JP2005155334A - Hydraulic energy recovering unit - Google Patents

Hydraulic energy recovering unit Download PDF

Info

Publication number
JP2005155334A
JP2005155334A JP2003390881A JP2003390881A JP2005155334A JP 2005155334 A JP2005155334 A JP 2005155334A JP 2003390881 A JP2003390881 A JP 2003390881A JP 2003390881 A JP2003390881 A JP 2003390881A JP 2005155334 A JP2005155334 A JP 2005155334A
Authority
JP
Japan
Prior art keywords
hydraulic energy
water
energy recovery
flow path
recovery unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003390881A
Other languages
Japanese (ja)
Inventor
Hiroshi Ishida
啓 石田
Hideaki Kawasaki
秀明 川崎
Ichiro Morikawa
一郎 森川
Akio Yamazaki
昭雄 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOKURIKU REGIONAL DEV BUREAU M
Ministry of Land Infrastructure and Transport Hokuriku Regional Development Bureau
Original Assignee
HOKURIKU REGIONAL DEV BUREAU M
Ministry of Land Infrastructure and Transport Hokuriku Regional Development Bureau
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOKURIKU REGIONAL DEV BUREAU M, Ministry of Land Infrastructure and Transport Hokuriku Regional Development Bureau filed Critical HOKURIKU REGIONAL DEV BUREAU M
Priority to JP2003390881A priority Critical patent/JP2005155334A/en
Publication of JP2005155334A publication Critical patent/JP2005155334A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Hydraulic Turbines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydraulic energy recovering device capable of efficiently recovering hydraulic energy from river streams. <P>SOLUTION: This hydraulic energy recovering unit 10 is configured, as a unit, of a water wheel 11 and an accelerating flow passage 12 for introducing water into the water wheel 11 by accelerating the water. The accelerating flow passage 12 has a flow passage structure to introduce flowing water into the water wheel 11 by accelerating the flowing water, and is provided with a narrow part 14 as a means for accelerating the flowing water. An upstream intake port 15 on the accelerating flow passage 12 has a water receiving area larger than that of the water wheel 11, and the narrow part 14 is formed by arranging both side walls 16, 17 of the flow passage 12 to have a V-shape, such that a gap between the both side walls 16, 17 becomes gradually narrower from the upstream side to the down stream side. The hydraulic energy recovering unit 10 takes in part of a stream from the upstream intake port 15 and gradually accelerates the flowing water in the narrow part 14. Due to this, hydraulic energy per unit is increased, and large hydraulic energy acts by a water receiving surface of the water wheel 11. Accordingly, large hydraulic energy can be recovered. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、流水から水力エネルギを回収する水力エネルギ回収装置に関するものである。   The present invention relates to a hydraulic energy recovery device that recovers hydraulic energy from running water.

流水から水力エネルギを回収する水力エネルギ回収装置(水力原動機)は、例えば、水力発電所に用いられている水車が知られている。水力発電所では、ダムなどで水の流れを堰止めて高い位置エネルギを持つ水又は底部の高い圧力の掛かった水から水力エネルギを回収している。   As a hydraulic energy recovery device (hydraulic prime mover) that recovers hydraulic energy from running water, for example, a turbine used in a hydroelectric power plant is known. In a hydroelectric power station, the flow of water is blocked by a dam or the like, and hydraulic energy is recovered from water having high potential energy or water having high pressure at the bottom.

ところで、ダムなどで水の流れを堰き止める場合は、その建設費用・維持費用が嵩み、莫大な費用が必要である。しかも河川を遮断してしまうので、魚や小動物の往来を妨げて生態系を乱したり、ダムの上流側一帯を水没させたり、下流側の河川の枯渇させたりするなど、自然環境を変化させるおそれがある。   By the way, when the water flow is blocked by a dam or the like, the construction cost and the maintenance cost increase, and enormous costs are required. Moreover, because the river is blocked, there is a risk of changing the natural environment, such as disturbing the ecosystem by preventing the traffic of fish and small animals, submerging the upstream area of the dam, and depleting the downstream river. There is.

また、近年では、水力エネルギの回収効率の良い高性能な水車を開発し、河川流からエネルギを回収することも検討されているが、河川流は単位流量(単位時間あたりにある断面を通る流量)の水力エネルギが小さいので、大きな出力を得ることができない。   In recent years, high-performance water turbines with high recovery efficiency of hydropower energy have been developed and energy recovery from river flow is also under consideration. River flow is unit flow rate (flow rate through a cross section per unit time). ) Hydraulic energy is small, so a large output cannot be obtained.

そこで、本発明は、河川流から効率良く水力エネルギを回収することができる水力エネルギ回収装置を提供するものである。   Therefore, the present invention provides a hydraulic energy recovery device that can efficiently recover hydraulic energy from a river flow.

本発明者らは、単位流量あたりの水力エネルギが、流速増速に伴い、流速の3乗に比例するという点を考慮し、河川流や流水の持つ水力エネルギをより効率良く抽出・回収するためには、水力エネルギ回収装置に導入する流水の速度を増加させることが重要であると考え、以下の水力エネルギ回収ユニットを考えた。   In consideration of the fact that the hydraulic energy per unit flow rate is proportional to the cube of the flow velocity as the flow velocity increases, the present inventors extract and recover the hydraulic energy possessed by the river flow and running water more efficiently. Therefore, it was considered important to increase the speed of flowing water introduced into the hydraulic energy recovery device, and the following hydraulic energy recovery units were considered.

請求項1に記載の水力エネルギ回収ユニットは、水力エネルギを回収する水力エネルギ回収装置と、前記水力エネルギ回収装置の上流側で水の流れを増速させ、増速させた水を水力エネルギ回収装置に導入する増速流路とを備えたことを特徴としている。この水力エネルギ回収ユニットは、増速流路で水の流れを増速させ、水力エネルギ回収装置に導入する水の単位流量あたりの水力エネルギを大きくすることができるので、水力エネルギ回収装置でより効率良く水力エネルギを回収することができる。また、このように増速流路と、水力エネルギ回収装置をユニット化したものは、河川の水の流れの中に設置することができるので、河川を堰き止めることなく、その水力エネルギを効率よく利用することができる。従って、この水力エネルギ回収ユニットを利用すれば、ダムなどに比べ極めて低コストで、かつ、環境に優しい水力発電が可能になる。   The hydraulic energy recovery unit according to claim 1 includes a hydraulic energy recovery device that recovers hydraulic energy, and accelerates the flow of water upstream of the hydraulic energy recovery device, and the increased water is supplied to the hydraulic energy recovery device. And a speed increasing flow path to be introduced into the system. This hydraulic energy recovery unit can increase the flow rate of water in the speed increasing flow path and increase the hydraulic energy per unit flow rate of water introduced into the hydraulic energy recovery device. The hydraulic energy can be recovered well. In addition, such a unit consisting of the speed increasing flow path and the hydraulic energy recovery device can be installed in the water flow of the river, so that the hydraulic energy can be efficiently used without damming the river. Can be used. Therefore, if this hydraulic energy recovery unit is used, hydroelectric power generation that is environmentally friendly at a very low cost compared to a dam or the like becomes possible.

請求項2に記載の水力エネルギ回収ユニットは、増速流路が、水力エネルギ回収装置の上流側に、上流側から下流側に向けて流路断面が徐々に縮小した狭窄部を備え、該狭窄部で水の流れを増速させることを特徴としている。この水力エネルギ回収ユニットは、増速流路における狭窄部で、より多くの河川流を集めて水力エネルギ回収装置に作用させることができ、かつ、狭窄部を流れる水は流路断面が徐々に狭くなるにつれて増速するので、水力エネルギ回収装置に導入する水の単位流量あたりの水力エネルギを大きくすることができる。これにより、より効率良く河川流の水力エネルギを回収することができる。   The hydraulic energy recovery unit according to claim 2, wherein the speed increasing flow path includes a constricted portion having a flow path cross-section gradually reduced from the upstream side to the downstream side on the upstream side of the hydraulic energy recovery device. It is characterized by increasing the flow of water at the section. This hydraulic energy recovery unit collects more river flow at the constriction in the speed increasing flow path and allows it to act on the hydraulic energy recovery device, and the water flowing through the constriction gradually narrows the cross section of the flow path. As the speed increases, the hydraulic energy per unit flow rate of water introduced into the hydraulic energy recovery device can be increased. Thereby, the hydraulic energy of the river flow can be recovered more efficiently.

請求項3に記載の水力エネルギ回収ユニットは、増速流路が狭窄部で増速させた水の流れ方向を整えて水力エネルギ回収装置に導入する整流部を備えていることを特徴としている。この水力エネルギ回収ユニットは、整流部で流れ方向を一定方向にした流水を水力エネルギ回収装置の受水面に作用させることができるので、より効率良く水力エネルギを回収することができる。   According to a third aspect of the present invention, there is provided a hydraulic energy recovery unit including a rectifying unit that adjusts a flow direction of the water accelerated by the speed increasing flow path at the narrowed portion and introduces the flow direction into the hydraulic energy recovery device. In this hydraulic energy recovery unit, the flowing water whose flow direction is made constant by the rectifying unit can be applied to the water receiving surface of the hydraulic energy recovery device, so that the hydraulic energy can be recovered more efficiently.

請求項4に記載の水力エネルギ回収ユニットは、増速流路が、水力エネルギ回収装置の上流側に、水の流れを増速させる潜堰部を備えていることを特徴としている。この水力エネルギ回収ユニットは、増速流路で潜堰部を越える位置エネルギの高い水を下流側に流すことによって水の流れを増速させており、水力エネルギ回収装置に導入する水の単位流量あたりの水力エネルギを大きくすることができる。これにより、より効率良く河川流の水力エネルギを回収することができる。   The hydraulic energy recovery unit according to claim 4 is characterized in that the speed increasing flow path is provided with a latent weir portion for increasing the speed of water on the upstream side of the hydraulic energy recovery device. This hydraulic energy recovery unit accelerates the flow of water by flowing water with high positional energy over the latent weir part downstream in the speed increasing flow path, and the unit flow rate of water introduced into the hydraulic energy recovery device The hydraulic energy per hit can be increased. Thereby, the hydraulic energy of the river flow can be recovered more efficiently.

請求項5に記載の水力エネルギ回収ユニットは、増速流路が、前記水力エネルギ回収装置の上流側に、水の流れを増速させる水門部を備えていることを特徴としている。この水力エネルギ回収ユニットは、水門部で高い圧力の掛かった水を下流側に流すことによって水の流れを増速させており、水力エネルギ回収装置に導入する水の単位流量あたりの水力エネルギを大きくすることができる。これにより、より効率良く河川流の水力エネルギを回収することができる。   The hydraulic energy recovery unit according to claim 5 is characterized in that the speed increasing flow path includes a sluice part for increasing the flow of water on the upstream side of the hydraulic energy recovery device. This hydraulic energy recovery unit accelerates the flow of water by flowing water under high pressure at the sluice downstream, and increases the hydraulic energy per unit flow rate of water introduced into the hydraulic energy recovery device. can do. Thereby, the hydraulic energy of the river flow can be recovered more efficiently.

請求項6に記載の水力エネルギ回収ユニットは、狭窄部と整流部の境界部の底に、流れ方向の縦断面形状が山状の潜堰部を設けたことを特徴としている。この水力エネルギ回収ユニットは、狭窄部で水を増速させ、さらに山状の潜堰部を越えさせて水を増速させており、さらに整流部によって水の流れ方向が整えて水力エネルギ回収装置に導入しているので、より効率良く河川流の水力エネルギを回収することができる。   The hydraulic energy recovery unit according to claim 6 is characterized in that a latent weir portion having a mountain-like vertical cross-sectional shape in the flow direction is provided at the bottom of the boundary portion between the narrowed portion and the rectifying portion. This hydraulic energy recovery unit accelerates the water in the constricted part, further accelerates the water by passing over the mountain-shaped latent weir part, and further adjusts the flow direction of the water by the rectifying part, and the hydraulic energy recovery device Therefore, it is possible to recover the hydraulic energy of the river flow more efficiently.

本発明に水力エネルギ回収ユニットによれば、増速流路で水の流れを増速させ、水力エネルギ回収装置に導入する水の単位流量あたりの水力エネルギを大きくすることができ、水力エネルギ回収装置でより効率良く水力エネルギを回収することができる。また、水力エネルギ回収ユニットは、河川の水の流れの中に設置することができ、河川を堰き止めることなく、その水力エネルギを効率よく利用することができ、ダムなどに比べ極めて低コストで、かつ、環境に優しい水力発電が可能になる。   According to the hydraulic energy recovery unit of the present invention, it is possible to increase the hydraulic energy per unit flow rate of water introduced into the hydraulic energy recovery device by increasing the flow rate of the water in the speed increasing flow path. The hydraulic energy can be recovered more efficiently. In addition, the hydraulic energy recovery unit can be installed in the water flow of the river, can efficiently use the hydraulic energy without damming the river, at a very low cost compared to dams, In addition, environmentally friendly hydroelectric power generation becomes possible.

以下、本発明に係る水力エネルギ回収ユニットの実施の形態を図面に基づいて説明する。なお、同じ作用を奏する部材・部位には、同一の符号を付し、重複する説明は省略する。   Embodiments of a hydraulic energy recovery unit according to the present invention will be described below with reference to the drawings. In addition, the same code | symbol is attached | subjected to the member and site | part which show | plays the same effect | action, and the overlapping description is abbreviate | omitted.

本発明の第1実施形態の水力エネルギ回収ユニット10は、図1に示すように、水力エネルギ回収装置としての水車11と、水車11に水を増速させて導入する増速流路12をユニット化したものである。なお、図中の矢印は水の流れを示している。   As shown in FIG. 1, the hydraulic energy recovery unit 10 of the first embodiment of the present invention includes a water turbine 11 as a hydraulic energy recovery device, and a speed increasing flow path 12 that introduces water into the water turbine 11 at an increased speed. It has become. In addition, the arrow in a figure has shown the flow of water.

水車11は、回転軸13を垂直に設置した縦軸水車であり、増速流路12の下流排水部に設置している。この水車11は、水力を受けて回転し、受水面で受けた水力エネルギの一部を回転軸13の回転トルクに変換して出力することができる。   The water turbine 11 is a vertical axis water turbine in which a rotating shaft 13 is installed vertically, and is installed in a downstream drainage portion of the speed increasing flow path 12. The water wheel 11 rotates by receiving hydraulic power, and can convert a part of the hydraulic energy received on the water receiving surface into a rotational torque of the rotary shaft 13 and output it.

増速流路12は、流水を増速させて水車11に導入する流路構造を備えており、上流側に流水を増速させる狭窄部14を設け、狭窄部14の下流側(増速流路12の下流排水部)に水車11を設置する水車設置部(図示省略)を備えている。増速流路12の上流取水口15は、水車11の受水面積より広くなっており、より多くの水を水車11に導入することができるようになっている。狭窄部14は、流路の両側壁16、17を、上流側から下流側に向けて間隔が徐々に狭くなるように逆ハの字形に設置しており、上流側から下流側に向けて徐々に流路断面が狭くなっている。   The speed increasing flow path 12 is provided with a flow path structure for increasing the speed of flowing water and introducing it into the water turbine 11. The speed increasing flow path 12 is provided with a constricted portion 14 for increasing the speed of flowing water on the upstream side, and the downstream side of the constricted portion 14 (accelerated flow) A water turbine installation section (not shown) for installing the water turbine 11 is provided in the downstream drainage section of the channel 12. The upstream intake port 15 of the speed increasing channel 12 is wider than the water receiving area of the water turbine 11, so that more water can be introduced into the water turbine 11. The narrowed portion 14 has both side walls 16 and 17 of the flow path arranged in an inverted C shape so that the interval gradually decreases from the upstream side toward the downstream side, and gradually from the upstream side toward the downstream side. The cross section of the channel is narrow.

この水力エネルギ回収ユニット10は、増速流路12の上流取水口15を上流側に向け、下流排水口18を下流側に向けて、例えばアンカなどの固定手段(図示省略)により、河川の水流に流されないように設置する。   This hydraulic energy recovery unit 10 has an upstream intake port 15 of the speed increasing flow path 12 facing upstream and a downstream drainage port 18 facing downstream, for example, by means of fixing means (not shown) such as anchors, Install so that it will not be swept away.

水力エネルギ回収ユニット10の増速流路12は、上流取水口15から河川流の一部を取り込む。増速流路12の上流取水口15に流入した水は、狭窄部14で流路断面が狭くなるにつれて徐々に増速する。狭窄部14の流水は、徐々に増速するので、単位流量あたりの水力エネルギが増大し、水車11の受水面により大きな水力エネルギが作用する。これにより、水力エネルギ回収ユニット10は、水車11でより大きな水力エネルギを回収することができる。   The speed increasing flow path 12 of the hydraulic energy recovery unit 10 takes in a part of the river flow from the upstream intake port 15. The water that has flowed into the upstream intake port 15 of the speed increasing flow path 12 gradually increases as the flow path cross section becomes narrower at the narrowed portion 14. Since the flowing water in the constricted portion 14 gradually increases, the hydraulic energy per unit flow rate increases, and a large amount of hydraulic energy acts on the water receiving surface of the water turbine 11. Thus, the hydraulic energy recovery unit 10 can recover a larger amount of hydraulic energy with the water turbine 11.

なお、上述したように、第1実施形態の水力エネルギ回収ユニット10は、増速流路12に水の流れを増速させる狭窄部14を備えたものであるが、狭窄部14の設計は河川流の水理条件を考慮して行うと良い。狭窄部14で増速率を向上させるためには、狭窄部14の入口部分の流路断面に対して出口部分の流路断面をより小さくしたり、狭窄部14の長さを長くしたりするとよい。   As described above, the hydraulic energy recovery unit 10 of the first embodiment is provided with the constricted portion 14 for accelerating the flow of water in the speed increasing channel 12, but the design of the constricted portion 14 is a river. It is better to consider the hydraulic conditions of the flow. In order to improve the speed increase rate at the narrowed portion 14, it is preferable to make the flow passage cross section of the outlet portion smaller than the flow passage cross section of the inlet portion of the narrowed portion 14 or lengthen the length of the narrowed portion 14. .

以下に、第1実施形態に係る水力エネルギ回収ユニットの変形例を説明する。   Below, the modification of the hydraulic energy recovery unit which concerns on 1st Embodiment is demonstrated.

第1の変形例に係る水力エネルギ回収ユニット10’は、図2に示すように、狭窄部14の片側の側壁16’を流れ方向に略平行に設置し、反対側の側壁17’を上流側から下流側に向けて徐々に、流れ方向に略平行に設置した側壁16’に近づけるように斜めに設置している。これにより、狭窄部14の両側壁16’、17’の間隔を上流側から下流側に向けて徐々に狭くしている。また、水車11は縦軸水車で、狭窄部14の出口部分下流側の流路において、狭窄部14の斜めに設置した側壁17’側に水車11を偏らせて設置している。   As shown in FIG. 2, the hydraulic energy recovery unit 10 ′ according to the first modification has a side wall 16 ′ on one side of the constricted portion 14 disposed substantially parallel to the flow direction, and an opposite side wall 17 ′ on the upstream side. From the side toward the downstream side, it is installed obliquely so as to approach the side wall 16 ′ installed substantially parallel to the flow direction. Thereby, the space | interval of the both side walls 16 'and 17' of the constriction part 14 is gradually narrowed toward the downstream from the upstream. In addition, the water turbine 11 is a vertical axis water turbine, and the water turbine 11 is disposed so as to be biased toward the side wall 17 ′ disposed obliquely of the narrowed portion 14 in the flow path on the downstream side of the outlet portion of the narrowed portion 14.

この水力エネルギ回収ユニット10’によれば、水車11は、狭窄部14の出口部分下流側の流路において、回転軸13の片側で水の流れを受けるので、水車11のエネルギ回収効率をより向上させることができる。また、水車11を、狭窄部14の斜めに設置した側壁17’側に偏らせて設置することにより、省スペース化を図り水力エネルギ回収ユニットをよりコンパクトにすることができる。   According to this hydraulic energy recovery unit 10 ′, the water turbine 11 receives the flow of water on one side of the rotating shaft 13 in the flow path downstream of the outlet portion of the constricted portion 14, thereby further improving the energy recovery efficiency of the water turbine 11. Can be made. Further, by installing the water turbine 11 so as to be biased toward the side wall 17 ′ installed obliquely of the constricted portion 14, it is possible to save space and make the hydraulic energy recovery unit more compact.

第2の変形例に係る水力エネルギ回収ユニット10’’は、図3に示すように、増速流路の狭窄部14において、天井面19を上流側から下流側に向けて徐々に低くなるように斜めに設置したものであり、狭窄部14の流路断面は高さ方向において上流側から下流側に向けて徐々に狭くなっている。また、水車11’は、回転軸13’を水平に設置した横軸水車であり、狭窄部14の出口部分下流側の流路において、狭窄部14の斜めに設置した天井面19側に水車11’を偏らせて設置している。   As shown in FIG. 3, the hydraulic energy recovery unit 10 ″ according to the second modification is configured so that the ceiling surface 19 gradually decreases from the upstream side toward the downstream side in the narrowed portion 14 of the speed increasing flow path. The channel cross section of the narrowed portion 14 is gradually narrowed from the upstream side to the downstream side in the height direction. Further, the water wheel 11 ′ is a horizontal axis water wheel in which the rotation shaft 13 ′ is installed horizontally, and the water wheel 11 is installed on the ceiling surface 19 side obliquely installed in the narrow portion 14 in the flow path on the downstream side of the outlet portion of the narrow portion 14. It is installed with a bias.

この水力エネルギ回収ユニット10’’は、増速流路が水没するのに十分な水位と、水量を有する場所に設置する。この水力エネルギ回収ユニット10’’によれば、狭窄部14の流路断面は高さ方向において上流側から下流側に向けて狭くなっており、狭窄部14を流れる水は、上流側から下流側に向けて徐々に増速する。水車11’は、狭窄部14の出口部分下流側の流路において、回転軸13’の下側で水の流れを受けるので、効率良く水力エネルギを回収することができる。   The hydraulic energy recovery unit 10 ″ is installed in a place having a water level and a water amount sufficient for the speed increasing flow path to be submerged. According to this hydraulic energy recovery unit 10 '', the flow path cross section of the narrowed portion 14 is narrowed from the upstream side to the downstream side in the height direction, and the water flowing through the narrowed portion 14 flows from the upstream side to the downstream side. Gradually increase toward Since the water turbine 11 'receives the flow of water below the rotating shaft 13' in the flow path on the downstream side of the outlet portion of the constricted portion 14, the hydraulic energy can be efficiently recovered.

以上、第1実施形態に係る水力エネルギ回収ユニット10について説明したが、増速流路12の狭窄部14は上流側から下流側に向けて徐々に流路断面を狭くして流水を徐々に増速させるものであればよい。従って、上記に限定されるものではない。図示は省略するが、狭窄部14の流路の側壁、床面、天井面は曲面で構成してもよく、例えば、上流側から下流側に向けてベルマウス状に流路断面を狭くしたものでもよい。   As described above, the hydraulic energy recovery unit 10 according to the first embodiment has been described. However, the narrowed portion 14 of the speed increasing flow path 12 gradually narrows the flow path cross section from the upstream side toward the downstream side, and gradually increases the flow water. Anything that speeds up is sufficient. Therefore, it is not limited to the above. Although illustration is omitted, the side wall, floor surface, and ceiling surface of the flow path of the constriction 14 may be configured by curved surfaces, for example, the flow path cross section is narrowed in a bell mouth shape from the upstream side to the downstream side But you can.

次に、本発明の第2実施形態の水力エネルギ回収ユニットを説明する。   Next, a hydraulic energy recovery unit according to the second embodiment of the present invention will be described.

第2実施形態の水力エネルギ回収ユニット20は、図4に示すように、水力エネルギ回収装置としての水車11と、水車11に水を増速させて導入する増速流路12を備えており、増速流路12は、狭窄部14と、狭窄部14で増速させた水の流れ方向を整える整流部21を備えている。   As shown in FIG. 4, the hydraulic energy recovery unit 20 of the second embodiment includes a water turbine 11 as a hydraulic energy recovery device, and a speed increasing channel 12 that introduces water into the water wheel 11 at an increased speed. The speed increasing flow path 12 includes a constricted portion 14 and a rectifying portion 21 that adjusts the flow direction of water accelerated by the constricted portion 14.

整流部21は、狭窄部14の出口部分下流側の流路において、流路の両側壁22、23を平行に設置したものである。整流部21は、狭窄部14から整流部21に流入した水の流れ方向が略両側壁22、23と平行になるのに十分な長さを備えている。水車11は回転軸13を垂直に設置した縦軸水車であり、整流部21の下流側(増速流路12の下流排水部)に設置している。   The rectifying unit 21 is configured such that both side walls 22 and 23 of the flow path are installed in parallel in the flow path on the downstream side of the outlet portion of the narrowed portion 14. The rectifying unit 21 has a sufficient length so that the flow direction of the water flowing into the rectifying unit 21 from the narrowed part 14 is substantially parallel to the both side walls 22 and 23. The water turbine 11 is a vertical axis water turbine in which a rotary shaft 13 is installed vertically, and is installed downstream of the rectifying unit 21 (downstream drainage part of the speed increasing flow path 12).

この水力エネルギ回収ユニット20の増速流路12は、上流取水口15に流入した水を狭窄部14で徐々に増速させて流水の単位流量あたりの水力エネルギを増大させる。狭窄部14で増速した水は整流部21に流入する。狭窄部14では流路断面が変化するので水の流れ方向は一定ではないが、整流部21では流路断面が一定であるので、整流部21に流入した水は徐々に流れ方向が両側壁22、23と平行になる。すなわち、整流部21では、水車11の受水面に作用させる水力のベクトルが下流側に向けて一定方向に揃う。そして、整流部21で流れ方向を一定方向にした水を水車11の受水面に作用させることができる。これにより、水力エネルギ回収ユニット20は、水車11でより大きな水力エネルギを回収することができる。   The speed increasing flow path 12 of the hydraulic energy recovery unit 20 gradually increases the speed of the water flowing into the upstream intake port 15 at the narrowed portion 14 to increase the hydraulic energy per unit flow rate of the flowing water. The water accelerated at the constriction part 14 flows into the rectification part 21. The flow direction of water is not constant because the cross section of the flow path changes in the constriction portion 14, but the flow path cross section is constant in the rectification section 21, so that the water flowing into the rectification section 21 gradually changes in flow direction on both side walls 22 , Parallel to 23. That is, in the rectifying unit 21, hydraulic vectors that act on the water receiving surface of the water turbine 11 are aligned in a certain direction toward the downstream side. Then, the water whose flow direction is made constant by the rectifying unit 21 can be applied to the water receiving surface of the water turbine 11. As a result, the hydraulic energy recovery unit 20 can recover a larger amount of hydraulic energy with the water turbine 11.

なお、この第2実施形態の水力エネルギ回収ユニット20は、増速流路12に水の流れを増速させる狭窄部14と整流部21を備えたものであるが、狭窄部14及び整流部21の設計は河川流の水理条件を考慮して行うと良い。   The hydraulic energy recovery unit 20 of the second embodiment includes the constriction part 14 and the rectification part 21 for accelerating the flow of water in the speed increasing flow path 12, but the constriction part 14 and the rectification part 21 are provided. It is recommended to design in consideration of the hydraulic conditions of the river flow.

次に、本発明の第3実施形態の水力エネルギ回収ユニットを説明する。   Next, a hydraulic energy recovery unit according to a third embodiment of the present invention will be described.

第3実施形態の水力エネルギ回収ユニット30は、図5(a)(b)に示すように、水力エネルギ回収装置としての水車11’と、水車11’に水を増速させて導入する増速流路12を備えており、増速流路12は、狭窄部14と、潜堰部31を備えている。   As shown in FIGS. 5 (a) and 5 (b), the hydraulic energy recovery unit 30 of the third embodiment includes a water turbine 11 ′ as a hydraulic energy recovery device, and a speed increase for introducing water into the water turbine 11 ′ by increasing the speed. A flow path 12 is provided, and the speed increasing flow path 12 includes a constricted portion 14 and a latent weir portion 31.

潜堰部31は、図5(a)に示すように、先端32が刃型の堰33を流路の幅方向に延在させて設けたものである。堰33の高さは上流側の水面よりも低くしている。この実施形態では、増速流路12の上流側に狭窄部14を設け、狭窄部14の下流出口部に、上述した潜堰部31を設け、潜堰部31の下流(増速流路12の下流排水部)に横軸水車11’を設置している。   As shown in FIG. 5A, the submerged dam portion 31 is provided by extending a dam 33 having a blade-shaped tip 32 in the width direction of the flow path. The height of the weir 33 is set lower than the upstream water surface. In this embodiment, the narrowed portion 14 is provided on the upstream side of the speed increasing flow path 12, the above-described latent weir portion 31 is provided at the downstream outlet portion of the narrowed portion 14, and the downstream of the latent weir section 31 (speed increasing flow path 12 Horizontal axis water turbine 11 'is installed in the downstream drainage section.

この水力エネルギ回収ユニット30の増速流路12は、上流取水口15に流入した水を狭窄部14で徐々に増速させる。潜堰部31では、狭窄部14で増速した水の流れを底部において堰き止め、より高い位置エネルギを有する流水の上層部分を下流側に流すことができ、狭窄部14で増速した流水をさらに増速させることができる。これにより、潜堰部31の下流側ではさらに単位流量当たりの水力エネルギが増大し、単位流量当たりの水力エネルギが増大した流水が水車11’に作用する。これにより、水力エネルギ回収ユニット30は、水車11’でより大きな水力エネルギを回収することができる。なお、この実施形態では、潜堰部31を越えて落下する水を水車11’に作用させている。   The speed increasing flow path 12 of the hydraulic energy recovery unit 30 gradually increases the speed of the water that has flowed into the upstream intake port 15 at the narrowed portion 14. In the submerged dam part 31, the flow of water accelerated at the constriction part 14 is blocked at the bottom part, and the upper layer part of the flowing water having higher potential energy can be flowed to the downstream side. Furthermore, the speed can be increased. As a result, the hydraulic energy per unit flow rate further increases on the downstream side of the submerged weir unit 31, and the flowing water with the increased hydraulic energy per unit flow rate acts on the water turbine 11 '. As a result, the hydraulic energy recovery unit 30 can recover a larger amount of hydraulic energy with the water turbine 11 '. In this embodiment, water falling over the submerged weir 31 is applied to the water turbine 11 '.

以上、第3実施形態の水力エネルギ回収ユニット30は、増速流路12に水の流れを増速させる潜堰部31を備えたものであるが、潜堰部31の設計は河川流の水理条件を考慮して行うと良い。   As described above, the hydraulic energy recovery unit 30 of the third embodiment is provided with the submerged weir unit 31 that accelerates the flow of water in the speed increasing flow path 12. This should be done in consideration of rational conditions.

例えば、潜堰部31は流れ方向に平行な縦断面形状において先端が刃形の堰を例示したが、これに限定されず、例えば、(後述する図7(b)に示すように、)上流側になだらかに高くなった斜面52を設け、その頂部53から下流側にむけなだらかに低くなった斜面54を設けた、流れ方向に平行な縦断面形状において山状(略三角形又は略台形形状)の突出形状にしても良い。この山状の突出形状からなる潜堰部51によれば、流水の下層部がよりスムーズに下流側に流れるようになるので、潜堰部を越えるときの水力エネルギを損失を低減させることができ、より大きな水力エネルギを水車に作用させることができる。   For example, the latent weir portion 31 is exemplified by a blade-shaped weir whose longitudinal cross-section is parallel to the flow direction, but is not limited to this, for example, upstream (as shown in FIG. 7B described later) In the longitudinal cross-sectional shape parallel to the flow direction, provided with a gently sloped slope 52 on the side and a sloped slope 54 gently lowered on the downstream side from the top 53 (substantially triangular or trapezoidal) The protruding shape may be used. According to the submerged weir portion 51 having a mountain-shaped protruding shape, the lower layer portion of the flowing water flows more smoothly to the downstream side, so that it is possible to reduce the loss of hydraulic energy when crossing the submerged weir portion. More hydraulic energy can be applied to the turbine.

次に、第4実施形態の水力エネルギ回収ユニットを説明する。   Next, a hydraulic energy recovery unit according to the fourth embodiment will be described.

第4実施形態の水力エネルギ回収ユニット40は、図6(a)(b)に示すように、水力エネルギ回収装置としての水車11と、水車11に水を増速させて導入する増速流路12を備えており、増速流路12は、狭窄部14と、水門部41を備えている。   As shown in FIGS. 6 (a) and 6 (b), the hydraulic energy recovery unit 40 of the fourth embodiment includes a water turbine 11 as a hydraulic energy recovery device, and a speed increasing flow path that introduces water into the water turbine 11 at an increased speed. 12 and the speed increasing flow path 12 includes a constricted portion 14 and a sluice portion 41.

水門部41は、図6(a)に示すように、流路の上部において、幅方向に延在するように水門42を設けている。水門42の高さは上流側の水面よりも高く、かつ、水門42の下端43は増速流路12の底44から所定の高さだけ高い位置に設置している。この実施形態では、増速流路12の上流側に狭窄部14を設け、狭窄部14の下流出口部に、上述した水門部41を設け、水門部41の下流に縦軸水車11を設置している。   As shown in FIG. 6 (a), the sluice part 41 is provided with a sluice 42 so as to extend in the width direction at the upper part of the flow path. The height of the sluice 42 is higher than the upstream water surface, and the lower end 43 of the sluice 42 is installed at a position higher than the bottom 44 of the speed increasing flow path 12 by a predetermined height. In this embodiment, the narrowed portion 14 is provided on the upstream side of the speed increasing flow path 12, the above-described water gate portion 41 is provided at the downstream outlet portion of the narrowed portion 14, and the vertical axis turbine 11 is installed downstream of the water gate portion 41. ing.

この水力エネルギ回収ユニット40の増速流路12は、上流取水口15に流入した水を狭窄部14で徐々に増速させる。水門部41では、狭窄部14で増速した水の流れの上層部分45を水門42で堰き止めて、水門42の上流側近傍で水位を上昇させ、高い水圧が掛かった水門42の上流側近傍の下層部分46の水を下流側に噴出することができ、狭窄部14で増速した流水をさらに増速させることができる。これにより、水門部41の下流側ではさらに単位流量当たりの水力エネルギが増大し、単位流量当たりの水力エネルギが増大した流水が水車11に作用する。これにより、水力エネルギ回収ユニット40は、水車11でより大きな水力エネルギを回収することができる。   The speed increasing flow path 12 of the hydraulic energy recovery unit 40 gradually increases the speed of water flowing into the upstream intake port 15 at the constricted portion 14. In the sluice part 41, the upper layer 45 of the water flow accelerated at the constriction part 14 is blocked by the sluice 42, the water level is raised near the upstream side of the sluice 42, and the upstream side of the sluice 42 where high water pressure is applied The water in the lower layer portion 46 can be ejected downstream, and the running water accelerated at the narrowed portion 14 can be further increased. As a result, the hydraulic energy per unit flow rate further increases on the downstream side of the sluice section 41, and the flowing water with the increased hydraulic energy per unit flow rate acts on the water turbine 11. As a result, the hydraulic energy recovery unit 40 can recover a larger amount of hydraulic energy with the water turbine 11.

以上、第4実施形態の水力エネルギ回収ユニット40は、増速流路12に水の流れを増速させる水門部41を備えたものであるが、水門部41の設計は河川流の水理条件を考慮して行うと良い。   As described above, the hydraulic energy recovery unit 40 of the fourth embodiment is provided with the sluice part 41 for accelerating the flow of water in the speed increasing flow path 12, but the design of the sluice part 41 is a hydraulic condition of the river flow. Should be taken into account.

以上に説明したように、増速流路において流水を増速させる手段としては、狭窄部、潜堰部、水門部を例示でき、また、これらは河川の水理条件を考慮して適宜に組み合わることができる。これらの増速手段を組み合わせたものを次の第5実施形態で例示する。   As described above, examples of means for accelerating the flow of water in the speed increasing flow path include a constricted portion, a submerged dam portion, and a sluice gate portion, and these are combined as appropriate in consideration of the hydraulic conditions of the river. Can. A combination of these speed increasing means is exemplified in the following fifth embodiment.

第5実施形態の水力エネルギ回収ユニット50は、図7(a)(b)に示すように、水力エネルギ回収装置としての水車11’と、水車11’に水を増速させて導入する増速流路12を備えており、増速流路12は、狭窄部14と、山状の潜堰部51と、整流部21を備えている。   As shown in FIGS. 7 (a) and 7 (b), the hydraulic energy recovery unit 50 of the fifth embodiment includes a water turbine 11 ′ as a hydraulic energy recovery device and a speed increase for introducing water into the water turbine 11 ′ by increasing the speed. The speed increasing flow path 12 includes a narrowed portion 14, a mountain-shaped latent dam portion 51, and a rectifying portion 21.

増速流路12は、上流側に狭窄部14を設け、下流側に整流部21を設け、狭窄部14と整流部21の境界部分に山状の潜堰部51を設置した流路構造を備えている。また、整流部21の下流側(増速流路12の下流排水部)には、水車11’を設置する水車設置部を設けており、水車設置部には横軸水車11’を設置している。   The speed increasing flow path 12 has a flow path structure in which a narrowed portion 14 is provided on the upstream side, a rectifying portion 21 is provided on the downstream side, and a mountain-shaped latent weir portion 51 is installed at a boundary portion between the narrowed portion 14 and the rectifying portion 21. I have. In addition, on the downstream side of the rectifying unit 21 (downstream drainage part of the speed increasing flow path 12), a water turbine installation part for installing a water turbine 11 'is provided, and a horizontal axis water turbine 11' is installed in the water turbine installation part. Yes.

山状の潜堰部51は、図7(b)に示すように、上流側になだらかに高くなった斜面52を設け、頂部53から下流側に向けなだらかに低くなった斜面54を設けたものであり、流れ方向に平行な縦断面形状において、略三角形の山状の突出形状を有している。この山状の突出形状からなる潜堰部51は、流水の下層部をよりスムーズに下流側に流すことができるので、上述した先端が刃形の潜堰部51に比べて、潜堰部51を越えるときの水力エネルギを損失を低減させることができ、流水の速度をより増速させることができる。   As shown in FIG. 7 (b), the mountain-shaped ditches 51 are provided with a slope 52 that is gently elevated on the upstream side and a slope 54 that is gently lowered from the top 53 toward the downstream side. In the longitudinal cross-sectional shape parallel to the flow direction, it has a substantially triangular mountain-like protruding shape. The ditches 51 having a mountain-like projecting shape can flow the lower layer of running water more smoothly to the downstream side. It is possible to reduce the loss of hydraulic energy when exceeding the range, and to increase the speed of running water.

この水力エネルギ回収ユニット50の増速流路12は、上流取水口15に流入した水を狭窄部14で徐々に増速させ、狭窄部14で増速した流水をさらに山状の潜堰部51で増速させることができ、さらに整流部21で流れ方向を一定方向にした水を水車11’の受水面に作用させることができる。これにより、水力エネルギ回収ユニット50は、水車11’でより大きな水力エネルギを回収することができる。   The speed increasing flow path 12 of this hydraulic energy recovery unit 50 gradually increases the speed of the water flowing into the upstream intake port 15 at the constricted portion 14, and further increases the flowing water speeded up at the constricted portion 14 to a mountain-shaped latent weir portion 51. In addition, it is possible to cause water having a flow direction constant by the rectifying unit 21 to act on the water receiving surface of the water turbine 11 ′. As a result, the hydraulic energy recovery unit 50 can recover a larger amount of hydraulic energy in the water turbine 11 '.

以上、第5実施形態の水力エネルギ回収ユニット50は、増速流路12に水の流れを増速させる狭窄部14、山状の潜堰部51、および、水の流れ方向を整える整流部21を備えたものであるが、この流路構造の設計は河川流の水理条件を考慮して行うと良い。   As described above, the hydraulic energy recovery unit 50 according to the fifth embodiment includes the constricted portion 14 that accelerates the flow of water in the speed increasing flow path 12, the mountain-shaped latent weir portion 51, and the rectifying portion 21 that adjusts the flow direction of water. However, it is better to design the channel structure in consideration of the hydraulic conditions of the river flow.

本発明の水力エネルギ回収ユニットは、上述したように、水車11と、水車11に水を増速させて導入する増速流路12をユニット化したものであり、河川流の流れの中に設置するものである。   As described above, the hydraulic energy recovery unit of the present invention is a unit in which the water turbine 11 and the speed increasing flow path 12 that introduces water into the water wheel 11 by increasing the speed are installed in the stream of the river. To do.

次に、本発明に係る水力エネルギ回収ユニットの設置例を示す。   Next, an installation example of the hydraulic energy recovery unit according to the present invention will be shown.

本発明に係る水力エネルギ回収ユニットは、例えば、川幅が広い河川では、河川の幅方向に、複数個並べて設置しても良い。また、川岸が護岸された川では、岸壁に水力エネルギ回収ユニットを設置しても良い。この場合、岸壁を増速流路の片側の壁面にすることができる。また、川幅が狭い河川では、川の両岸を利用して増速流路を構成しても良い。例えば、図8に示すように、橋脚61の湾曲した上流側の壁面62を、狭窄部63の片側の側壁に利用して水力エネルギ回収ユニット60を設けてもよい。この場合、詳しくは、橋脚61の壁面62に上流側から下流側に向けて徐々に近づくように斜めに設置した壁面64と、橋脚61の壁面62と斜めに設置した壁面64の下流に連続して整流部65を構成する側壁66、67を設置している。水車69は縦軸水車であり、整流部66の下流側(増速流路の下流排水部)に設置したものである。このように、既存の橋脚を利用して水力エネルギ回収ユニットを設置することができる。   For example, in a river having a wide river width, a plurality of hydraulic energy recovery units according to the present invention may be installed side by side in the width direction of the river. Moreover, in the river where the riverbank was protected, a hydraulic energy recovery unit may be installed on the quay. In this case, the quay wall can be a wall surface on one side of the speed increasing channel. Further, in a river having a narrow river width, the speed increasing flow path may be configured using both banks of the river. For example, as shown in FIG. 8, the hydraulic energy recovery unit 60 may be provided by using a curved upstream wall surface 62 of the pier 61 as a side wall on one side of the narrowed portion 63. In this case, in detail, the wall surface 64 installed obliquely so as to gradually approach the wall surface 62 of the pier 61 from the upstream side toward the downstream side, and the downstream surface of the wall surface 64 installed diagonally with the wall surface 62 of the pier 61. Side walls 66 and 67 constituting the rectifying unit 65 are installed. The water turbine 69 is a vertical water turbine, and is installed on the downstream side of the rectifying unit 66 (downstream drainage part of the speed increasing flow path). In this way, the hydraulic energy recovery unit can be installed using the existing pier.

上述した水力エネルギ回収ユニットにより得られたエネルギは、水力発電に利用したり、圧縮空気を作成して、圧縮空気エネルギとして貯蔵したり、いろいろな用途に利用することができる。   The energy obtained by the above-described hydraulic energy recovery unit can be used for hydroelectric power generation, or can be created as compressed air and stored as compressed air energy, or used for various purposes.

以上、本発明に係る水力エネルギ回収ユニットの実施の形態を説明したが、本発明に係る水力エネルギ回収ユニットは上記の実施の形態に限定されるものではない。   Although the embodiment of the hydraulic energy recovery unit according to the present invention has been described above, the hydraulic energy recovery unit according to the present invention is not limited to the above embodiment.

本発明の第1実施形態に係る水力エネルギ回収ユニットを示す平面図である。It is a top view which shows the hydraulic energy recovery unit which concerns on 1st Embodiment of this invention. 本発明の第1実施形態の第1の変形例に係る水力エネルギ回収ユニットを示す平面図である。It is a top view which shows the hydraulic energy recovery unit which concerns on the 1st modification of 1st Embodiment of this invention. 本発明の第1実施形態の第2の変形例に係る水力エネルギ回収ユニットを示す縦断面図である。FIG. 6 is a longitudinal sectional view showing a hydraulic energy recovery unit according to a second modification of the first embodiment of the present invention. 本発明の第2実施形態に係る水力エネルギ回収ユニットを示す平面図である。It is a top view which shows the hydraulic energy collection | recovery unit which concerns on 2nd Embodiment of this invention. (a)は本発明の第3実施形態に係る水力エネルギ回収ユニットの縦断面図であり、(b)はその平面図である。(A) is a longitudinal cross-sectional view of the hydraulic energy recovery unit according to the third embodiment of the present invention, and (b) is a plan view thereof. (a)は本発明の第4実施形態に係る水力エネルギ回収ユニットの縦断面図であり、(b)はその平面図である。(A) is a longitudinal cross-sectional view of the hydraulic energy recovery unit according to the fourth embodiment of the present invention, and (b) is a plan view thereof. (a)は本発明の第5実施形態に係る水力エネルギ回収ユニットの平面図であり、(b)はその平面図である。(A) is a top view of the hydraulic energy recovery unit which concerns on 5th Embodiment of this invention, (b) is the top view. 橋脚の側壁を利用して本発明に係る水力エネルギ回収ユニットを設置した例を示す横断平面図である。It is a cross-sectional top view which shows the example which installed the hydraulic energy recovery unit which concerns on this invention using the side wall of a bridge pier.

符号の説明Explanation of symbols

10 第1実施形態の水力エネルギ回収ユニット
11 水車
12 増速流路
13 回転軸
14 狭窄部
15 増速流路の上流取水口
16、17 狭窄部の側壁
18 増速流路の下流排水口
20 第2実施形態の水力エネルギ回収ユニット
21 整流部
22、23 整流部の側壁
30 第3実施形態の水力エネルギ回収ユニット
31 潜堰部
32 堰の先端
33 堰
34 流水の上層部分
40 第4実施形態の水力エネルギ回収ユニット
41 水門部
42 水門
43 水門の下端
44 増速流路の底
45 流水の上層部分
46 水門の上流側近傍の下層部分
50 第5実施形態の水力エネルギ回収ユニット
51 山状の潜堰部
52 上流側の斜面
53 頂部
54 下流側の斜面
10 Hydraulic energy recovery unit of the first embodiment
11 waterwheel
12 Speed increasing channel
13 Rotating axis
14 Stenosis
15 Upstream intake of speed increasing channel
16, 17 Side wall of constriction
18 Downstream drain of speed increasing channel
20 Hydraulic energy recovery unit of the second embodiment
21 Rectifier
22, 23 Rectifier side wall
30 Hydraulic energy recovery unit of the third embodiment
31 Dive weir
32 Weir tip
33 weir
34 Upper part of running water
40 Hydraulic energy recovery unit of the fourth embodiment
41 Sluice
42 Sluice
43 Bottom of sluice
44 Bottom of speed increasing flow path
45 Upper layer of running water
46 Lower layer near the upstream side of the sluice
50 Hydraulic energy recovery unit of the fifth embodiment
51 Mountain-shaped diving section
52 Upstream slope
53 Top
54 Downstream slope

Claims (6)

水力エネルギを回収する水力エネルギ回収装置と、
前記水力エネルギ回収装置の上流側で水の流れを増速させ、増速させた水を水力エネルギ回収装置に導入する増速流路とを備えたことを特徴とする水力エネルギ回収ユニット。
A hydraulic energy recovery device for recovering hydraulic energy;
A hydraulic energy recovery unit comprising a speed increasing flow path for increasing the flow rate of water upstream of the hydraulic energy recovery device and introducing the increased water into the hydraulic energy recovery device.
前記増速流路が、前記水力エネルギ回収装置の上流側に、上流側から下流側に向けて流路断面が徐々に縮小した狭窄部を備え、該狭窄部で水の流れを増速させることを特徴とする請求項1に記載の水力エネルギ回収ユニット。   The speed increasing flow path has a constricted portion whose flow path section is gradually reduced from the upstream side to the downstream side on the upstream side of the hydraulic energy recovery device, and accelerates the flow of water in the constricted portion. The hydraulic energy recovery unit according to claim 1. 前記増速流路が狭窄部で増速させた水の流れ方向を整えて水力エネルギ回収装置に導入する整流部を備えていることを特徴とする請求項2に記載の水力エネルギ回収ユニット。   3. The hydraulic energy recovery unit according to claim 2, further comprising a rectification unit that adjusts a flow direction of the water accelerated by the constriction part and introduces the speed increase channel into the hydraulic energy recovery device. 4. 前記増速流路が、前記水力エネルギ回収装置の上流側に、水の流れを増速させる潜堰部を備えていることを特徴とする請求項1から3の何れかに記載の水力エネルギ回収ユニット。   4. The hydraulic energy recovery according to claim 1, wherein the speed increasing flow path is provided with a latent weir portion that accelerates the flow of water upstream of the hydraulic energy recovery device. unit. 前記増速流路が、前記水力エネルギ回収装置の上流側に、水の流れを増速させる水門部を備えていることを特徴とする請求項1から4の何れかに記載の水力エネルギ回収ユニット。   5. The hydraulic energy recovery unit according to claim 1, wherein the speed increasing flow path includes a sluice part for accelerating the flow of water upstream of the hydraulic energy recovery device. . 前記狭窄部と整流部の境界部の底に流れ方向の縦断面形状が山状の潜堰部を設けたことを特徴とする請求項3に記載の水力エネルギ回収ユニット。   The hydraulic energy recovery unit according to claim 3, wherein a latent weir portion having a mountain-like longitudinal cross-sectional shape in the flow direction is provided at the bottom of the boundary portion between the narrowed portion and the rectifying portion.
JP2003390881A 2003-11-20 2003-11-20 Hydraulic energy recovering unit Withdrawn JP2005155334A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003390881A JP2005155334A (en) 2003-11-20 2003-11-20 Hydraulic energy recovering unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003390881A JP2005155334A (en) 2003-11-20 2003-11-20 Hydraulic energy recovering unit

Publications (1)

Publication Number Publication Date
JP2005155334A true JP2005155334A (en) 2005-06-16

Family

ID=34718122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003390881A Withdrawn JP2005155334A (en) 2003-11-20 2003-11-20 Hydraulic energy recovering unit

Country Status (1)

Country Link
JP (1) JP2005155334A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006348897A (en) * 2005-06-20 2006-12-28 Hitachi Plant Technologies Ltd Waterwheel type drive mechanism
WO2007023879A1 (en) * 2005-08-25 2007-03-01 Institute For Energy Application Technologies Co., Ltd. Power generating apparatus and power generating method
JP2008031879A (en) * 2006-07-27 2008-02-14 Michihiro Oe Hydraulic power generating apparatus
JP2009114937A (en) * 2007-11-06 2009-05-28 Michihiro Oe Hydraulic power generation device
GB2465855A (en) * 2008-10-18 2010-06-09 Campbell Mckay Taylor Water powered generator.
JP2010222875A (en) * 2009-03-24 2010-10-07 Keiji Kuboki Construction body for accelerating water stream
JP2011140829A (en) * 2010-01-08 2011-07-21 Kazuo Kurokawa Headrace for water power generation and hydroelectric method for mountainous area
JP2012202264A (en) * 2011-03-24 2012-10-22 Nippon System Kikaku Kk Water wheel impeller blade type electric power generating apparatus
JP2014173527A (en) * 2013-03-11 2014-09-22 Nakayama Iron Works Ltd Hydraulic power generation device
JPWO2013186965A1 (en) * 2012-06-12 2016-02-01 パナソニックIpマネジメント株式会社 Power generation device and power generation module
WO2018105429A1 (en) * 2016-12-06 2018-06-14 株式会社ベルシオン Acceleration duct
WO2022131088A1 (en) * 2020-12-18 2022-06-23 義英 土橋 Staged pressure reduction water path–type, water collection–type hydraulic power generation device

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006348897A (en) * 2005-06-20 2006-12-28 Hitachi Plant Technologies Ltd Waterwheel type drive mechanism
WO2007023879A1 (en) * 2005-08-25 2007-03-01 Institute For Energy Application Technologies Co., Ltd. Power generating apparatus and power generating method
GB2442929A (en) * 2005-08-25 2008-04-16 Inst Energy Applic Technologie Power generating apparatus and power generating method
JP4947800B2 (en) * 2005-08-25 2012-06-06 株式会社エネルギー応用技術研究所 Power generation apparatus and power generation method
GB2442929B (en) * 2005-08-25 2011-02-16 Inst Energy Applic Technologies Co Ltd Power generator and power generation method
US7948106B2 (en) 2005-08-25 2011-05-24 Institute For Energy Application Technologies Co., Ltd. Power generator and power generation method
JP2008031879A (en) * 2006-07-27 2008-02-14 Michihiro Oe Hydraulic power generating apparatus
JP4653036B2 (en) * 2006-07-27 2011-03-16 通博 大江 Hydroelectric generator
JP4705086B2 (en) * 2007-11-06 2011-06-22 通博 大江 Hydroelectric generator
JP2009114937A (en) * 2007-11-06 2009-05-28 Michihiro Oe Hydraulic power generation device
GB2465855A (en) * 2008-10-18 2010-06-09 Campbell Mckay Taylor Water powered generator.
GB2465855B (en) * 2008-10-18 2010-11-10 Campbell Mckay Taylor Gravity power by water wheel
JP4669899B2 (en) * 2009-03-24 2011-04-13 啓壽 久保木 Structure for water flow acceleration
JP2010222875A (en) * 2009-03-24 2010-10-07 Keiji Kuboki Construction body for accelerating water stream
JP2011140829A (en) * 2010-01-08 2011-07-21 Kazuo Kurokawa Headrace for water power generation and hydroelectric method for mountainous area
JP2012202264A (en) * 2011-03-24 2012-10-22 Nippon System Kikaku Kk Water wheel impeller blade type electric power generating apparatus
US9103314B2 (en) 2011-03-24 2015-08-11 Japan System Planning Co., Ltd. Water wheel impeller blade type electric power generating apparatus
JPWO2013186965A1 (en) * 2012-06-12 2016-02-01 パナソニックIpマネジメント株式会社 Power generation device and power generation module
JP2014173527A (en) * 2013-03-11 2014-09-22 Nakayama Iron Works Ltd Hydraulic power generation device
WO2018105429A1 (en) * 2016-12-06 2018-06-14 株式会社ベルシオン Acceleration duct
CN110337540A (en) * 2016-12-06 2019-10-15 Ntn株式会社 Accelerate pipeline
WO2022131088A1 (en) * 2020-12-18 2022-06-23 義英 土橋 Staged pressure reduction water path–type, water collection–type hydraulic power generation device
JP2022097312A (en) * 2020-12-18 2022-06-30 義英 土橋 Water collection type hydroelectric power generation device using stepwise decompression type water channel

Similar Documents

Publication Publication Date Title
US8648487B2 (en) Shaft power plant
CA2584362C (en) Kinetic hydropower generation from slow-moving water flows
US9109571B2 (en) Shaft power plant
JP2005155334A (en) Hydraulic energy recovering unit
JP5865572B2 (en) Low flow hydropower system for rivers
CN101148866A (en) Drainage system estuary pier bar swirl chamber composite energy dissipation method
JP3174457U (en) Low flow hydropower system for rivers
US6792753B2 (en) System for generating power
JP4669899B2 (en) Structure for water flow acceleration
WO2014113826A1 (en) A multi-stage hydroelectric power generating station
JP2013068196A (en) Hydraulic power generation apparatus
KR200418822Y1 (en) Water-power generating apparatus
JP6782378B1 (en) Hydropower system that can be used in narrow and low flow channels
KR20070093225A (en) Water-power generating method and apparatus
JP2004036453A (en) Unit for collecting water energy
Tanaka et al. A study on Darrieus-type hydroturbine toward utilization of extra-low head natural flow streams
RU2088724C1 (en) Hydroelectric power plant and its construction method
JP6464492B2 (en) Small hydro turbine
JPWO2004090235A1 (en) Flood control and irrigation system using tidal current generating device by &#34;UTSURO&#34;
JP2002167740A (en) Hydraulic power generating method
JP4344703B2 (en) Weir for hydroelectric power generation
CN104213545B (en) Hang underflow type step stiling basin energy-dissipating system
JPH08311847A (en) Baffle pier with blade-like sill type semi-automatic sand flash and intake weir
JP2004068764A (en) Water power energy recovery unit
JP4104492B2 (en) Destructor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070206