cap (51b), there is a left-right inward protruding portion (61) fitted into the refrigerant outflow header portion (11). It is integrally formed. Further, the arcuate portion between the front and rear side edges and the lower edge of each closing member (51) projects inward in the left-right direction and engages with both front and rear walls (56) of the second member (49). A joint claw (62) is integrally formed, and a plurality of engagement claws (63) projecting inward in the left-right direction and engaging with the first member (48) are also formed on the upper edge at intervals in the front-rear direction. It is integrally formed.

冷媒ターン用タンク(3)の第1および第2部材(48)(49)と、両閉鎖部材(51)とは次のようにしてろう付されている。第1および第2部材(48)(49)が、第2部材(49)の突起(57a)が貫通穴(55)に挿通されてかしめられることにより、第1部材(48)の前後の垂下壁(48a)の下端部と、第2部材(49)の前後両壁(56)の上端部とが係合した状態で、第1部材(48)のろう材層を利用して相互にろう付されている。両閉鎖部材(51)は、前側の突出部(59)が両部材(48)(49)における仕切壁(57)よりも前側の空間内に、後側の突出部(61)が両部材(48)(49)における仕切壁(57)よりも後側の空間内にそれぞれ嵌め入れられ、上側の係合爪(63)が第1部材(48)に係合させられ、下側の係合爪(62)が第2部材(49)の前後両壁(56)に係合させられた状態で、各閉鎖部材(51)のろう材層を利用して第1および第2部材(48)(49)にろう付されている。こうして、冷媒ターン用タンク(3)が形成されており、第2部材(49)の仕切壁(57)よりも前側が冷媒流入ヘッダ部(9)、同じく仕切壁(57)よりも後側が冷媒流出ヘッダ部(11)となっている。第2部材(49)の仕切壁(57)の切り欠き(57b)の上端開口は第1部材(48)によって閉じられ、これにより冷媒通過穴(64)が形成されている。   The first and second members (48), (49) of the refrigerant turn tank (3) and the closing members (51) are brazed as follows. The first and second members (48) and (49) are drooped before and after the first member (48) by the projection (57a) of the second member (49) being inserted into the through hole (55) and caulked. Using the brazing material layer of the first member (48), the lower end of the wall (48a) and the upper end of the front and rear walls (56) of the second member (49) are engaged with each other. It is attached. Both closing members (51) have front protrusions (59) in the space in front of the partition walls (57) in both members (48) and (49), and rear protrusions (61) have both members ( 48) and (49) are respectively fitted into the spaces behind the partition wall (57), and the upper engaging claw (63) is engaged with the first member (48), and the lower engaging portion is engaged. With the claws (62) engaged with the front and rear walls (56) of the second member (49), the first and second members (48) are utilized using the brazing material layer of each closing member (51). (49) is brazed. Thus, the refrigerant turn tank (3) is formed, the refrigerant inflow header portion (9) on the front side of the partition wall (57) of the second member (49), and the refrigerant on the rear side of the partition wall (57). It is an outflow header (11). The upper end opening of the notch (57b) of the partition wall (57) of the second member (49) is closed by the first member (48), thereby forming a refrigerant passage hole (64).

前後の熱交換管群(13)を構成する熱交換管(12)はアルミニウム押出形材からなり、前後方向に幅広の偏平状で、その内部に長さ方向に伸びる複数の冷媒通路(12a)が並列状に形成されている。熱交換管(12)の上端部は冷媒入出用タンク(2)の第1部材(16)の管挿通穴(23)に挿通された状態で、第1部材(16)のろう材層を利用して第1部材(16)にろう付され、同じく下端部は冷媒ターン用タンク(3)の第1部材(48)の管挿通穴(54)に挿通された状態で、第1部材(48)のろう材層を利用して第1部材(48)にろう付されている。   The heat exchange pipe (12) constituting the front and rear heat exchange pipe group (13) is made of an aluminum extruded profile, and has a wide flat shape in the front and rear direction, and a plurality of refrigerant passages (12a) extending in the length direction therein. Are formed in parallel. The upper end of the heat exchange pipe (12) is inserted into the pipe insertion hole (23) of the first member (16) of the refrigerant inlet / outlet tank (2), and the brazing material layer of the first member (16) is used. The first member (48) is brazed to the first member (48), and the lower end of the first member (48) is inserted into the pipe insertion hole (54) of the first member (48) of the refrigerant turn tank (3). ) Is brazed to the first member (48) using the brazing material layer.

ここで、熱交換管(12)の左右方向の厚みである管高さは0.75〜1.5mm、前後方向の幅である管幅は12〜18mm、周壁の肉厚は0.175〜0.275mm、冷媒通路どうしを仕切る仕切壁の厚さは0.175〜0.275mm、仕切壁のピッチは0.5〜3.0mm、前後両端壁の外面の曲率半径は0.35〜0.75mmであることが好ましい。   Here, the tube height which is the thickness in the left-right direction of the heat exchange tube (12) is 0.75 to 1.5 mm, the tube width which is the width in the front-rear direction is 12 to 18 mm, and the wall thickness of the peripheral wall is 0.175 to 0.275 mm, the thickness of the partition wall partitioning the refrigerant passages is 0.175 to 0.275 mm, the pitch of the partition walls is 0.5 to 3.0 mm, and the curvature radius of the outer surfaces of the front and rear end walls is 0.35 to 0 .75 mm is preferable.

なお、熱交換管(12)としては、アルミニウム押出形材製のものに代えて、アルミニウム製電縫管の内部にインナーフィンを挿入することにより複数の冷媒通路を形成したものを用いてもよい。また、片面にろう材層を有するアルミニウムブレージングシートのろう材層側に圧延加工を施すことにより形成され、かつ連結部を介して連なった2つの平坦壁形成部と、各平坦壁形成部における連結部とは反対側の側縁より***状に一体成形された側壁形成部と、平坦壁形成部の幅方向に所定間隔をおいて両平坦壁形成部よりそれぞれ***状に一体成形された複数の仕切壁形成部とを備えた板を、連結部においてヘアピン状に曲げて側壁形成部どうしを突き合わせて相互にろう付し、仕切壁形成部により仕切壁を形成したものを用いてもよい。   As the heat exchange pipe (12), instead of one made of an aluminum extruded shape, a pipe in which a plurality of refrigerant passages are formed by inserting inner fins into an aluminum electric sewing pipe may be used. . Also, two flat wall forming portions formed by rolling on the brazing filler metal layer side of an aluminum brazing sheet having a brazing filler metal layer on one side and connected via a connecting portion, and connection in each flat wall forming portion A side wall forming portion integrally formed in a raised shape from the side edge opposite to the portion, and a plurality of integrally formed in a raised shape from both flat wall forming portions at a predetermined interval in the width direction of the flat wall forming portion. A plate provided with a partition wall forming portion may be bent into a hairpin shape at the connecting portion, the side wall forming portions are brought into contact with each other and brazed to each other, and a partition wall is formed by the partition wall forming portion.

コルゲートフィン(14)は両面にろう材層を有するアルミニウムブレージングシートを用いて波状に形成されたものであり、その波頭部と波底部を連結する連結部に、前後方向に並列状に複数のルーバが形成されている。コルゲートフィン(14)は前後両熱交換管群(13)に共有されており、その前後方向の幅は前側熱交換管群(13)の熱交換管(12)の前側縁と後側熱交換管群(13)の熱交換管(12)の後側縁との間隔をほぼ等しくなっている。ここで、コルゲートフィン(14)のフィン高さである波頭部と波底部との直線距離は7.0mm〜10.0mm、同じくフィンピッチである連結部のピッチは1.3〜1.8mmであることが好ましい。なお、1つのコルゲートフィンが前後両熱交換管群(13)に共有される代わりに、両熱交換管群(13)の隣り合う熱交換管(12)どうしの間にそれぞれコルゲートフィンが配置されていてもよい。   The corrugated fin (14) is formed in a corrugated shape using an aluminum brazing sheet having a brazing filler metal layer on both sides. A louver is formed. The corrugated fin (14) is shared by both the front and rear heat exchange tube group (13), and the width in the front and rear direction is the heat exchange tube (12) front edge of the front heat exchange tube group (13) and the rear heat exchange. The distance between the rear edge of the heat exchanger tube (12) of the tube group (13) is substantially equal. Here, the linear distance between the wave head and the wave bottom, which is the fin height of the corrugated fin (14), is 7.0 mm to 10.0 mm, and the pitch of the connecting portion which is also the fin pitch is 1.3 to 1.8 mm. It is preferable that In addition, instead of sharing one corrugated fin between the front and rear heat exchange tube groups (13), corrugated fins are respectively arranged between adjacent heat exchange tubes (12) of both heat exchange tube groups (13). It may be.

エバポレータ(1)は、冷媒入口管(7)および冷媒出口管(8)を除く各構成部材を組み合わせて仮止めし、すべての構成部材を一括してろう付することにより製造される。   The evaporator (1) is manufactured by temporarily fixing a combination of the constituent members excluding the refrigerant inlet pipe (7) and the refrigerant outlet pipe (8), and brazing all the constituent members together.

冷媒入口管(7)および冷媒出口管(8)は、次のようにしてパイプジョイント部材(21)にろう付される。まず、冷媒入口管(7)の縮径部(7a)および冷媒出口管(8)の縮径部(8a)を、パイプジョイント部材(21)の冷媒流入口(45)および冷媒流出口(46)にそれぞれ嵌め入れる。ついで、図11および図12に示すように、高周波加熱コイル(65)を冷媒流入口(45)および冷媒流出口(46)の周囲に配置する。高周波加熱コイル(65)は、2つの環状部(65a)(65b)が一体となっためがね状であり、2つの環状部(65a)(65b)の上半部を形成する下方に開口した2つの半円部が一体となった上半体(66)と、2つの環状部(65a)(65b)の下半部を形成する上方に開口した2つの半円部が一体となった下半体(67)とよりなる。そして、上半体(66)および下半体(67)のうちいずれか一方、たとえば下半体(67)を、2つの半円部内に冷媒流入口(45)および冷媒流出口(46)が位置するように配置した後、上半体(66)を下半体(67)に合わせるように配置する。その後、高周波加熱コイル(65)を用いてパイプジョイント部材(21)の冷媒流入口(45)および冷媒流出口(46)と冷媒入口管(7)および冷媒出口管(8)とを同時にろう付する。このろう付は、置きろうを用いて行ってもよいし、パイプジョイント部材(21)を、片面にろう材層を有するアルミニウムブレージングシートから、ろう材層が冷媒流入口(45)および冷媒流出口(46)の内周面に位置するように形成しておき、このろう材層を用いて行ってもよい。このろう付の際に、パイプジョイント部材(21)の冷媒流入口(45)と冷媒流出口(46)との間隔が6〜9mmとなっていると、高周波加熱コイル(65)の冷媒流入口(45)および冷媒流出口(46)の周囲への配置を自動化することが可能になる。   The refrigerant inlet pipe (7) and the refrigerant outlet pipe (8) are brazed to the pipe joint member (21) as follows. First, the reduced diameter part (7a) of the refrigerant inlet pipe (7) and the reduced diameter part (8a) of the refrigerant outlet pipe (8) are connected to the refrigerant inlet (45) and the refrigerant outlet (46) of the pipe joint member (21). ). Next, as shown in FIGS. 11 and 12, the high-frequency heating coil (65) is arranged around the refrigerant inlet (45) and the refrigerant outlet (46). The high-frequency heating coil (65) has a two-ring shape because the two annular portions (65a) and (65b) are integrated with each other, and is opened downward to form the upper half of the two annular portions (65a) and (65b). The upper half (66) in which two semicircular parts are integrated and the lower half in which two semicircular parts that open upward forming the lower half of the two annular parts (65a) (65b) are integrated It consists of a body (67). Then, one of the upper half (66) and the lower half (67), for example, the lower half (67) is provided with a refrigerant inlet (45) and a refrigerant outlet (46) in two semicircular portions. After the arrangement, the upper half (66) is arranged so as to match the lower half (67). Thereafter, the refrigerant inlet (45) and the refrigerant outlet (46) of the pipe joint member (21) and the refrigerant inlet pipe (7) and the refrigerant outlet pipe (8) are brazed simultaneously using the high-frequency heating coil (65). To do. This brazing may be performed using a brazing braze, or the pipe joint member (21) is made from an aluminum brazing sheet having a brazing filler metal layer on one side, and the brazing filler metal layer has a refrigerant inlet (45) and a refrigerant outlet. It may be formed so as to be located on the inner peripheral surface of (46), and this brazing material layer may be used. In this brazing, if the interval between the refrigerant inlet (45) of the pipe joint member (21) and the refrigerant outlet (46) is 6 to 9 mm, the refrigerant inlet of the high-frequency heating coil (65) (45) and the arrangement around the refrigerant outlet (46) can be automated.

エバポレータ(1)は、圧縮機およびコンデンサとともに冷凍サイクルを構成し、カーエアコンとして車両、たとえば自動車に搭載される。   The evaporator (1) constitutes a refrigeration cycle together with a compressor and a condenser, and is mounted on a vehicle such as an automobile as a car air conditioner.

上述したエバポレータ(1)において、図13に示すように、圧縮機、凝縮器および膨張弁を通過した気液混相の2層冷媒が、冷媒入口管(7)からパイプジョイント部材(21)の冷媒流入口(45)および右側閉鎖部材(19)の冷媒入口(43)を通って冷媒入口ヘッダ部(5)内に入り、分流して前側熱交換管群(13)のすべての熱交換管(12)の冷媒通路(12a)内に流入する。このとき、冷媒入口管(7)の縮径部(7a)の内径が3〜8.5mmになっていると、冷媒は冷媒入口ヘッダ部(5)の左端部まで至り、前側熱交換管群(13)のすべての熱交換管(12)内へ均一に流入する。   In the above-described evaporator (1), as shown in FIG. 13, the gas-liquid mixed phase two-layer refrigerant that has passed through the compressor, the condenser, and the expansion valve is supplied from the refrigerant inlet pipe (7) to the refrigerant of the pipe joint member (21). The refrigerant enters the refrigerant inlet header part (5) through the refrigerant inlet (43) of the inlet (45) and the right closing member (19), and then diverts all the heat exchange pipes of the front heat exchange pipe group (13) ( 12) flows into the refrigerant passage (12a). At this time, if the inner diameter of the reduced diameter portion (7a) of the refrigerant inlet pipe (7) is 3 to 8.5 mm, the refrigerant reaches the left end of the refrigerant inlet header (5), and the front heat exchange pipe group It flows uniformly into all the heat exchange tubes (12) of (13).

すべての熱交換管(12)の冷媒通路(12a)内に流入した冷媒は、冷媒通路(12a)内を下方に流れて冷媒ターン用タンク(3)の冷媒流入ヘッダ部(9)内に入る。冷媒流入ヘッダ部(9)内に入った冷媒は、仕切壁(57)の冷媒通過穴(64)を通って冷媒流出ヘッダ部(11)内に入る。   The refrigerant that has flowed into the refrigerant passages (12a) of all the heat exchange tubes (12) flows downward in the refrigerant passages (12a) and enters the refrigerant inflow header portion (9) of the refrigerant turn tank (3). . The refrigerant that has entered the refrigerant inflow header portion (9) enters the refrigerant outflow header portion (11) through the refrigerant passage hole (64) of the partition wall (57).

冷媒流出ヘッダ部(11)内に入った冷媒は、分流して後側熱交換管群(13)のすべての熱交換管(12)の冷媒通路(12a)内に流入し、流れ方向を変えて冷媒通路(12a)内を上方に流れて冷媒出口ヘッダ部(6)の下空間(6b)内に入る。ここで、分流用抵抗板(29)によって冷媒の流れに抵抗が付与されるので、冷媒流出ヘッダ部(11)から後側熱交換管群(13)のすべての熱交換管(12)への分流が均一化されるとともに、冷媒入口ヘッダ部(5)から前側熱交換管群(13)のすべての熱交換管(12)への分流も一層均一化される。その結果、両熱交換管群(13)のすべての熱交換管(12)の冷媒流通量が均一化される。   The refrigerant that has entered the refrigerant outflow header section (11) is divided and flows into the refrigerant passages (12a) of all the heat exchange pipes (12) in the rear heat exchange pipe group (13), changing the flow direction. Then, it flows upward in the refrigerant passage (12a) and enters the lower space (6b) of the refrigerant outlet header (6). Here, resistance is imparted to the refrigerant flow by the shunt resistor plate (29), so that the refrigerant outflow header (11) to all the heat exchange pipes (12) in the rear heat exchange pipe group (13). The flow is made uniform, and the flow from the refrigerant inlet header (5) to all the heat exchange tubes (12) in the front heat exchange tube group (13) is made more uniform. As a result, the refrigerant flow rate of all the heat exchange tubes (12) in both heat exchange tube groups (13) is made uniform.

ついで、冷媒は分流用抵抗板(29)の冷媒通過穴(31A)(31B)を通って冷媒出口ヘッダ部(6)の上部空間(6a)内に入り、右側閉鎖部材(19)の冷媒出口(44)およびパイプジョイント部材(21)の冷媒流出口(46)を通り、冷媒出口管(8)に流出する。そして、冷媒が前側熱交換管群(13)の熱交換管(12)の冷媒通路(12a)、および後側熱交換管群(13)の熱交換管(12)の冷媒通路(12a)を流れる間に、通風間隙を図1に矢印Xで示す方向に流れる空気と熱交換をし、気相となって流出する。   Next, the refrigerant passes through the refrigerant passage holes (31A) and (31B) of the shunt resistor plate (29) and enters the upper space (6a) of the refrigerant outlet header section (6), and the refrigerant outlet of the right closing member (19). (44) passes through the refrigerant outlet (46) of the pipe joint member (21) and flows out to the refrigerant outlet pipe (8). The refrigerant passes through the refrigerant passage (12a) of the heat exchange tube (12) of the front heat exchange tube group (13) and the refrigerant passage (12a) of the heat exchange tube (12) of the rear heat exchange tube group (13). During the flow, the ventilation gap exchanges heat with the air flowing in the direction indicated by the arrow X in FIG.

このとき、コルゲートフィン(14)の表面に凝縮水が発生し、この凝縮水が冷媒ターン用タンク(3)の頂面(3a)に流下する。冷媒ターン用タンク(3)の頂面(3a)に流下した凝縮水は、キャピラリ効果により溝(53)内に入り、溝(53)内を流れて前後方向外側の端部から冷媒ターン用タンク(3)の下方へ落下する。こうして、冷媒ターン用タンク(3)の頂面(3a)とコルゲートフィン(14)の下端との間に多くの凝縮水が溜まることに起因する凝縮水の氷結が防止され、その結果エバポレータ(1)の性能低下が防止される。   At this time, condensed water is generated on the surface of the corrugated fin (14), and this condensed water flows down to the top surface (3a) of the refrigerant turn tank (3). The condensed water flowing down to the top surface (3a) of the refrigerant turn tank (3) enters the groove (53) by the capillary effect, flows in the groove (53), and flows from the outer end in the front-rear direction to the refrigerant turn tank. Drop down (3). In this way, freezing of condensed water caused by accumulation of a large amount of condensed water between the top surface (3a) of the refrigerant turn tank (3) and the lower end of the corrugated fin (14) is prevented, and as a result, the evaporator (1 ) Performance degradation is prevented.

上記実施形態においては、両タンク(2)(3)の冷媒入口ヘッダ部(5)と冷媒流入ヘッダ部(9)との間、および冷媒出口ヘッダ部(6)と冷媒流出ヘッダ部(11)との間にそれぞれ1つの熱交換管群(13)が設けられているが、これに限るものではなく、両タンク(2)(3)の冷媒入口ヘッダ部(5)と冷媒流入ヘッダ部(9)との間、および冷媒出口ヘッダ部(6)と冷媒流出ヘッダ部(11)との間にそれぞれ1または2以上の熱交換管群(13)が設けられていてもよい。また、冷媒入出用タンクが下、冷媒ターン用タンクが上となって用いられることもある。   In the above embodiment, between the refrigerant inlet header portion (5) and the refrigerant inflow header portion (9) of both tanks (2) and (3), and the refrigerant outlet header portion (6) and the refrigerant outflow header portion (11). However, the present invention is not limited to this, and the refrigerant inlet header portion (5) and the refrigerant inflow header portion of both tanks (2) and (3) are not limited to this. One or two or more heat exchange pipe groups (13) may be provided between the refrigerant outlet header section (6) and the refrigerant outlet header section (11). Further, there are cases where the refrigerant inlet / outlet tank is at the bottom and the refrigerant turn tank is at the top.

図14はこの発明の第2の実施形態を示す。なお、図14において、図1〜図13に示すものと同一物および同一部分には同一符号を付す。   FIG. 14 shows a second embodiment of the present invention. In FIG. 14, the same components and parts as those shown in FIGS.

図14において、エバポレータ(70)は、前後方向に並んで配置された冷媒入口ヘッダ部(71)および冷媒出口ヘッダ部(72)と、冷媒入口ヘッダ部(71)の上方に間隔をおいて設けられた第1の中間ヘッダ部(73)と、第1中間ヘッダ部(73)の左側に設けられた第2の中間ヘッダ部(74)と、第2中間ヘッダ部(74)の下方に間隔をおいて冷媒入口ヘッダ部(71)の左側に設けられた第3の中間ヘッダ部(75)と、第3中間ヘッダ部(75)の後側に並んで冷媒出口ヘッダ部(72)の左側に設けられた第4の中間ヘッダ部(76)と、第4中間ヘッダ部(76)の上方に間隔をおきかつ第2中間ヘッダ部(74)の後側に並んで設けられた第5の中間ヘッダ部(77)と、冷媒出口ヘッダ部(72)の上方に間隔をおいて第5中間ヘッダ部(77)の右側に設けられた第6の中間ヘッダ部(78)とを備えている。   In FIG. 14, the evaporator (70) is provided above the refrigerant inlet header (71) with a refrigerant inlet header (71) and a refrigerant outlet header (72) arranged side by side in the front-rear direction. The first intermediate header portion (73) formed, the second intermediate header portion (74) provided on the left side of the first intermediate header portion (73), and a space below the second intermediate header portion (74). And a third intermediate header portion (75) provided on the left side of the refrigerant inlet header portion (71), and a left side of the refrigerant outlet header portion (72) aligned with the rear side of the third intermediate header portion (75). A fourth intermediate header portion (76) provided on the second intermediate header portion (76) and a fifth intermediate header portion (76) spaced apart above the fourth intermediate header portion (76) and arranged side by side behind the second intermediate header portion (74). An intermediate header portion (77) and a sixth intermediate header portion (78) provided on the right side of the fifth intermediate header portion (77) at an interval above the refrigerant outlet header portion (72) are provided. .

冷媒入口ヘッダ部(71)、冷媒出口ヘッダ部(72)、第3中間ヘッダ部(75)および第4中間ヘッダ部(76)は、1つのタンク(79)を前後左右の4つの部分に区画することにより形成されている。タンク(79)は、第1の実施形態の冷媒ターン用タンク(3)と同様な構成であり、第1部材(48)と第2部材(49)とよりなる。タンク(79)の冷媒ターン用タンク(3)との相違点は、タンク(79)内の仕切壁(57)により前後に仕切られた空間が、その左右方向の中央部においてそれぞれアルミニウム製の仕切板(81)により左右に区画されており、これにより4つのヘッダ部(71)(72)(75)(76)が設けられている点、仕切板(81)よりも右側の部分においては、仕切壁(57)に切り欠き(57b)は形成されておらず、冷媒入口ヘッダ部(71)と冷媒出口ヘッダ部(72)とは通じていない点、右端開口を閉鎖する閉鎖部材(51)の前側突出部(59)の底壁に冷媒入口(82)が、同じく後側突出部(61)に冷媒出口(83)が形成され、図示は省略したが、右側の閉鎖部材(51)の外面に、冷媒入口(82)に通じる冷媒流入口(45)および冷媒出口(46)に通じる冷媒流出口(46)を有するパイプジョイント部材(21)がろう付されている点にある。   The refrigerant inlet header portion (71), the refrigerant outlet header portion (72), the third intermediate header portion (75), and the fourth intermediate header portion (76) partition one tank (79) into four parts, front, rear, left and right. It is formed by doing. The tank (79) has the same configuration as the refrigerant turn tank (3) of the first embodiment, and includes a first member (48) and a second member (49). The difference between the tank (79) and the refrigerant turn tank (3) is that the space partitioned forward and backward by the partition wall (57) in the tank (79) is divided into aluminum partitions at the center in the left-right direction. It is divided into left and right by a plate (81), thereby providing four header portions (71), (72), (75), and (76), and in a portion on the right side of the partition plate (81), A notch (57b) is not formed in the partition wall (57), and the refrigerant inlet header portion (71) and the refrigerant outlet header portion (72) do not communicate with each other, and a closing member (51) for closing the right end opening A refrigerant inlet (82) is formed in the bottom wall of the front protrusion (59) and a refrigerant outlet (83) is formed in the rear protrusion (61). A pipe joint member (21) having a refrigerant inlet (45) communicating with the refrigerant inlet (82) and a refrigerant outlet (46) communicating with the refrigerant outlet (46) is brazed to the outer surface.

第1中間ヘッダ部(73)、第2中間ヘッダ部(74)、第5中間ヘッダ部(77)および第6中間ヘッダ部(78)は、1つのタンク(84)を前後2つの部分(84A)(84B)に区画し、前区画(84A)の右側を第1中間ヘッダ部(73)、同じく左側を第2中間ヘッダ部(74)とし、後区画(84B)の右側を第6中間ヘッダ部(78)、同じく左側を第5中間ヘッダ部(77)とすることにより形成されている。タンク(84)は、第1の実施形態の冷媒入出用タンク(2)と同様な構成であり、第1部材(16)と第2部材(17)とよりなる。タンク(84)の冷媒入出用タンク(2)との相違点は、分流用抵抗板(29)が設けられていない点、右端開口を閉鎖する閉鎖部材(19)に冷媒入口(43)および冷媒出口(44)が形成されていない点、ならびに閉鎖部材(19)にパイプジョイント部材(21)がろう付されていない点にある。   The first intermediate header portion (73), the second intermediate header portion (74), the fifth intermediate header portion (77), and the sixth intermediate header portion (78) are arranged in one tank (84) with two front and rear portions (84A). ) (84B), the right side of the front section (84A) is the first intermediate header part (73), the left side is the second intermediate header part (74), and the right side of the rear section (84B) is the sixth intermediate header. Part (78), and the left side is formed as a fifth intermediate header part (77). The tank (84) has the same configuration as the refrigerant inlet / outlet tank (2) of the first embodiment, and includes a first member (16) and a second member (17). The difference between the tank (84) and the refrigerant inlet / outlet tank (2) is that the shunt resistor plate (29) is not provided, the refrigerant inlet (43) and the refrigerant are connected to the closing member (19) for closing the right end opening. The outlet (44) is not formed, and the pipe joint member (21) is not brazed to the closing member (19).

冷媒入口ヘッダ部(71)、冷媒出口ヘッダ部(72)、第3中間ヘッダ部(75)および第4中間ヘッダ部(76)と、第1中間ヘッダ部(73)、第2中間ヘッダ部(74)、第5中間ヘッダ部(77)および第6中間ヘッダ部(78)との間に熱交換コア部(4)が設けられ、前側熱交換管群(13)の熱交換管(12)の下端部が、冷媒入口ヘッダ部(71)および第3中間ヘッダ部(75)に接続され、同じく上端部が、第1中間ヘッダ部(73)および第2中間ヘッダ部(74)にろう付されている。また、後側熱交換管群(13)の熱交換管(12)の下端部が、冷媒出口ヘッダ部(72)および第4中間ヘッダ部(76)に接続され、同じく上端部が第6中間ヘッダ部(78)および第5中間ヘッダ部(77)に接続されている。   Refrigerant inlet header portion (71), refrigerant outlet header portion (72), third intermediate header portion (75) and fourth intermediate header portion (76), first intermediate header portion (73), second intermediate header portion ( 74), a heat exchange core part (4) is provided between the fifth intermediate header part (77) and the sixth intermediate header part (78), and the heat exchange pipe (12) of the front heat exchange pipe group (13). Are connected to the refrigerant inlet header part (71) and the third intermediate header part (75), and the upper end part is also brazed to the first intermediate header part (73) and the second intermediate header part (74). Has been. Moreover, the lower end part of the heat exchange pipe (12) of the rear heat exchange pipe group (13) is connected to the refrigerant outlet header part (72) and the fourth intermediate header part (76), and the upper end part is also the sixth intermediate part. It is connected to the header part (78) and the fifth intermediate header part (77).

このエバポレータ(70)において、図14に示すように、圧縮機、凝縮器および膨張弁を通過した気液混相の2層冷媒が、冷媒入口管(7)からパイプジョイント部材(21)の冷媒流入口(45)および右側閉鎖部材(51)の冷媒入口を通って冷媒入口ヘッダ部(71)内に入り、分流して前側熱交換管群(13)における冷媒入口ヘッダ部(71)に接続されているすべての熱交換管(12)の冷媒通路(12a)内に流入し、冷媒通路(12a)内を上方に流れて第1中間ヘッダ部(73)に入り、左方に流れて第2中間ヘッダ部(74)内に入る。第2中間ヘッダ部(74)内に流入した冷媒は、分流して前側熱交換管群(13)における第2中間ヘッダ部(74)に接続されているすべての熱交換管(12)の冷媒通路(12a)内に流入し、冷媒通路(12a)内を下方に流れて第3中間ヘッダ部(75)に流入し、仕切壁(57)の冷媒通過穴(64)を通って第4中間ヘッダ部(76)内に入る。第4中間ヘッダ部(76)内に入った冷媒は、分流して後側熱交換管群(13)における第4中間ヘッダ部(76)に接続されているすべての熱交換管(12)の冷媒通路(12a)内に流入し、冷媒通路(12a)内を上方に流れて第5中間ヘッダ部(77)内に入り、右方に流れて第6中間ヘッダ部(78)内に流入する。第6中間ヘッダ部(78)内に流入した冷媒は、分流して後側熱交換管群(13)における第6中間ヘッダ部(78)に接続されたすべての熱交換管(12)の冷媒通路(12a)内に流入し、冷媒通路(12a)内を下方に流れて冷媒出口ヘッダ部(72)内に入る。ついで、冷媒は、右側閉鎖部材(51)の冷媒出口およびパイプジョイント部材(21)の冷媒流出口(46)を通り、冷媒出口管(8)に流出する。   In this evaporator (70), as shown in FIG. 14, the gas-liquid mixed-phase two-layer refrigerant that has passed through the compressor, the condenser, and the expansion valve flows from the refrigerant inlet pipe (7) to the pipe joint member (21). The refrigerant enters the refrigerant inlet header part (71) through the refrigerant inlet of the inlet (45) and the right closing member (51), and is divided and connected to the refrigerant inlet header part (71) in the front heat exchange pipe group (13). The refrigerant flows into the refrigerant passages (12a) of all the heat exchange pipes (12), flows upward in the refrigerant passages (12a), enters the first intermediate header portion (73), flows to the left, and flows into the second. The intermediate header part (74) is entered. The refrigerant that has flowed into the second intermediate header section (74) is diverted and refrigerant in all the heat exchange pipes (12) connected to the second intermediate header section (74) in the front heat exchange pipe group (13). It flows into the passage (12a), flows downward through the refrigerant passage (12a), flows into the third intermediate header (75), passes through the refrigerant passage hole (64) of the partition wall (57), and enters the fourth intermediate Enter the header section (76). The refrigerant that has entered the fourth intermediate header section (76) is diverted and flows through all the heat exchange pipes (12) connected to the fourth intermediate header section (76) in the rear heat exchange pipe group (13). The refrigerant flows in the refrigerant passage (12a), flows upward in the refrigerant passage (12a), enters the fifth intermediate header portion (77), flows rightward, and flows into the sixth intermediate header portion (78). . The refrigerant that has flowed into the sixth intermediate header portion (78) is diverted and refrigerant in all the heat exchange tubes (12) connected to the sixth intermediate header portion (78) in the rear heat exchange tube group (13). It flows into the passage (12a), flows downward in the refrigerant passage (12a), and enters the refrigerant outlet header portion (72). Next, the refrigerant passes through the refrigerant outlet of the right closing member (51) and the refrigerant outlet (46) of the pipe joint member (21) and flows out to the refrigerant outlet pipe (8).

上記第2の実施形態においては、両タンク(79)(84)の冷媒入口ヘッダ部(71)および第3中間ヘッダ部(75)と第1中間ヘッダ部(73)および第2中間ヘッダ部(74)との間、ならびに冷媒出口ヘッダ部(72)および第4中間ヘッダ部(76)と第6中間ヘッダ部(78)および第5中間ヘッダ部(77)との間に、それぞれ1つの熱交換管群(13)が設けられているが、これに限るものではなく、両タンク(79)(84)の冷媒入口ヘッダ部(71)および第3中間ヘッダ部(75)と第1中間ヘッダ部(73)および第2中間ヘッダ部(74)との間、ならびに冷媒出口ヘッダ部(72)および第4中間ヘッダ部(76)と第6中間ヘッダ部(78)および第5中間ヘッダ部(77)との間に、それぞれ1または2以上の熱交換管群(13)が設けられていてもよい。タンク(79)が上、タンク(84)が上となって用いられることもある。   In the second embodiment, the refrigerant inlet header portion (71), the third intermediate header portion (75), the first intermediate header portion (73), and the second intermediate header portion (both tanks 79, 84) ( 74) and between the refrigerant outlet header portion (72) and the fourth intermediate header portion (76) and the sixth intermediate header portion (78) and the fifth intermediate header portion (77). The exchange pipe group (13) is provided, but the present invention is not limited to this. The refrigerant inlet header part (71) and the third intermediate header part (75) of both tanks (79) and (84) and the first intermediate header are provided. Between the portion (73) and the second intermediate header portion (74), and the refrigerant outlet header portion (72), the fourth intermediate header portion (76), the sixth intermediate header portion (78), and the fifth intermediate header portion ( 77), one or two or more heat exchange tube groups (13) may be provided respectively. In some cases, the tank (79) is used on the top and the tank (84) is used on the top.

なお、この発明によるエバポレータは、前後方向に並んで配置された冷媒入口ヘッダ部および冷媒出口ヘッダ部と、両ヘッダ部を通じさせる冷媒循環経路とを備えており、冷媒循環経路が、複数の中間ヘッダ部と複数の熱交換管により構成され、互いに対向して配置された冷媒入口ヘッダ部と中間ヘッダ部との間、互いに対向して配置された冷媒出口ヘッダ部と中間ヘッダ部との間、および互いに対向して配置された中間ヘッダ部どうしの間に、それぞれ間隔をおいて配置された複数の熱交換管からなる熱交換管群が少なくとも1列配置され、これらの熱交換管群を構成する熱交換管の両端部が互いに対向するヘッダ部に接続されており、冷媒入口ヘッダ部の一端に冷媒入口が形成されるとともに、冷媒出口ヘッダ部における冷媒入口と同一端に冷媒出口が形成され、冷媒入口から冷媒入口ヘッダ部内に流入した冷媒が、冷媒循環経路を通って冷媒出口ヘッダ部に戻り、冷媒出口から送り出されるようになっているタイプのエバポレータにも適用可能である。   The evaporator according to the present invention includes a refrigerant inlet header section and a refrigerant outlet header section arranged side by side in the front-rear direction, and a refrigerant circulation path that passes through both header sections, and the refrigerant circulation path includes a plurality of intermediate headers. Between the refrigerant inlet header portion and the intermediate header portion arranged opposite to each other, between the refrigerant outlet header portion and the intermediate header portion arranged opposite to each other, and At least one row of heat exchange tube groups composed of a plurality of heat exchange tubes arranged at intervals is provided between the intermediate header portions arranged to face each other, and constitute these heat exchange tube groups. Both end portions of the heat exchange pipe are connected to the header portions facing each other, a refrigerant inlet is formed at one end of the refrigerant inlet header portion, and the same as the refrigerant inlet in the refrigerant outlet header portion It is also applicable to evaporators of the type in which a refrigerant outlet is formed in the refrigerant outlet, and the refrigerant flowing into the refrigerant inlet header from the refrigerant inlet returns to the refrigerant outlet header through the refrigerant circulation path and is sent out from the refrigerant outlet. It is.

また、この発明によるエバポレータは、1対の皿状プレートを対向させて周縁部どうしをろう付してなる複数の偏平中空体が並列状に配置されてなり、前後方向に並んで配置された冷媒入口ヘッダ部および冷媒出口ヘッダ部と、両ヘッダ部と間隔をおいて配置された冷媒ターン部と、冷媒入口ヘッダ部と冷媒ターン部とを連通させる複数の冷媒往き側冷媒流通部と、冷媒出口ヘッダ部と冷媒ターン部を連通させる複数の冷媒戻り側冷媒流通部とを備えており、冷媒入口ヘッダ部の一端に冷媒入口が形成されるとともに、冷媒出口ヘッダ部における冷媒入口と同一端に冷媒出口が形成され、冷媒入口から冷媒入口ヘッダ部内に流入した冷媒が、冷媒往き側冷媒流通部を通って冷媒ターン部に至り、ここで流れ方向を変えて冷媒戻り側冷媒流通部を通って冷媒出口ヘッダ部に戻り、冷媒出口から送り出されるようになっている形式の所謂積層型エバポレータにも適用可能である。   Further, the evaporator according to the present invention is a refrigerant in which a plurality of flat hollow bodies formed by brazing peripheral edges with a pair of plate-shaped plates facing each other are arranged in parallel and arranged in the front-rear direction. An inlet header section, a refrigerant outlet header section, a refrigerant turn section spaced from both header sections, a plurality of refrigerant forward refrigerant distribution sections that communicate the refrigerant inlet header section and the refrigerant turn section, and a refrigerant outlet A plurality of refrigerant return side refrigerant circulation parts that communicate the header part and the refrigerant turn part; a refrigerant inlet is formed at one end of the refrigerant inlet header part; and a refrigerant at the same end as the refrigerant inlet in the refrigerant outlet header part Refrigerant flowing in the refrigerant inlet header portion from the refrigerant inlet through the refrigerant inlet reaches the refrigerant turn portion through the refrigerant forward refrigerant circulation portion, where the flow direction is changed and the refrigerant return side refrigerant circulation portion Through return to the outlet header section is also applicable to a so-called laminated evaporator that going on format to be sent out from the refrigerant outlet.

この発明によるエバポレータの全体構成を示す一部切り欠き斜視図である。1 is a partially cutaway perspective view showing an overall configuration of an evaporator according to the present invention. 図1に示すエバポレータを後方から見た一部省略垂直断面図である。FIG. 2 is a partially omitted vertical sectional view of the evaporator shown in FIG. 1 as viewed from the rear. 図1に示すエバポレータの冷媒入出用タンクの部分の分解斜視図である。It is a disassembled perspective view of the refrigerant | coolant inlet / outlet part of the evaporator shown in FIG. 一部を省略した図2のA−A線拡大断面図である。It is the AA line expanded sectional view of Drawing 2 which omitted some. 一部を省略した図2のB−B線拡大断面図である。It is the BB expanded sectional view of FIG. 2 which abbreviate | omitted one part. 図2のC−C線断面図である。It is CC sectional view taken on the line of FIG. 図1に示すエバポレータの冷媒入出用タンクの右側のキャップおよびパイプジョイント部材を示す斜視図である。It is a perspective view which shows the right cap and pipe joint member of the refrigerant | coolant inlet / outlet tank of the evaporator shown in FIG. 図1に示すエバポレータの冷媒入出用タンクの左側のキャップを示す斜視図である。It is a perspective view which shows the left cap of the refrigerant | coolant inlet / outlet tank of the evaporator shown in FIG. 図1に示すエバポレータの冷媒ターン用タンクの部分の分解斜視図である。It is a disassembled perspective view of the part of the tank for refrigerant | coolant turns of the evaporator shown in FIG. 図1に示すエバポレータの冷媒ターン用タンクの左右のキャップを示す斜視図である。It is a perspective view which shows the cap on either side of the tank for refrigerant | coolant turns of the evaporator shown in FIG. パイプジョイント部材に冷媒入口管および冷媒出口管をろう付する方法を示す図である。It is a figure which shows the method of brazing a refrigerant | coolant inlet pipe and a refrigerant | coolant outlet pipe to a pipe joint member. 図11のD−D線断面図である。It is the DD sectional view taken on the line of FIG. 図1に示すエバポレータにおける冷媒の流れ方を示す図である。It is a figure which shows how the refrigerant | coolant flows in the evaporator shown in FIG. この発明によるエバポレータの第2の実施形態を示す図13相当の図である。It is a figure equivalent to FIG. 13 which shows 2nd Embodiment of the evaporator by this invention.

符号の説明Explanation of symbols

(1):エバポレータ
(2):冷媒入出用タンク
(3):冷媒ターン用タンク
(4):熱交換コア部
(5):冷媒入口ヘッダ部
(6):冷媒出口ヘッダ部
(6a)(6b):空間
(7):冷媒入口管
(7a):縮径部
(8):冷媒出口管
(8a):縮径部
(9):冷媒流入ヘッダ部
(11):冷媒流出ヘッダ部
(12):熱交換管(冷媒流通部)
(13):熱交換管群
(16):第1部材
(17):第2部材
(18):左側閉鎖部材
(18a)(18b):めくらキャップ
(19):右側閉鎖部材
(19a)(19b):キャップ
(21):パイプジョイント部材
(29):分流用抵抗板
(32):右方突出部(第1突出部)
(33):上側右方突出部(第3突出部)
(34):下側右方突出部(第2突出部)
(35)(36):係合爪
(37):左方突出部(第1突出部)
(38):上側左方突出部(第3突出部)
(39):下側左方突出部(第2突出部)
(40):位置決め用凹所
(41)(42):係合爪
(43):冷媒入口
(44):冷媒出口
(45):冷媒流入口(冷媒流入部)
(46):冷媒流出口(冷媒流出部)
(50):位置決め用凸部
(65):高周波加熱コイル
(65a)(65b):環状部
(70):エバポレータ
(71):冷媒入口ヘッダ部
(72):冷媒出口ヘッダ部
(73)(74)(75)(76)(77)(78):中間ヘッダ部
(82):冷媒入口
(83):冷媒出口
(1): Evaporator
(2): Refrigerant tank
(3): Refrigerant turn tank
(4): Heat exchange core
(5): Refrigerant inlet header
(6): Refrigerant outlet header
(6a) (6b): Space
(7): Refrigerant inlet pipe
(7a): Reduced diameter part
(8): Refrigerant outlet pipe
(8a): Reduced diameter part
(9): Refrigerant inflow header
(11): Refrigerant outflow header
(12): Heat exchange pipe (refrigerant distribution section)
(13): Heat exchange tube group
(16): First member
(17): Second member
(18): Left closing member
(18a) (18b): blind cap
(19): Right closing member
(19a) (19b): Cap
(21): Pipe joint member
(29): Shunt resistor plate
(32): Right protrusion (first protrusion)
(33): Upper right protrusion (third protrusion)
(34): Lower right protrusion (second protrusion)
(35) (36): engaging claw
(37): Left protrusion (first protrusion)
(38): Upper left protrusion (third protrusion)
(39): Lower left protrusion (second protrusion)
(40): Recess for positioning
(41) (42): Engaging claw
(43): Refrigerant inlet
(44): Refrigerant outlet
(45): Refrigerant inlet (refrigerant inlet)
(46): Refrigerant outlet (refrigerant outlet)
(50): Positioning convex part
(65): High frequency heating coil
(65a) (65b): Annular part
(70): Evaporator
(71): Refrigerant inlet header
(72): Refrigerant outlet header
(73) (74) (75) (76) (77) (78): Intermediate header
(82): Refrigerant inlet
(83): Refrigerant outlet

Claims (29)

前後方向に並んで配置された冷媒入口ヘッダ部および冷媒出口ヘッダ部と、両ヘッダ部を通じさせる冷媒循環経路とを備えており、冷媒入口ヘッダ部の一端に冷媒入口が形成されるとともに、冷媒出口ヘッダ部における冷媒入口と同一端に冷媒出口が形成され、冷媒入口から冷媒入口ヘッダ部内に流入した冷媒が、冷媒循環経路を通って冷媒出口ヘッダ部に戻り、冷媒出口から送り出されるようになっているエバポレータであって、
冷媒入口ヘッダ部および冷媒出口ヘッダ部の一端がそれぞれキャップにより閉鎖され、冷媒入口ヘッダ部のキャップに冷媒入口が形成されるとともに、冷媒出口ヘッダ部のキャップに冷媒出口が形成され、冷媒入口に通じる冷媒流入部および冷媒出口に通じる冷媒流出部を有するプレート状パイプジョイント部材が、冷媒入口ヘッダ部および冷媒出口ヘッダ部のキャップに跨って接合されているエバポレータ。
A refrigerant inlet header section and a refrigerant outlet header section arranged side by side in the front-rear direction, and a refrigerant circulation path that passes through both header sections, a refrigerant inlet is formed at one end of the refrigerant inlet header section, and a refrigerant outlet A refrigerant outlet is formed at the same end as the refrigerant inlet in the header portion, and the refrigerant flowing into the refrigerant inlet header portion from the refrigerant inlet returns to the refrigerant outlet header portion through the refrigerant circulation path and is sent out from the refrigerant outlet. An evaporator,
One end of each of the refrigerant inlet header portion and the refrigerant outlet header portion is closed by a cap, a refrigerant inlet is formed in the cap of the refrigerant inlet header portion, and a refrigerant outlet is formed in the cap of the refrigerant outlet header portion, leading to the refrigerant inlet. An evaporator in which a plate-like pipe joint member having a refrigerant outflow part communicating with a refrigerant inflow part and a refrigerant outlet is joined across the caps of the refrigerant inlet header part and the refrigerant outlet header part.
冷媒循環経路が、複数の中間ヘッダ部と複数の熱交換管により構成され、互いに対向して配置された冷媒入口ヘッダ部と中間ヘッダ部との間、互いに対向して配置された冷媒出口ヘッダ部と中間ヘッダ部との間、および互いに対向して配置された中間ヘッダ部どうしの間に、それぞれ左右方向に間隔をおいて配置された複数の熱交換管からなる熱交換管群が少なくとも1列配置され、これらの熱交換管群を構成する熱交換管の両端部が互いに対向するヘッダ部に接続されている請求項1記載のエバポレータ。 The refrigerant circulation path is composed of a plurality of intermediate header portions and a plurality of heat exchange pipes, and is disposed between the refrigerant inlet header portion and the intermediate header portion arranged to face each other, and arranged to face each other. And at least one row of heat exchange tube groups each comprising a plurality of heat exchange tubes arranged at intervals in the left-right direction between the intermediate header portions and between the intermediate header portions arranged to face each other The evaporator according to claim 1, wherein both end portions of the heat exchange tubes that are arranged and constitute these heat exchange tube groups are connected to opposite header portions. パイプジョイント部材の冷媒流入部および冷媒流出部がそれぞれ短筒状であり、冷媒流入部に、冷媒入口管の端部に形成された縮径部が差し込まれて接合され、冷媒流出部に、冷媒出口管の端部が差し込まれて接合されている請求項1または2記載のエバポレータ。 The refrigerant inflow portion and the refrigerant outflow portion of the pipe joint member are each in the shape of a short cylinder, and the reduced diameter portion formed at the end of the refrigerant inlet pipe is inserted into and joined to the refrigerant inflow portion, and the refrigerant outflow portion is connected to the refrigerant outflow portion. The evaporator according to claim 1 or 2, wherein an end portion of the outlet pipe is inserted and joined. 冷媒流入部の外径が冷媒流出部の外径よりも小さくなっている請求項3記載のエバポレータ。 The evaporator according to claim 3, wherein an outer diameter of the refrigerant inflow portion is smaller than an outer diameter of the refrigerant outflow portion. 冷媒流出部に、冷媒出口管の端部に形成された縮径部が差し込まれて接合されている請求項3または4記載のエバポレータ。 The evaporator according to claim 3 or 4, wherein a reduced diameter portion formed at an end portion of the refrigerant outlet pipe is inserted and joined to the refrigerant outflow portion. パイプジョイント部材の冷媒流入部と冷媒流出部との間隔が6〜9mmである請求項3〜5のうちのいずれかに記載のエバポレータ。 The evaporator according to any one of claims 3 to 5, wherein a distance between the refrigerant inflow portion and the refrigerant outflow portion of the pipe joint member is 6 to 9 mm. 冷媒入口管の縮径部の内径が3〜8.5mmである請求項3〜6のうちのいずれかに記載のエバポレータ。 The evaporator according to any one of claims 3 to 6, wherein an inner diameter of the reduced diameter portion of the refrigerant inlet pipe is 3 to 8.5 mm. パイプジョイント部材の前後方向の長さが50mm以下である請求項3〜7のうちのいずれかに記載のエバポレータ。 The evaporator according to any one of claims 3 to 7, wherein the length of the pipe joint member in the front-rear direction is 50 mm or less. キャップおよびパイプジョイント部材のうちのいずれか一方に、同他方側に突出した位置決め用凸部が形成されるとともに、同他方に位置決め用凸部が嵌る位置決め用凹所が形成されている請求項1〜8のうちのいずれかに記載のエバポレータ。 2. A positioning convex portion protruding to the other side is formed on one of the cap and the pipe joint member, and a positioning recess into which the positioning convex portion is fitted is formed on the other side. The evaporator in any one of -8. 両キャップが一体化されている請求項1〜9のうちのいずれかに記載のエバポレータ。 The evaporator according to any one of claims 1 to 9, wherein both caps are integrated. 冷媒入口ヘッダ部と冷媒出口ヘッダ部とが、両ヘッダ部の冷媒循環経路側の部分を形成する第1部材と、両ヘッダ部の残りの部分を形成するとともに第1部材にろう付された第2部材とからなり、これにより両ヘッダ部が一体化され、両キャップに、それぞれ第1部材および第2部材に係合する係合爪が形成されている請求項1〜10のうちのいずれかに記載のエバポレータ。 A refrigerant inlet header portion and a refrigerant outlet header portion form a first member that forms a portion of both header portions on the refrigerant circulation path side, a remaining portion of both header portions, and a first member brazed to the first member. It consists of two members, both header parts are integrated by this, and the engagement nail | claw which engages with a 1st member and a 2nd member, respectively is formed in both caps. The evaporator as described in. 左右方向に間隔をおいて配置された複数の熱交換管からなる熱交換管群が前後方向に並んで複数列配置されることにより構成された熱交換コア部と、熱交換管の一端側に配置され、かつ少なくとも1列の熱交換管群の熱交換管が接続された冷媒入口ヘッダ部と、熱交換管の一端側において冷媒入口ヘッダ部と前後方向に並んで配置され、かつ少なくとも1列の熱交換管群の熱交換管が接続された冷媒出口ヘッダ部と、熱交換管の他端側に配置され、かつ冷媒入口ヘッダ部に接続されている熱交換管が接続された冷媒流入ヘッダ部と、熱交換管の他端側に配置され、かつ冷媒出口ヘッダ部に接続されている熱交換管群の熱交換管が接続された冷媒流出ヘッダ部とを備え、冷媒流入ヘッダ部と冷媒流出ヘッダ部とが連通させられて冷媒ターン部が形成され、冷媒入口ヘッダ部および冷媒出口ヘッダ部の一端がそれぞれキャップにより閉鎖され、冷媒入口ヘッダ部のキャップに冷媒入口が形成されるとともに、冷媒出口ヘッダ部のキャップに冷媒出口が形成され、冷媒入口に通じる冷媒流入部および冷媒出口に通じる冷媒流出部を有するプレート状パイプジョイント部材が、冷媒入口ヘッダ部および冷媒出口ヘッダ部のキャップに跨って接合されているエバポレータ。 A heat exchange core group formed by arranging a plurality of heat exchange tube groups composed of a plurality of heat exchange tubes arranged at intervals in the left-right direction, arranged in the front-rear direction, and one end side of the heat exchange tube And a refrigerant inlet header portion to which heat exchange tubes of at least one row of heat exchange tube groups are connected, and arranged side by side with the refrigerant inlet header portion in the front-rear direction on one end side of the heat exchange tubes, and at least one row. The refrigerant outlet header part to which the heat exchange pipe of the heat exchange pipe group is connected, and the refrigerant inflow header to which the heat exchange pipe arranged at the other end of the heat exchange pipe and connected to the refrigerant inlet header part is connected And a refrigerant outflow header portion that is disposed on the other end side of the heat exchange pipe and is connected to a heat exchange pipe of a heat exchange pipe group that is connected to the refrigerant outlet header section. The refrigerant turn section is connected to the outflow header section. Each end of the refrigerant inlet header and the refrigerant outlet header is closed by a cap, a refrigerant inlet is formed in the cap of the refrigerant inlet header, and a refrigerant outlet is formed in the cap of the refrigerant outlet header. An evaporator in which a plate-like pipe joint member having a refrigerant inflow portion leading to an inlet and a refrigerant outflow portion leading to a refrigerant outlet is joined across the caps of the refrigerant inlet header portion and the refrigerant outlet header portion. パイプジョイント部材の冷媒流入部および冷媒流出部がそれぞれ短筒状であり、冷媒流入部に、冷媒入口管の端部に形成された縮径部が差し込まれて接合され、冷媒流出部に、冷媒出口管の端部が差し込まれて接合されている請求項12記載のエバポレータ。 The refrigerant inflow portion and the refrigerant outflow portion of the pipe joint member are each in the shape of a short cylinder, and the reduced diameter portion formed at the end of the refrigerant inlet pipe is inserted into and joined to the refrigerant inflow portion, and the refrigerant outflow portion is connected to the refrigerant outflow portion. The evaporator according to claim 12, wherein an end portion of the outlet pipe is inserted and joined. 冷媒流入部の外径が冷媒流出部の外径よりも小さくなっている請求項13記載のエバポレータ。 The evaporator according to claim 13, wherein an outer diameter of the refrigerant inflow portion is smaller than an outer diameter of the refrigerant outflow portion. 冷媒流出部に、冷媒出口管の端部に形成された縮径部が差し込まれて接合されている請求項13または14記載のエバポレータ。 The evaporator according to claim 13 or 14, wherein a reduced diameter portion formed at an end portion of the refrigerant outlet pipe is inserted and joined to the refrigerant outflow portion. パイプジョイント部材の冷媒流入部と冷媒流出部との間隔が6〜9mmである請求項13〜15のうちのいずれかに記載のエバポレータ。 The evaporator according to any one of claims 13 to 15, wherein an interval between the refrigerant inflow portion and the refrigerant outflow portion of the pipe joint member is 6 to 9 mm. 冷媒入口管の縮径部の内径が3〜8.5mmである請求項13〜16のうちのいずれかに記載のエバポレータ。 The evaporator according to any one of claims 13 to 16, wherein an inner diameter of the reduced diameter portion of the refrigerant inlet pipe is 3 to 8.5 mm. パイプジョイント部材の前後方向の長さが50mm以下である請求項13〜17のうちのいずれかに記載のエバポレータ。 The evaporator according to any one of claims 13 to 17, wherein the length of the pipe joint member in the front-rear direction is 50 mm or less. キャップおよびパイプジョイント部材のうちのいずれか一方に、同他方側に突出した位置決め用凸部が形成されるとともに、同他方に位置決め用凸部が嵌る位置決め用凹所が形成されている請求項12〜18のうちのいずれかに記載のエバポレータ。 The positioning convex part which protruded in the other side is formed in any one of a cap and a pipe joint member, and the positioning recess into which the positioning convex part fits in the other is formed. The evaporator in any one of -18. パイプジョイント部材に、キャップ側に突出した位置決め用凸部が形成されるとともに、キャップに位置決め用凸部が嵌る位置決め用凹所が形成され、冷媒入口ヘッダ部および冷媒出口ヘッダ部の他端がそれぞれめくらキャップにより閉鎖され、めくらキャップは、キャップに形成されている位置決め用凹所を有していない請求項12〜18のうちのいずれかに記載のエバポレータ。 The pipe joint member has a positioning projection that protrudes toward the cap, and a positioning recess that fits the positioning projection into the cap, and the other ends of the refrigerant inlet header portion and the refrigerant outlet header portion respectively. The evaporator according to any one of claims 12 to 18, wherein the evaporator cap is closed by a blind cap, and the blind cap does not have a positioning recess formed in the cap. 冷媒入口ヘッダ部と冷媒出口ヘッダ部とが、熱交換管が接続された第1部材と、第1部材における熱交換管とは反対側の部分にろう付された第2部材とからなり、これにより両ヘッダ部が一体化され、両キャップおよび両めくらキャップに、それぞれ第1部材および第2部材に係合する係合爪が形成されている請求項20記載のエバポレータ。 The refrigerant inlet header portion and the refrigerant outlet header portion are composed of a first member to which the heat exchange pipe is connected and a second member brazed to a portion of the first member opposite to the heat exchange pipe. 21. The evaporator according to claim 20, wherein both the header portions are integrated with each other, and the engaging claws that engage with the first member and the second member are formed on both caps and both blind caps, respectively. 冷媒入口ヘッダ部と冷媒出口ヘッダ部とが、1つの冷媒入出用タンク内を仕切手段によって前後に区画することにより設けられている請求項21記載のエバポレータ。 The evaporator according to claim 21, wherein the refrigerant inlet header part and the refrigerant outlet header part are provided by dividing one refrigerant inlet / outlet tank forward and backward by a partitioning means. 冷媒出口ヘッダ部内が区画手段により高さ方向に2つの空間に区画されるとともに、第1の空間に臨むように熱交換管が接続され、区画手段に冷媒通過穴が形成され、冷媒出口ヘッダ部の第2の空間が冷媒出口に通じている請求項22記載のエバポレータ。 The refrigerant outlet header is partitioned into two spaces in the height direction by the partitioning means, and a heat exchange pipe is connected so as to face the first space, a refrigerant passage hole is formed in the partitioning means, and the refrigerant outlet header part The evaporator according to claim 22, wherein the second space of the refrigerant communicates with the refrigerant outlet. 仕切手段および区画手段が第2部材に一体に形成されている請求項23記載のエバポレータ。 The evaporator according to claim 23, wherein the partitioning means and the partitioning means are formed integrally with the second member. 両キャップおよび両めくらキャップがそれぞれ一体化されており、両キャップおよび両めくらキャップに、それぞれ冷媒入口ヘッダ内に嵌る第1突出部と、冷媒出口ヘッダ部の第1空間内に嵌る第2突出部と、冷媒出口ヘッダ部の第2空間内に嵌る第3突出部とが形成され、両キャップの第1突出部に冷媒入口が形成され、両キャップの第3突出部に冷媒出口が形成されている請求項23または24記載のエバポレータ。 Both caps and both blind caps are integrated, and both the cap and both blind caps are respectively fitted with a first protrusion that fits in the refrigerant inlet header and a second protrusion that fits in the first space of the refrigerant outlet header. And a third protrusion that fits in the second space of the refrigerant outlet header, a refrigerant inlet is formed in the first protrusion of both caps, and a refrigerant outlet is formed in the third protrusion of both caps. The evaporator according to claim 23 or 24. 請求項3記載のエバポレータを製造する方法であって、前後方向に並んで配置された冷媒入口ヘッダ部および冷媒出口ヘッダ部と、両ヘッダ部を通じさせる冷媒循環経路とを形成するとともに、冷媒入口ヘッダ部の一端に冷媒入口を有するキャップを、冷媒出口ヘッダ部の一端に冷媒出口を有するキャップをそれぞれ接合し、さらに冷媒入口に通じる短筒状冷媒流入部および冷媒出口に通じる短筒状冷媒流出部を有するプレート状パイプジョイント部材を、冷媒入口ヘッダ部および冷媒出口ヘッダ部のキャップに跨って接合した後、パイプジョイント部材の冷媒流入部に冷媒入口管の端部に形成された縮径部を差し込むとともに、冷媒流出部に冷媒出口管の端部を差し込み、2つの環状部が一体となっためがね状の高周波加熱コイルにおける一方の環状部をパイプジョイント部材の冷媒流入部の周囲に、同じく他方の環状部を冷媒流出部の周囲に配置し、この高周波加熱コイルを用いてパイプジョイント部材の冷媒流入部および冷媒流出部と、冷媒入口管および冷媒出口管とを同時にろう付することを特徴とするエバポレータの製造方法。 A method for manufacturing an evaporator according to claim 3, wherein a refrigerant inlet header portion and a refrigerant outlet header portion arranged side by side in the front-rear direction, a refrigerant circulation path through both header portions, and a refrigerant inlet header are formed. A cap having a refrigerant inlet at one end of the part, a cap having a refrigerant outlet at one end of the refrigerant outlet header part, and a short cylindrical refrigerant inflow part leading to the refrigerant inlet and a short cylindrical refrigerant outflow part leading to the refrigerant outlet After connecting the plate-shaped pipe joint member having the crossing over the caps of the refrigerant inlet header portion and the refrigerant outlet header portion, the reduced diameter portion formed at the end of the refrigerant inlet pipe is inserted into the refrigerant inflow portion of the pipe joint member. At the same time, the end portion of the refrigerant outlet pipe is inserted into the refrigerant outflow portion, and the two annular portions are integrated with each other. One annular part is arranged around the refrigerant inflow part of the pipe joint member, and the other annular part is arranged around the refrigerant outflow part, and the refrigerant inflow part and the refrigerant outflow part of the pipe joint member are arranged using this high-frequency heating coil. A method for producing an evaporator, wherein the refrigerant inlet pipe and the refrigerant outlet pipe are brazed simultaneously. 請求項13記載のエバポレータを製造する方法であって、左右方向に間隔をおいて配置された複数の熱交換管からなる熱交換管群が前後方向に並んで複数列配置されることにより構成された熱交換コア部と、熱交換管の一端側に配置され、かつ少なくとも1列の熱交換管群の熱交換管が接続された冷媒入口ヘッダ部と、熱交換管の一端側において冷媒入口ヘッダ部と前後方向に並んで配置され、かつ少なくとも1列の熱交換管群の熱交換管が接続された冷媒出口ヘッダ部と、熱交換管の他端側に配置され、かつ冷媒入口ヘッダ部に接続されている熱交換管が接続された冷媒流入ヘッダ部と、熱交換管の他端側に配置され、かつ冷媒出口ヘッダ部に接続されている熱交換管群の熱交換管が接続された冷媒流出ヘッダ部とを各部材を一括してろう付することにより形成し、このろう付と同時に、冷媒入口ヘッダ部の一端に冷媒入口を有するキャップを、冷媒出口ヘッダ部の一端に冷媒出口を有するキャップをそれぞれろう付するとともに、冷媒入口ヘッダ部および冷媒出口ヘッダ部の他端にめくらキャップをろう付し、さらに冷媒入口に通じる短筒状冷媒流入部および冷媒出口に通じる短筒状冷媒流出部を有するパイプジョイント部材を冷媒入口ヘッダ部および冷媒出口ヘッダ部のキャップに跨ってろう付した後、パイプジョイント部材の冷媒流入部に冷媒入口管の端部に形成された縮径部を差し込むとともに、冷媒流出部に冷媒出口管の端部を差し込み、2つの環状部が一体となっためがね状の高周波加熱コイルにおける一方の環状部をパイプジョイント部材の冷媒流入部の周囲に、同じく他方の環状部を冷媒流出部の周囲に配置し、この高周波加熱コイルを用いてパイプジョイント部材の冷媒流入部および冷媒流出部と、冷媒入口管および冷媒出口管とを同時にろう付することを特徴とするエバポレータの製造方法。 14. The method of manufacturing an evaporator according to claim 13, wherein the heat exchange tube group including a plurality of heat exchange tubes arranged at intervals in the left-right direction is arranged in a plurality of rows side by side in the front-rear direction. A heat exchange core portion, a refrigerant inlet header portion disposed on one end side of the heat exchange pipe and connected to at least one row of heat exchange pipe groups, and a refrigerant inlet header on one end side of the heat exchange pipe And a refrigerant outlet header portion that is arranged side by side in the front-rear direction and is connected to a heat exchange pipe of at least one row of heat exchange pipe groups, and is arranged on the other end side of the heat exchange pipe, and in the refrigerant inlet header section The refrigerant inflow header part to which the connected heat exchange pipe is connected, and the heat exchange pipe of the heat exchange pipe group that is arranged on the other end side of the heat exchange pipe and connected to the refrigerant outlet header part are connected. Let the refrigerant outflow header part together with each member Simultaneously with this brazing, a cap having a refrigerant inlet at one end of the refrigerant inlet header portion and a cap having a refrigerant outlet at one end of the refrigerant outlet header portion are brazed, and the refrigerant inlet header portion and A pipe joint member having a short cylindrical refrigerant inflow portion leading to the refrigerant inlet and a short cylindrical refrigerant outflow portion leading to the refrigerant outlet is brazed with a blind cap to the other end of the refrigerant outlet header portion, and the refrigerant inlet header portion and the refrigerant outlet. After brazing across the cap of the header part, the reduced diameter part formed at the end of the refrigerant inlet pipe is inserted into the refrigerant inflow part of the pipe joint member, and the end of the refrigerant outlet pipe is inserted into the refrigerant outflow part, Since the two annular portions are integrated, one annular portion in the high frequency heating coil-shaped coil is around the refrigerant inflow portion of the pipe joint member. The other annular part is arranged around the refrigerant outflow part, and the refrigerant inflow part and the refrigerant outflow part of the pipe joint member, and the refrigerant inlet pipe and the refrigerant outlet pipe are brazed simultaneously using this high-frequency heating coil. A method for manufacturing an evaporator. 圧縮機、コンデンサおよびエバポレータを備えており、エバポレータが、請求項1〜26のうちのいずれかに記載のエバポレータからなる冷凍サイクル。 A refrigeration cycle comprising a compressor, a condenser, and an evaporator, wherein the evaporator is an evaporator according to any one of claims 1 to 26. 請求項28記載の冷凍サイクルが、エアコンとして搭載されている車両。 A vehicle in which the refrigeration cycle according to claim 28 is mounted as an air conditioner.
JP2004324905A 2003-11-14 2004-11-09 Evaporator and manufacturing method thereof Expired - Fee Related JP4533726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004324905A JP4533726B2 (en) 2003-11-14 2004-11-09 Evaporator and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003385441 2003-11-14
JP2004324905A JP4533726B2 (en) 2003-11-14 2004-11-09 Evaporator and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005164226A true JP2005164226A (en) 2005-06-23
JP4533726B2 JP4533726B2 (en) 2010-09-01

Family

ID=34741793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004324905A Expired - Fee Related JP4533726B2 (en) 2003-11-14 2004-11-09 Evaporator and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4533726B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007101169A (en) * 2005-09-06 2007-04-19 Showa Denko Kk Heat exchanger
JP2007192504A (en) * 2006-01-20 2007-08-02 Denso Corp Unit for ejector type refrigerating cycle and its manufacturing method
JP2007327654A (en) * 2006-06-06 2007-12-20 Showa Denko Kk Heat exchanger and its manufacturing method
JP2008070106A (en) * 2006-09-15 2008-03-27 Dongguan Gaobao Aluminium Products Manufactory Co Ltd Condenser and radiator in air conditioning cooling system
KR100831876B1 (en) * 2006-08-22 2008-05-22 모딘코리아 유한회사 Header tank and heat exchanger including the same
JP2008224105A (en) * 2007-03-12 2008-09-25 Showa Denko Kk Heat exchanger and its manufacturing method
JP2008267610A (en) * 2007-04-16 2008-11-06 Showa Denko Kk Heat exchanger and its manufacturing method
JP2009092358A (en) * 2007-10-12 2009-04-30 Showa Denko Kk Heat exchanger
JP2009180393A (en) * 2008-01-29 2009-08-13 Showa Denko Kk Heat exchanger
US7784530B2 (en) 2005-09-01 2010-08-31 Showa Denko K.K. Heat exchanger
US8002024B2 (en) * 2004-03-23 2011-08-23 Showa Denko K. K. Heat exchanger with inlet having a guide
US8276401B2 (en) 2008-09-29 2012-10-02 Showa Denko K.K. Evaporator
KR101240958B1 (en) 2007-03-21 2013-03-08 한라공조주식회사 Heat Exchanger
JP2013540252A (en) * 2010-10-25 2013-10-31 ヴァレオ システム テルミク Heat exchanger with lateral fluid supply
JP2022549576A (en) * 2019-09-27 2022-11-28 浙江盾安人工環境股▲ふん▼有限公司 Heat exchanger

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01224163A (en) * 1988-03-03 1989-09-07 Diesel Kiki Co Ltd Heat exchanger
JP2001241881A (en) * 2000-03-01 2001-09-07 Showa Denko Kk Multi-layered heat exchanger
JP2003075024A (en) * 2001-06-18 2003-03-12 Showa Denko Kk Evaporator, its manufacturing method, header member for the vaporizer and refrigerating system
JP2005090948A (en) * 2003-08-08 2005-04-07 Showa Denko Kk Heat exchanger and evaporator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01224163A (en) * 1988-03-03 1989-09-07 Diesel Kiki Co Ltd Heat exchanger
JP2001241881A (en) * 2000-03-01 2001-09-07 Showa Denko Kk Multi-layered heat exchanger
JP2003075024A (en) * 2001-06-18 2003-03-12 Showa Denko Kk Evaporator, its manufacturing method, header member for the vaporizer and refrigerating system
JP2005090948A (en) * 2003-08-08 2005-04-07 Showa Denko Kk Heat exchanger and evaporator

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8002024B2 (en) * 2004-03-23 2011-08-23 Showa Denko K. K. Heat exchanger with inlet having a guide
US7784530B2 (en) 2005-09-01 2010-08-31 Showa Denko K.K. Heat exchanger
JP2007101169A (en) * 2005-09-06 2007-04-19 Showa Denko Kk Heat exchanger
JP2007192504A (en) * 2006-01-20 2007-08-02 Denso Corp Unit for ejector type refrigerating cycle and its manufacturing method
JP2007327654A (en) * 2006-06-06 2007-12-20 Showa Denko Kk Heat exchanger and its manufacturing method
KR100831876B1 (en) * 2006-08-22 2008-05-22 모딘코리아 유한회사 Header tank and heat exchanger including the same
JP2008070106A (en) * 2006-09-15 2008-03-27 Dongguan Gaobao Aluminium Products Manufactory Co Ltd Condenser and radiator in air conditioning cooling system
JP2008224105A (en) * 2007-03-12 2008-09-25 Showa Denko Kk Heat exchanger and its manufacturing method
KR101240958B1 (en) 2007-03-21 2013-03-08 한라공조주식회사 Heat Exchanger
JP2008267610A (en) * 2007-04-16 2008-11-06 Showa Denko Kk Heat exchanger and its manufacturing method
JP2009092358A (en) * 2007-10-12 2009-04-30 Showa Denko Kk Heat exchanger
JP2009180393A (en) * 2008-01-29 2009-08-13 Showa Denko Kk Heat exchanger
US8276401B2 (en) 2008-09-29 2012-10-02 Showa Denko K.K. Evaporator
JP2013540252A (en) * 2010-10-25 2013-10-31 ヴァレオ システム テルミク Heat exchanger with lateral fluid supply
JP2022549576A (en) * 2019-09-27 2022-11-28 浙江盾安人工環境股▲ふん▼有限公司 Heat exchanger
JP7393527B2 (en) 2019-09-27 2023-12-06 浙江盾安人工環境股▲ふん▼有限公司 Heat exchanger

Also Published As

Publication number Publication date
JP4533726B2 (en) 2010-09-01

Similar Documents

Publication Publication Date Title
JP4667077B2 (en) Semi-finished joint plate, joint plate, joint plate manufacturing method, and heat exchanger
JP4734021B2 (en) Heat exchanger
JP4810203B2 (en) Heat exchanger
JP2006132920A (en) Heat exchanger
JP4599245B2 (en) Heat exchanger
JP4533726B2 (en) Evaporator and manufacturing method thereof
JP2005326135A (en) Heat exchanger
KR20070001076A (en) Evaporator and process for fabricating same
JP4786234B2 (en) Heat exchanger
JP4625687B2 (en) Heat exchanger
JPH05312492A (en) Heat exchanger
JP4686220B2 (en) Heat exchanger
JP2006170601A (en) Evaporator
JP2006194576A (en) Evaporator
JP4866615B2 (en) Heat exchanger
JP4759297B2 (en) Heat exchanger
JP2005069670A (en) Heat exchanger and evaporator
JP4617148B2 (en) Heat exchanger
JP2005195318A (en) Evaporator
JP4613083B2 (en) Heat exchanger
JP4663272B2 (en) Heat exchangers and evaporators
JP4574321B2 (en) Heat exchanger
JP2005090946A (en) Heat exchanger and evaporator
JP2007071432A (en) Heat exchanger and its manufacturing method
JP2008256234A (en) Evaporator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100614

R150 Certificate of patent or registration of utility model

Ref document number: 4533726

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees