JP2005154786A - Method for producing high-tensile aluminum alloy product - Google Patents

Method for producing high-tensile aluminum alloy product Download PDF

Info

Publication number
JP2005154786A
JP2005154786A JP2003390871A JP2003390871A JP2005154786A JP 2005154786 A JP2005154786 A JP 2005154786A JP 2003390871 A JP2003390871 A JP 2003390871A JP 2003390871 A JP2003390871 A JP 2003390871A JP 2005154786 A JP2005154786 A JP 2005154786A
Authority
JP
Japan
Prior art keywords
aluminum alloy
mass
semi
same conditions
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003390871A
Other languages
Japanese (ja)
Other versions
JP4247536B2 (en
Inventor
Mitsuru Adachi
充 安達
Satoshi Sato
智 佐藤
Shuhei Osaki
修平 大崎
Katsuyuki Kinoshita
勝之 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Machinery Corp Ltd
Yamaguchi University NUC
Original Assignee
Ube Machinery Corp Ltd
Yamaguchi University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Machinery Corp Ltd, Yamaguchi University NUC filed Critical Ube Machinery Corp Ltd
Priority to JP2003390871A priority Critical patent/JP4247536B2/en
Publication of JP2005154786A publication Critical patent/JP2005154786A/en
Application granted granted Critical
Publication of JP4247536B2 publication Critical patent/JP4247536B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Forging (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method capable of producing an aluminum alloy having high strength, particularly, an aluminum alloy having high strength and reduced deterioration in mechanical properties under a stress corrosive environment by a casting method, a forging method, an extrusion method or the like. <P>SOLUTION: In the method for producing a high-tensile aluminum alloy product, an aluminum alloy containing, to the whole quantity of the alloy, 0.005 to 3.0 mass% Cu, 3.0 to 9.0 mass% Zn and 0.5 to 3.7 mass% Mg is formed by a semi-solidification forming method or a semi-melt forming method to obtain a formed body; the formed body is heated at a temperature in the range of 450 to 500°C so as to be subjected to solution treatment; and then, the solution-treated part is held at a temperature in the range of 150 to 200°C for ≥5 min. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、高力アルミニウム合金製品の製造方法に関する。本発明は特に、高力アルミニウム合金製品を半凝固金属もしくは半溶融金属を用いて成形することにより製造する方法に関する。   The present invention relates to a method for producing a high-strength aluminum alloy product. In particular, the present invention relates to a method for producing a high-strength aluminum alloy product by molding it using a semi-solid or semi-molten metal.

現在、自動車部品や二輪自動車部品の重要保安部品としては、高い強度を示すなどの観点から一般に鉄製部品が用いられている。ただし、近年では、自動車部品や二輪自動車部品の軽量化を意図して、アルミニウム合金製品も使用されるようになっている。ただし、アルミニウム合金製品であっても、上記の目的で使用される場合には、高い強度が要求されるため、これまで使用されているアルミニウム合金製品は、鍛造加工した製品である。   Currently, iron parts are generally used as important safety parts for automobile parts and motorcycle automobile parts from the standpoint of high strength. However, in recent years, aluminum alloy products have also been used for the purpose of reducing the weight of automobile parts and motorcycle automobile parts. However, even if an aluminum alloy product is used for the above-mentioned purpose, high strength is required. Therefore, the aluminum alloy product used so far is a forged product.

しかしながら、鍛造加工によるアルミニウム合金製品の製造には、手間が係り、また鍛造加工用の金属素材が高価であるという欠点がある。このため、製造工程が短縮でき、コスト的にも有利な鋳造法によるアルミニウム合金製品の製造方法の開発が望まれるが、これまでに知られている鋳造法を利用してアルミニウム合金製品を製造した場合、その強度や靱性が充分高くならないという問題がある。   However, the production of aluminum alloy products by forging is troublesome and has disadvantages that metal materials for forging are expensive. For this reason, it is desired to develop a production method of an aluminum alloy product by a casting method that can shorten the production process and is advantageous in terms of cost, but an aluminum alloy product was produced by using a known casting method. In this case, there is a problem that the strength and toughness are not sufficiently high.

高強度を示すアルミニウム合金製品を製造するためにはアルミニウム合金材料としては、高強度製品の製造に適した展伸用合金として知られている7000系アルミニウム合金(Al−Zn−Mg−Cu)を用いることが考えられる。しかしながら、このようなアルミニウム合金材料を用いても、スクイズ鋳造法などの従来よりアルミニウム製品の鋳造用として一般的に知られている方法で鋳造する限り、製品表面の肉厚変動部には熱間割れが発生しやすく、また製品内部に粗大な成分偏析が発生する傾向があるため、充分な機械的特性を持つ製品になりにくい。   In order to produce an aluminum alloy product exhibiting high strength, as an aluminum alloy material, a 7000 series aluminum alloy (Al-Zn-Mg-Cu), which is known as a drawing alloy suitable for producing a high-strength product, is used. It is possible to use it. However, even if such an aluminum alloy material is used, as long as it is cast by a method generally known for casting aluminum products such as a squeeze casting method, the thickness variation part of the product surface is hot. Since cracks tend to occur and coarse component segregation tends to occur inside the product, it is difficult to produce a product with sufficient mechanical properties.

近年、アルミニウムもしくはその合金を半溶融成形法もしくは半凝固成形法により成形して成形体を得る技術が開発され、さまざまな用途での利用が広がりつつある。非特許文献1には、チキソキャスト成形法により代表される半溶融成形法、そしてレオキャスト成形法あるいはニューレオキャスト成形法によって代表される半凝固成形法が説明されている。また、これらの半溶融成形法もしくは半凝固成形法は共に、金属を一旦、固液共存状態にして、この固液共存状態にて加圧成形することが特徴であって、成形サイクルが短く、金属組織が均一の成形体が得られやすいなどの利点があることが記載されている。   In recent years, a technique for forming a molded body by molding aluminum or an alloy thereof by a semi-melt molding method or a semi-solid molding method has been developed, and its use in various applications is spreading. Non-Patent Document 1 describes a semi-melt molding method represented by a thixocast molding method and a semi-solid molding method represented by a rheocast molding method or a new rheocast molding method. Further, both of these semi-melt molding methods or semi-solid molding methods are characterized in that the metal is once in a solid-liquid coexistence state and pressure-molded in this solid-liquid coexistence state, and the molding cycle is short, It is described that there is an advantage that a compact with a uniform metal structure is easily obtained.

非特許文献2には、各種のアルミニウム合金製品をニューレオキャスト法で成形する場合の利点について、従来の鋳造法であるスクイズ法で成形する場合と比較した記載がある。すなわち、7075系合金のスクイズ材においては偏析が発生し、伸びが低いのに対して、半凝固状態で成形するレオキャスト材においては高い伸びが見られた。ただし、このレオキャスト的性質は、最高の強度が得られるT6処理で得られたものであって、応力腐食特性には考慮されていない。   Non-patent document 2 describes the advantages of forming various aluminum alloy products by the neureocast method in comparison with the case of forming by the squeeze method, which is a conventional casting method. That is, segregation occurred in the 7075 alloy squeeze material and the elongation was low, whereas the rheocast material molded in a semi-solid state exhibited a high elongation. However, this rheocasting property is obtained by the T6 treatment that gives the highest strength, and is not considered in the stress corrosion properties.

「最新のレオキャストマシン」、軽金属、第31巻、第10号(2001)、568−574頁"Latest Leocast Machine", Light Metal, Vol. 31, No. 10 (2001), pp. 568-574 「宇部レオキャスト法の特徴」、(98日本ダイカスト会議論文集、社団法人 日本ダイカスト協会1998年10月31日発行)"Characteristics of Ube Leocast Method", (98 Japan Die Casting Conference Proceedings, Japan Die Casting Association October 31, 1998)

本発明は、半凝固法あるいは半溶融法により得られた半凝固状態の金属を用いて、鋳造法、鍛造法、あるいは押出法のいずれかの加圧成形方法により得られた成形体に特殊な熱処理を加えることにより、高強度のアルミニウム合金製品、特に、高強度で、かつ応力腐食環境下での機械的特性の低下が少ないアルミニウム合金製品を得ることを可能になるとの本願発明の発明者の新規な知見に基づくものである。   The present invention uses a metal in a semi-solid state obtained by a semi-solid method or a semi-melting method, and is special for a molded body obtained by a pressure forming method such as a casting method, a forging method, or an extrusion method. By applying heat treatment, the inventors of the present invention said that it becomes possible to obtain a high-strength aluminum alloy product, in particular, an aluminum alloy product that has high strength and little deterioration of mechanical properties under a stress corrosion environment. It is based on new knowledge.

本発明は、合金全体量に対して、Cuを0.005〜3.0質量%、Znを3.0〜9.0質量%そしてMgを0.5〜3.7質量%を含有するアルミニウム合金を半凝固成形法もしくは半溶融成形法により加圧成形して得た成形体を450〜500℃の範囲の温度で加熱することにより溶体化処理し、次いで該溶体化処理品を150〜200℃の範囲の温度に5分間以上保持することを特徴とする高力アルミニウム合金製品の製造方法にある。   The present invention relates to aluminum containing 0.005 to 3.0 mass% Cu, 3.0 to 9.0 mass% Zn, and 0.5 to 3.7 mass% Mg based on the total amount of the alloy. A formed body obtained by pressure-forming the alloy by a semi-solid forming method or a semi-melt forming method is subjected to a solution treatment by heating at a temperature in the range of 450 to 500 ° C., and then the solution-treated product is applied to 150 to 200. The method of producing a high-strength aluminum alloy product is characterized by holding at a temperature in the range of ° C for 5 minutes or more.

本発明の好ましい態様は次の通りである。
(1)溶体化処理品の150〜200℃の範囲の温度での保持時間を10分以上であり、48時間以内とする。
(2)溶体化処理品の150〜200℃の範囲の温度での保持時間を、Xを保持温度(単位:℃)、そしてYを保持時間(単位:時間)とした場合に、Y=2×106/e0.0798Xで表わされる時間以上で、かつ10Y以内とする。
(3)アルミニウム合金を半凝固状態もしくは半溶融状態にした時点での液相率が20〜90質量%(鋳造法の場合)、あるいは0.1〜90質量%(鍛造法あるいは押出法の場合)である。好ましくは、いずれの場合でも、40〜60質量%である。
(4)アルミニウム合金がさらに、合金全体量に対して、Mnを0.05〜0.70質量%含有する。
(5)アルミニウム合金がさらに、合金全体量に対して、Crを0.05〜0.30質量%含有する。
(6)アルミニウム合金がさらに、合金全体量に対して、Tiを0.05〜0.20質量%含有する。
(7)アルミニウム合金がさらに、合金全体量に対して、Zrを0.05〜0.20質量%含有する。
Preferred embodiments of the present invention are as follows.
(1) The retention time of the solution-treated product at a temperature in the range of 150 to 200 ° C. is 10 minutes or longer and within 48 hours.
(2) Y = 2 when the retention time at a temperature in the range of 150 to 200 ° C. of the solution-treated product is X as the retention temperature (unit: ° C.) and Y as the retention time (unit: hours). X10 6 / e 0.0798X or more, and within 10Y.
(3) The liquid phase ratio when the aluminum alloy is in a semi-solid state or a semi-molten state is 20 to 90% by mass (in the case of a casting method), or 0.1 to 90% by mass (in the case of a forging method or an extrusion method) ). Preferably, it is 40-60 mass% in any case.
(4) The aluminum alloy further contains 0.05 to 0.70% by mass of Mn based on the total amount of the alloy.
(5) The aluminum alloy further contains 0.05 to 0.30% by mass of Cr with respect to the total amount of the alloy.
(6) The aluminum alloy further contains 0.05 to 0.20% by mass of Ti with respect to the total amount of the alloy.
(7) The aluminum alloy further contains 0.05 to 0.20% by mass of Zr with respect to the total amount of the alloy.

本発明のアルミニウム合金製品の製造方法を利用することにより、高強度のアルミニウム合金、特に、高強度で、かつ応力腐食環境下での機械的特性の低下が少ないアルミニウム合金を得ることを可能となる。   By using the method for producing an aluminum alloy product of the present invention, it becomes possible to obtain a high-strength aluminum alloy, in particular, an aluminum alloy having high strength and little deterioration in mechanical properties under a stress corrosion environment. .

本発明のアルミニウム合金製品の製造方法で用いるアルミニウム合金材料は、通常7000系アルミニウム合金と呼ばれているAl−Zn−Mg−Cu系合金であり、具体的には、Cuを0.005〜3.0質量%、Znを3.0〜9.0質量%そしてMgを0.5〜3.7質量%を含有するアルミニウム合金である。このような合金材料の代表例としては、JISにて7075系アルミニウム合金して規定されている合金材料がある。   The aluminum alloy material used in the method for producing an aluminum alloy product of the present invention is an Al—Zn—Mg—Cu alloy that is usually referred to as a 7000 series aluminum alloy. It is an aluminum alloy containing 0.0% by mass, Zn of 3.0-9.0% by mass and Mg of 0.5-3.7% by mass. As a typical example of such an alloy material, there is an alloy material specified by JIS 7075 series aluminum alloy.

本発明で原料として用いるAl−Zn−Mg−Cu系合金材料は、その特性の障害とならない限り、少量の他の金属成分を含んでいてもよい。それらの金属成分の例としては、Mn(0.05〜0.70質量%)、Cr(.05〜0.30質量%)Ti(.05〜0.20質量%)、そしてZr(0.05〜0.20質量%)を挙げることができる。これらの補助的な金属成分は単独で、あるいは組合せてアルミニウム合金材料に添加できる。なお、アルミニウム合金材料としては、不可避的に混入する微量の鉄などの異種金属成分を含んでいてもよい。   The Al—Zn—Mg—Cu-based alloy material used as a raw material in the present invention may contain a small amount of other metal components as long as the properties are not hindered. Examples of these metal components are Mn (0.05-0.70% by mass), Cr (0.05-0.30% by mass) Ti (0.05-0.20% by mass), and Zr (0.005% by mass). 05-0.20 mass%). These auxiliary metal components can be added to the aluminum alloy material alone or in combination. In addition, as an aluminum alloy material, dissimilar metal components, such as a trace amount iron inevitably mixed, may be included.

本発明の高力アルミニウム合金製品の製造方法では、上記のAl−Zn−Mg−Cu系合金材料を、半凝固成形法もしくは半溶融成形法により加圧成形して得た成形体を用いる。この加圧成形に供する半凝固品あるいは半溶融品の液相含有率は、鋳造法に利用する場合では20〜90質量%であることが好ましく、また鍛造法あるいは押出法に用いる場合は、0.1〜90質量%であることが好ましい。いずれの場合でも、40〜60質量%であることが特に好ましい。
半凝固成形法もしくは半溶融成形法を利用するアルミニウム合金製品の製造方法は、前述のように、既に公知であるので、詳しい説明は省略する。
In the method for producing a high-strength aluminum alloy product of the present invention, a molded body obtained by pressure-molding the above Al—Zn—Mg—Cu-based alloy material by a semi-solid forming method or a semi-melt forming method is used. The liquid phase content of the semi-solid or semi-molten product subjected to this pressure molding is preferably 20 to 90% by mass when used in a casting method, and 0 when used in a forging method or extrusion method. It is preferable that it is 1-90 mass%. In any case, the content is particularly preferably 40 to 60% by mass.
Since the manufacturing method of the aluminum alloy product using the semi-solid forming method or the semi-melt forming method is already known as described above, the detailed description is omitted.

半凝固成形法もしくは半溶融成形法により成形して得た成形体は通常の鋳造品の処理と同様に、一旦、室温の水に接触させて瞬間的に室温近くの温度まで冷却している。本発明は、この室温までの冷却処理を行なうことなく、一旦、450〜500℃で溶体化処理し、この溶体化処理品を次いで、150〜200℃の温度範囲に下げて、その後5分間以上、その範囲の温度に保持する処理(時効処理)を行なうことを特徴とする。すなわち、溶体化処理品を室温あるいはその付近の温度にまで下げることなく、上記の時効処理を行なうことを特徴とする。なお、この時効処理の間、時効温度は、上記の所定の温度範囲内であれば変動させてもよい。また、この時効処理時間は、時効処理温度によって依存し、最適な時効処理時間は変動するが、5分以上である必要があり、10分以上であることが好ましく、さらに30分以上であることが好ましい。時効処理時間に特段の上限はないが、過度に長時間の時効処理は、本発明のアルミニウム合金製品の製造方法の工業的な実施に不利となるため、通常は、48時間以内で行なうことが好ましい。   A molded body obtained by molding by a semi-solid molding method or a semi-melt molding method is once brought into contact with water at room temperature and instantaneously cooled to a temperature close to room temperature, as in the case of processing of a normal cast product. In the present invention, the solution treatment is once performed at 450 to 500 ° C. without performing the cooling treatment to the room temperature, and the solution treatment product is then lowered to a temperature range of 150 to 200 ° C., and then for 5 minutes or more. , And a process for maintaining the temperature within the range (aging process) is performed. That is, the aging treatment is performed without lowering the solution treatment product to room temperature or a temperature in the vicinity thereof. During this aging treatment, the aging temperature may be varied as long as it is within the above-mentioned predetermined temperature range. The aging treatment time depends on the aging treatment temperature, and the optimum aging treatment time varies. However, it needs to be 5 minutes or longer, preferably 10 minutes or longer, and further 30 minutes or longer. Is preferred. Although there is no particular upper limit for the aging treatment time, aging treatment for an excessively long time is disadvantageous for industrial implementation of the method for producing an aluminum alloy product of the present invention, and is usually performed within 48 hours. preferable.

また、上記のように、好ましい時効処理時間は時効処理温度に依存しており、その時効処理時間としては、Xを保持温度(単位:℃)、そしてYを保持時間(単位:時間)とした場合に、Y=2×106/e0.0798Xで表わされる時間以上であることが好ましい。この、Y=2×106/e0.0798Xで表わされる保持温度(時効温度)と保持時間(時効時間)との関係を図1にグラフとして示す。温度時効処理時間は、10Y以内とすることが好ましい。 Further, as described above, the preferable aging treatment time depends on the aging treatment temperature. As the aging treatment time, X is a holding temperature (unit: ° C.), and Y is a holding time (unit: time). In this case, it is preferable that the time is represented by Y = 2 × 10 6 / e 0.0798X or more. The relationship between the holding temperature (aging temperature) represented by Y = 2 × 10 6 / e 0.0798X and the holding time (aging time) is shown as a graph in FIG. The temperature aging treatment time is preferably within 10Y.

上記の時効処理は、たとえば、溶体化処理品を、所定の温度に調整した加熱炉内もしくは油浴内に所定時間保持することにより行なうことができる。   The aging treatment can be performed, for example, by holding the solution-treated product in a heating furnace or an oil bath adjusted to a predetermined temperature for a predetermined time.

[実施例1]
(1) Cu(1.60質量%)、Zn(5.60質量%)、Mg(2.60質量%)そしてTi(0.11質量%)を含有するアルミニウム合金材料を公知の方法に従って、半凝固成形法にて、低温注湯法により成形された液相率50質量%のアルミニウム合金半凝固体を加圧成形した。この成形体には、収縮巣の発生は見られず、また熱間割れも発生していなかった。
(2)上記の成形体について、450℃、14時間の溶体化処理行ない、次いで、この溶体化処理品を160℃に温度調製した油浴に投入し、その後、その温度にて24時間保持して時効処理を行なった。この時効処理を施したアルミニウム合金製品について、空気中および食塩水環境下(試料片が3.5質量%の食塩水が接触した状態)での機械的性質(引張強度と伸び)を測定した。その測定結果を表1に示す。なお、表1には、応力腐食感受性指数(=SCC感受性指数=[空気中での伸び−応力腐食環境下での伸び]/[空気中での伸び])も記載した。なお、応力腐食感受性指数(SCC感受性指数)は、0に近い方が好ましく、1もしくは1付近の数値を示す成形体は、実用上において問題が発生する。
[Example 1]
(1) An aluminum alloy material containing Cu (1.60% by mass), Zn (5.60% by mass), Mg (2.60% by mass) and Ti (0.11% by mass) according to a known method, An aluminum alloy semi-solid body having a liquid phase ratio of 50% by mass formed by the low-temperature pouring method was pressure-formed by the semi-solid forming method. In this molded body, no shrinkage foci were observed, and no hot cracking occurred.
(2) The above-mentioned molded body was subjected to a solution treatment at 450 ° C. for 14 hours, and then this solution treatment product was put into an oil bath adjusted to 160 ° C., and then kept at that temperature for 24 hours. The aging treatment was performed. The aluminum alloy product subjected to this aging treatment was measured for mechanical properties (tensile strength and elongation) in air and in a saline environment (a state where the sample piece was in contact with 3.5% by mass of saline). The measurement results are shown in Table 1. Table 1 also shows the stress corrosion sensitivity index (= SCC sensitivity index = [elongation in air−elongation under stress corrosion environment] / [elongation in air]). Note that the stress corrosion sensitivity index (SCC sensitivity index) is preferably close to 0, and a molded body showing a numerical value of 1 or 1 has a problem in practical use.

[比較例1]
実施例1と同じ条件で、アルミニウム合金成形体(半凝固体の液相率:50質量%)を得た。この成形体には、収縮巣の発生は見られず、また熱間割れも発生していなかった。
このアルミニウム合金成形体について、実施例1と同じ条件で溶体化処理を行なった後、溶体化処理品を20℃の水に投入して冷却し、ついで120℃で24時間の時効処理を行なった。この時効処理を施したアルミニウム合金製品について、実施例1と同じ条件にて、空気中および食塩水環境下での機械的性質(引張強度と伸び)を測定した。その測定結果を表1に示す。表1には、応力腐食感受性指数も記載した。
[Comparative Example 1]
An aluminum alloy molded body (liquid phase ratio of semi-solid body: 50% by mass) was obtained under the same conditions as in Example 1. In this molded body, no shrinkage foci were observed, and no hot cracking occurred.
The aluminum alloy compact was subjected to a solution treatment under the same conditions as in Example 1, and then the solution treatment product was poured into 20 ° C. water and cooled, and then subjected to an aging treatment at 120 ° C. for 24 hours. . The aluminum alloy product subjected to this aging treatment was measured for mechanical properties (tensile strength and elongation) in air and in a saline solution under the same conditions as in Example 1. The measurement results are shown in Table 1. Table 1 also shows the stress corrosion sensitivity index.

[実施例2]
アルミニウム合金材料に含まれる異種金属成分の組成を、Cu(1.60質量%)、Zn(5.60質量%)、そしてMg(2.60質量%)とした以外は実施例1と同じ条件で、アルミニウム合金成形体(半凝固体の液相率50:質量%)を得た。この成形体には、収縮巣の発生は見られず、また熱間割れも発生していなかった。
このアルミニウム合金成形体について、実施例1と同じ条件で溶体化処理と時効処理を行なった。この時効処理を施したアルミニウム合金製品について、実施例1と同じ条件にて、空気中および食塩水環境下での機械的性質(引張強度と伸び)を測定した。その測定結果を表1に示す。表1には、応力腐食感受性指数も記載した。
[Example 2]
The same conditions as in Example 1 except that the composition of the dissimilar metal component contained in the aluminum alloy material was Cu (1.60% by mass), Zn (5.60% by mass), and Mg (2.60% by mass). Thus, an aluminum alloy molded body (liquid phase ratio of semi-solid body 50: mass%) was obtained. In this molded body, no shrinkage foci were observed, and no hot cracking occurred.
The aluminum alloy compact was subjected to solution treatment and aging treatment under the same conditions as in Example 1. The aluminum alloy product subjected to this aging treatment was measured for mechanical properties (tensile strength and elongation) in air and in a saline solution under the same conditions as in Example 1. The measurement results are shown in Table 1. Table 1 also shows the stress corrosion sensitivity index.

[比較例2]
実施例2と同じ条件で、アルミニウム合金成形体(半凝固体の液相率:50質量%)を得た。この成形体には、収縮巣の発生は見られず、また熱間割れも発生していなかった。
このアルミニウム合金成形体について、実施例2と同じ条件で溶体化処理を行なった後、溶体化処理品を20℃の水に投入して冷却し、ついで120℃で24時間の時効処理を行なった。この時効処理を施したアルミニウム合金製品について、実施例1と同じ条件にて、空気中および食塩水環境下での機械的性質(引張強度と伸び)を測定した。その測定結果を表1に示す。表1には、応力腐食感受性指数も記載した。
[Comparative Example 2]
Under the same conditions as in Example 2, an aluminum alloy molded body (liquid phase ratio of semi-solid body: 50% by mass) was obtained. In this molded body, no shrinkage foci were observed, and no hot cracking occurred.
The aluminum alloy compact was subjected to a solution treatment under the same conditions as in Example 2, and then the solution treatment product was poured into 20 ° C. water and cooled, and then subjected to an aging treatment at 120 ° C. for 24 hours. . The aluminum alloy product subjected to this aging treatment was measured for mechanical properties (tensile strength and elongation) in air and in a saline solution under the same conditions as in Example 1. The measurement results are shown in Table 1. Table 1 also shows the stress corrosion sensitivity index.

[実施例3]
実施例2と同じ条件で、アルミニウム合金成形体(半凝固体の液相率:50質量%)を得た。この成形体には、収縮巣の発生は見られず、また熱間割れも発生していなかった。
このアルミニウム合金成形体について、実施例1と同じ条件で溶体化処理を行なった後、溶体化処理品を170℃の油浴に投入して冷却し、ついで170℃で6時間の時効処理を行なった。この時効処理を施したアルミニウム合金製品について、実施例1と同じ条件にて、空気中および食塩水環境下での機械的性質(引張強度と伸び)を測定した。その測定結果を表1に示す。表1には、応力腐食感受性指数も記載した。
[Example 3]
Under the same conditions as in Example 2, an aluminum alloy molded body (liquid phase ratio of semi-solid body: 50% by mass) was obtained. In this molded body, no shrinkage foci were observed, and no hot cracking occurred.
The aluminum alloy compact was subjected to a solution treatment under the same conditions as in Example 1, and then the solution treatment product was put into an oil bath at 170 ° C. and cooled, and then subjected to an aging treatment at 170 ° C. for 6 hours. It was. The aluminum alloy product subjected to this aging treatment was measured for mechanical properties (tensile strength and elongation) in air and in a saline solution under the same conditions as in Example 1. The measurement results are shown in Table 1. Table 1 also shows the stress corrosion sensitivity index.

[実施例4]
実施例2と同じ条件で、アルミニウム合金成形体(半凝固体の液相率:50質量%)を得た。この成形体には、収縮巣の発生は見られず、また熱間割れも発生していなかった。
このアルミニウム合金成形体について、実施例1と同じ条件で溶体化処理を行なった後、溶体化処理品を200℃の油浴に投入して冷却し、ついで200℃で0.2時間の時効処理を行なった。この時効処理を施したアルミニウム合金製品について、実施例1と同じ条件にて、空気中および食塩水環境下での機械的性質(引張強度と伸び)を測定した。その測定結果を表1に示す。表1には、応力腐食感受性指数も記載した。
[Example 4]
Under the same conditions as in Example 2, an aluminum alloy molded body (liquid phase ratio of semi-solid body: 50% by mass) was obtained. In this molded body, no shrinkage foci were observed, and no hot cracking occurred.
The aluminum alloy compact was subjected to a solution treatment under the same conditions as in Example 1, and then the solution treatment product was put into a 200 ° C. oil bath and cooled, and then an aging treatment at 200 ° C. for 0.2 hours. Was done. The aluminum alloy product subjected to this aging treatment was measured for mechanical properties (tensile strength and elongation) in air and in a saline solution under the same conditions as in Example 1. The measurement results are shown in Table 1. Table 1 also shows the stress corrosion sensitivity index.

[実施例5]
アルミニウム合金材料に含まれる異種金属成分の組成を、Cu(1.60質量%)、Zn(5.50質量%)、Mg(2.50質量%)、Ti(0.10質量%)、そしてCr(0.22質量%)とした以外は実施例1と同じ条件で、アルミニウム合金成形体(半凝固体の液相率:50質量%)を得た。この成形体には、収縮巣の発生は見られず、また熱間割れも発生していなかった。
このアルミニウム合金成形体について、実施例1と同じ条件で溶体化処理と時効処理を行なった。この時効処理を施したアルミニウム合金製品について、実施例1と同じ条件にて、空気中および食塩水環境下での機械的性質(引張強度と伸び)を測定した。その測定結果を表1に示す。表1には、応力腐食感受性指数も記載した。
[Example 5]
The composition of the dissimilar metal component contained in the aluminum alloy material is Cu (1.60% by mass), Zn (5.50% by mass), Mg (2.50% by mass), Ti (0.10% by mass), and An aluminum alloy molded body (liquid phase ratio of semi-solid body: 50% by mass) was obtained under the same conditions as in Example 1 except that Cr (0.22% by mass) was used. In this molded body, no shrinkage foci were observed, and no hot cracking occurred.
The aluminum alloy compact was subjected to solution treatment and aging treatment under the same conditions as in Example 1. The aluminum alloy product subjected to this aging treatment was measured for mechanical properties (tensile strength and elongation) in air and in a saline solution under the same conditions as in Example 1. The measurement results are shown in Table 1. Table 1 also shows the stress corrosion sensitivity index.

[実施例6]
アルミニウム合金材料に含まれる異種金属成分の組成を、Cu(1.50質量%)、Zn(5.50質量%)、Mg(2.50質量%)、Ti(0.10質量%)、そしてZr(0.11質量%)とした以外は実施例1と同じ条件で、アルミニウム合金成形体(半凝固体の液相率:50質量%)を得た。この成形体には、収縮巣の発生は見られず、また熱間割れも発生していなかった。
このアルミニウム合金成形体について、実施例1と同じ条件で溶体化処理と時効処理を行なった。この時効処理を施したアルミニウム合金製品について、実施例1と同じ条件にて、空気中および食塩水環境下での機械的性質(引張強度と伸び)を測定した。その測定結果を表1に示す。表1には、応力腐食感受性指数も記載した。
[Example 6]
The composition of the dissimilar metal component contained in the aluminum alloy material is Cu (1.50 mass%), Zn (5.50 mass%), Mg (2.50 mass%), Ti (0.10 mass%), and An aluminum alloy molded body (liquid phase ratio of semi-solid body: 50 mass%) was obtained under the same conditions as in Example 1 except that Zr (0.11 mass%) was used. In this molded body, no shrinkage foci were observed, and no hot cracking occurred.
The aluminum alloy compact was subjected to solution treatment and aging treatment under the same conditions as in Example 1. The aluminum alloy product subjected to this aging treatment was measured for mechanical properties (tensile strength and elongation) in air and in a saline solution under the same conditions as in Example 1. The measurement results are shown in Table 1. Table 1 also shows the stress corrosion sensitivity index.

[実施例7]
アルミニウム合金材料に含まれる異種金属成分の組成を、Cu(1.50質量%)、Zn(5.30質量%)、Mg(2.50質量%)、Ti(0.10質量%)、Zr(0.11質量%)、そしてCr(0.22質量%)とした以外は実施例1と同じ条件で、アルミニウム合金成形体(半凝固体の液相率:50質量%)を得た。この成形体には、収縮巣の発生は見られず、また熱間割れも発生していなかった。
このアルミニウム合金成形体について、実施例1と同じ条件で溶体化処理と時効処理を行なった。この時効処理を施したアルミニウム合金製品について、実施例1と同じ条件にて、空気中および食塩水環境下での機械的性質(引張強度と伸び)を測定した。その測定結果を表1に示す。表1には、応力腐食感受性指数も記載した。
[Example 7]
The composition of the different metal component contained in the aluminum alloy material is Cu (1.50 mass%), Zn (5.30 mass%), Mg (2.50 mass%), Ti (0.10 mass%), Zr. (0.11% by mass) and Cr (0.22% by mass) were obtained under the same conditions as in Example 1 to obtain an aluminum alloy compact (liquid phase ratio of semi-solid body: 50% by mass). In this molded body, no shrinkage foci were observed, and no hot cracking occurred.
The aluminum alloy compact was subjected to solution treatment and aging treatment under the same conditions as in Example 1. The aluminum alloy product subjected to this aging treatment was measured for mechanical properties (tensile strength and elongation) in air and in a saline solution under the same conditions as in Example 1. The measurement results are shown in Table 1. Table 1 also shows the stress corrosion sensitivity index.

[実施例8]
アルミニウム合金材料に含まれる異種金属成分の組成を、Cu(1.60質量%)、Zn(5.60質量%)、そしてMg(2.60質量%)とし、冷却振動法による半凝固成形法を利用した以外は実施例1と同じ条件で、アルミニウム合金成形体(半凝固体の液相率:50質量%)を得た。この成形体には、収縮巣の発生は見られず、また熱間割れも発生していなかった。
このアルミニウム合金成形体について、実施例1と同じ条件で溶体化処理と時効処理を行なった。この時効処理を施したアルミニウム合金製品について、実施例1と同じ条件にて、空気中および食塩水環境下での機械的性質(引張強度と伸び)を測定した。その測定結果を表1に示す。表1には、応力腐食感受性指数も記載した。
[Example 8]
Semi-solid forming method by cooling vibration method with different metal component composition contained in aluminum alloy material as Cu (1.60 mass%), Zn (5.60 mass%) and Mg (2.60 mass%) An aluminum alloy molded body (liquid phase ratio of semi-solid body: 50% by mass) was obtained under the same conditions as in Example 1 except that was used. In this molded body, no shrinkage foci were observed, and no hot cracking occurred.
The aluminum alloy compact was subjected to solution treatment and aging treatment under the same conditions as in Example 1. The aluminum alloy product subjected to this aging treatment was measured for mechanical properties (tensile strength and elongation) in air and in a saline solution under the same conditions as in Example 1. The measurement results are shown in Table 1. Table 1 also shows the stress corrosion sensitivity index.

[実施例9]
アルミニウム合金材料に含まれる異種金属成分の組成を、Cu(1.60質量%)、Zn(5.60質量%)、Mg(2.60質量%)、そしてZr(0.11質量%)とし、冷却振動法による半凝固成形法を利用した以外は実施例1と同様の方法で、アルミニウム合金成形体(半凝固体の液相率:90質量%)を得た。この成形体には、収縮巣の発生は見られず、また熱間割れも発生していなかった。
このアルミニウム合金成形体について、実施例1と同じ条件で溶体化処理と時効処理を行なった。この時効処理を施したアルミニウム合金製品について、実施例1と同じ条件にて、空気中および食塩水環境下での機械的性質(引張強度と伸び)を測定した。その測定結果を表1に示す。表1には、応力腐食感受性指数も記載した。
[Example 9]
The composition of the dissimilar metal component contained in the aluminum alloy material is Cu (1.60 mass%), Zn (5.60 mass%), Mg (2.60 mass%), and Zr (0.11 mass%). An aluminum alloy molded body (liquid phase ratio of the semi-solid body: 90% by mass) was obtained in the same manner as in Example 1 except that the semi-solid molding method by the cooling vibration method was used. In this molded body, no shrinkage foci were observed, and no hot cracking occurred.
The aluminum alloy compact was subjected to solution treatment and aging treatment under the same conditions as in Example 1. The aluminum alloy product subjected to this aging treatment was measured for mechanical properties (tensile strength and elongation) in air and in a saline solution under the same conditions as in Example 1. The measurement results are shown in Table 1. Table 1 also shows the stress corrosion sensitivity index.

[実施例10]
アルミニウム合金材料に含まれる異種金属成分の組成を、Cu(1.60質量%)、Zn(5.60質量%)、そしてMg(2.60質量%)とした以外は実施例1と同様の方法で、アルミニウム合金成形体(半凝固体の液相率:40質量%)を得た。この成形体には、収縮巣の発生は見られず、また熱間割れも発生していなかった。
このアルミニウム合金成形体について、実施例1と同じ条件で溶体化処理と時効処理を行なった。この時効処理を施したアルミニウム合金製品について、実施例1と同じ条件にて、空気中および食塩水環境下での機械的性質(引張強度と伸び)を測定した。その測定結果を表1に示す。表1には、応力腐食感受性指数も記載した。
[Example 10]
Example 1 except that the composition of the dissimilar metal component contained in the aluminum alloy material was Cu (1.60% by mass), Zn (5.60% by mass), and Mg (2.60% by mass). By the method, an aluminum alloy molded body (liquid phase ratio of semi-solid body: 40% by mass) was obtained. In this molded body, no shrinkage foci were observed, and no hot cracking occurred.
The aluminum alloy compact was subjected to solution treatment and aging treatment under the same conditions as in Example 1. The aluminum alloy product subjected to this aging treatment was measured for mechanical properties (tensile strength and elongation) in air and in a saline solution under the same conditions as in Example 1. The measurement results are shown in Table 1. Table 1 also shows the stress corrosion sensitivity index.

[実施例11]
アルミニウム合金材料に含まれる異種金属成分の組成を、Cu(0.01質量%)、Zn(4.50質量%)、Mg(1.50質量%)、そしてMn(0.50質量%)とした以外は実施例1と同じ条件で、アルミニウム合金成形体(半凝固体の液相率:50質量%)を得た。この成形体には、収縮巣の発生は見られず、また熱間割れも発生していなかった。
このアルミニウム合金成形体について、実施例1と同じ条件で溶体化処理と時効処理を行なった。この時効処理を施したアルミニウム合金製品について、実施例1と同じ条件にて、空気中および食塩水環境下での機械的性質(引張強度と伸び)を測定した。その測定結果を表1に示す。表1には、応力腐食感受性指数も記載した。
[Example 11]
The composition of different metal components contained in the aluminum alloy material is Cu (0.01% by mass), Zn (4.50% by mass), Mg (1.50% by mass), and Mn (0.50% by mass). Except that, an aluminum alloy molded body (liquid phase ratio of semi-solid body: 50% by mass) was obtained under the same conditions as in Example 1. In this molded body, no shrinkage foci were observed, and no hot cracking occurred.
The aluminum alloy compact was subjected to solution treatment and aging treatment under the same conditions as in Example 1. The aluminum alloy product subjected to this aging treatment was measured for mechanical properties (tensile strength and elongation) in air and in a saline solution under the same conditions as in Example 1. The measurement results are shown in Table 1. Table 1 also shows the stress corrosion sensitivity index.

[実施例12]
アルミニウム合金材料に含まれる異種金属成分の組成を、Cu(0.10質量%)、Zn(6.00質量%)、Mg(0.75質量%)、そしてTi(0.07質量%)とし、冷却振動法による半凝固成形法を利用した以外は実施例1と同じ条件で、アルミニウム合金成形体(半凝固体の液相率:50質量%)を得た。この成形体には、収縮巣の発生は見られず、また熱間割れも発生していなかった。
このアルミニウム合金成形体について、実施例1と同じ条件で溶体化処理と時効処理を行なった。この時効処理を施したアルミニウム合金製品について、実施例1と同じ条件にて、空気中および食塩水環境下での機械的性質(引張強度と伸び)を測定した。その測定結果を表1に示す。表1には、応力腐食感受性指数も記載した。
[Example 12]
The composition of the dissimilar metal component contained in the aluminum alloy material is Cu (0.10 mass%), Zn (6.00 mass%), Mg (0.75 mass%), and Ti (0.07 mass%). An aluminum alloy molded body (liquid phase ratio of the semi-solid body: 50% by mass) was obtained under the same conditions as in Example 1 except that the semi-solid molding method by the cooling vibration method was used. In this molded body, no shrinkage foci were observed, and no hot cracking occurred.
The aluminum alloy compact was subjected to solution treatment and aging treatment under the same conditions as in Example 1. The aluminum alloy product subjected to this aging treatment was measured for mechanical properties (tensile strength and elongation) in air and in a saline solution under the same conditions as in Example 1. The measurement results are shown in Table 1. Table 1 also shows the stress corrosion sensitivity index.

[実施例13]
アルミニウム合金材料に含まれる異種金属成分の組成を、Cu(2.20質量%)、Zn(6.10質量%)、Mg(2.20質量%)、そしてZr(0.12質量%)とした以外は実施例1と同様の方法で、アルミニウム合金成形体(半凝固体の液相率:50質量%)を得た。この成形体には、収縮巣の発生は見られず、また熱間割れも発生していなかった。
このアルミニウム合金成形体について、実施例1と同じ条件で溶体化処理と時効処理を行なった。この時効処理を施したアルミニウム合金製品について、実施例1と同じ条件にて、空気中および食塩水環境下での機械的性質(引張強度と伸び)を測定した。その測定結果を表1に示す。表1には、応力腐食感受性指数も記載した。
[Example 13]
The composition of the dissimilar metal component contained in the aluminum alloy material is Cu (2.20 mass%), Zn (6.10 mass%), Mg (2.20 mass%), and Zr (0.12 mass%). Except that, an aluminum alloy molded body (liquid phase ratio of semi-solid body: 50% by mass) was obtained in the same manner as in Example 1. In this molded body, no shrinkage foci were observed, and no hot cracking occurred.
The aluminum alloy compact was subjected to solution treatment and aging treatment under the same conditions as in Example 1. The aluminum alloy product subjected to this aging treatment was measured for mechanical properties (tensile strength and elongation) in air and in a saline solution under the same conditions as in Example 1. The measurement results are shown in Table 1. Table 1 also shows the stress corrosion sensitivity index.

[実施例14]
実施例1と同じ条件で、アルミニウム合金成形体(半凝固体の液相率:50質量%)を得た。この成形体には、収縮巣の発生は見られず、また熱間割れも発生していなかった。
このアルミニウム合金成形体について、実施例1と同じ条件で溶体化処理を行なった後、溶体化処理品を150℃の油浴に投入して冷却し、ついで150℃で24時間の時効処理を行なった。この時効処理を施したアルミニウム合金製品について、実施例1と同じ条件にて、空気中および食塩水環境下での機械的性質(引張強度と伸び)を測定した。その測定結果を表1に示す。表1には、応力腐食感受性指数も記載した。
[Example 14]
An aluminum alloy molded body (liquid phase ratio of semi-solid body: 50% by mass) was obtained under the same conditions as in Example 1. In this molded body, no shrinkage foci were observed, and no hot cracking occurred.
The aluminum alloy compact was subjected to solution treatment under the same conditions as in Example 1, and then the solution treatment product was put into a 150 ° C. oil bath and cooled, and then subjected to aging treatment at 150 ° C. for 24 hours. It was. The aluminum alloy product subjected to this aging treatment was measured for mechanical properties (tensile strength and elongation) in air and in a saline solution under the same conditions as in Example 1. The measurement results are shown in Table 1. Table 1 also shows the stress corrosion sensitivity index.

[実施例15]
実施例1と同じ条件で、アルミニウム合金成形体(半凝固体の液相率:50質量%)を得た。この成形体には、収縮巣の発生は見られず、また熱間割れも発生していなかった。
このアルミニウム合金成形体について、実施例1と同じ条件で溶体化処理を行なった後、溶体化処理品を200℃の油浴に投入して冷却し、ついで200℃で12時間の時効処理を行なった。この時効処理を施したアルミニウム合金製品について、実施例1と同じ条件にて、空気中および食塩水環境下での機械的性質(引張強度と伸び)を測定した。その測定結果を表1に示す。表1には、応力腐食感受性指数も記載した。
[Example 15]
An aluminum alloy molded body (liquid phase ratio of semi-solid body: 50% by mass) was obtained under the same conditions as in Example 1. In this molded body, no shrinkage foci were observed, and no hot cracking occurred.
The aluminum alloy compact was subjected to a solution treatment under the same conditions as in Example 1, and then the solution treatment product was put into a 200 ° C. oil bath and cooled, followed by an aging treatment at 200 ° C. for 12 hours. It was. The aluminum alloy product subjected to this aging treatment was measured for mechanical properties (tensile strength and elongation) in air and in a saline solution under the same conditions as in Example 1. The measurement results are shown in Table 1. Table 1 also shows the stress corrosion sensitivity index.




表1
────────────────────────────────────
空気中 食塩水環境下 SCC感受性
引張強度 伸び 引張強度 伸び 指数
(MPa) (%) (MPa) (%)
────────────────────────────────────
実施例1 461 12.0 445 10.6 0.11
────────────────────────────────────
比較例1 520 5.9 379 0 1
────────────────────────────────────
実施例2 465 11.0 440 10.0 0.09
────────────────────────────────────
比較例2 520 5.0 360 0 1
────────────────────────────────────
実施例3 450 12.0 430 11.0 0.08
実施例4 430 14.0 435 12.0 0.14
実施例5 439 15.0 437 16.6 0
実施例6 449 11.3 432 10.3 0.09
実施例7 439 15.3 428 15.6 0
実施例8 450 12.5 440 11.5 0.10
実施例9 465 11.7 450 11.8 0
実施例10 455 12.5 440 12.0 0.04
実施例11 395 16.0 390 16.6 0
実施例12 389 15.0 380 14.5 0.03
実施例13 448 14.0 440 13.3 0.06
実施例14 478 8.5 420 6.0 0.29
実施例15 410 16.6 406 16.0 0.04
────────────────────────────────────
注:空気中での引張強度と伸びは、試料片(ダンベル)を、大気中にて、8.3×10-5/秒の歪速度で測定し、食塩水環境下(応力腐食環境)での引張強度と伸びは、試料片(ダンベル)を3.5質量%濃度の食塩水に接触させながら、8.3×10-7/秒の歪速度で測定することにより得た。



Table 1
────────────────────────────────────
SCC susceptibility in saline solution in air
Tensile strength Elongation Tensile strength Elongation index
(MPa) (%) (MPa) (%)
────────────────────────────────────
Example 1 461 12.0 445 10.6 0.11
────────────────────────────────────
Comparative Example 1 520 5.9 379 0 1
────────────────────────────────────
Example 2 465 11.0 440 10.0 0.09
────────────────────────────────────
Comparative Example 2 520 5.0 360 0 1
────────────────────────────────────
Example 3 450 12.0 430 11.0 0.08
Example 4 430 14.0 435 12.0 0.14
Example 5 439 15.0 437 16.6 0
Example 6 449 11.3 432 10.3 0.09
Example 7 439 15.3 428 15.6 0
Example 8 450 12.5 440 11.5 0.10
Example 9 465 11.7 450 11.80
Example 10 455 12.5 440 12.0 0.04
Example 11 395 16.0 390 16.6 0
Example 12 389 15.0 380 14.5 0.03
Example 13 448 14.0 440 13.3 0.06
Example 14 478 8.5 420 6.0 0.29
Example 15 410 16.6 406 16.0 0.04
────────────────────────────────────
Note: Tensile strength and elongation in air are measured with a specimen piece (dumbbell) in the atmosphere at a strain rate of 8.3 × 10 −5 / sec, in a saline environment (stress corrosion environment). The tensile strength and elongation of the sample were obtained by measuring the sample piece (dumbbell) at a strain rate of 8.3 × 10 −7 / sec while contacting with a 3.5% by mass saline solution.

表1に示した結果から、本発明の製造方法により製造したアルミニウム合金製品は、応力腐食環境においても、通常の大気雰囲気下と余り変わらない優れた機械的物性を示すことがわかる。   From the results shown in Table 1, it can be seen that the aluminum alloy product produced by the production method of the present invention exhibits excellent mechanical properties that are not much different from those in a normal air atmosphere even in a stress corrosion environment.

本発明における溶体化処理後の好ましい保持温度(時効温度)と保持時間(時効時間)との関係の下限を示すY=2×106/e0.0798Xのグラフである。It is a graph of Y = 2 * 10 < 6 > /e0.0798X which shows the minimum of the relationship between the preferable retention temperature (aging temperature) after solution treatment in this invention, and retention time (aging time).

Claims (7)

合金全体量に対して、Cuを0.005〜3.0質量%、Znを3.0〜9.0質量%そしてMgを0.5〜3.7質量%を含有するアルミニウム合金を半凝固成形法もしくは半溶融成形法により加圧成形して得た成形体を450〜500℃の範囲の温度で加熱することにより溶体化処理し、次いで該溶体化処理品を150〜200℃の範囲の温度に5分間以上保持することを特徴とする高力アルミニウム合金製品の製造方法。   Semi-solidified aluminum alloy containing 0.005-3.0% by mass of Cu, 3.0-9.0% by mass of Zn and 0.5-3.7% by mass of Mg with respect to the total amount of the alloy A molded body obtained by pressure molding by a molding method or a semi-melt molding method is subjected to a solution treatment by heating at a temperature in the range of 450 to 500 ° C., and then the solution treated product is in a range of 150 to 200 ° C. A method for producing a high-strength aluminum alloy product, characterized by holding at a temperature for 5 minutes or more. 溶体化処理品の150〜200℃の範囲の温度での保持時間を10分以上で、48時間以内とする請求項1に記載の高力アルミニウム合金製品の製造方法。   The method for producing a high-strength aluminum alloy product according to claim 1, wherein the solution-treated product has a holding time at a temperature in the range of 150 to 200 ° C within 10 minutes and within 48 hours. 溶体化処理品の150〜200℃の範囲の温度での保持時間を、Xを保持温度(単位:℃)そしてYを保持時間(単位:時間)とした場合に、Y=2×106/e0.0798Xで表わされる時間以上で、かつ10Y以内とする請求項1に記載の高力アルミニウム合金製品の製造方法。 The retention time of the solution-treated product at a temperature in the range of 150 to 200 ° C., where X is the retention temperature (unit: ° C.) and Y is the retention time (unit: hours), Y = 2 × 10 6 / e The method for producing a high-strength aluminum alloy product according to claim 1, wherein the time is equal to or longer than 0.0798X and within 10Y. アルミニウム合金がさらに、合金全体量に対して、Mnを0.05〜0.70質量%含有する請求項1乃至3のうちのいずれかの項に記載の高力アルミニウム合金製品の製造方法。   The method for producing a high-strength aluminum alloy product according to any one of claims 1 to 3, wherein the aluminum alloy further contains 0.05 to 0.70 mass% of Mn with respect to the total amount of the alloy. アルミニウム合金がさらに、合金全体量に対して、Crを0.05〜0.30質量%含有する請求項1乃至4のうちのいずれかの項に記載の高力アルミニウム合金製品の製造方法。   The method for producing a high-strength aluminum alloy product according to any one of claims 1 to 4, wherein the aluminum alloy further contains 0.05 to 0.30 mass% of Cr with respect to the total amount of the alloy. アルミニウム合金がさらに、合金全体量に対して、Tiを0.05〜0.20質量%含有する請求項1乃至5のうちのいずれかの項に記載の高力アルミニウム合金製品の製造方法。   The method for producing a high-strength aluminum alloy product according to any one of claims 1 to 5, wherein the aluminum alloy further contains 0.05 to 0.20 mass% of Ti with respect to the total amount of the alloy. アルミニウム合金がさらに、合金全体量に対して、Zrを0.05〜0.20質量%含有する請求項1乃至6のうちのいずれかの項に記載の高力アルミニウム合金製品の製造方法。
The method for producing a high-strength aluminum alloy product according to any one of claims 1 to 6, wherein the aluminum alloy further contains 0.05 to 0.20 mass% of Zr with respect to the total amount of the alloy.
JP2003390871A 2003-11-20 2003-11-20 Manufacturing method of high strength aluminum alloy products Expired - Fee Related JP4247536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003390871A JP4247536B2 (en) 2003-11-20 2003-11-20 Manufacturing method of high strength aluminum alloy products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003390871A JP4247536B2 (en) 2003-11-20 2003-11-20 Manufacturing method of high strength aluminum alloy products

Publications (2)

Publication Number Publication Date
JP2005154786A true JP2005154786A (en) 2005-06-16
JP4247536B2 JP4247536B2 (en) 2009-04-02

Family

ID=34718114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003390871A Expired - Fee Related JP4247536B2 (en) 2003-11-20 2003-11-20 Manufacturing method of high strength aluminum alloy products

Country Status (1)

Country Link
JP (1) JP4247536B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013209714A (en) * 2012-03-30 2013-10-10 Kobe Steel Ltd Aluminum alloy forged member for automobile and production method of the material
CN105441754A (en) * 2015-11-28 2016-03-30 丹阳市宸兴环保设备有限公司 Aluminum alloy material for airplane crossbeam and manufacturing method of aluminum alloy material

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102756113A (en) * 2012-07-28 2012-10-31 亚太轻合金(南通)科技有限公司 Casting method of semi-solid state aluminum alloy cast rod for extrusion molding
CN107385291B (en) * 2017-06-22 2019-01-29 烟台南山学院 A kind of high-performance Al-Zn-Mg-Cu-Zr-Ce-Ti alloy and its preparation process
CN110157962B (en) * 2019-05-09 2020-03-31 西南大学 Al-Zn-Mg-Cu series ultrahigh-strength aluminum alloy and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013209714A (en) * 2012-03-30 2013-10-10 Kobe Steel Ltd Aluminum alloy forged member for automobile and production method of the material
CN105441754A (en) * 2015-11-28 2016-03-30 丹阳市宸兴环保设备有限公司 Aluminum alloy material for airplane crossbeam and manufacturing method of aluminum alloy material

Also Published As

Publication number Publication date
JP4247536B2 (en) 2009-04-02

Similar Documents

Publication Publication Date Title
US9775647B2 (en) Magnesium alloy
US6824737B2 (en) Casting alloy
EP1329530B1 (en) High temperature resistant magnesium alloys
US20080298999A1 (en) Method for Producing a Copper Alloy Having a High Damping Capacity
JP7386194B2 (en) High strength, uniform copper-nickel-tin alloy and manufacturing process
JP2008542534A (en) Aluminum casting alloy, aluminum alloy casting, and manufacturing method of aluminum alloy casting
JP2005226161A (en) Casting of aluminum alloy
CA1208042A (en) Rhenium-bearing copper-nickel-tin alloys
Patel et al. Rheo-processing of an alloy specifically designed for semi-solid metal processing based on the Al–Mg–Si system
JP3764200B2 (en) Manufacturing method of high-strength die-cast products
JP2017503086A (en) Aluminum casting alloy with improved high temperature performance
US6083328A (en) Casting rolls made of hardenable copper alloy
Odusote et al. Mechanical properties and microstructure of precipitation-hardened Al-Cu-Zn alloys
JP5525444B2 (en) Magnesium-based alloy and method for producing the same
JP4247536B2 (en) Manufacturing method of high strength aluminum alloy products
JP2002348631A (en) Aluminum-zinc-magnesium aluminum alloy for casting and forging, aluminum-zinc-magnesium cast and forged article, and manufacturing method therefor
US5298094A (en) Aluminum alloy casting having high strength and high toughness and process for producing the same
JP2004238676A (en) Magnesium alloy
Mohsen et al. Novel high strength Al-10.5 Si-3.4 Cu-0.2 Mg alloy produced through two-stage solution heat treatment
FI87239B (en) EN FOERBAETTRAD METALLEGERING PAO BASIS AV KOPPAR, SPECIELLT FOER FRAMSTAELLNING AV ELEKTRONISKA AKPONENTER.
JP2008127665A (en) Method for producing aluminum alloy cylinder block
JPH02247348A (en) Heat-resistant aluminum alloy having excellent tensile strength, ductility and fatigue resistance
JP2013204066A (en) Aluminum alloy member and method of manufacturing the same
Mandal et al. Development of a novel hypereutectic aluminum-siliconmagnesium alloy for die casting
TWI270418B (en) A method for producing high strength magnesium alloys

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081128

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4247536

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140123

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees