JP2005156355A - Method and apparatus for measuring young's modulus - Google Patents

Method and apparatus for measuring young's modulus Download PDF

Info

Publication number
JP2005156355A
JP2005156355A JP2003395401A JP2003395401A JP2005156355A JP 2005156355 A JP2005156355 A JP 2005156355A JP 2003395401 A JP2003395401 A JP 2003395401A JP 2003395401 A JP2003395401 A JP 2003395401A JP 2005156355 A JP2005156355 A JP 2005156355A
Authority
JP
Japan
Prior art keywords
young
modulus
thin film
sample holder
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003395401A
Other languages
Japanese (ja)
Inventor
Junichi Hayasaka
淳一 早坂
Koichi Okamoto
幸一 岡本
Yoshiaki Ikeda
義秋 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2003395401A priority Critical patent/JP2005156355A/en
Publication of JP2005156355A publication Critical patent/JP2005156355A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a method for measuring thin-film Young's modulus and a Young's modulus measuring apparatus for accurately and easily measuring the amount of change in the Young's modulus accompanying the ΔE effect of a magnetic thin film. <P>SOLUTION: The Young's modulus measuring apparatus comprises an oscillator in which a first electrode thin film 21 is laminated; a support section 24 for supporting the oscillator 22, in which the first electrode thin film 21 is laminated; a second electrode thin film 23 arranged at a position opposite to the oscillator 22; a sample holder comprising a substrate for fixing the oscillator 22, having the first electrode thin film 21, the support section 24, and the second electrode thin film 23; a means for uniformly applying external magnetic field at least to the sample holder; a means for supplying a drive signal to the sample holder; and a means for detecting a signal to be measured from the sample holder and a control system. Additionally, for the Young's modulus measuring apparatus, the member of the sample holder is to be made of a nonmagnetic material. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、磁性薄膜のΔE効果に伴うヤング率変化量を測定するためのヤング率測定方法及びヤング率測定装置に関する。   The present invention relates to a Young's modulus measuring method and a Young's modulus measuring apparatus for measuring a Young's modulus change amount associated with a ΔE effect of a magnetic thin film.

従来、薄膜のヤング率測定方法といえば、振動リード法と応力印加法が代表的である。振動リード法とは、薄膜と基板を2重構造梁と考えてその共振周波数を測定し、薄膜のない場合の基板の共振周波数と比較して薄膜のヤング率を算出するものである。   Conventionally, the vibration lead method and the stress application method are typical methods for measuring the Young's modulus of a thin film. The vibration lead method is to calculate the Young's modulus of the thin film by comparing the resonance frequency of the substrate without the thin film by measuring the resonance frequency of the thin film and the substrate as a double-structured beam.

非特許文献1には、上記の振動リード法による薄膜のヤング率の算出方法について記載されている。ここで、共振周波数の検出には、光梃子法により試料表面にレーザビームを当て、反射光を光位置検出ダイオードにより、振幅がピーク値をとる周波数を見る。また、励起振動を与えるには、近傍にスピーカをおいて音波により励振する方法がある。   Non-Patent Document 1 describes a method for calculating the Young's modulus of a thin film by the above-described vibration lead method. Here, for the detection of the resonance frequency, a laser beam is applied to the sample surface by the optical insulator method, and the frequency at which the amplitude reaches a peak value is observed by the reflected light by the optical position detection diode. In order to apply excitation vibration, there is a method in which a speaker is placed in the vicinity and excited by sound waves.

また、応力印加法とは、薄膜と基板の2重構造梁の中央に直接荷重を与え、その撓み量から薄膜のヤング率を算出する方法である。非特許文献2には、上記応力印加法について、記載されている。   The stress application method is a method in which a load is directly applied to the center of the double-structure beam of the thin film and the substrate, and the Young's modulus of the thin film is calculated from the amount of bending. Non-Patent Document 2 describes the stress application method.

ここで、磁性薄膜のΔE効果とは、次のように説明される。つまり、非特許文献3には、強磁性体にかかる張力による自発磁化の回転のために余分な伸びを生じる。そのためにヤング率Eが低下(変化)する。この効果をΔE効果と説明されている。ΔE効果は、磁歪λの存在のために生じるので、当然λに比例する。そして、被測定磁性薄膜を積層した振動体に外部磁場が掛かると、該外部磁場の方向に沿うような自発磁化の回転によって、該磁歪薄膜の伸びを生じ、それとともにヤング率Eの低下(変化)がみられる。 Here, the ΔE effect of the magnetic thin film is explained as follows. That is, in Non-Patent Document 3, extra elongation occurs due to rotation of spontaneous magnetization due to tension applied to the ferromagnetic material. For this reason, Young's modulus E f decreases (changes). This effect is described as the ΔE effect. Since the ΔE effect occurs due to the presence of magnetostriction λ, it is naturally proportional to λ. When an external magnetic field is applied to the vibrating body on which the magnetic thin film to be measured is laminated, the magnetostrictive thin film is stretched by the rotation of the spontaneous magnetization along the direction of the external magnetic field, and the Young's modulus E f is lowered along with it ( Change).

島田、山田、八田、福永編、磁性材料−物性・工学的特性と測定法−、講談杜、p.319−320Shimada, Yamada, Hatta, Fukunaga, Magnetic Materials-Physical Properties / Engineering Properties and Measurement Methods-, Kodankei, p. 319-320 島田、山田、八田、福永編、磁性材料−物性・工学的特性と測定法−、講談杜、p.320−321Shimada, Yamada, Hatta, Fukunaga, Magnetic Materials-Physical Properties / Engineering Properties and Measurement Methods-, Kodankei, p. 320-321 近角著、強磁性体の物理(下)、裳華房、p.144Nakaku, Physics of Ferromagnetic Material (bottom), Suikabo, p. 144

前述の振動リード法では、共振周波数の検出に光梃子法を用いているため、光の行路長をできるだけ長くすることによって、精度を上げることができる。しかしながら、その行路長を長くすることによって、測定装置自体が大型化することや、測定精度に対する空気の揺らぎの影響が大きくなることが課題となっている。   In the above-described vibration lead method, the optical insulator method is used to detect the resonance frequency, so that the accuracy can be improved by making the optical path length as long as possible. However, by increasing the path length, it is a problem that the measuring device itself is increased in size and the influence of air fluctuations on the measurement accuracy is increased.

また、応力印加法については、被測定薄膜及び基板に直接荷重を与えるため、原理的に破壊試験となるため、センサやアクチュエータなど、最終製品上の薄膜を直接評価することはできない。更に、被測定薄膜の厚さが薄くなるにつれて、薄膜全体の体積に対して表面積が大きくなり、膜の変形には表面エネルギーの変化が無視できなくなり、煩雑な処理が必要となっている。   In addition, since the stress application method directly applies a load to the thin film to be measured and the substrate, and thus a destructive test is performed in principle, the thin film on the final product such as a sensor or an actuator cannot be directly evaluated. Furthermore, as the thickness of the thin film to be measured decreases, the surface area increases with respect to the volume of the entire thin film, and changes in the surface energy cannot be ignored for deformation of the film, requiring complicated processing.

本発明の目的は、磁性薄膜のΔE効果に伴うヤング率変化量を、正確かつ簡便に測定可能な薄膜ヤング率測定方法および小型のヤング率測定装置を提供することである。   An object of the present invention is to provide a thin-film Young's modulus measuring method and a small-sized Young's modulus measuring apparatus capable of accurately and simply measuring the amount of Young's modulus change associated with the ΔE effect of a magnetic thin film.

上記課題を解決するための手段として、本発明によれば、第1電極が積層された振動体と、該第1電極と該振動体に対向した位置に配置された第2電極からなり、試料ホルダを兼備する前記第1電極が積層された振動体上に被測定試料である磁性薄膜を堆積し、前記第1電極と第2電極間に印加された駆動信号によって発生する静電力により、前記振動体が一体で機械的に振動している状態で、外部磁場が印加されるに伴って、前記振動体の機械的な共振周波数が変化する該第1電極と第2電極間の検出信号の共振周波数の変化量を検出し、該共振周波数の変化量より、前記被測定磁性薄膜のヤング率を算出するヤング率測定方法が得られる。   As a means for solving the above-described problems, according to the present invention, a sample comprising: a vibrating body in which a first electrode is laminated; and a first electrode and a second electrode disposed at a position facing the vibrating body. A magnetic thin film, which is a sample to be measured, is deposited on a vibrating body in which the first electrode that also serves as a holder is laminated, and an electrostatic force generated by a drive signal applied between the first electrode and the second electrode, In a state where the vibration body is integrally vibrated, the detection signal between the first electrode and the second electrode changes in mechanical resonance frequency of the vibration body as an external magnetic field is applied. A Young's modulus measuring method is obtained in which the amount of change in the resonance frequency is detected and the Young's modulus of the magnetic thin film to be measured is calculated from the amount of change in the resonance frequency.

また、上記ヤング率測定装置において、被測定試料である磁性薄膜が、該試料ホルダの第1電極上に所定のマスクを介して、直接堆積され、該第1電極と第2電極間に印加された該駆動信号によって発生する静電力により、該振動体が一体で機械的に振動している状態で、該外部磁場が印加されるに伴って、該振動体の機械的な共振周波数が変化し、該第1電極と第2電極間に現れる該検出信号の共振周波数の変化量を取得し、該共振周波数の変化量より該外部磁場に対する該被測定磁性薄膜のヤング率の変化量を算出するヤング率測定方法が得られる。   In the Young's modulus measuring apparatus, a magnetic thin film, which is a sample to be measured, is directly deposited on the first electrode of the sample holder via a predetermined mask and applied between the first electrode and the second electrode. In addition, due to the electrostatic force generated by the drive signal, the mechanical resonance frequency of the vibrating body changes as the external magnetic field is applied in a state where the vibrating body integrally vibrates. The amount of change in the resonance frequency of the detection signal that appears between the first electrode and the second electrode is acquired, and the amount of change in the Young's modulus of the magnetic thin film to be measured with respect to the external magnetic field is calculated from the amount of change in the resonance frequency. A Young's modulus measurement method is obtained.

さらに、上記ヤング率測定装置において、前記振動体と、前記支持部が同一物で構成されるヤング率測定装置、あるいは、前記振動体及び支持部が、金属薄膜からなるヤング率測定装置が得られる。   Furthermore, in the Young's modulus measuring device, a Young's modulus measuring device in which the vibrating body and the support portion are made of the same material, or a Young's modulus measuring device in which the vibrating body and the supporting portion are made of a metal thin film can be obtained. .

加えて、上記ヤング率測定装置及び方法において、該試料ホルダ、該試料ホルダに均一に外部磁場を印加するための手段と、該試料ホルダに駆動信号を供給する手段と、該試料ホルダからの被測定信号を検出するための手段、制御システム、同期検波部を備え、該駆動信号と同期した検出信号の共振周波数の変化量より該外部磁場に対する該被測定磁性薄膜のヤング率の変化量を算出するヤング率測定装置及び方法が得られる。   In addition, in the above Young's modulus measuring apparatus and method, the sample holder, means for uniformly applying an external magnetic field to the sample holder, means for supplying a drive signal to the sample holder, and a target from the sample holder A means for detecting a measurement signal, a control system, and a synchronous detection unit are provided, and the amount of change in the Young's modulus of the magnetic thin film to be measured with respect to the external magnetic field is calculated from the amount of change in the resonance frequency of the detection signal synchronized with the drive signal. An apparatus and method for measuring Young's modulus is obtained.

本発明に係る磁性膜のヤング率測定装置及びヤング率測定方法によれば、磁性薄膜のΔE効果に伴うヤング率変化量を、正確かつ簡便に測定可能なヤング率測定装置及びヤング率測定方法が提供できる。   According to the Young's modulus measuring apparatus and Young's modulus measuring method of a magnetic film according to the present invention, there are a Young's modulus measuring apparatus and Young's modulus measuring method capable of accurately and simply measuring the amount of Young's modulus change associated with the ΔE effect of a magnetic thin film. Can be provided.

以下に、本発明の実施の形態によるヤング率測定方法及びヤング率測定装置について、図面を参照して詳細に説明する。   Hereinafter, a Young's modulus measuring method and Young's modulus measuring apparatus according to embodiments of the present invention will be described in detail with reference to the drawings.

最初に、本発明に係るヤング率測定装置の基本原理について説明する。図1は、本発明の実施の形態に係るヤング率測定装置の基本ブロック図である。外部磁場が印加された場合に、被測定磁性薄膜の磁歪効果に伴って、その磁性薄膜のヤング率が変化し(以下、ΔE効果)、結果的に、磁性薄膜と基板からなる振動体の共振周波数が変化する。この振動体は、被測定磁性薄膜と基板の複合梁として考えることができ、その共振周波数の変化量Δfは、数2により表現される。   First, the basic principle of the Young's modulus measuring apparatus according to the present invention will be described. FIG. 1 is a basic block diagram of a Young's modulus measuring apparatus according to an embodiment of the present invention. When an external magnetic field is applied, the Young's modulus of the magnetic thin film changes with the magnetostriction effect of the magnetic thin film to be measured (hereinafter referred to as the ΔE effect), and as a result, the resonance of the vibrating body composed of the magnetic thin film and the substrate The frequency changes. This vibrating body can be considered as a composite beam of the magnetic thin film to be measured and the substrate, and the change amount Δf of the resonance frequency is expressed by the following equation (2).

Figure 2005156355
Figure 2005156355

ここで、tf、Ef、ρfは、被測定磁性薄膜の厚さ、ヤング率、密度を示し、また、ts、Es、ρsは、基板の厚さ、ヤング率、密度を示している。なお、数2のa’,b’,c’は、それぞれ、
a’=[(1tf)/(2ts)]・fo
b’=3/Es
c’=ρf/ρs
である。ここで、tf、ρf、基板のts、Es、ρsは、すでに知られた数値である。
Here, t f , E f , and ρ f indicate the thickness, Young's modulus, and density of the magnetic thin film to be measured, and t s , E s , and ρ s indicate the thickness, Young's modulus, and density of the substrate. Show. In addition, a ′, b ′, and c ′ in Equation 2 are respectively
a ′ = [(1t f ) / (2t s )] · f o ,
b ′ = 3 / E s ,
c ′ = ρ f / ρ s
It is. Here, t f , ρ f , t s , E s , and ρ s of the substrate are already known numerical values.

従って、被測定磁性薄膜と基板からなる複合梁の被測定磁性薄膜のヤング率Efが、外部磁場によって変化することで、複合梁の共振周波数の変化量Δfが変化することが分かる。 Therefore, it can be seen that the amount of change Δf in the resonance frequency of the composite beam changes when the Young's modulus E f of the magnetic thin film to be measured of the composite beam composed of the magnetic thin film to be measured and the substrate changes due to the external magnetic field.

ここで、外部磁場が変化すると被測定磁性薄膜を積層した振動体の複合梁の共振周波数foは、数2に従って低下(変化)する。 Here, the resonance frequency f o of the composite beams of the vibrating body formed by laminating the measured magnetic thin film when the external magnetic field is changed, decreases with the number 2 (change).

以上の展開より、被測定磁性薄膜を積層した振動子の共振周波数の変化量Δfを求めることで、ΔE効果による磁性薄膜のヤング率Eは、数3により、算出することが可能となる。 From the above development, the Young's modulus E f of the magnetic thin film due to the ΔE effect can be calculated by Equation 3 by obtaining the amount of change Δf of the resonance frequency of the vibrator in which the magnetic thin film to be measured is laminated.

Figure 2005156355
Figure 2005156355

以下、本発明に係る磁性薄膜のヤング率測定装置について、図面を参照して詳細に説明する。図2は、ヤング率測定装置の試料ホルダの説明図である。試料ホルダは、第1電極薄膜21が積層された振動体22、第1電極薄膜21が積層された振動体22を支持するための支持部24と、振動体22に対向した位置に配置された第2電極薄膜23と、第1電極薄膜21を有する振動体22、支持部24、第2電極薄膜23を固着するための基板25から構成される試料ホルダから構成されている。   Hereinafter, a magnetic thin film Young's modulus measuring apparatus according to the present invention will be described in detail with reference to the drawings. FIG. 2 is an explanatory diagram of a sample holder of the Young's modulus measuring apparatus. The sample holder is disposed at a position facing the vibrating body 22, a vibrating body 22 on which the first electrode thin film 21 is stacked, a support portion 24 for supporting the vibrating body 22 on which the first electrode thin film 21 is stacked. It comprises a sample holder comprising a second electrode thin film 23, a vibrating body 22 having the first electrode thin film 21, a support portion 24, and a substrate 25 for fixing the second electrode thin film 23.

振動体22と支持部24を同一物で構成することによって、振動体22と支持部24の接続部における振動の伝達損失は低減され、測定精度を向上させることが可能である。図2では、振動体22の両端を支持する両端固定を示しているが、振動体22と支持部24を同一物で構成する構造としては、他に振動子の一端のみを支持する片持ち架構造、振動子の外周を支持するダイヤフラム構造も適用できる。   By configuring the vibrating body 22 and the support portion 24 from the same material, the transmission loss of vibration at the connecting portion between the vibrating body 22 and the support portion 24 can be reduced, and the measurement accuracy can be improved. In FIG. 2, both-end fixing for supporting both ends of the vibrating body 22 is shown. However, as a structure in which the vibrating body 22 and the support portion 24 are made of the same material, a cantilever that supports only one end of the vibrator is used. A diaphragm structure that supports the structure and the outer periphery of the vibrator is also applicable.

本実施の形態による試料ホルダは、ポリシリコンの構造体層と二酸化珪素などの犠牲層の組合せによる標準化された2層、あるいは3層ポリシリコンMEMSプロセスによって製造でき、IC回路技術との適合性もよくS/N比の向上が期待でき、結果として、試料ホルダモジュール全体の小型化にも有利である。   The sample holder according to this embodiment can be manufactured by a standardized two-layer or three-layer polysilicon MEMS process using a combination of a polysilicon structure layer and a sacrificial layer such as silicon dioxide, and is also compatible with IC circuit technology. The improvement of the S / N ratio can be expected well, and as a result, it is advantageous for miniaturization of the entire sample holder module.

また、他の製造法としては、シリコンや水晶の結晶面によるエッチングレートの差を利用するバルクエッチング技術が適用でき、振動体22の部材として、振動体22を支持するための支持部24として、振動体22と同様の材料を使用することができる。更に、被測定磁性薄膜への磁気的影響を少なくするために、基板25を含む試料ホルダの部材は非磁性材から成ることが望ましい。   Further, as another manufacturing method, a bulk etching technique using a difference in etching rate depending on a crystal plane of silicon or quartz can be applied, and as a member of the vibrating body 22, as a support portion 24 for supporting the vibrating body 22, The same material as that of the vibrator 22 can be used. Further, in order to reduce the magnetic influence on the magnetic thin film to be measured, the member of the sample holder including the substrate 25 is preferably made of a nonmagnetic material.

また、上記試料ホルダにおいて、振動体22及び支持部24は、非磁性金属薄膜からなることも可能である。製造方法としては、前述の2層、あるいは3層ポリシリコンMEMSプロセス同様の半導体薄膜形成技術が適用できる。   In the sample holder, the vibrating body 22 and the support portion 24 can be made of a nonmagnetic metal thin film. As a manufacturing method, a semiconductor thin film forming technique similar to the above-described two-layer or three-layer polysilicon MEMS process can be applied.

なお、上記磁気センサにおいて、静電遮蔽体として、試料ホルダを包む構造の非磁性金属導体を付加することで、寄生容量に起因するノイズが低減され、精度向上が可能である。被測定磁性薄膜は、真空蒸着法、スパッタリング法などによって薄膜形成され、成膜後の薄膜を基板から引き剥がし取り扱うことは、一般に困難である。本実施例に係る被測定試料である磁性薄膜の試料ホルダヘのセットアップについては、試料ホルダの第1電極上に所定のマスクを介して、直接、成膜堆積するものである。このことによって、被測定磁性薄膜のヤング率変化による周波数変化は効率よく振動子の周波数変化として検出される。   In the magnetic sensor, by adding a non-magnetic metal conductor having a structure for wrapping the sample holder as an electrostatic shield, noise due to parasitic capacitance is reduced and accuracy can be improved. The magnetic thin film to be measured is formed into a thin film by a vacuum deposition method, a sputtering method, or the like, and it is generally difficult to handle the thin film after the film is peeled off from the substrate. Regarding the setup of the magnetic thin film, which is the sample to be measured, in the sample holder to the sample holder, the film is deposited directly on the first electrode of the sample holder through a predetermined mask. Thus, the frequency change due to the Young's modulus change of the magnetic thin film to be measured is efficiently detected as the frequency change of the vibrator.

本発明に係るヤング率測定装置は、試料ホルダ11に均一に外部磁場を印加するための手段15と、試料ホルダ11に駆動信号を供給する手段14と、試料ホルダからの被測定信号を検出するための手段12及び制御システム13より構成されている。試料ホルダ11に外部磁場を印加する手段15としては、電磁コイルや永久磁石を用いることが可能である。また、試料ホルダ11に駆動信号を供給する手段14と、試料ホルダからの被測定信号を検出するための手段12としては、100Hz程度の低周波から、数十MHz程度の高周波まで測定可能な市販のインピーダンスアナライザや、更に高周波領域まで対応可能なネットワークアナライザなどの適用が可能である。   The Young's modulus measuring apparatus according to the present invention detects means 15 for uniformly applying an external magnetic field to the sample holder 11, means 14 for supplying a driving signal to the sample holder 11, and a signal under measurement from the sample holder. And a control system 13. As the means 15 for applying an external magnetic field to the sample holder 11, an electromagnetic coil or a permanent magnet can be used. The means 14 for supplying the drive signal to the sample holder 11 and the means 12 for detecting the signal under measurement from the sample holder 11 are commercially available for measurement from a low frequency of about 100 Hz to a high frequency of about several tens of MHz. It is possible to apply an impedance analyzer or a network analyzer that can handle a higher frequency range.

上記インピーダンスアナライザあるいはネットワークアナライザに接続された第1電極薄膜21と第2電極薄膜23間に印加される駆動信号によって、両電極間には静電力が発生し、振動体22は一体で機械的に振動する。その場合、外部磁場が印加されるに伴って、振動体22の機械的な共振周波数は、被測定磁性薄膜のΔE効果によりヤング率が変化し、第1電極薄膜21と第2電極薄膜23間に現れる検出信号の共振周波数の変化量が変化する。この共振周波数の変化量より外部磁場に対する被測定磁性薄膜のヤング率の変化量を算出することが可能となる。   The drive signal applied between the first electrode thin film 21 and the second electrode thin film 23 connected to the impedance analyzer or the network analyzer generates an electrostatic force between the two electrodes, and the vibrating body 22 is mechanically integrated. Vibrate. In that case, as the external magnetic field is applied, the Young's modulus of the mechanical resonance frequency of the vibrating body 22 changes due to the ΔE effect of the magnetic thin film to be measured, so that the first electrode thin film 21 and the second electrode thin film 23 The amount of change in the resonance frequency of the detection signal appearing on the signal changes. From the amount of change in the resonance frequency, the amount of change in the Young's modulus of the magnetic thin film to be measured with respect to the external magnetic field can be calculated.

更に、本発明に係るヤング率測定装置において、同期検波部を備え、駆動信号と同期した検出信号の共振周波数の変化量からヤング率を算出することにより、周囲温度などによる影響を低減でき、S/N比の高いヤング率の測定が可能となる。   Furthermore, in the Young's modulus measuring apparatus according to the present invention, the synchronous detection unit is provided, and the Young's modulus is calculated from the amount of change in the resonance frequency of the detection signal synchronized with the drive signal. Measurement of Young's modulus with a high / N ratio is possible.

本発明の実施の形態に係るヤング率測定装置の基本ブロック図。1 is a basic block diagram of a Young's modulus measuring apparatus according to an embodiment of the present invention. 本発明によるヤング率測定装置の試料ホルダの説明図。Explanatory drawing of the sample holder of the Young's modulus measuring apparatus by this invention. 本発明による試料ホルダの磁性薄膜のヤング率対磁場の特性図。FIG. 4 is a characteristic diagram of Young's modulus versus magnetic field of a magnetic thin film of a sample holder according to the present invention.

符号の説明Explanation of symbols

11 試料ホルダ
12 被測定信号を検出するための手段
13 制御システム
14 駆動信号を供給する手段
15 外部磁場を印加するための手段
20 磁性薄膜
21 第1電極薄膜
22 振動体
23 第2電極薄膜
24 支持部
25 基板
11 Sample holder 12 Means for detecting signal under measurement 13 Control system 14 Means for supplying drive signal 15 Means for applying external magnetic field 20 Magnetic thin film 21 First electrode thin film 22 Vibrating body 23 Second electrode thin film
24 support part 25 substrate

Claims (7)

第1電極が積層された振動体と、該第1電極と該振動体に対向した位置に配置された第2電極からなり、試料ホルダを兼備する前記第1電極が積層された振動体上に被測定試料である磁性薄膜を堆積し、前記第1電極と第2電極間に印加された駆動信号によって発生する静電力により、前記振動体が一体で機械的に振動している状態で、外部磁場が印加されるに伴って、前記振動体の機械的な共振周波数が変化する該第1電極と第2電極間の検出信号の共振周波数の変化量を検出し、該共振周波数の変化量より、前記被測定磁性薄膜のヤング率を算出することを特徴とするヤング率測定方法。   A vibrating body on which a first electrode is laminated, and a first electrode and a second electrode disposed at a position facing the vibrating body, on the vibrating body on which the first electrode serving as a sample holder is laminated A magnetic thin film, which is a sample to be measured, is deposited, and an external force is generated by an electrostatic force generated by a drive signal applied between the first electrode and the second electrode. The amount of change in the resonance frequency of the detection signal between the first electrode and the second electrode, in which the mechanical resonance frequency of the vibrating body changes as a magnetic field is applied, is detected from the amount of change in the resonance frequency. A Young's modulus measurement method comprising calculating a Young's modulus of the magnetic thin film to be measured. 前記試料ホルダに均一に外部磁場を印加するための手段と、該試料ホルダに駆動信号を供給する手段と、該試料ホルダからの被測定信号を検出するための手段、制御システム、同期検波部を備え、該駆動信号と同期した検出信号の共振周波数の変化量より該外部磁場に対する前記被測定磁性薄膜のヤング率の変化量を算出することを特徴とする請求項1に記載のヤング率測定方法。   Means for uniformly applying an external magnetic field to the sample holder, means for supplying a drive signal to the sample holder, means for detecting a signal under measurement from the sample holder, a control system, and a synchronous detector 2. The Young's modulus measurement method according to claim 1, further comprising: calculating a Young's modulus change amount of the magnetic thin film to be measured with respect to the external magnetic field from a change amount of a resonance frequency of a detection signal synchronized with the drive signal. . 前記被測定磁性薄膜を積層した振動子の共振周波数の変化量Δfを求めることで、ΔE効果による該磁性薄膜のヤング率Efを、磁場を印加する前の周波数をfo、基板の厚さをts、被測定磁性薄膜の厚さをtf、その密度をρf、基板の密度をρs、基板のヤング率をEsとした時、数1により、算出することを特徴とする請求項1または2に記載の記載のヤング率測定方法。 By obtaining the amount of change Δf of the resonance frequency of the vibrator having the magnetic thin film to be measured, the Young's modulus E f of the magnetic thin film due to the ΔE effect, the frequency before applying the magnetic field f o , and the thickness of the substrate T s , the thickness of the magnetic thin film to be measured is t f , the density is ρ f , the density of the substrate is ρ s , and the Young's modulus of the substrate is E s. The Young's modulus measurement method according to claim 1 or 2. 第1電極が積層された振動体と、該第1電極が積層された振動体を支持するための支持部と、該振動体に対向した位置に配置された第2電極と、該第1電極を有する該振動体、該支持部、該第2電極を固着するための基板から構成される試料ホルダと、少なくとも、該試料ホルダに均一に外部磁場を印加するための手段と、該試料ホルダに駆動信号を供給する手段と、該試料ホルダからの被測定信号を検出するための手段および制御システムとを備え、且つ、該試料ホルダの部材は非磁性材から成ることを特徴とするヤング率測定装置。   A vibrating body in which the first electrode is stacked, a support portion for supporting the vibrating body in which the first electrode is stacked, a second electrode disposed at a position facing the vibrating body, and the first electrode A sample holder comprising: a vibrating body having the substrate; a substrate for fixing the second electrode; at least means for applying an external magnetic field uniformly to the sample holder; and A Young's modulus measurement comprising: means for supplying a drive signal; means for detecting a signal to be measured from the sample holder; and a control system, and the member of the sample holder is made of a non-magnetic material. apparatus. 請求項4に記載のヤング率測定装置において、前記振動体と前記支持部が同一物で構成されたことを特徴とするヤング率測定装置。   5. The Young's modulus measuring apparatus according to claim 4, wherein the vibrating body and the support portion are made of the same material. 請求項4に記載のヤング率測定装置において、前記振動体及び支持部が、金属薄膜からなることを特徴とするヤング率測定装置。   5. The Young's modulus measuring apparatus according to claim 4, wherein the vibrating body and the support portion are made of a metal thin film. 請求項4ないし6のいずれかに記載のヤング率測定装置において、前記試料ホルダに均一に外部磁場を印加するための手段と、該試料ホルダに駆動信号を供給する手段と、該試料ホルダからの被測定信号を検出するための手段、制御システム、同期検波部を備え、前記駆動信号と同期した検出信号の共振周波数の変化量より該外部磁場に対する前記被測定磁性薄膜のヤング率の変化量を算出することを特徴とするヤング率測定装置。
Figure 2005156355
The Young's modulus measuring apparatus according to any one of claims 4 to 6, wherein means for uniformly applying an external magnetic field to the sample holder, means for supplying a drive signal to the sample holder, and from the sample holder A means for detecting the signal under measurement, a control system, and a synchronous detection unit are provided, and the amount of change in the Young's modulus of the magnetic thin film under measurement with respect to the external magnetic field is determined from the amount of change in the resonance frequency of the detection signal synchronized with the drive signal. A Young's modulus measuring apparatus characterized by calculating.
Figure 2005156355
JP2003395401A 2003-11-26 2003-11-26 Method and apparatus for measuring young's modulus Pending JP2005156355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003395401A JP2005156355A (en) 2003-11-26 2003-11-26 Method and apparatus for measuring young's modulus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003395401A JP2005156355A (en) 2003-11-26 2003-11-26 Method and apparatus for measuring young's modulus

Publications (1)

Publication Number Publication Date
JP2005156355A true JP2005156355A (en) 2005-06-16

Family

ID=34721185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003395401A Pending JP2005156355A (en) 2003-11-26 2003-11-26 Method and apparatus for measuring young's modulus

Country Status (1)

Country Link
JP (1) JP2005156355A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100343661C (en) * 2005-06-21 2007-10-17 南京大学 Method for measuring complex Young's modulus in fluid dynamic spectrum
JP2012208008A (en) * 2011-03-29 2012-10-25 Hyogo Prefecture Nano-thin-film young's modulus measuring device and measuring device design method
JP2013513121A (en) * 2009-12-08 2013-04-18 コリア リサーチ インスティチュート オブ スタンダーズ アンド サイエンス △ E measuring device minimizing external magnetic disturbance
CN104807889A (en) * 2015-04-20 2015-07-29 苏州丹平格仪器有限公司 Self-excitation resonance signal detection method for membrane materials and self-excitation resonance signal treatment method for membrane materials
CN109612833A (en) * 2019-01-28 2019-04-12 桂林电子科技大学 The Young's modulus detection device of cable

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100343661C (en) * 2005-06-21 2007-10-17 南京大学 Method for measuring complex Young's modulus in fluid dynamic spectrum
JP2013513121A (en) * 2009-12-08 2013-04-18 コリア リサーチ インスティチュート オブ スタンダーズ アンド サイエンス △ E measuring device minimizing external magnetic disturbance
JP2012208008A (en) * 2011-03-29 2012-10-25 Hyogo Prefecture Nano-thin-film young's modulus measuring device and measuring device design method
CN104807889A (en) * 2015-04-20 2015-07-29 苏州丹平格仪器有限公司 Self-excitation resonance signal detection method for membrane materials and self-excitation resonance signal treatment method for membrane materials
CN109612833A (en) * 2019-01-28 2019-04-12 桂林电子科技大学 The Young's modulus detection device of cable
CN109612833B (en) * 2019-01-28 2024-01-05 桂林电子科技大学 Young modulus detection device of cable

Similar Documents

Publication Publication Date Title
Lee et al. Piezoelectric cantilever microphone and microspeaker
US6668627B2 (en) Sensor apparatus with magnetically deflected cantilever
JP5740093B2 (en) Magnetic field component gradient sensor with permanent magnet
Mochida et al. A micromachined vibrating rate gyroscope with independent beams for the drive and detection modes
JP5491080B2 (en) microphone
US9331606B2 (en) Device with suspended beam and piezoresistive means of detecting displacement of the beam and method of manufacturing the device
CN105606844A (en) Accelerometer with strain compensation
US7735373B2 (en) Apparatus for measuring pressure in a vessel using magnetostrictive acoustic transducer
KR20100095560A (en) Microstructure inspecting device, and microstructure inspecting method
US9293686B2 (en) In-plane actuated resonant device and method of manufacturing the device
CN113241401B (en) Multiferroic heterojunction magnetic sensor, preparation method thereof and electronic equipment
Herrera-May et al. A MEMS-based magnetic field sensor with simple resonant structure and linear electrical response
Kazari et al. Multi-frequency piezoelectric micromachined ultrasonic transducers
WO2006082668A1 (en) Biosensor and biosensor chip
JP2006284391A (en) Cantilever type sensor
JP2005156355A (en) Method and apparatus for measuring young&#39;s modulus
JP2014160140A (en) Optical scanning device
JP4801881B2 (en) Resonance type magnetic sensor and magnetic field detection device using the same
Bian et al. Magnetoelectric performances in composite of piezoelectric ceramic and ferromagnetic constant-elasticity alloy
JP2008241619A (en) Cantilever, biosensor and probe microscope
Yenuganti et al. Piezoelectric microresonant pressure sensor using aluminum nitride
JP2008233029A (en) Acceleration sensor and electronic device
Selvaraj et al. Magnetic force based resonant magnetic field sensor with piezoelectric readout
EA009475B1 (en) Sensor
JP2008045990A (en) Magnetic detection element and magnetic detection device