JP2005090948A - Heat exchanger and evaporator - Google Patents

Heat exchanger and evaporator Download PDF

Info

Publication number
JP2005090948A
JP2005090948A JP2004230033A JP2004230033A JP2005090948A JP 2005090948 A JP2005090948 A JP 2005090948A JP 2004230033 A JP2004230033 A JP 2004230033A JP 2004230033 A JP2004230033 A JP 2004230033A JP 2005090948 A JP2005090948 A JP 2005090948A
Authority
JP
Japan
Prior art keywords
heat exchange
refrigerant
header
tube
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004230033A
Other languages
Japanese (ja)
Other versions
JP4663272B2 (en
Inventor
Yasuta Arino
康太 有野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2004230033A priority Critical patent/JP4663272B2/en
Publication of JP2005090948A publication Critical patent/JP2005090948A/en
Application granted granted Critical
Publication of JP4663272B2 publication Critical patent/JP4663272B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air-Conditioning For Vehicles (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchanger and an evaporator capable of easily unifying projecting lengths of heat exchanger tubes into a header part in assembling. <P>SOLUTION: This heat exchanger comprises a heat exchanging core part 4 constituted by arranging groups of heat exchanger tubes respectively composed of a plurality of heat exchanger tubes 9 arranged at intervals, in a plurality of rows in the ventilating direction, a refrigerant inlet header part 5 and a refrigerant outlet header part 6 mounted at one end side of the heat exchanger tubes 9, and a refrigerant inflow-side header part 7 and a refrigerant outflow-side header part 8 mounted at the other end side of the heat exchanger tubes 9. Both end parts of each heat exchanger tube 9 are brazed to the header parts 5-8 in a state of being inserted into tube insertion holes 19, 36 formed on each of the header parts 5-8. The refrigerant inlet header part 5 and the refrigerant inflow-side header part 7, and the refrigerant outlet header part 6 and the refrigerant outflow-side header part 8 are respectively provided with tube receiving projections 26, 42 projected inward, and end parts of the heat exchanger tubes 9 are kept into contact with the tube receiving projections 26, 42. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、熱交換器、たとえばカーエアコンに用いられるエバポレータやコンデンサに関する。   The present invention relates to an evaporator and a condenser used in a heat exchanger such as a car air conditioner.

この明細書および特許請求の範囲において、「アルミニウム」という用語には、純アルミニウムの他にアルミニウム合金を含むものとする。   In this specification and claims, the term “aluminum” includes aluminum alloys in addition to pure aluminum.

従来、カーエアコン用エバポレータとして、1対の皿状プレートを対向させて周縁部どうしをろう付してなる複数の偏平中空体が並列状に配置され、隣接する偏平中空体間にルーバ付きコルゲートフィンが配置されて偏平中空体にろう付された、所謂積層型エバポレータが広く用いられていた。ところが、近年、エバポレータのさらなる小型軽量化および高性能化が要求されるようになってきた。   Conventionally, as a evaporator for a car air conditioner, a plurality of flat hollow bodies formed by brazing peripheral edges with a pair of plate-shaped plates facing each other are arranged in parallel, and a corrugated fin with a louver between adjacent flat hollow bodies A so-called laminated evaporator, in which the above is disposed and brazed to a flat hollow body, has been widely used. However, in recent years, there has been a demand for further reduction in size and weight and performance of the evaporator.

そして、このような要求を満たすエバポレータとして、本出願人は、先に、間隔をおいて配置された複数の熱交換管からなる熱交換管群が通風方向に並んで複数列配置されることにより構成された熱交換コア部と、熱交換管の一端側における通風方向下流側に配置され、かつ少なくとも1列の熱交換管群の熱交換管が接続された冷媒入口ヘッダ部と、熱交換管の一端側において冷媒入口ヘッダ部の通風方向上流側に配置され、かつ少なくとも1列の熱交換管群の熱交換管が接続された冷媒出口ヘッダ部と、熱交換管の他端側に配置され、かつ冷媒入口ヘッダ部に接続されている熱交換管が接続された冷媒流入側ヘッダ部と、熱交換管の他端側において冷媒流入側ヘッダ部の通風方向上流側に配置され、かつ冷媒出口ヘッダ部に接続されている熱交換管群の熱交換管が接続された冷媒流出側ヘッダ部とを備えており、各熱交換管の両端部が両ヘッダ部に形成された管挿通穴に挿入された状態でヘッダ部に接続されているエバポレータを提案した(特許文献1参照)。このエバポレータにおいては、第1のタンク内を仕切壁により区画することによって冷媒入口ヘッダ部と冷媒出口ヘッダ部とが設けられ、第2のタンク内を仕切壁により区画することによって冷媒流入側ヘッダ部と冷媒流出側ヘッダ部とが設けられるとともに、第2のタンクの仕切壁に貫通穴を形成することにより、冷媒流入側ヘッダ部と冷媒流出側ヘッダ部とが連通させられている。このエバポレータは、各構成部材を組み合わせて仮止めし、すべての構成部材を一括してろう付することにより製造される。   As an evaporator that satisfies such a requirement, the applicant firstly arranges a plurality of rows of heat exchange pipes that are arranged at intervals and arranged in a row in the ventilation direction. A configured heat exchange core portion, a refrigerant inlet header portion arranged on the downstream side in the ventilation direction on one end side of the heat exchange tube and connected to the heat exchange tubes of at least one row of heat exchange tubes, and a heat exchange tube Is disposed on the upstream side in the ventilation direction of the refrigerant inlet header on one end of the refrigerant, and is disposed on the other end of the heat exchange pipe with the refrigerant outlet header connected to the heat exchange pipe of at least one row of heat exchange pipes. And a refrigerant inflow side header portion connected to the heat exchange pipe connected to the refrigerant inlet header portion, and arranged on the upstream side in the ventilation direction of the refrigerant inflow side header portion on the other end side of the heat exchange pipe, and the refrigerant outlet Connected to the header And a refrigerant outflow side header part to which a heat exchange pipe of the exchange pipe group is connected, and connected to the header part in a state where both end parts of each heat exchange pipe are inserted into pipe insertion holes formed in both header parts. Proposed an evaporator (see Patent Document 1). In this evaporator, the refrigerant inlet header portion and the refrigerant outlet header portion are provided by partitioning the inside of the first tank by the partition wall, and the refrigerant inflow header portion by partitioning the inside of the second tank by the partition wall. And a refrigerant outflow side header portion, and a through hole is formed in the partition wall of the second tank, so that the refrigerant inflow side header portion and the refrigerant outflow side header portion are communicated with each other. This evaporator is manufactured by combining and temporarily fixing the constituent members and brazing all the constituent members together.

しかしながら、特許文献1記載のエバポレータにおいては、製造の際にヘッダ部内への熱交換管の突出長さを一定にすることが困難であるという問題がある。
特開2003−75024号公報
However, the evaporator described in Patent Document 1 has a problem that it is difficult to make the projection length of the heat exchange tube into the header portion constant during manufacture.
Japanese Patent Laid-Open No. 2003-75024

この発明の目的は、上記問題を解決し、組み立ての際に熱交換管のヘッダ部内への突出長さを簡単に一定にすることができる熱交換器およびエバポレータを提供することにある。   An object of the present invention is to provide a heat exchanger and an evaporator that can solve the above-described problems and can easily make the length of projection into the header portion of the heat exchange pipe constant during assembly.

本発明は、上記課題を達成するために以下の態様よりなる。   In order to achieve the above-mentioned object, the present invention comprises the following aspects.

1)互いに間隔をおいて配置された2つのヘッダ部と、両ヘッダ部間に並列状に配置された複数の熱交換管とを備えており、各熱交換管の両端部が両ヘッダ部に形成された管挿通穴に挿入された状態でヘッダ部に接続されている熱交換器であって、少なくとも一方のヘッダ部に、内方に突出した管受け突起が設けられ、熱交換管の端部が管受け突起に当接している熱交換器。   1) It has two header portions arranged at a distance from each other and a plurality of heat exchange tubes arranged in parallel between both header portions, and both end portions of each heat exchange tube are connected to both header portions. A heat exchanger connected to the header portion in a state of being inserted into the formed tube insertion hole, wherein at least one header portion is provided with an inwardly protruding tube receiving protrusion, and the end of the heat exchange tube Heat exchanger whose part is in contact with the tube receiving projection.

2)両ヘッダ部内に、それぞれ内方に突出した管受け突起が設けられ、熱交換管の両端部がそれぞれ管受け突起に当接している上記1)記載の熱交換器。   2) The heat exchanger according to the above 1), wherein both header portions are provided with inwardly protruding tube receiving protrusions, and both end portions of the heat exchange tube are in contact with the tube receiving protrusions, respectively.

3)熱交換管におけるヘッダ部内へ突出した長さが1mm以上である上記1)または2)記載の熱交換器。   3) The heat exchanger according to 1) or 2) above, wherein the length of the heat exchange pipe protruding into the header portion is 1 mm or more.

4)熱交換管の端面と、ヘッダ部の内周面における熱交換管端面から最も離れた部分との直線距離が3mm以上である上記1)〜3)のうちのいずれかに記載の熱交換器。   4) The heat exchange according to any one of 1) to 3) above, wherein the linear distance between the end face of the heat exchange pipe and the portion of the inner peripheral surface of the header portion farthest from the end face of the heat exchange pipe is 3 mm or more. vessel.

5)少なくともいずれか一方のヘッダ部が、管挿通穴を有しかつ熱交換管がろう付された第1部材と、第1部材における熱交換管とは反対側の部分にろう付された第2部材とよりなり、第1部材および第2部材のうちの少なくともいずれか一方の両側縁部に内方に突出した管受け突起が設けられている上記1)〜4)のうちのいずれかに記載の熱交換器。   5) At least one of the header portions has a first member having a tube insertion hole and a heat exchange tube brazed, and a first member brazed to a portion of the first member opposite to the heat exchange tube. Any one of the above 1) to 4), which is composed of two members and is provided with inwardly projecting tube receiving projections on both side edge portions of at least one of the first member and the second member The described heat exchanger.

6)少なくともいずれか一方のヘッダ部が、管挿通穴を有しかつ熱交換管がろう付された第1部材と、第1部材における熱交換管とは反対側の部分にろう付された第2部材とよりなり、第2部材の両側縁部に内方に突出しかつ第1部材側に突出した管受け突起が設けられ、第1部材の両側縁部が、管受け突起の外面に接した状態で第2部材の両側縁部に突き合わせ状にろう付されている上記1)〜4)のうちのいずれかに記載の熱交換器。   6) At least one of the header portions has a first member having a tube insertion hole and a heat exchange tube brazed, and a first member brazed to a portion of the first member opposite to the heat exchange tube. It is composed of two members, and pipe receiving projections projecting inward and projecting to the first member side are provided at both side edges of the second member, and both side edges of the first member are in contact with the outer surface of the pipe receiving projection. The heat exchanger according to any one of the above 1) to 4), which is brazed to both side edges of the second member in a state of being butted.

7)横断面における第1部材の両側縁部と第2部材の両側縁部とのろう付長さが、管受け突起の部分を含んで第1部材および第2部材のうち薄肉のものの肉厚の1.2倍以上である上記5)または6)記載の熱交換器。   7) The brazing length between the side edges of the first member and the side edges of the second member in the cross section includes the portion of the tube receiving projection, and the thickness of the thin one of the first member and the second member The heat exchanger according to 5) or 6), wherein the heat exchanger is 1.2 times or more.

8)横断面における第1部材の両側縁部と第2部材の両側縁部とのろう付長さが、管受け突起の部分を含んで第1部材および第2部材のうち薄肉のものの肉厚の2倍以上である上記5)または6)記載の熱交換器。   8) The brazing length between the side edges of the first member and the side edges of the second member in the cross section includes the portion of the tube receiving projection, and the thickness of the thin member of the first member and the second member The heat exchanger as described in 5) or 6) above, which is twice or more of the above.

9)間隔をおいて配置された複数の熱交換管からなる熱交換管群が通風方向に並んで複数列配置されることにより構成された熱交換コア部と、熱交換管の一端側における通風方向下流側に配置され、かつ少なくとも1列の熱交換管群の熱交換管が接続された冷媒入口ヘッダ部と、熱交換管の一端側において冷媒入口ヘッダ部の通風方向上流側に配置され、かつ少なくとも1列の熱交換管群の熱交換管が接続された冷媒出口ヘッダ部と、熱交換管の他端側に配置され、かつ冷媒入口ヘッダ部に接続されている熱交換管が接続された冷媒流入側ヘッダ部と、熱交換管の他端側において冷媒流入側ヘッダ部の通風方向上流側に配置され、かつ冷媒出口ヘッダ部に接続されている熱交換管群の熱交換管が接続された冷媒流出側ヘッダ部とを備えており、冷媒流入側ヘッダ部と冷媒流出側ヘッダ部とが連通させられ、各熱交換管の両端部が各ヘッダ部に形成された管挿通穴に挿入された状態でヘッダ部に接続されているエバポレータにおいて、冷媒入口ヘッダ部および冷媒流入側ヘッダ部のうちの少なくともいずれか一方と、冷媒出口ヘッダ部および冷媒流出側ヘッダ部のうちの少なくともいずれか一方とに、内方に突出した管受け突起が設けられ、熱交換管の端部が管受け突起に当接しているエバポレータ。   9) A heat exchange core group formed by arranging a plurality of heat exchange tube groups, which are arranged at intervals, arranged in a row in the ventilation direction, and ventilation on one end side of the heat exchange tube A refrigerant inlet header portion that is arranged on the downstream side in the direction and to which the heat exchange pipes of at least one row of heat exchange pipe groups are connected, and is arranged on the upstream side in the ventilation direction of the refrigerant inlet header portion on one end side of the heat exchange pipe, And the refrigerant | coolant exit header part to which the heat exchange pipe | tube of the heat exchange pipe group of at least 1 row was connected, and the heat exchange pipe | tube arrange | positioned at the other end side of a heat exchange pipe and connected to the refrigerant | coolant inlet header part are connected. The refrigerant inflow header section is connected to the heat exchange pipe of the heat exchange pipe group arranged on the upstream side in the ventilation direction of the refrigerant inflow header section on the other end side of the heat exchange pipe and connected to the refrigerant outlet header section. And a refrigerant outflow side header portion, In the evaporator in which the medium inflow side header portion and the refrigerant outflow side header portion are communicated with each other and connected to the header portion in a state where both end portions of each heat exchange tube are inserted into the tube insertion holes formed in each header portion And at least one of the refrigerant inlet header portion and the refrigerant inflow side header portion and at least one of the refrigerant outlet header portion and the refrigerant outflow side header portion are provided with pipe receiving projections projecting inwardly. And an evaporator in which the end of the heat exchange tube is in contact with the tube receiving projection.

10)冷媒入口ヘッダ部、冷媒流入側ヘッダ部、冷媒出口ヘッダ部および冷媒流出側ヘッダ部に、それぞれ内方に突出した管受け突起が設けられ、熱交換管の両端部がそれぞれ管受け突起に当接している上記9)記載のエバポレータ。   10) The refrigerant inlet header, the refrigerant inflow header, the refrigerant outlet header, and the refrigerant outflow header are provided with inwardly protruding tube receiving protrusions, and both ends of the heat exchange tube are respectively connected to the tube receiving protrusions. The evaporator according to 9) above, which is in contact.

11)熱交換管におけるヘッダ部内へ突出した長さが1mm以上である上記9)または10)記載のエバポレータ。   11) The evaporator according to 9) or 10) above, wherein the length of the heat exchange pipe protruding into the header portion is 1 mm or more.

12)熱交換管の端面と、ヘッダ部の内周面における熱交換管端面から最も離れた部分との直線距離が3mm以上である上記9)〜11)のうちのいずれかに記載のエバポレータ。   12) The evaporator according to any one of 9) to 11) above, wherein a linear distance between an end surface of the heat exchange tube and a portion of the inner peripheral surface of the header portion farthest from the end surface of the heat exchange tube is 3 mm or more.

13)冷媒入口ヘッダ部と冷媒出口ヘッダ部とが、第1のタンク内を仕切壁によって区画することにより設けられている上記9)〜12)のうちのいずれかに記載のエバポレータ。   13) The evaporator according to any one of 9) to 12) above, wherein the refrigerant inlet header portion and the refrigerant outlet header portion are provided by partitioning the inside of the first tank with a partition wall.

14)冷媒流入側ヘッダ部と冷媒流出側ヘッダ部とが、第2のタンク内を、冷媒通過穴を有する仕切壁によって区画することにより設けられている上記9)〜13)のうちのいずれかに記載のエバポレータ。   14) Any one of the above 9) to 13), wherein the refrigerant inflow side header portion and the refrigerant outflow side header portion are provided by dividing the inside of the second tank by a partition wall having a refrigerant passage hole. The evaporator as described in.

15)第1のタンクおよび/または第2のタンクが、管挿通穴を有しかつ熱交換管が接続された第1部材と、第1部材における熱交換管とは反対側の部分にろう付された第2部材とよりなり、第1部材および第2部材のうちの少なくともいずれか一方の両側縁部に内方に突出した管受け突起が設けられている上記13)または14)記載のエバポレータ。   15) The first tank and / or the second tank are brazed to the first member having the tube insertion hole and to which the heat exchange tube is connected, and the portion of the first member opposite to the heat exchange tube. The evaporator according to the above 13) or 14), wherein the pipe receiving projections projecting inwardly are provided at both side edges of at least one of the first member and the second member. .

16)第1のタンクおよび/または第2のタンクが、管挿通穴を有しかつ熱交換管が接続された第1部材と、第1部材における熱交換管とは反対側の部分にろう付された第2部材とよりなり、第2部材の両側縁部に内方に突出しかつ第1部材側に突出した管受け突起が設けられ、第1部材の両側縁部が、管受け突起の外面に接した状態で第2部材の両側縁部に突き合わせ状にろう付されている上記13)または14)記載のエバポレータ。   16) The first tank and / or the second tank are brazed to the first member having the tube insertion hole and to which the heat exchange tube is connected, and to the portion of the first member opposite to the heat exchange tube. A tube receiving projection that protrudes inwardly and protrudes toward the first member on both side edges of the second member, and both side edges of the first member are on the outer surface of the tube receiving projection. The evaporator according to the above 13) or 14), wherein the evaporator is brazed to both side edges of the second member while being in contact with each other.

17)横断面における第1部材の両側縁部と第2部材の両側縁部とのろう付長さが、管受け突起の部分を含んで第1部材および第2部材のうち薄肉のものの肉厚の1.2倍以上である上記15)または16)記載のエバポレータ。   17) The brazing length between the side edges of the first member and the side edges of the second member in the cross section includes the portion of the tube receiving projection, and the thickness of the thin one of the first member and the second member The evaporator according to 15) or 16) above, wherein the evaporator is 1.2 times or more.

18)横断面における第1部材の両側縁部と第2部材の両側縁部とのろう付長さが、管受け突起の部分を含んで第1部材および第2部材のうち薄肉のものの肉厚の2倍以上である上記15)または16)記載のエバポレータ。   18) The brazing length between the side edges of the first member and the side edges of the second member in the cross section includes the portion of the tube receiving projection, and the thickness of the thin member of the first member and the second member The evaporator according to the above 15) or 16), which is at least twice the above.

19)第1部材が、少なくとも片面にろう材層を有するアルミニウムブレージングシートよりなる上記15)〜18)のうちのいずれかに記載のエバポレータ。   19) The evaporator according to any one of 15) to 18) above, wherein the first member is made of an aluminum brazing sheet having a brazing material layer on at least one side.

20)第2部材がアルミニウム押出形材よりなり、第2部材に仕切壁が一体に形成されている上記15)〜19)のうちのいずれかに記載のエバポレータ。   20) The evaporator according to any one of 15) to 19) above, wherein the second member is made of an aluminum extruded profile, and the partition wall is formed integrally with the second member.

21)圧縮機、コンデンサおよびエバポレータを備えており、エバポレータが、上記9)〜20)のうちのいずれかに記載のエバポレータからなる冷凍サイクル。   21) A refrigeration cycle comprising a compressor, a condenser, and an evaporator, wherein the evaporator is the evaporator according to any one of 9) to 20).

22)上記21)記載の冷凍サイクルが、エアコンとして搭載されている車両。   22) A vehicle on which the refrigeration cycle described in 21) above is mounted as an air conditioner.

上記1)および2)の熱交換器によれば、熱交換管の端部が、ヘッダ部に内方突出状に設けられた管受け突起に当接しているので、熱交換管のヘッダ部内への突出長さを簡単に一定長さとすることができる。したがって、上記突出長さが短くなって冷媒通路にろう材が詰まり、これにより圧力損失が増大することが防止される。また、逆に上記突出長さが長くなってすべての熱交換管への冷媒の分流が不均一になることおよび圧力損失の増大が防止される。その結果、熱交換性能の低下を防止することが可能になる。   According to the heat exchangers of 1) and 2) above, the end of the heat exchange tube is in contact with the tube receiving projection provided in the header portion so as to protrude inwardly, so that the heat exchange tube enters the header portion of the heat exchange tube. The projecting length of can be easily made constant. Accordingly, it is possible to prevent the protrusion length from becoming shorter and the brazing material from being clogged in the refrigerant passage, thereby increasing the pressure loss. On the other hand, the protrusion length is increased, so that the refrigerant is not evenly distributed to all the heat exchange tubes, and an increase in pressure loss is prevented. As a result, it is possible to prevent a decrease in heat exchange performance.

上記3)の熱交換器によれば、たとえば熱交換管をヘッダ部にろう付する際に、熱交換管の冷媒通路内にろう材が詰まることが防止され、その結果圧力損失の増大が防止される。したがって、熱交換性能の低下を防止することが可能になる。   According to the heat exchanger of the above 3), for example, when brazing the heat exchange pipe to the header portion, it is possible to prevent the brazing material from being clogged in the refrigerant passage of the heat exchange pipe, thereby preventing an increase in pressure loss. Is done. Therefore, it is possible to prevent a decrease in heat exchange performance.

上記4)の熱交換器によれば、すべての熱交換管への冷媒の分流が不均一になることおよび圧力損失の増大が防止され、その結果熱交換性能の低下を防止することが可能になる。   According to the heat exchanger of 4) above, it is possible to prevent the refrigerant diversion to all the heat exchange tubes from becoming uneven and to prevent an increase in pressure loss, and as a result, to prevent a decrease in heat exchange performance. Become.

上記5)〜8)の熱交換器によれば、第1部材と第2部材とのろう付強度が増大し、ろう付部の破損やろう付部からの漏れの発生を防止することができる。   According to the heat exchangers of the above 5) to 8), the brazing strength between the first member and the second member is increased, and breakage of the brazed part and occurrence of leakage from the brazed part can be prevented. .

上記9)および10)のエバポレータによれば、熱交換管の端部が、ヘッダ部に内方突出状に設けられた管受け突起に当接しているので、熱交換管のヘッダ部内への突出長さを簡単に一定長さとすることができる。したがって、上記突出長さが短くなって冷媒通路にろう材が詰まり、これにより圧力損失が増大することが防止される。また、逆に上記突出長さが長くなってすべての熱交換管への冷媒の分流が不均一になることおよび圧力損失の増大が防止される。その結果、熱交換性能の低下を防止することが可能になる。   According to the evaporators of the above 9) and 10), the end portion of the heat exchange tube is in contact with the tube receiving projection provided in the header portion so as to protrude inward, so that the heat exchange tube protrudes into the header portion. The length can be easily made constant. Accordingly, it is possible to prevent the protrusion length from becoming shorter and the brazing material from being clogged in the refrigerant passage, thereby increasing the pressure loss. On the other hand, the protrusion length is increased, so that the refrigerant is not evenly distributed to all the heat exchange tubes, and an increase in pressure loss is prevented. As a result, it is possible to prevent a decrease in heat exchange performance.

上記11)のエバポレータによれば、たとえば熱交換管をヘッダ部にろう付する際に、熱交換管の冷媒通路内にろう材が詰まることが防止され、その結果圧力損失の増大が防止される。したがって、熱交換性能の低下を防止することが可能になる。   According to the evaporator of the above 11), for example, when the heat exchange pipe is brazed to the header portion, it is prevented that the brazing material is clogged in the refrigerant passage of the heat exchange pipe, and as a result, an increase in pressure loss is prevented. . Therefore, it is possible to prevent a decrease in heat exchange performance.

上記12)のエバポレータによれば、すべての熱交換管への冷媒の分流が不均一になることおよび圧力損失の増大が防止され、その結果熱交換性能の低下を防止することが可能になる。   According to the evaporator of the above 12), it is possible to prevent non-uniform refrigerant flow to all heat exchange tubes and increase in pressure loss, and as a result, to prevent deterioration in heat exchange performance.

上記13)および14)のエバポレータによれば、部品点数が少なくなる。   According to the evaporators 13) and 14), the number of parts is reduced.

上記15)〜18)のエバポレータによれば、第1部材と第2部材とのろう付強度が増大し、ろう付部の破損やろう付部からの漏れの発生を防止することができる。   According to the evaporators of the above 15) to 18), the brazing strength between the first member and the second member is increased, and breakage of the brazed part and occurrence of leakage from the brazed part can be prevented.

上記19)のエバポレータによれば、第1部材の少なくとも片面のろう材層を利用し、第1部材と第2部材とをろう付して第1および第2のタンクを形成するのと同時に、第1部材と熱交換管とをろう付して両タンクに熱交換管を接続することができるので、製造作業が簡単になる。   According to the evaporator of the above 19), the first and second tanks are formed by brazing the first member and the second member using the brazing material layer on at least one side of the first member, Since the heat exchange pipe can be connected to both tanks by brazing the first member and the heat exchange pipe, the manufacturing operation is simplified.

上記20)のエバポレータによれば、第1および第2のタンクの仕切壁が、第2部材に一体に形成されているので、両タンク内に仕切壁を設ける作業が簡単になる。   According to the evaporator 20), since the partition walls of the first and second tanks are formed integrally with the second member, the work of providing the partition walls in both tanks is simplified.

以下、この発明の実施形態を、図面を参照して説明する。なお、以下の説明において、図1の上下、左右をそれぞれ上下、左右といい、熱交換管群の隣接する熱交換管どうしの間の通風間隙を流れる空気の下流側(図1に矢印Xで示す方向、図2の右側)を前、これと反対側を後というものとする。   Embodiments of the present invention will be described below with reference to the drawings. In the following description, the top, bottom, left and right in FIG. 1 are referred to as top, bottom, left and right, respectively, and the downstream side of the air flowing through the ventilation gap between adjacent heat exchange tubes of the heat exchange tube group (indicated by arrow X in FIG. 1). The direction shown (right side in FIG. 2) is the front, and the opposite side is the rear.

図1はこの発明によるエバポレータの全体構成を示し、図2〜図5は要部の構成を示し、図6はこの発明によるエバポレータにおける冷媒の流れ方を示す。   FIG. 1 shows the overall configuration of an evaporator according to the present invention, FIGS. 2 to 5 show the configuration of the main part, and FIG. 6 shows how the refrigerant flows in the evaporator according to the present invention.

図1において、エバポレータ(1)は、上下方向に間隔をおいて配置されたアルミニウム製冷媒入出側タンク(2)(第1のタンク)およびアルミニウム製冷媒ターン側タンク(3)(第2のタンク)と、両タンク(2)(3)間に設けられた熱交換コア部(4)とを備えている。   In FIG. 1, the evaporator (1) includes an aluminum refrigerant inlet / outlet tank (2) (first tank) and an aluminum refrigerant turn side tank (3) (second tank) arranged at intervals in the vertical direction. ) And a heat exchange core part (4) provided between the tanks (2) and (3).

冷媒入出側タンク(2)は、前側(通風方向下流側)に位置する冷媒入口ヘッダ部(5)と後側(通風方向上流側)に位置する冷媒出口ヘッダ部(6)とを備えている。冷媒ターン側タンク(3)は、前側に位置する冷媒流入側ヘッダ部(7)と後側に位置する冷媒流出側ヘッダ部(8)とを備えている。   The refrigerant inlet / outlet tank (2) includes a refrigerant inlet header portion (5) located on the front side (downstream side in the ventilation direction) and a refrigerant outlet header portion (6) located on the rear side (upstream side in the ventilation direction). . The refrigerant turn side tank (3) includes a refrigerant inflow side header portion (7) located on the front side and a refrigerant outflow side header portion (8) located on the rear side.

熱交換コア部(4)は、左右方向に間隔をおいて並列状に配置された複数のアルミニウム製熱交換管(9)からなる熱交換管群(11)が、前後方向に並んで複数列、ここでは2列配置されることにより構成されている。各熱交換管群(11)の隣接する熱交換管(9)どうしの間の通風間隙、および各熱交換管群(11)の左右両端の熱交換管(9)の外側にはそれぞれアルミニウム製ルーバ付きコルゲートフィン(12)が配置されて熱交換管(9)にろう付されている。左右両端のコルゲートフィン(12)の外側にはそれぞれアルミニウム製サイドプレート(13)が配置されてコルゲートフィン(12)にろう付されている。そして、前側熱交換管群(11)の熱交換管(9)の上下両端は冷媒入口ヘッダ部(5)および冷媒流入側ヘッダ部(7)に接続され、後側熱交換管群(11)の熱交換管(9)の上下両端部は冷媒出口ヘッダ部(6)および冷媒流出側ヘッダ部(8)に接続されている。   The heat exchange core section (4) includes a plurality of rows of heat exchange pipe groups (11) composed of a plurality of aluminum heat exchange pipes (9) arranged in parallel at intervals in the left-right direction. Here, two rows are arranged. The ventilation gaps between adjacent heat exchange tubes (9) in each heat exchange tube group (11) and the outside of the heat exchange tubes (9) at the left and right ends of each heat exchange tube group (11) are made of aluminum. A louvered corrugated fin (12) is arranged and brazed to the heat exchange tube (9). Aluminum side plates (13) are respectively arranged outside the corrugated fins (12) at the left and right ends and brazed to the corrugated fins (12). The upper and lower ends of the heat exchange pipe (9) of the front heat exchange pipe group (11) are connected to the refrigerant inlet header section (5) and the refrigerant inflow header section (7), and the rear heat exchange pipe group (11) The upper and lower ends of the heat exchange pipe (9) are connected to the refrigerant outlet header (6) and the refrigerant outflow side header (8).

図2および図3に示すように、冷媒入出側タンク(2)は、両面にろう材層を有するアルミニウムブレージングシートから形成されかつ熱交換管(9)が接続されたプレート状の第1部材(14)と、アルミニウム押出形材から形成されたベア材よりなりかつ第1部材(14)の上側を覆う第2部材(15)と、左右両端開口を閉鎖するアルミニウム製キャップ(16)(17)とよりなる。   As shown in FIGS. 2 and 3, the refrigerant inlet / outlet tank (2) is a plate-shaped first member formed from an aluminum brazing sheet having a brazing filler metal layer on both sides and connected to a heat exchange pipe (9) ( 14), a second member (15) made of a bare material formed of an extruded aluminum material and covering the upper side of the first member (14), and an aluminum cap (16) (17) that closes both left and right openings And more.

第1部材(14)は、その前後両側部分に、それぞれ中央部が下方に突出した曲率の小さい横断面円弧状の湾曲部(18)を有している。各湾曲部(18)に、前後方向に長い複数の管挿通穴(19)が、左右方向に間隔をおいて形成されている。前後両湾曲部(18)の管挿通穴(19)は、それぞれ左右方向に関して同一位置にある。前側湾曲部(18)の前縁および後側湾曲部(18)の後縁に、それぞれ立ち上がり壁(18a)が全長にわたって一体に形成されている。また、第1部材(14)の両湾曲部(18)間の平坦部(21)に、複数の貫通穴(22)が左右方向に間隔をおいて形成されている。   The first member (14) has, on both front and rear side portions thereof, a curved portion (18) having a small cross-sectional arc shape with a central portion protruding downward. A plurality of tube insertion holes (19) that are long in the front-rear direction are formed in each bending portion (18) at intervals in the left-right direction. The tube insertion holes (19) of the front and rear curved portions (18) are at the same position in the left-right direction. A rising wall (18a) is integrally formed over the entire length at the front edge of the front curved portion (18) and the rear edge of the rear curved portion (18). A plurality of through holes (22) are formed in the flat portion (21) between the curved portions (18) of the first member (14) at intervals in the left-right direction.

第2部材(15)は下方に開口した横断面略m字状であり、左右方向に伸びる前後両壁(23)と、前後両壁(23)間の中央部に設けられかつ左右方向に伸びるとともに冷媒入出側タンク(2)内を前後2つの空間に仕切る仕切壁(24)と、前後両壁(23)および仕切壁(24)の上端どうしをそれぞれ一体に連結する上方に突出した2つの略円弧状連結壁(25)とを備えている。第2部材(15)の両側縁部、すなわち前後両壁(23)の下縁部に、それぞれヘッダ部(5)(6)内方に突出しかつ第1部材(14)側(下側)に突出した管受け突起(26)が全長にわたって一体に形成されている。後側の管受け突起(26)の前面上部と、仕切壁(24)の下端部とは、分流用抵抗板(27)により全長にわたって一体に連結されている。なお、分流用抵抗板(27)は管受け突起(26)および仕切壁(24)と別体のものが管受け突起(26)および仕切壁(24)に固着されていてもよい。分流用抵抗板(27)の後側部分における左右両端部を除いた部分には、左右方向に長い複数の冷媒通過穴(28A)(28B)が左右方向に間隔をおいて貫通状に形成されている。左右方向の中央部の冷媒通過穴(28A)の長さは、後側熱交換管群(11)の隣接する熱交換管(9)どうしの間隔よりも短くなっており、後側熱交換管群(11)の左右方向の中央部の隣接する2本の熱交換管(9)間に形成されている。また、他の冷媒通過穴(28B)の長さは中央部の冷媒通過穴(28A)の長さよりも長くなっている。仕切壁(24)の下端は前後両壁(23)の下端よりも下方に突出しており、その下縁に、下方に突出しかつ第1部材(14)の貫通穴(22)に嵌め入れられる複数の突起(24a)が左右方向に間隔をおいて一体に形成されている。突起(24a)は、仕切壁(24)の所定部分を切除することにより形成されている。   The second member (15) has a substantially m-shaped cross section opened downward, and is provided at the center between the front and rear walls (23) and the front and rear walls (23) extending in the left-right direction and extending in the left-right direction. In addition, a partition wall (24) for partitioning the refrigerant inlet / outlet tank (2) into two front and rear spaces, and two protruding upwards that integrally connect the front and rear walls (23) and the upper ends of the partition wall (24), respectively. A substantially arc-shaped connecting wall (25). Both side edges of the second member (15), that is, the lower edges of the front and rear walls (23), protrude inward of the header parts (5) and (6), respectively, and to the first member (14) side (lower side) The protruding tube receiving projection (26) is integrally formed over the entire length. The upper part of the front face of the rear pipe receiving projection (26) and the lower end part of the partition wall (24) are integrally connected by the shunt resistor plate (27) over the entire length. The shunt resistor plate (27) may be separate from the tube receiving projection (26) and the partition wall (24), and may be fixed to the tube receiving projection (26) and the partition wall (24). A plurality of refrigerant passage holes (28A) (28B) that are long in the left-right direction are formed in a penetrating manner at intervals in the left-right direction in the portion excluding the left and right ends at the rear portion of the shunt resistor plate (27). ing. The length of the refrigerant passage hole (28A) at the center in the left-right direction is shorter than the interval between the adjacent heat exchange tubes (9) in the rear heat exchange tube group (11), and the rear heat exchange tubes It is formed between two adjacent heat exchange tubes (9) at the center in the left-right direction of the group (11). The other refrigerant passage hole (28B) is longer than the central refrigerant passage hole (28A). The lower end of the partition wall (24) protrudes downward from the lower ends of the front and rear walls (23), and a plurality of lower walls protrude downward and are fitted into the through holes (22) of the first member (14). The protrusions (24a) are integrally formed with an interval in the left-right direction. The protrusion (24a) is formed by cutting a predetermined portion of the partition wall (24).

第2部材(15)は、前後両壁(23)、仕切壁(24)、連結壁(25)、管受け突起(26)および分流用抵抗板(27)を一体に押出成形した後、プレス加工を施すことにより分流用抵抗板(27)に冷媒通過穴(28A)(28B)を形成し、さらに仕切壁(24)を切除して突起(24a)を形成することにより製造される。   The second member (15) is formed by integrally extruding the front and rear walls (23), the partition wall (24), the connecting wall (25), the tube receiving projection (26), and the shunt resistor plate (27), and then pressing It is manufactured by forming the coolant passage holes (28A) and (28B) in the shunting resistance plate (27) by processing, and further cutting the partition wall (24) to form the protrusions (24a).

各キャップ(16)(17)はベア材からプレス、鍛造または切削などにより形成されたものであり、左右方向内面に第1および第2部材(14)(15)の左右両端部が嵌め入れられる凹所が形成されている。右側キャップ(17)には、冷媒入口ヘッダ部(5)内に通じる冷媒入口(17a)と、冷媒出口ヘッダ部(6)内における分流用抵抗板(27)よりも上方の部分に通じる冷媒出口(17b)が形成されている。また、右側キャップ(17)に、冷媒入口(17a)に通じる冷媒流入口(29a)および冷媒出口(17b)に通じる冷媒流出口(29b)を有するアルミニウム製冷媒入出部材(29)がろう付されている。   Each cap (16) (17) is formed from a bare material by pressing, forging or cutting, and the left and right ends of the first and second members (14) (15) are fitted into the inner surface in the left-right direction. A recess is formed. The right cap (17) has a refrigerant inlet (17a) that communicates with the refrigerant inlet header (5) and a refrigerant outlet that communicates with the upper part of the refrigerant outlet header (6) above the shunt resistor plate (27). (17b) is formed. Also, an aluminum refrigerant inlet / outlet member (29) having a refrigerant inlet (29a) leading to the refrigerant inlet (17a) and a refrigerant outlet (29b) leading to the refrigerant outlet (17b) is brazed to the right cap (17). ing.

そして、両部材(14)(15)が、第2部材(15)の突起(24a)が第1部材(14)の貫通穴(22)に挿通されてかしめられることにより、第1部材(14)の前後の立ち上がり壁(18a)の上端面が第2部材(15)の前後両壁(23)の下端面に当接するとともに、両立ち上がり壁(18a)の前後方向内面が管受け突起(26)の前後方向外面に接触した状態で、第1部材(14)のろう材層を利用して相互にろう付され、さらに両キャップ(16)(17)がシート状ろう材を用いて第1および第2部材(14)(15)にろう付されることにより冷媒入出側タンク(2)が形成されており、第2部材(15)の仕切壁(24)よりも前側が冷媒入口ヘッダ部(5)、同じく仕切壁(24)よりも後側が冷媒出口ヘッダ部(6)となっている。また、冷媒出口ヘッダ部(6)は分流用抵抗板(27)により上下両空間(6a)(6b)に区画されており、これらの空間(6a)(6b)は冷媒通過穴(28A)(28B)により連通させられている。下空間(6b)が、後側熱交換管群(11)の熱交換管(9)が臨む第1の空間であり、上空間(6a)が、冷媒が流出する第2の空間である。右側キャップ(17)の冷媒出口(17b)は冷媒出口ヘッダ部(6)の上部空間(6a)内に通じている。   Then, both the members (14) and (15) are caulked by inserting the projections (24a) of the second member (15) into the through holes (22) of the first member (14), thereby being caulked. ) Front and rear rising walls (18a) are in contact with the lower end surfaces of the front and rear walls (23) of the second member (15), and the front and rear inner surfaces of both rising walls (18a) are pipe receiving projections (26 ) Are in contact with each other using the brazing filler metal layer of the first member (14), and both caps (16) (17) are made of the first brazing filler metal. And the refrigerant | coolant inlet / outlet side tank (2) is formed by brazing to the 2nd member (14) (15), and the refrigerant | coolant inlet header part is ahead rather than the partition wall (24) of the 2nd member (15). (5) Similarly, the rear side of the partition wall (24) is the refrigerant outlet header (6). The refrigerant outlet header (6) is divided into upper and lower spaces (6a) and (6b) by a shunt resistor plate (27), and these spaces (6a) and (6b) are formed in the refrigerant passage holes (28A) ( 28B). The lower space (6b) is the first space where the heat exchange pipe (9) of the rear heat exchange pipe group (11) faces, and the upper space (6a) is the second space from which the refrigerant flows out. The refrigerant outlet (17b) of the right cap (17) communicates with the upper space (6a) of the refrigerant outlet header (6).

ここで、図4に示すように、横断面における第1部材(14)の前後両側縁部、すなわち両立ち上がり壁(18a)の上縁部と、第2部材(15)の前後両側縁部、すなわち前後両壁(23)の下縁部および管受け突起(26)とのろう付長さは、図4に鎖線Aで囲んだように、立ち上がり壁(18a)および前後両壁(23)の肉厚と、立ち上がり壁(18a)の後面と管受け突起(26)との接触部分の長さとを合わせたものであり、このろう付長さは、第1部材(14)の立ち上がり壁(18a)と第2部材(15)の前後両壁(23)のうち薄肉のものの肉厚の1.2倍以上であることが好ましく、2倍以上であることが望ましい。この場合、第1部材(14)と第2部材(15)とのろう付強度が増大し、ろう付部の破損やろう付部からの漏れの発生を防止することができる。なお、ここでは、第1部材(14)の両立ち上がり壁(18a)と、第2部材(15)の前後両壁(23)の肉厚は等しくなっている。   Here, as shown in FIG. 4, the front and rear side edges of the first member (14) in the cross section, that is, the upper edges of both rising walls (18a) and the front and rear side edges of the second member (15), That is, the brazing length between the lower edge of both the front and rear walls (23) and the tube receiving projection (26) is as shown in FIG. 4 with the rising wall (18a) and the front and rear walls (23). The thickness and the length of the contact portion between the rear surface of the rising wall (18a) and the tube receiving projection (26) are combined, and this brazing length is the rising wall (18a) of the first member (14). ) And the front and rear walls (23) of the second member (15) are preferably at least 1.2 times the thickness of the thin wall, and more preferably at least twice. In this case, the brazing strength between the first member (14) and the second member (15) is increased, and breakage of the brazed part and occurrence of leakage from the brazed part can be prevented. Here, the wall thicknesses of both rising walls (18a) of the first member (14) and the front and rear walls (23) of the second member (15) are equal.

図2および図5に示すように、冷媒ターン側タンク(3)は、両面にろう材層を有するアルミニウムブレージングシートから形成されかつ熱交換管(9)が接続されたプレート状の第1部材(31)と、アルミニウム押出形材から形成されたベア材よりなりかつ第1部材(31)の下側を覆う第2部材(32)と、左右両端開口を閉鎖するアルミニウム製キャップ(33)とよりなる。   As shown in FIGS. 2 and 5, the refrigerant turn-side tank (3) is formed of an aluminum brazing sheet having a brazing filler metal layer on both sides and a plate-shaped first member (9) connected to a heat exchange pipe (9). 31), a second member (32) made of a bare material formed of an extruded aluminum material and covering the lower side of the first member (31), and an aluminum cap (33) that closes both left and right openings. Become.

冷媒ターン側タンク(3)の頂面(3a)は、前後方向の中央部が最高位部(34)となるとともに、最高位部(34)から前後両側に向かって徐々に低くなるように全体に横断面円弧状に形成されている。冷媒ターン側タンク(3)の前後両側部分に、頂面(3a)における最高位部(34)の前後両側から前後両側面(3b)まで伸びる溝(35)が、左右方向に間隔をおいて複数形成されている。   The top surface (3a) of the refrigerant turn-side tank (3) is such that the central part in the front-rear direction becomes the highest part (34) and gradually decreases from the highest part (34) toward the front and rear sides. The cross section is formed in a circular arc shape. Grooves (35) extending from the front and rear sides of the highest portion (34) of the top surface (3a) to the front and rear sides (3b) are spaced in the left and right direction on both sides of the refrigerant turn side tank (3). A plurality are formed.

第1部材(31)は、前後方向の中央部が上方に突出した横断面円弧状であり、その前後両側縁に垂下壁(31a)が全長にわたって一体に形成されている。そして、第1部材(31)の上面が冷媒ターン側タンク(3)の頂面(3a)となり、垂下壁(31a)の外面が冷媒ターン側タンク(3)の前後両側面(3b)となっている。第1部材(31)の前後両側において、前後方向中央の最高位部(34)から垂下壁(31a)の下端にかけて溝(35)が形成されている。第1部材(31)の前後中央の最高位部(34)を除いた前後両側部分における隣接する溝(35)どうしの間に、それぞれ前後方向に長い管挿通穴(36)が形成されている。前後の管挿通穴(36)は左右方向に関して同一位置にある。第1部材(31)の前後方向中央の最高位部(34)に、複数の貫通穴(37)が左右方向に間隔をおいて形成されている。第1部材(31)は、アルミニウムブレージングシートにプレス加工を施すことによって、垂下壁(31a)、溝(35)、管挿通穴(36)および貫通穴(37)を同時に形成することによりつくられる。   The first member (31) has an arcuate cross-sectional shape with the center portion in the front-rear direction protruding upward, and the hanging wall (31a) is integrally formed over the entire length on both front and rear edges. The upper surface of the first member (31) is the top surface (3a) of the refrigerant turn side tank (3), and the outer surface of the hanging wall (31a) is the front and rear side surfaces (3b) of the refrigerant turn side tank (3). ing. On both front and rear sides of the first member (31), a groove (35) is formed from the highest position (34) in the center in the front-rear direction to the lower end of the hanging wall (31a). Long pipe insertion holes (36) are formed in the front-rear direction between adjacent grooves (35) in the front and rear side portions excluding the highest position (34) at the front-rear center of the first member (31). . The front and rear tube insertion holes (36) are at the same position in the left-right direction. A plurality of through holes (37) are formed at intervals in the left-right direction at the highest position (34) at the center in the front-rear direction of the first member (31). The first member (31) is formed by simultaneously forming the hanging wall (31a), the groove (35), the tube insertion hole (36), and the through hole (37) by pressing the aluminum brazing sheet. .

第2部材(32)は上方に開口した横断面略w字状であり、前後方向外側に向かって上方に湾曲した左右方向に伸びる前後両壁(38)と、前後両壁(38)間の中央部に設けられかつ左右方向に伸びるとともに冷媒ターン側タンク(3)内を前後2つの空間に仕切る垂直状の仕切壁(39)と、前後両壁(38)および仕切壁(39)の下端どうしをそれぞれ一体に連結する2つの連結壁(41)とを備えている。第2部材(32)の前後両側縁部、すなわち前後両壁(38)の上縁部に、それぞれヘッダ部(7)(8)内方に突出しかつ第1部材(31)側(上側)に突出した管受け突起(42)が全長にわたって一体に形成されている。仕切壁(39)の上端は管受け突起(42)上端よりも上方に突出しており、その上縁に、上方に突出しかつ第1部材(31)の貫通穴(37)に嵌め入れられる複数の突起(39a)が左右方向に間隔をおいて一体に形成されている。また、仕切壁(39)における隣り合う突起(39a)間には、それぞれその上縁から冷媒通過用切り欠き(39b)が形成されている。突起(39a)および切り欠き(39b)は、仕切壁(39)の所定部分を切除することにより形成されている。   The second member (32) has a substantially w-shaped cross section opened upward, and extends between the front and rear walls (38) extending in the left-right direction and curved upward toward the outer side in the front-rear direction. A vertical partition wall (39) provided in the center and extending in the left-right direction and partitioning the refrigerant turn-side tank (3) into two front and rear spaces, and lower ends of both the front and rear walls (38) and the partition wall (39) Two connecting walls (41) for connecting the two together are provided. The front and rear side edges of the second member (32), that is, the upper edges of the front and rear walls (38), protrude inward of the header parts (7) and (8), respectively, and on the first member (31) side (upper side) The protruding tube receiving protrusion (42) is integrally formed over the entire length. The upper end of the partition wall (39) protrudes upward from the upper end of the tube receiving projection (42), and the upper edge of the partition wall (39) protrudes upward and is fitted into the through hole (37) of the first member (31). The protrusions (39a) are integrally formed with an interval in the left-right direction. Further, a coolant passage notch (39b) is formed between adjacent protrusions (39a) on the partition wall (39) from the upper edge thereof. The protrusion (39a) and the notch (39b) are formed by cutting a predetermined portion of the partition wall (39).

第2部材(32)は、前後両壁(38)、仕切壁(39)、連結壁(41)および管受け突起(42)を一体に押出成形した後、仕切壁(39)を切除して突起(39a)および切り欠き(39b)を形成することにより製造される。   The second member (32) is formed by integrally extruding the front and rear walls (38), the partition wall (39), the connecting wall (41) and the tube receiving projection (42), and then cutting the partition wall (39). It is manufactured by forming a protrusion (39a) and a notch (39b).

各キャップ(33)はベア材からプレス、鍛造または切削などにより形成されたものであり、左右方向内面に第1および第2部材(31)(32)の左右両端部が嵌め入れられる凹所を有している。   Each cap (33) is formed from a bare material by pressing, forging or cutting, and has recesses in which the left and right ends of the first and second members (31) (32) are fitted in the inner surface in the left-right direction. Have.

そして、両部材(31)(32)が、第2部材(32)の突起(39a)が貫通穴(37)に挿通されてかしめられることにより、第1部材(31)の前後の垂下壁(31a)の下端面が第2部材(32)の前後両壁(38)の上端面に当接するとともに、両垂下壁(31a)の前後方向内面が管受け突起(42)の前後方向外面に接触した状態で、第1部材(31)のろう材層を利用して相互にろう付され、さらに両キャップ(33)がシート状ろう材を用いて第1および第2部材(31)(32)にろう付されることにより冷媒ターン側タンク(3)が形成されており、第2部材(32)の仕切壁(39)よりも前側が冷媒流入側ヘッダ部(7)、同じく仕切壁(39)よりも後側が冷媒流出側ヘッダ部(8)となっている。第2部材(32)の仕切壁(39)の切り欠き(39b)の上端開口は第1部材(31)によって閉じられ、これにより冷媒通過穴(43)が形成されている。なお、冷媒通過穴(43)としては、仕切壁(39)に形成した切り欠き(39b)の上端開口を第1部材(31)によって閉じたものに代えて、仕切壁(39)に形成した貫通穴からなるものとすることができる。   Then, both the members (31) and (32) are caulked with the projections (39a) of the second member (32) being inserted into the through holes (37) and caulked on the front and rear walls of the first member (31) ( The lower end surface of 31a) is in contact with the upper end surfaces of the front and rear walls (38) of the second member (32), and the front and rear inner surfaces of both hanging walls (31a) are in contact with the front and rear outer surfaces of the tube receiving projection (42). In this state, the first member (31) is brazed to each other by using the brazing material layer, and both caps (33) are made of the first and second members (31), (32) using the sheet-like brazing material. The refrigerant turn side tank (3) is formed by brazing to the refrigerant, the front side of the partition wall (39) of the second member (32) is the refrigerant inflow side header portion (7), and the partition wall (39 ) Is the refrigerant outflow side header (8). The upper end opening of the notch (39b) of the partition wall (39) of the second member (32) is closed by the first member (31), thereby forming a refrigerant passage hole (43). The refrigerant passage hole (43) is formed in the partition wall (39) instead of the upper end opening of the notch (39b) formed in the partition wall (39) closed by the first member (31). It can consist of a through hole.

ここで、横断面における第1部材(31)の前後両側縁部、すなわち両垂下壁(31a)の下縁部と、第2部材(32)の前後両側縁部、すなわち前後両壁(38)の上縁部および管受け突起(42)との接合長さは、冷媒入出側タンク(2)の場合と同様に、第1部材(31)の垂下壁(31a)と第2部材(31)の前後両壁(38)のうち薄肉のもの、ここでは垂下壁(31a)の肉厚の1.2倍以上であることが好ましく、2倍以上であることが望ましい。この場合、第1部材(31)と第2部材(32)とのろう付強度が増大し、ろう付部の破損やろう付部からの漏れの発生を防止することができる。   Here, the front and rear side edges of the first member (31) in the cross section, that is, the lower edges of both hanging walls (31a), and the front and rear side edges of the second member (32), that is, both front and rear walls (38) The joining length between the upper edge of the pipe and the pipe receiving protrusion (42) is the same as in the case of the refrigerant inlet / outlet tank (2), and the hanging wall (31a) of the first member (31) and the second member (31). Of the two front and rear walls (38), the wall thickness is preferably 1.2 times or more, and preferably 2 times or more the wall thickness of the hanging wall (31a). In this case, the brazing strength between the first member (31) and the second member (32) is increased, and breakage of the brazed portion and occurrence of leakage from the brazed portion can be prevented.

前後の熱交換管群(11)を構成する熱交換管(9)はアルミニウム押出形材で形成されたベア材からなり、前後方向に幅広の偏平状で、その内部に長さ方向に伸びる複数の冷媒通路が並列状に形成されている。また、熱交換管(9)の前後両端壁は外方に突出した円弧状となっている。前側の熱交換管群(11)の熱交換管(9)と、後側の熱交換管群(11)の熱交換管(9)とは、左右方向の同一位置に来るように配置されており、熱交換管(9)の上端部は冷媒入出側タンク(2)の第1部材(14)の管挿通穴(19)に挿通されるとともにその上端面が管受け突起(26)に当接した状態で、第1部材(14)のろう材層を利用して第1部材(14)にろう付され、同じく下端部は冷媒ターン側タンク(3)の第1部材(31)の管挿通穴(36)に挿通されるとともにその下端面が管受け突起(42)に当接した状態で、第1部材(31)のろう材層を利用して第1部材(31)にろう付されている。そして、前側熱交換管群(11)の熱交換管(9)が冷媒入口ヘッダ部(5)および冷媒流入側ヘッダ部(7)に連通し、後側熱交換管群(11)の熱交換管(9)が冷媒出口ヘッダ部(6)および冷媒流出側ヘッダ部(8)に連通している。   The heat exchange pipe (9) constituting the front and rear heat exchange pipe group (11) is made of a bare material formed of an aluminum extruded profile, and has a wide flat shape in the front and rear direction, and a plurality of parts extending in the length direction therein. The refrigerant passages are formed in parallel. The front and rear end walls of the heat exchange tube (9) have an arc shape protruding outward. The heat exchange pipe (9) of the front heat exchange pipe group (11) and the heat exchange pipe (9) of the rear heat exchange pipe group (11) are arranged to be at the same position in the left-right direction. The upper end of the heat exchange pipe (9) is inserted into the pipe insertion hole (19) of the first member (14) of the refrigerant inlet / outlet tank (2) and the upper end surface of the heat exchange pipe (9) contacts the pipe receiving projection (26). In the state of contact, the brazing material layer of the first member (14) is used to braze the first member (14), and the lower end of the pipe is the pipe of the first member (31) of the refrigerant turn side tank (3). The first member (31) is brazed using the brazing material layer of the first member (31) while being inserted into the insertion hole (36) and its lower end surface is in contact with the tube receiving projection (42). Has been. Then, the heat exchange pipe (9) of the front heat exchange pipe group (11) communicates with the refrigerant inlet header section (5) and the refrigerant inflow header section (7), and heat exchange of the rear heat exchange pipe group (11) The pipe (9) communicates with the refrigerant outlet header part (6) and the refrigerant outlet header part (8).

ここで、熱交換管(9)の上端部における冷媒入口ヘッダ部(5)および冷媒出口ヘッダ部(6)内への突出長さ、ならびに同じく下端部における冷媒流入側ヘッダ部(7)および冷媒流出側ヘッダ部(8)内への突出長さは、最小部分、すなわち上端部にあっては前後両側縁部、下端部にあっては前後方向外側縁部において、それぞれ1mm以上であることが好ましい。この場合、熱交換管(9)を第1部材(14)(31)にろう付する際に、熱交換管(9)の冷媒通路内にろう材が詰まることが防止され、その結果圧力損失の増大が防止されて冷却性能の低下を防止することが可能になる。また、熱交換管(9)の上端面と、冷媒入口ヘッダ部(5)および冷媒出口ヘッダ部(6)の内周面における熱交換管(9)上端面から最も離れた部分、すなわち連結壁(25)の上端部の内面との直線距離、ならびに熱交換管(9)の下端面と、冷媒流入側ヘッダ部(7)および冷媒流出側ヘッダ部(8)の内周面における熱交換管(9)下端面から最も離れた部分、すなわち連結壁(41)の平坦部の上面との直線距離は、それぞれ3mm以上であることが好ましい。この場合、すべての熱交換管(9)への冷媒の分流が不均一になることおよび圧力損失の増大が防止され、その結果冷却性能の低下を防止することが可能になる。   Here, the protruding length into the refrigerant inlet header (5) and the refrigerant outlet header (6) at the upper end of the heat exchange pipe (9), and the refrigerant inflow header (7) and the refrigerant at the lower end as well. The length of protrusion into the outflow side header (8) should be 1 mm or more at the minimum part, that is, both the front and rear side edges at the upper end and the front and rear outer edges at the lower end. preferable. In this case, when the heat exchange pipe (9) is brazed to the first member (14) (31), the brazing material is prevented from being clogged in the refrigerant passage of the heat exchange pipe (9), resulting in pressure loss. It is possible to prevent the cooling performance from deteriorating. Further, the upper end surface of the heat exchange pipe (9) and the innermost surface of the refrigerant inlet header part (5) and the refrigerant outlet header part (6), the part farthest from the upper end face of the heat exchange pipe (9), that is, the connecting wall (25) The linear distance from the inner surface of the upper end portion, the lower end surface of the heat exchange tube (9), and the heat exchange tube on the inner peripheral surface of the refrigerant inflow side header portion (7) and the refrigerant outflow side header portion (8). (9) It is preferable that the linear distance from the portion farthest from the lower end surface, that is, the upper surface of the flat portion of the connecting wall (41) is 3 mm or more. In this case, non-uniform distribution of the refrigerant to all the heat exchange tubes (9) and an increase in pressure loss are prevented, and as a result, a decrease in cooling performance can be prevented.

また、熱交換管(9)の左右方向の厚みである管高さは0.75〜1.5mm、前後方向の幅である管幅は12〜18mm、周壁の肉厚は0.175〜0.275mm、冷媒通路どうしを仕切る仕切壁の厚さは0.175〜0.275mm、仕切壁のピッチは0.5〜3.0mm、前後両端壁の外面の曲率半径は0.35〜0.75mmであることが好ましい。   Moreover, the pipe height which is the thickness of the heat exchange pipe (9) in the left-right direction is 0.75 to 1.5 mm, the pipe width which is the width in the front-rear direction is 12 to 18 mm, and the wall thickness of the peripheral wall is 0.175 to 0. .275 mm, the thickness of the partition wall partitioning the refrigerant passages is 0.175 to 0.275 mm, the pitch of the partition walls is 0.5 to 3.0 mm, and the curvature radius of the outer surfaces of the front and rear end walls is 0.35 to 0. It is preferable that it is 75 mm.

なお、熱交換管(9)としては、アルミニウム押出形材製のものに代えて、アルミニウム製電縫管の内部にインナーフィンを挿入することにより複数の冷媒通路を形成したものを用いてもよい。また、両面にろう材層を有するアルミニウムブレージングシートに圧延加工を施すことにより形成され、かつ連結部を介して連なった2つの平坦壁形成部と、各平坦壁形成部における連結部とは反対側の側縁より***状に一体成形された側壁形成部と、平坦壁形成部の幅方向に所定間隔をおいて両平坦壁形成部よりそれぞれ***状に一体成形された複数の仕切壁形成部とを備えた板を、連結部においてヘアピン状に曲げて側壁形成部どうしを突き合わせて相互にろう付し、仕切壁形成部により仕切壁を形成したものを用いてもよい。この場合、コルゲートフィンはベア材からなるものを用いる。   As the heat exchange pipe (9), instead of the one made of an aluminum extruded shape, one in which a plurality of refrigerant passages are formed by inserting inner fins into an aluminum electric sewing pipe may be used. . Also, two flat wall forming parts formed by rolling an aluminum brazing sheet having a brazing filler metal layer on both sides and connected via connecting parts, and the opposite side of the connecting part in each flat wall forming part A side wall forming portion integrally formed in a protruding shape from the side edges of the flat wall forming portion, and a plurality of partition wall forming portions integrally formed in a protruding shape from the two flat wall forming portions at a predetermined interval in the width direction of the flat wall forming portion. It is also possible to use a plate having a partition wall formed by bending a plate with a hairpin shape at the connecting portion, butting the side wall forming portions with each other and brazing each other. In this case, a corrugated fin made of a bare material is used.

コルゲートフィン(12)は両面にろう材層を有するアルミニウムブレージングシートを用いて波状に形成されたものであり、その波頭部と波底部を連結する連結部に、前後方向に並列状に複数のルーバが形成されている。コルゲートフィン(12)は前後両熱交換管群(11)に共有されており、その前後方向の幅は前側熱交換管群(11)の熱交換管(9)の前側縁と後側熱交換管群(11)の熱交換管(9)の後側縁との間隔をほぼ等しくなっている。ここで、コルゲートフィン(12)のフィン高さである波頭部と波底部との直線距離は7.0mm〜10.0mm、同じくフィンピッチである連結部のピッチは1.3〜1.8mmであることが好ましい。なお、1つのコルゲートフィンが前後両熱交換管群(11)に共有される代わりに、両熱交換管群(11)の隣り合う熱交換管(9)どうしの間にそれぞれコルゲートフィンが配置されていてもよい。   The corrugated fin (12) is formed in a corrugated shape using an aluminum brazing sheet having a brazing filler metal layer on both sides, and a plurality of the corrugated fins (12) connected in parallel in the front-rear direction to the connecting portion connecting the wave head and the wave bottom. A louver is formed. The corrugated fin (12) is shared by both the front and rear heat exchange tube group (11), and the width in the front and rear direction is the front side edge and the rear side heat exchange of the heat exchange tube (9) of the front side heat exchange tube group (11). The intervals between the rear edge of the heat exchange tube (9) of the tube group (11) are substantially equal. Here, the linear distance between the wave head and the wave bottom which is the fin height of the corrugated fin (12) is 7.0 mm to 10.0 mm, and the pitch of the connecting portion which is also the fin pitch is 1.3 to 1.8 mm. It is preferable that In addition, instead of sharing one corrugated fin between the front and rear heat exchange tube groups (11), corrugated fins are arranged between adjacent heat exchange tubes (9) of both heat exchange tube groups (11). It may be.

エバポレータ(1)は、各構成部材を組み合わせて仮止めし、すべての構成部材を一括してろう付することにより製造される。   The evaporator (1) is manufactured by temporarily fastening a combination of the constituent members and brazing all the constituent members together.

エバポレータ(1)は、圧縮機およびコンデンサとともに冷凍サイクルを構成し、カーエアコンとして車両、たとえば自動車に搭載される。   The evaporator (1) constitutes a refrigeration cycle together with a compressor and a condenser, and is mounted on a vehicle such as an automobile as a car air conditioner.

上述したエバポレータ(1)において、図6に示すように、圧縮機、凝縮器および減圧手段を通過した気液混相の2層冷媒が冷媒入出部材(29)の冷媒流入口(29a)および右側キャップ(17)の冷媒入口(17a)を通って冷媒入出側タンク(2)の冷媒入口ヘッダ部(5)内に入り、分流して前側熱交換管群(11)のすべての熱交換管(9)の冷媒通路内に流入する。   In the evaporator (1) described above, as shown in FIG. 6, the gas-liquid mixed phase two-layer refrigerant that has passed through the compressor, the condenser, and the decompression means is supplied to the refrigerant inlet / outlet (29a) and the right cap of the refrigerant inlet / outlet member (29). Enters the refrigerant inlet header (5) of the refrigerant inlet / outlet tank (2) through the refrigerant inlet (17a) of (17), and divides all the heat exchange pipes (9 ) Flows into the refrigerant passage.

すべての熱交換管(9)の冷媒通路内に流入した冷媒は、冷媒通路内を下方に流れて冷媒ターン側タンク(3)の冷媒流入側ヘッダ部(7)内に入る。冷媒流入側ヘッダ部(7)内に入った冷媒は、仕切壁(39)の冷媒通過穴(43)を通って冷媒流出側ヘッダ部(8)内に入る。   The refrigerant that has flowed into the refrigerant passages of all the heat exchange tubes (9) flows downward in the refrigerant passages and enters the refrigerant inflow side header portion (7) of the refrigerant turn side tank (3). The refrigerant that has entered the refrigerant inflow side header portion (7) enters the refrigerant outflow side header portion (8) through the refrigerant passage hole (43) of the partition wall (39).

冷媒流出側ヘッダ部(8)内に入った冷媒は、分流して後側熱交換管群(11)のすべての熱交換管(9)の冷媒通路内に流入し、流れ方向を変えて冷媒通路内を上方に流れて冷媒入出側タンク(2)の冷媒出口ヘッダ部(6)の下部空間(6b)内に入る。ここで、分流用抵抗板(27)によって冷媒の流れに抵抗が付与されるので、冷媒流出側ヘッダ部(8)から後側熱交換管群(11)のすべての熱交換管(9)への分流が均一化されるとともに、冷媒入口ヘッダ部(5)から前側熱交換管群(11)のすべての熱交換管(9)への分流も一層均一化される。その結果、両熱交換管群(11)のすべての熱交換管(9)の冷媒流通量が均一化される。   The refrigerant that has entered the refrigerant outflow side header section (8) is divided and flows into the refrigerant passages of all the heat exchange pipes (9) in the rear heat exchange pipe group (11), and the flow direction is changed to change the refrigerant. It flows upward in the passage and enters the lower space (6b) of the refrigerant outlet header (6) of the refrigerant inlet / outlet tank (2). Here, resistance is imparted to the refrigerant flow by the shunt resistor plate (27), so that the refrigerant outflow side header (8) to all the heat exchange pipes (9) in the rear heat exchange pipe group (11). Is also made uniform, and the flow from the refrigerant inlet header (5) to all the heat exchange tubes (9) in the front heat exchange tube group (11) is also made more uniform. As a result, the refrigerant circulation amount of all the heat exchange tubes (9) in both heat exchange tube groups (11) is made uniform.

ついで、冷媒は分流用抵抗板(27)の冷媒通過穴(28A)(28B)を通って冷媒出口ヘッダ部(6)の上部空間(6a)内に入り、キャップ(17)の冷媒出口(17b)および冷媒入出部材(29)の冷媒流出口(29b)を通って流出する。そして、冷媒が前側熱交換管群(11)の熱交換管(9)の冷媒通路、および後側熱交換管群(11)の熱交換管(9)の冷媒通路を流れる間に、通風間隙を図1に矢印Xで示す方向に流れる空気と熱交換をし、気相となって流出する。   Next, the refrigerant enters the upper space (6a) of the refrigerant outlet header (6) through the refrigerant passage holes (28A) (28B) of the shunt resistor plate (27), and enters the refrigerant outlet (17b) of the cap (17). ) And the refrigerant outlet / outlet (29b) of the refrigerant inlet / outlet member (29). Then, while the refrigerant flows through the refrigerant passage of the heat exchange pipe (9) of the front heat exchange pipe group (11) and the refrigerant passage of the heat exchange pipe (9) of the rear heat exchange pipe group (11), the ventilation gap Is exchanged with the air flowing in the direction indicated by the arrow X in FIG.

このとき、コルゲートフィン(12)の表面に凝縮水が発生し、この凝縮水が冷媒ターン側タンク(3)の頂面(3a)に流下する。冷媒ターン側タンク(3)の頂面(3a)に流下した凝縮水は、キャピラリ効果により溝(35)内に入り、溝(35)内を流れて前後方向外側の端部から冷媒ターン側タンク(3)の下方へ落下する。こうして、冷媒ターン側タンク(3)の頂面(3a)とコルゲートフィン(12)の下端との間に多くの凝縮水が溜まることに起因する凝縮水の氷結が防止され、その結果エバポレータ(1)の性能低下が防止される。   At this time, condensed water is generated on the surface of the corrugated fin (12), and this condensed water flows down to the top surface (3a) of the refrigerant turn side tank (3). The condensed water flowing down to the top surface (3a) of the refrigerant turn side tank (3) enters the groove (35) by the capillary effect, flows in the groove (35), and flows from the outer end in the front-rear direction to the refrigerant turn side tank. Drop down (3). In this way, freezing of condensed water due to accumulation of a large amount of condensed water between the top surface (3a) of the refrigerant turn side tank (3) and the lower end of the corrugated fin (12) is prevented, and as a result, the evaporator (1 ) Performance degradation is prevented.

図7はこの発明の第2の実施形態を示す。   FIG. 7 shows a second embodiment of the present invention.

図7に示す第2の実施形態の場合、冷媒入出側タンク(2)の第1部材(14)の立ち上がり壁(18a)の上端面と第2部材(15)の前後両壁(23)の下端面との当接部よりも若干上方の高さ位置において、第2部材(15)の前後両壁(23)内面に、それぞれヘッダ部(5)(6)内方に突出した管受け突起(50)が一体に形成されており、熱交換管(9)の上端面が管受け突起(50)に当接させられている。また、冷媒出口ヘッダ部(6)の分流用抵抗板(27)は、管受け突起(50)の上方に位置しており、第2部材(15)の後壁(23)、仕切壁(24)および管受け突起(50)と一体に形成されている。この場合も、熱交換管(9)の上端部における冷媒入口ヘッダ部(5)および冷媒出口ヘッダ部(6)内への突出長さは、最小部分、すなわち両側縁部において、1mm以上であることが好ましい。また、熱交換管(9)の上端面と、冷媒入口ヘッダ部(5)および冷媒出口ヘッダ部(6)の内周面における熱交換管(9)上端面から最も離れた部分、すなわち連結壁(25)の上端部の内面との直線距離は、3mm以上であることが好ましい。その他の構成は、上述した第1の実施形態と同じである。   In the case of the second embodiment shown in FIG. 7, the upper end surface of the rising wall (18a) of the first member (14) of the refrigerant inlet / outlet tank (2) and the front and rear walls (23) of the second member (15). Tube receiving projections projecting inward of the header portions (5) and (6) on the inner surfaces of the front and rear walls (23) of the second member (15) at a height slightly above the contact portion with the lower end surface, respectively. (50) is integrally formed, and the upper end surface of the heat exchange tube (9) is brought into contact with the tube receiving projection (50). Further, the shunt resistor plate (27) of the refrigerant outlet header (6) is located above the pipe receiving projection (50), and the rear wall (23) and partition wall (24) of the second member (15). ) And the tube receiving projection (50). Also in this case, the protrusion length into the refrigerant inlet header (5) and the refrigerant outlet header (6) at the upper end of the heat exchange pipe (9) is 1 mm or more at the minimum portion, that is, both side edges. It is preferable. Further, the upper end surface of the heat exchange pipe (9) and the innermost surface of the refrigerant inlet header part (5) and the refrigerant outlet header part (6), the part farthest from the upper end face of the heat exchange pipe (9), that is, the connecting wall The linear distance from the inner surface of the upper end of (25) is preferably 3 mm or more. Other configurations are the same as those of the first embodiment described above.

なお、第2の実施形態において、冷媒ターン側タンク(3)の第1部材(31)の前後の垂下壁(31a)の下端面と第2部材(32)の前後両壁(38)の上端面との当接部よりも若干下方の高さ位置において、第2部材(32)の前後両壁内面に、それぞれヘッダ部内方に突出した管受け突起が一体に形成されており、熱交換管(9)の下端面が管受け突起に当接させられていることもある。この場合も、熱交換管(9)の下端部における冷媒流入側ヘッダ部(7)および冷媒流出側ヘッダ部(8)内への突出長さは、最小部分、すなわち前後方向外側縁部において、1mm以上であることが好ましい。また、熱交換管(9)の下端面と、冷媒流入側ヘッダ部(7)および冷媒流出側ヘッダ部(8)の内周面における熱交換管(9)下端面から最も離れた部分との直線距離は、3mm以上であることが好ましい。   In the second embodiment, the lower end surface of the hanging wall (31a) before and after the first member (31) of the refrigerant turn side tank (3) and the upper and lower walls (38) of the second member (32). At the height position slightly below the abutting portion with the end face, pipe receiving projections projecting inward of the header part are integrally formed on the inner surfaces of both front and rear walls of the second member (32), and the heat exchange pipe The lower end surface of (9) may be in contact with the tube receiving projection. Also in this case, the protrusion length into the refrigerant inflow side header portion (7) and the refrigerant outflow side header portion (8) at the lower end of the heat exchange pipe (9) is the minimum portion, that is, the front and rear direction outer edge portion. It is preferable that it is 1 mm or more. In addition, the lower end surface of the heat exchange pipe (9) and the portion farthest from the lower end face of the heat exchange pipe (9) on the inner peripheral surface of the refrigerant inflow side header portion (7) and the refrigerant outflow side header portion (8). The linear distance is preferably 3 mm or more.

図8はこの発明の第3の実施形態を示す。   FIG. 8 shows a third embodiment of the present invention.

図8に示す第3の実施形態の場合、冷媒入出側タンク(2)の第2部材(15)の仕切壁(24)の前後両側面に、それぞれヘッダ部(5)(6)内方に突出した管受け突起(60)が一体に形成されており、熱交換管(9)の上端面が管受け突起(60)に当接させられている。また、冷媒出口ヘッダ部(6)の分流用抵抗板(27)は、管受け突起(60)の上方に位置しており、第2部材(15)の後壁(23)、仕切壁(24)および管受け突起(60)と一体に形成されている。この場合も、熱交換管(9)の上端部における冷媒入口ヘッダ部(5)および冷媒出口ヘッダ部(6)内への突出長さは、最小部分、すなわち両側縁部において、それぞれ1mm以上であることが好ましい。また、熱交換管(9)の上端面と、冷媒入口ヘッダ部(5)および冷媒出口ヘッダ部(6)の内周面における熱交換管(9)上端面から最も離れた部分、すなわち連結壁(25)の上端部の内面との直線距離は、3mm以上であることが好ましい。その他の構成は、上述した第1の実施形態と同じである。   In the case of the third embodiment shown in FIG. 8, on the front and rear side surfaces of the partition wall (24) of the second member (15) of the refrigerant inlet / outlet tank (2), respectively, in the header portions (5) and (6), respectively. The protruding tube receiving projection (60) is integrally formed, and the upper end surface of the heat exchange tube (9) is brought into contact with the tube receiving projection (60). Further, the shunt resistor plate (27) of the refrigerant outlet header (6) is positioned above the pipe receiving projection (60), and the rear wall (23) and partition wall (24) of the second member (15). ) And the tube receiving projection (60). Also in this case, the protruding lengths into the refrigerant inlet header (5) and the refrigerant outlet header (6) at the upper end of the heat exchange pipe (9) are each 1 mm or more at the minimum portion, that is, both side edges. Preferably there is. Further, the upper end surface of the heat exchange pipe (9) and the innermost surface of the refrigerant inlet header part (5) and the refrigerant outlet header part (6), the part farthest from the upper end face of the heat exchange pipe (9), that is, the connecting wall The linear distance from the inner surface of the upper end of (25) is preferably 3 mm or more. Other configurations are the same as those of the first embodiment described above.

冷媒ターン側タンク(3)の第2部材(32)の仕切壁(39)の前後両側面に、それぞれヘッダ部(7)(8)内方に突出した管受け突起(61)が一体に形成されており、熱交換管(9)の下端面が管受け突起(61)に当接させられている。この場合も、熱交換管(9)の下端部における冷媒流入側ヘッダ部(7)および冷媒流出側ヘッダ部(8)内への突出長さは、最小部分、すなわち前後方向外側縁部において、1mm以上であることが好ましい。また、熱交換管(9)の下端面と、冷媒流入側ヘッダ部(7)および冷媒流出側ヘッダ部(8)の内周面における熱交換管(9)下端面から最も離れた部分との直線距離は、3mm以上であることが好ましい。   Tube receiving projections (61) projecting inward from the header portions (7) and (8) are formed integrally on the front and rear sides of the partition wall (39) of the second member (32) of the refrigerant turn side tank (3). The lower end surface of the heat exchange tube (9) is brought into contact with the tube receiving projection (61). Also in this case, the protrusion length into the refrigerant inflow side header portion (7) and the refrigerant outflow side header portion (8) at the lower end of the heat exchange pipe (9) is the minimum portion, that is, the front and rear direction outer edge portion. It is preferable that it is 1 mm or more. In addition, the lower end surface of the heat exchange pipe (9) and the portion farthest from the lower end face of the heat exchange pipe (9) on the inner peripheral surface of the refrigerant inflow side header portion (7) and the refrigerant outflow side header portion (8). The linear distance is preferably 3 mm or more.

なお、第3の実施形態において、冷媒入出側タンク(2)の第2部材(15)の前後両壁(23)および冷媒ターン側タンク(3)の第2部材(32)の前後両壁(38)に、それぞれ上述した第1の実施形態と同様に、管受け突起(60)(61)と同一高さ位置にある管受け突起(26)(42)が一体に形成されていてもよい。   In the third embodiment, both the front and rear walls (23) of the second member (15) of the refrigerant inlet / outlet tank (2) and the front and rear walls of the second member (32) of the refrigerant turn side tank (3) ( Similarly to the first embodiment described above, the tube receiving projections (26) and (42) at the same height as the tube receiving projections (60) and (61) may be integrally formed on 38). .

上記すべての実施形態においては、両タンク(2)(3)の冷媒入口ヘッダ部(5)と冷媒流入側ヘッダ部(7)との間、および冷媒出口ヘッダ部(6)と冷媒流出側ヘッダ部(8)との間にそれぞれ1つの熱交換管群(11)が設けられているが、これに限るものではなく、両タンク(2)(3)の冷媒入口ヘッダ部(5)と冷媒流入側ヘッダ部(7)との間、および冷媒出口ヘッダ部(6)と冷媒流出側ヘッダ部(8)との間にそれぞれ1または2以上の熱交換管群(11)が設けられていてもよい。また、上記実施形態においては、冷媒入出側タンク(2)が上、冷媒ターン側タンク(3)が下となっているが、これとは逆に、冷媒入出側タンク(2)が下、冷媒ターン側タンク(3)が上にくるように用いられる場合がある。   In all the above embodiments, between the refrigerant inlet header portion (5) and the refrigerant inflow side header portion (7) of both tanks (2) and (3), and between the refrigerant outlet header portion (6) and the refrigerant outflow side header. One heat exchange pipe group (11) is provided between each part (8), but is not limited to this, and the refrigerant inlet header part (5) of both tanks (2) (3) and the refrigerant One or two or more heat exchange pipe groups (11) are provided between the inflow header section (7) and between the refrigerant outlet header section (6) and the refrigerant outflow header section (8). Also good. In the above embodiment, the refrigerant inlet / outlet tank (2) is on the upper side and the refrigerant turn side tank (3) is on the lower side. It may be used with the turn side tank (3) on top.

また、上記すべての実施形態においては、冷媒入出側タンク(2)の第2部材(15)および冷媒ターン側タンク(3)の第2部材(32)に管受け突起(26)(42)(50)(60)(61)が設けられているが、冷媒入出側タンク(2)の第1部材(14)および冷媒ターン側タンク(3)の第1部材(31)を押出形材製とし、これに管受け突起を設けておいてもよい。   In all the above embodiments, the pipe receiving projections (26), (42) (the second member (15) of the refrigerant inlet / outlet tank (2)) and the second member (32) of the refrigerant turn side tank (3) are provided. 50) (60) (61) are provided, but the first member (14) of the refrigerant inlet / outlet tank (2) and the first member (31) of the refrigerant turn side tank (3) are made of extruded shape members. In addition, a tube receiving projection may be provided on this.

さらに、上記実施形態においては、エバポレータについて説明したが、この発明は他の熱交換器、たとえばコンデンサにも適用可能である。   Furthermore, in the said embodiment, although the evaporator was demonstrated, this invention is applicable also to another heat exchanger, for example, a capacitor | condenser.

この発明によるエバポレータの全体構成を示す一部切り欠き斜視図である。1 is a partially cutaway perspective view showing an overall configuration of an evaporator according to the present invention. 同じく一部を省略した垂直断面図である。It is the vertical sectional view which abbreviate | omitted a part similarly. 冷媒入出側タンクの分解斜視図である。It is a disassembled perspective view of a refrigerant in / out side tank. 冷媒入出側タンクの第1部材と第2部材との接合部を示す拡大断面図である。It is an expanded sectional view which shows the junction part of the 1st member and 2nd member of a refrigerant | coolant in / out side tank. 冷媒ターン側タンクの分解斜視図である。It is a disassembled perspective view of a refrigerant | coolant turn side tank. エバポレータにおける冷媒の流れ方を示す図である。It is a figure which shows how the refrigerant | coolant flows in an evaporator. この発明によるエバポレータの第2の実施形態を示す冷媒入出側タンクの拡大横断面図である。It is an expansion cross-sectional view of the refrigerant | coolant in / out side tank which shows 2nd Embodiment of the evaporator by this invention. この発明によるエバポレータの第3の実施形態を示す図2相当の図である。FIG. 6 is a view corresponding to FIG. 2 and showing a third embodiment of the evaporator according to the present invention.

符号の説明Explanation of symbols

(1):エバポレータ
(2):冷媒入出側タンク(第1のタンク)
(3):冷媒ターン側タンク(第2のタンク)
(4):熱交換コア部
(5):冷媒入口ヘッダ部
(6):冷媒出口ヘッダ部
(7):冷媒流入側ヘッダ部
(8):冷媒流出側ヘッダ部
(9):熱交換管
(11):熱交換管群
(14):第1部材
(15):第2部材
(24):仕切壁
(26)(42)(50)(60)(61):管受け突起
(31):第1部材
(32):第2部材
(1): Evaporator
(2): Refrigerant inlet / outlet tank (first tank)
(3): Refrigerant turn side tank (second tank)
(4): Heat exchange core
(5): Refrigerant inlet header
(6): Refrigerant outlet header
(7): Refrigerant inflow side header
(8): Refrigerant outflow header
(9): Heat exchange pipe
(11): Heat exchange tube group
(14): First member
(15): Second member
(24): Partition wall
(26) (42) (50) (60) (61): Tube receiving projection
(31): First member
(32): Second member

Claims (22)

互いに間隔をおいて配置された2つのヘッダ部と、両ヘッダ部間に並列状に配置された複数の熱交換管とを備えており、各熱交換管の両端部が両ヘッダ部に形成された管挿通穴に挿入された状態でヘッダ部に接続されている熱交換器であって、
少なくとも一方のヘッダ部に、内方に突出した管受け突起が設けられ、熱交換管の端部が管受け突起に当接している熱交換器。
It has two header parts arranged at a distance from each other and a plurality of heat exchange tubes arranged in parallel between both header parts, and both end parts of each heat exchange pipe are formed in both header parts. A heat exchanger connected to the header portion in a state inserted into the pipe insertion hole,
A heat exchanger in which at least one header portion is provided with a tube receiving protrusion protruding inward, and an end of the heat exchange tube is in contact with the tube receiving protrusion.
両ヘッダ部内に、それぞれ内方に突出した管受け突起が設けられ、熱交換管の両端部がそれぞれ管受け突起に当接している請求項1記載の熱交換器。 The heat exchanger according to claim 1, wherein tube header projections projecting inward are provided in both header portions, and both end portions of the heat exchange tubes are in contact with the tube projections. 熱交換管におけるヘッダ部内へ突出した長さが1mm以上である請求項1または2記載の熱交換器。 The heat exchanger according to claim 1 or 2, wherein a length of the heat exchange pipe protruding into the header portion is 1 mm or more. 熱交換管の端面と、ヘッダ部の内周面における熱交換管端面から最も離れた部分との直線距離が3mm以上である請求項1〜3のうちのいずれかに記載の熱交換器。 The heat exchanger according to any one of claims 1 to 3, wherein a linear distance between an end face of the heat exchange pipe and a portion farthest from the end face of the heat exchange pipe on the inner peripheral surface of the header portion is 3 mm or more. 少なくともいずれか一方のヘッダ部が、管挿通穴を有しかつ熱交換管がろう付された第1部材と、第1部材における熱交換管とは反対側の部分にろう付された第2部材とよりなり、第1部材および第2部材のうちの少なくともいずれか一方の両側縁部に内方に突出した管受け突起が設けられている請求項1〜4のうちのいずれかに記載の熱交換器。 A first member in which at least one of the header portions has a tube insertion hole and the heat exchange tube is brazed, and a second member brazed to a portion of the first member opposite to the heat exchange tube The heat according to any one of claims 1 to 4, wherein tube receiving projections projecting inward are provided at both side edges of at least one of the first member and the second member. Exchanger. 少なくともいずれか一方のヘッダ部が、管挿通穴を有しかつ熱交換管がろう付された第1部材と、第1部材における熱交換管とは反対側の部分にろう付された第2部材とよりなり、第2部材の両側縁部に内方に突出しかつ第1部材側に突出した管受け突起が設けられ、第1部材の両側縁部が、管受け突起の外面に接した状態で第2部材の両側縁部に突き合わせ状にろう付されている請求項1〜4のうちのいずれかに記載の熱交換器。 A first member in which at least one of the header portions has a tube insertion hole and the heat exchange tube is brazed, and a second member brazed to a portion of the first member opposite to the heat exchange tube The tube receiving projections projecting inward and projecting to the first member side are provided on both side edges of the second member, and the both side edges of the first member are in contact with the outer surface of the tube receiving projection. The heat exchanger according to any one of claims 1 to 4, wherein the second member is brazed to both side edges of the second member. 横断面における第1部材の両側縁部と第2部材の両側縁部とのろう付長さが、管受け突起の部分を含んで第1部材および第2部材のうち薄肉のものの肉厚の1.2倍以上である請求項5または6記載の熱交換器。 The brazing length between the side edges of the first member and the side edges of the second member in the cross section is 1 of the thickness of the thin one of the first member and the second member including the tube receiving projections. The heat exchanger according to claim 5 or 6, wherein the heat exchanger is twice or more. 横断面における第1部材の両側縁部と第2部材の両側縁部とのろう付長さが、管受け突起の部分を含んで第1部材および第2部材のうち薄肉のものの肉厚の2倍以上である請求項5または6記載の熱交換器。 The brazing length between the side edges of the first member and the side edges of the second member in the cross section is 2 which is the thickness of the thin one of the first member and the second member, including the tube receiving projections. The heat exchanger according to claim 5 or 6, wherein the heat exchanger is double or more. 間隔をおいて配置された複数の熱交換管からなる熱交換管群が通風方向に並んで複数列配置されることにより構成された熱交換コア部と、熱交換管の一端側における通風方向下流側に配置され、かつ少なくとも1列の熱交換管群の熱交換管が接続された冷媒入口ヘッダ部と、熱交換管の一端側において冷媒入口ヘッダ部の通風方向上流側に配置され、かつ少なくとも1列の熱交換管群の熱交換管が接続された冷媒出口ヘッダ部と、熱交換管の他端側に配置され、かつ冷媒入口ヘッダ部に接続されている熱交換管が接続された冷媒流入側ヘッダ部と、熱交換管の他端側において冷媒流入側ヘッダ部の通風方向上流側に配置され、かつ冷媒出口ヘッダ部に接続されている熱交換管群の熱交換管が接続された冷媒流出側ヘッダ部とを備えており、冷媒流入側ヘッダ部と冷媒流出側ヘッダ部とが連通させられ、各熱交換管の両端部が各ヘッダ部に形成された管挿通穴に挿入された状態でヘッダ部に接続されているエバポレータにおいて、
冷媒入口ヘッダ部および冷媒流入側ヘッダ部のうちの少なくともいずれか一方と、冷媒出口ヘッダ部および冷媒流出側ヘッダ部のうちの少なくともいずれか一方とに、内方に突出した管受け突起が設けられ、熱交換管の端部が管受け突起に当接しているエバポレータ。
A heat exchange core section formed by arranging a plurality of rows of heat exchange pipes arranged in a row along a ventilation direction, and a downstream side in the ventilation direction on one end side of the heat exchange pipe And a refrigerant inlet header part to which heat exchange pipes of at least one row of heat exchange pipe groups are connected, at one end side of the heat exchange pipe, arranged upstream of the refrigerant inlet header part in the ventilation direction, and at least Refrigerant outlet header part to which heat exchange pipes of one row of heat exchange pipe groups are connected, and refrigerant to which the heat exchange pipes arranged on the other end side of the heat exchange pipes and connected to the refrigerant inlet header part are connected. The heat exchange pipe of the heat exchange pipe group that is arranged on the upstream side in the ventilation direction of the refrigerant inflow side header part on the other end side of the heat exchange pipe and connected to the refrigerant outlet header part is connected to the inflow side header part. And a refrigerant outflow header. An inlet-side header section and the refrigerant outlet side header portion is communicated in the evaporator having both ends connected to the header portion in a state of being inserted into tube insertion holes formed in the header portion of each heat exchange tube,
At least one of the refrigerant inlet header part and the refrigerant inflow side header part and at least one of the refrigerant outlet header part and the refrigerant outflow side header part are provided with pipe receiving projections projecting inwardly. An evaporator in which the end of the heat exchange tube is in contact with the tube receiving projection.
冷媒入口ヘッダ部、冷媒流入側ヘッダ部、冷媒出口ヘッダ部および冷媒流出側ヘッダ部に、それぞれ内方に突出した管受け突起が設けられ、熱交換管の両端部がそれぞれ管受け突起に当接している請求項9記載のエバポレータ。 The refrigerant inlet header, the refrigerant inflow header, the refrigerant outlet header, and the refrigerant outflow header are provided with inwardly protruding tube receiving projections, and both end portions of the heat exchange tubes abut against the tube receiving projections, respectively. The evaporator according to claim 9. 熱交換管におけるヘッダ部内へ突出した長さが1mm以上である請求項9または10記載のエバポレータ。 The evaporator according to claim 9 or 10, wherein a length of the heat exchange pipe protruding into the header portion is 1 mm or more. 熱交換管の端面と、ヘッダ部の内周面における熱交換管端面から最も離れた部分との直線距離が3mm以上である請求項9〜11のうちのいずれかに記載のエバポレータ。 The evaporator according to any one of claims 9 to 11, wherein a linear distance between an end face of the heat exchange pipe and a portion farthest from the end face of the heat exchange pipe on the inner peripheral surface of the header portion is 3 mm or more. 冷媒入口ヘッダ部と冷媒出口ヘッダ部とが、第1のタンク内を仕切壁によって区画することにより設けられている請求項9〜12のうちのいずれかに記載のエバポレータ。 The evaporator according to any one of claims 9 to 12, wherein the refrigerant inlet header portion and the refrigerant outlet header portion are provided by partitioning the inside of the first tank by a partition wall. 冷媒流入側ヘッダ部と冷媒流出側ヘッダ部とが、第2のタンク内を、冷媒通過穴を有する仕切壁によって区画することにより設けられている請求項9〜13のうちのいずれかに記載のエバポレータ。 The refrigerant inflow side header portion and the refrigerant outflow side header portion are provided by partitioning the inside of the second tank by a partition wall having a refrigerant passage hole. Evaporator. 第1のタンクおよび/または第2のタンクが、管挿通穴を有しかつ熱交換管が接続された第1部材と、第1部材における熱交換管とは反対側の部分にろう付された第2部材とよりなり、第1部材および第2部材のうちの少なくともいずれか一方の両側縁部に内方に突出した管受け突起が設けられている請求項13または14記載のエバポレータ。 The first tank and / or the second tank are brazed to a first member having a tube insertion hole and connected to the heat exchange tube, and a portion of the first member opposite to the heat exchange tube. 15. The evaporator according to claim 13 or 14, comprising a second member, wherein pipe receiving projections projecting inward are provided at both side edges of at least one of the first member and the second member. 第1のタンクおよび/または第2のタンクが、管挿通穴を有しかつ熱交換管が接続された第1部材と、第1部材における熱交換管とは反対側の部分にろう付された第2部材とよりなり、第2部材の両側縁部に内方に突出しかつ第1部材側に突出した管受け突起が設けられ、第1部材の両側縁部が、管受け突起の外面に接した状態で第2部材の両側縁部に突き合わせ状にろう付されている請求項13または14記載のエバポレータ。 The first tank and / or the second tank are brazed to a first member having a tube insertion hole and connected to the heat exchange tube, and a portion of the first member opposite to the heat exchange tube. The second member is provided with tube receiving projections projecting inward and projecting toward the first member at both side edges of the second member, and both side edges of the first member are in contact with the outer surface of the tube receiving projection. The evaporator according to claim 13 or 14, wherein the evaporator is brazed to both side edges of the second member in a butted state. 横断面における第1部材の両側縁部と第2部材の両側縁部とのろう付長さが、管受け突起の部分を含んで第1部材および第2部材のうち薄肉のものの肉厚の1.2倍以上である請求項15または16記載のエバポレータ。 The brazing length between the side edges of the first member and the side edges of the second member in the cross section is 1 of the thickness of the thin one of the first member and the second member including the tube receiving projections. The evaporator according to claim 15 or 16, which is twice or more. 横断面における第1部材の両側縁部と第2部材の両側縁部とのろう付長さが、管受け突起の部分を含んで第1部材および第2部材のうち薄肉のものの肉厚の2倍以上である請求項15または16記載のエバポレータ。 The brazing length between the side edges of the first member and the side edges of the second member in the cross section is 2 which is the thickness of the thin one of the first member and the second member, including the tube receiving projections. The evaporator according to claim 15 or 16, wherein the evaporator is twice or more. 第1部材が、少なくとも片面にろう材層を有するアルミニウムブレージングシートよりなる請求項15〜18のうちのいずれかに記載のエバポレータ。 The evaporator according to any one of claims 15 to 18, wherein the first member is made of an aluminum brazing sheet having a brazing filler metal layer on at least one side. 第2部材がアルミニウム押出形材よりなり、第2部材に仕切壁が一体に形成されている請求項15〜19のうちのいずれかに記載のエバポレータ。 The evaporator according to any one of claims 15 to 19, wherein the second member is made of an aluminum extruded profile, and the partition wall is formed integrally with the second member. 圧縮機、コンデンサおよびエバポレータを備えており、エバポレータが、請求項9〜20のうちのいずれかに記載のエバポレータからなる冷凍サイクル。 A refrigeration cycle comprising a compressor, a condenser, and an evaporator, wherein the evaporator is an evaporator according to any one of claims 9 to 20. 請求項21記載の冷凍サイクルが、エアコンとして搭載されている車両。 A vehicle in which the refrigeration cycle according to claim 21 is mounted as an air conditioner.
JP2004230033A 2003-08-08 2004-08-06 Heat exchangers and evaporators Expired - Fee Related JP4663272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004230033A JP4663272B2 (en) 2003-08-08 2004-08-06 Heat exchangers and evaporators

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003289839 2003-08-08
JP2004230033A JP4663272B2 (en) 2003-08-08 2004-08-06 Heat exchangers and evaporators

Publications (2)

Publication Number Publication Date
JP2005090948A true JP2005090948A (en) 2005-04-07
JP4663272B2 JP4663272B2 (en) 2011-04-06

Family

ID=34466764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004230033A Expired - Fee Related JP4663272B2 (en) 2003-08-08 2004-08-06 Heat exchangers and evaporators

Country Status (1)

Country Link
JP (1) JP4663272B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005164226A (en) * 2003-11-14 2005-06-23 Showa Denko Kk Evaporator and manufacturing method of the same
JP2008020098A (en) * 2006-07-11 2008-01-31 Showa Denko Kk Heat exchanger
JP2011117699A (en) * 2009-12-07 2011-06-16 Showa Denko Kk Heat exchanger
WO2014045629A1 (en) * 2012-09-19 2014-03-27 三菱重工オートモーティブサーマルシステムズ株式会社 Heat exchanger

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0492176U (en) * 1990-12-11 1992-08-11
JPH0599584A (en) * 1991-09-19 1993-04-20 Thermal Components Inc Manifold assembly for parallel flow type heat exchanger
JPH10232097A (en) * 1997-02-19 1998-09-02 Calsonic Corp Heat-exchanger

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0492176U (en) * 1990-12-11 1992-08-11
JPH0599584A (en) * 1991-09-19 1993-04-20 Thermal Components Inc Manifold assembly for parallel flow type heat exchanger
JPH10232097A (en) * 1997-02-19 1998-09-02 Calsonic Corp Heat-exchanger

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005164226A (en) * 2003-11-14 2005-06-23 Showa Denko Kk Evaporator and manufacturing method of the same
JP4533726B2 (en) * 2003-11-14 2010-09-01 昭和電工株式会社 Evaporator and manufacturing method thereof
JP2008020098A (en) * 2006-07-11 2008-01-31 Showa Denko Kk Heat exchanger
JP2011117699A (en) * 2009-12-07 2011-06-16 Showa Denko Kk Heat exchanger
WO2014045629A1 (en) * 2012-09-19 2014-03-27 三菱重工オートモーティブサーマルシステムズ株式会社 Heat exchanger
CN104508419A (en) * 2012-09-19 2015-04-08 三菱重工汽车空调***株式会社 Heat exchanger

Also Published As

Publication number Publication date
JP4663272B2 (en) 2011-04-06

Similar Documents

Publication Publication Date Title
JP4734021B2 (en) Heat exchanger
JP4667077B2 (en) Semi-finished joint plate, joint plate, joint plate manufacturing method, and heat exchanger
JP2006132920A (en) Heat exchanger
JP2005326135A (en) Heat exchanger
JP4786234B2 (en) Heat exchanger
JP4625687B2 (en) Heat exchanger
JP4533726B2 (en) Evaporator and manufacturing method thereof
JP4686220B2 (en) Heat exchanger
JP2006170601A (en) Evaporator
JP2006194576A (en) Evaporator
JP4663272B2 (en) Heat exchangers and evaporators
JP2005069670A (en) Heat exchanger and evaporator
JP4663262B2 (en) Heat exchanger
JP4617148B2 (en) Heat exchanger
JP4630591B2 (en) Heat exchanger
JP4574321B2 (en) Heat exchanger
JP4759297B2 (en) Heat exchanger
JP2005195318A (en) Evaporator
JP4613083B2 (en) Heat exchanger
JP2005090946A (en) Heat exchanger and evaporator
JP2007071432A (en) Heat exchanger and its manufacturing method
JP2008025956A (en) Heat exchanger
JP2009299923A (en) Heat exchanger
JP2007178017A (en) Heat exchanger
JP2007187435A (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110105

R150 Certificate of patent or registration of utility model

Ref document number: 4663272

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees