JP2005154172A - Method for manufacturing silicon single crystal, method for designing apparatus for manufacturing silicon single crystal, and apparatus for manufacturing silicon single crystal - Google Patents

Method for manufacturing silicon single crystal, method for designing apparatus for manufacturing silicon single crystal, and apparatus for manufacturing silicon single crystal Download PDF

Info

Publication number
JP2005154172A
JP2005154172A JP2003392384A JP2003392384A JP2005154172A JP 2005154172 A JP2005154172 A JP 2005154172A JP 2003392384 A JP2003392384 A JP 2003392384A JP 2003392384 A JP2003392384 A JP 2003392384A JP 2005154172 A JP2005154172 A JP 2005154172A
Authority
JP
Japan
Prior art keywords
single crystal
silicon single
crystal
region
pulling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003392384A
Other languages
Japanese (ja)
Other versions
JP4461781B2 (en
Inventor
Tatsuo Mori
達生 森
Masahiro Sakurada
昌弘 櫻田
Wataru Sato
亘 佐藤
Izumi Fusegawa
泉 布施川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2003392384A priority Critical patent/JP4461781B2/en
Publication of JP2005154172A publication Critical patent/JP2005154172A/en
Application granted granted Critical
Publication of JP4461781B2 publication Critical patent/JP4461781B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a silicon single crystal by which a single crystal having a desired defect region, in particular, a silicon single crystal entirely comprising an N region can be manufactured with high yield and high productivity under easily controllable and stable manufacturing conditions with a wide margin of the pulling speed on growing a silicon single crystal by CZ (Czochralski) method, and to provide a method for designing an apparatus for manufacturing a single crystal and an apparatus for manufacturing a single crystal. <P>SOLUTION: The method for manufacturing a silicon single crystal, the method for designing an apparatus for manufacturing a single crystal and the apparatus for manufacturing a single crystal are provided, wherein a silicon single crystal is manufactured by a CZ method, and the silicon single crystal is grown by controlling at least the following change rate α (=dGm/dV) to -0.63 to 0 K×min/mm<SP>2</SP>, wherein α is the change rate of the absolute temperature gradient Gm in the melt liquid side in the crystal center on the crystal growth interface in the pulling direction of the crystal to the pulling speed V of the single crystal. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、チョクラルスキー法によるシリコン単結晶において、OSF、FPD、L/D等の結晶欠陥が極めて少ないシリコン単結晶を高歩留かつ高生産性で製造するシリコン単結晶の製造方法及びシリコン単結晶製造装置の設計方法並びにシリコン単結晶製造装置に関するものである。   The present invention relates to a silicon single crystal manufacturing method for manufacturing a silicon single crystal having extremely low crystal defects such as OSF, FPD, L / D, etc. with high yield and high productivity in a silicon single crystal by the Czochralski method, and silicon. The present invention relates to a design method for a single crystal manufacturing apparatus and a silicon single crystal manufacturing apparatus.

近年は、半導体回路の高集積化に伴う素子の微細化に伴い、その基板材料となるチョクラルスキー法(以下、CZ法と略記する)で製造されたシリコン単結晶に対する品質要求が高まってきている。特に単結晶中には、FPD(Flow Pattern Defect)、LSTD(Laser Scattering Tomography Defect)、COP(Crystal Originated Particle)、転位ループクラスタ等のグローンイン(Grown−in)欠陥と呼ばれる、酸化膜耐圧特性やデバイスの特性を悪化させる単結晶成長起因の欠陥が存在し、その密度とサイズの低減が重要視されている。   In recent years, with the miniaturization of elements accompanying higher integration of semiconductor circuits, quality requirements for silicon single crystals manufactured by the Czochralski method (hereinafter abbreviated as CZ method), which is the substrate material, have increased. Yes. In particular, in a single crystal, a device called a grown-in breakdown voltage characteristic such as FPD (Flow Pattern Defect), LSTD (Laser Scattering Tomographic Defect), COP (Crystal Originated Particle), or a dislocation loop cluster is used. There is a defect due to single crystal growth that deteriorates the characteristics, and reduction of density and size is regarded as important.

これらの欠陥を説明するに当たって、先ず、結晶成長中にシリコン単結晶に取り込まれるベイカンシイ(Vacancy、以下Vと略記することがある)と呼ばれる空孔型の点欠陥と、インタースティシアル−シリコン(Interstitial−Si、以下Iと略記することがある)と呼ばれる格子間シリコン型の点欠陥のそれぞれの濃度を決定する因子について、一般的に知られていることを説明する。   In describing these defects, first, a vacancy point defect called vacancy (hereinafter sometimes abbreviated as V) incorporated into a silicon single crystal during crystal growth, and interstitial-silicon (interstitial-silicon). A factor that determines the concentration of each interstitial silicon type point defect called -Si (hereinafter sometimes abbreviated as "I") is generally known.

シリコン単結晶において、V領域とは、シリコン原子の不足から発生するボイドが多い領域であり、I領域とは、シリコン原子が余分に存在することにより発生するシリコン原子の凝集体や転位ループクラスタが多い領域のことであり、そしてV領域とI領域の間には、原子の過不足が少ないニュートラル(Neutral、以下Nと略記することがある)領域が存在している。そして、前記グローンイン欠陥(FPD、LSTD、COP等)というのは、あくまでもVやIが過飽和な状態の時に発生するものであり、多少の原子の偏りがあっても、飽和以下であれば、上記グローンイン欠陥としては存在しないことが判ってきた。   In a silicon single crystal, the V region is a region where many voids are generated due to a shortage of silicon atoms, and the I region is an aggregate of silicon atoms or dislocation loop clusters generated due to the presence of extra silicon atoms. This is a large region, and a neutral (Neutral, hereinafter abbreviated as N) region where there is little excess or deficiency of atoms exists between the V region and the I region. The grow-in defects (FPD, LSTD, COP, etc.) are generated only when V and I are in a supersaturated state. It has been found that there is no Groin In defect.

この両点欠陥の濃度は、CZ法における結晶の引上げ速度(成長速度)と結晶中の固液界面近傍のシリコンの融点から例えば1400℃の間の引上げ軸方向の温度勾配Gとの関係から決まり、V領域の周囲には、OSF(酸化誘起積層欠陥、Oxidation Induced Stacking Fault)と呼ばれる欠陥が、結晶成長軸に対する垂直方向(結晶径方向)の断面で見た時に、リング状に分布(以下、OSFリングということがある)していることが確認されている。   The concentration of these point defects is determined by the relationship between the pulling rate (growth rate) of the crystal in the CZ method and the temperature gradient G in the pulling axis direction between 1400 ° C. and the melting point of silicon near the solid-liquid interface in the crystal. , Around the V region, a defect called OSF (Oxidation Induced Stacking Fault) is distributed in a ring shape when viewed in a cross section in a direction perpendicular to the crystal growth axis (crystal diameter direction) (hereinafter, It is confirmed that it is sometimes called an OSF ring.

直径が200mmのシリコン単結晶の製造において、これらグローンイン欠陥を分類すると、例えば成長速度が0.6mm/min前後以上と比較的高速の場合には、空孔型の点欠陥が凝集して出来たボイド起因とされているFPD、LSTD、COP等のグローンイン欠陥が結晶径方向全域に高密度に存在し、V領域となる。また、成長速度が0.6mm/min以下の場合は、成長速度の低下に伴い、前述のOSFリングが結晶の周辺から発生し、このリングの外側には格子間シリコンの凝集に基づく転位ループ起因と考えられているL/D(Large Dislocation:格子間転位ループの略号、LSEPD、LFPD等)の欠陥が低密度に存在し、I領域となる。さらに、成長速度を0.4mm/min前後以下に低速にすると、OSFリングがウェーハ中心に収縮して消滅し、全面がI領域となる。   In the production of a silicon single crystal having a diameter of 200 mm, when these grow-in defects are classified, for example, when the growth rate is relatively high, such as about 0.6 mm / min or more, hole-type point defects are formed by aggregation. Groin-in defects such as FPD, LSTD, and COP that are attributed to voids are present in a high density throughout the crystal diameter direction, resulting in a V region. Further, when the growth rate is 0.6 mm / min or less, the OSF ring is generated from the periphery of the crystal as the growth rate is lowered, and due to the dislocation loop based on the aggregation of interstitial silicon outside the ring. L / D (Large Dislocation: abbreviations for interstitial dislocation loops, LSEPD, LFPD, etc.) defects that are considered to be present at a low density and become an I region. Further, when the growth rate is reduced to about 0.4 mm / min or less, the OSF ring contracts to disappear at the center of the wafer, and the entire surface becomes the I region.

また、前述のように、V領域とI領域の中間でOSFリングの外側に、空孔起因のFPD、LSTD、COPも、格子間シリコンに基づく転位ループ起因のLSEPD、LFPDも、さらにはOSFも存在しないN領域が存在する。
このN領域は、通常は成長速度を下げた時に成長軸を含む面内において、成長軸方向に対して斜めに存在するため、単結晶を成長軸方向に垂直な面に平行に切断した面内では一部分にしか存在しなかった。このN領域について、ボロンコフ理論(例えば非特許文献1参照)では、引上げ速度(V)と結晶固液界面軸方向温度勾配(G)の比であるV/Gというパラメータが点欠陥のトータルな濃度を決定すると唱えている。面内で引上げ速度はほぼ一定のはずであるが、面内でGが分布を持つので、例えば、ある引上げ速度では中心がV領域でN領域を挟んで周辺でI領域となるような面となる結晶しか得られなかった。
Further, as described above, FPD, LSTD, and COP caused by vacancies, LSEPD and LFPD caused by dislocation loops based on interstitial silicon, and OSF are also located outside the OSF ring between V region and I region. There are N regions that do not exist.
Since the N region is present obliquely with respect to the growth axis direction in the plane including the growth axis when the growth rate is lowered, the N region is usually obtained by cutting the single crystal parallel to the plane perpendicular to the growth axis direction. Then it existed only in a part. In the N region, in the Boronkov theory (see, for example, Non-Patent Document 1), the parameter V / G, which is the ratio between the pulling rate (V) and the temperature gradient (G) in the crystal solid-liquid interface axial direction, is the total concentration of point defects. It is said to decide. The pulling speed should be almost constant in the plane, but G has a distribution in the plane. For example, at a certain pulling speed, the surface is the V region and the N region is sandwiched between the N region and the periphery is the I region. Only crystals were obtained.

そこで最近、面内のGの分布を改良して、例えば、引上げ速度Vを徐々に下げながら引上げることにより、ある引上げ速度では面内の一部にしか存在しなかったN領域を結晶径方向全面に広げた全面N領域の結晶を製造できるようになった。また、この全面N領域の結晶を長さ方向へ拡大するには、このN領域が結晶径方向全面に広がった時の引上げ速度を維持して引上げればある程度達成できる。また、結晶が成長するに従ってGが変化することを考慮し、それを補正して、あくまでもV/Gが一定になるように、引上げ速度を調節すれば、それなりに成長方向にも、全面N領域となる結晶が拡大できるようになった。   Therefore, recently, by improving the distribution of G in the plane, for example, by gradually pulling up the pulling speed V, the N region that existed only in a part of the plane at a certain pulling speed can be obtained in the crystal diameter direction. It has become possible to produce a crystal of the entire N region that is spread over the entire surface. Further, in order to enlarge the crystal in the entire N region in the length direction, it can be achieved to some extent if the pulling rate is maintained while maintaining the pulling speed when the N region spreads over the entire crystal diameter direction. In consideration of the fact that G changes as the crystal grows, if it is corrected and the pulling rate is adjusted so that V / G is constant, the entire N region in the growth direction as it is. It became possible to expand the crystal.

このN領域をさらに分類すると、OSFリングの外側に隣接するNv領域(空孔が優勢な領域)とI領域に隣接するNi領域(格子間シリコンが優勢な領域)とがあり、Nv領域では、熱酸化処理をした際に酸素析出が多く、Ni領域では酸素析出が殆どないことがわかっている。   Further classifying the N region, there is an Nv region (a region where vacancies are dominant) adjacent to the outside of the OSF ring and a Ni region (a region where interstitial silicon is dominant) adjacent to the I region. In the Nv region, It is known that there is much oxygen precipitation during the thermal oxidation treatment and almost no oxygen precipitation in the Ni region.

しかし、この全面N領域で単結晶を育成する場合、その引上げ速度マージン(制御可能範囲:ΔV)は、例えば直径200mmの結晶ではΔV≒0.02mm/min程度(例えば非特許文献2参照)であるが、例えば直径300mmの結晶ではΔV≒0.005mm/minと狭く、このマージンを超えた引上げ速度の変動ではグローンイン欠陥が発生し、品質の安定した単結晶の引上げが困難となり、製造歩留まりの低下の要因となる。   However, when a single crystal is grown in the entire N region, the pulling speed margin (controllable range: ΔV) is, for example, about ΔV≈0.02 mm / min (for example, see Non-Patent Document 2) for a crystal having a diameter of 200 mm. However, for example, a crystal with a diameter of 300 mm is as narrow as ΔV≈0.005 mm / min, and if the pulling speed fluctuation exceeds this margin, a grow-in defect occurs, making it difficult to pull a single crystal with stable quality, and the production yield It becomes a factor of decline.

そこで、全面N領域が得られる引上げ速度のマージンを広げる方法に関して、主に2つの方法が検討されてきた。一つはV/Gの引上げ速度Vに対する変化を小さくする方法で、例えば、結晶成長界面の急冷化等によって軸方向温度勾配Gを大きくすることにより、引上げ速度を0.5mm/min以上の高速で、全面N領域の単結晶を製造する方法が提案されている(例えば特許文献1参照)。   In view of this, two methods have been studied mainly for increasing the margin of the pulling speed at which the entire N region can be obtained. One is a method of reducing the change in V / G with respect to the pulling speed V. For example, by increasing the axial temperature gradient G by rapidly cooling the crystal growth interface, the pulling speed is increased to 0.5 mm / min or more. Thus, a method of manufacturing a single crystal in the entire N region has been proposed (see, for example, Patent Document 1).

もう一方はグローンイン欠陥が凝集する温度帯での結晶の冷却速度を大きくする方法で、例えば、成長結晶内で空孔点欠陥が凝集してボイド欠陥を形成するような温度帯を成長結晶が通過する時の平均冷却速度が1℃/min以上と高速になるように制御して育成することにより、全面N領域あるいは全面Nv領域の単結晶を製造するための引上げ速度のマージンを拡大させる方法が提案されている(例えば特許文献2参照)。   The other method is to increase the cooling rate of the crystal in the temperature zone where the grown-in defects agglomerate.For example, the grown crystal passes through the temperature zone where the void defects agglomerate and form void defects in the grown crystal. There is a method of expanding the pulling speed margin for manufacturing the single crystal of the entire surface N region or the entire surface Nv region by controlling and growing so that the average cooling rate is 1 ° C./min or higher. It has been proposed (see, for example, Patent Document 2).

その他、融液側温度勾配に着目した製造方法として、例えば、結晶成長界面における結晶引上げ軸方向の融液側温度勾配Gmと結晶側温度勾配Gsとの比Gm/Gsを結晶成長界面内で0.16±0.05にすることにより、全面N領域の単結晶を製造する方法が提案されている(例えば特許文献3参照)。   In addition, as a manufacturing method paying attention to the melt side temperature gradient, for example, the ratio Gm / Gs of the melt side temperature gradient Gm in the crystal pulling axis direction and the crystal side temperature gradient Gs at the crystal growth interface is 0 in the crystal growth interface. A method of manufacturing a single crystal in the entire N region by setting to .16 ± 0.05 has been proposed (see, for example, Patent Document 3).

国際公開第02/02852号パンフレットInternational Publication No. 02/02852 Pamphlet 特開2002−226296号公報JP 2002-226296 A 特開2000−272992号公報Japanese Patent Laid-Open No. 2000-272992 V.V.Voronkov,Journal of Crystal Growth,vol.59(1982),pp.625〜643V. V. Voronkov, Journal of Crystal Growth, vol. 59 (1982), pp. 625 to 643 J.G.Park,日本結晶成長学会誌,vol.27(2000),p.14J. et al. G. Park, Journal of Japanese Society for Crystal Growth, vol. 27 (2000), p. 14

上述の提案された方法は、単結晶製造装置の炉内構造(ホットゾーン:HZ)の条件等を調整することにより達成できるが、その調整範囲にも限界があるため、更なる結晶の急冷化によるこれ以上のGの増大によって引上げ速度のマージンを拡大するのは困難である。
例えば、直径300mmの結晶では、直径200mmの結晶に比べて急冷化によるGの増大の効果が得られにくいため、全面N領域となる引上げ速度のマージンは狭くなり、全面N領域である結晶の製造の歩留は低くなり、結晶の品質を保証することは困難であった。
従来、このようにGの増大が困難な状況では、全面N領域となる引上げ速度のマージンを効率的に拡大する方法がなく、V/Gを所望の値とする多くの試行錯誤の実験により十分なマージンが得られる最適製造条件を見出すしかなかったため、多大なるコストと時間が消費されていた。
従って、結晶固液界面における軸方向温度勾配Gをこれ以上増大させることなく、全面N領域の結晶を得ることができる引上げ速度のマージンを拡大する引上げ方法が望まれていた。
The proposed method described above can be achieved by adjusting the conditions of the furnace structure (hot zone: HZ) of the single crystal manufacturing apparatus, but the adjustment range is limited, so that further crystal quenching can be achieved. It is difficult to expand the margin of the pulling speed by further increasing G by.
For example, a crystal with a diameter of 300 mm is less likely to obtain an effect of increasing G due to rapid cooling than a crystal with a diameter of 200 mm. The yield was low and it was difficult to guarantee the quality of the crystals.
Conventionally, in such a situation where it is difficult to increase G, there is no method for efficiently expanding the margin of the pulling speed that becomes the entire N region, and sufficient trial and error experiments with V / G as a desired value are sufficient. As a result, there has been no choice but to find the optimum manufacturing conditions that can provide a sufficient margin.
Therefore, there has been a demand for a pulling method that expands the pulling speed margin that can obtain crystals in the entire N region without further increasing the axial temperature gradient G at the crystal solid-liquid interface.

本発明は、このような問題点に鑑みてなされたもので、CZ法によりシリコン単結晶を育成する際に、引上げ速度のマージンが広く、制御し易い安定した製造条件の下で、所望の欠陥領域の単結晶、特に全面N領域からなるシリコン単結晶を、高歩留まりかつ高生産性で製造できるシリコン単結晶の製造方法および単結晶製造装置の設計方法並びに単結晶製造装置を提供することを目的とする。   The present invention has been made in view of such problems. When a silicon single crystal is grown by the CZ method, a desired defect is obtained under stable manufacturing conditions with a wide margin of pulling speed and easy to control. An object is to provide a silicon single crystal manufacturing method, a single crystal manufacturing apparatus design method, and a single crystal manufacturing apparatus capable of manufacturing a single crystal in a region, particularly a silicon single crystal composed of an entire N region with high yield and high productivity. And

上記目的を達成するため、本発明は、チョクラルスキー法によりシリコン単結晶を製造する方法であって、少なくとも、結晶成長界面の結晶中心における結晶引上げ軸方向の融液側温度勾配の絶対値Gmの単結晶引上げ速度Vに対する変化率α(=dGm/dV)が−0.63〜0K・min/mmとなるようにしてシリコン単結晶を育成することを特徴とするシリコン単結晶の製造方法を提供する(請求項1)。 In order to achieve the above object, the present invention is a method for producing a silicon single crystal by the Czochralski method, and at least the absolute value Gm of the melt side temperature gradient in the crystal pulling axis direction at the crystal center of the crystal growth interface. Of growing a silicon single crystal so that the rate of change α (= dGm / dV) of the single crystal pulling rate V is −0.63 to 0 K · min / mm 2 (Claim 1).

このように、結晶成長界面の結晶中心における結晶引上げ軸方向の温度勾配であって、特に融液側の温度勾配の絶対値Gmの単結晶引上げ速度Vに対する変化率α(=dGm/dV)が−0.63〜0K・min/mmとなるようにシリコン単結晶を育成すれば、Gの増大や冷却速度の高速化によらず引上げ速度のマージンを広くすることができるので、Gの増大等が困難な場合でも、全面N領域等の所望の欠陥領域のシリコン単結晶を高歩留まりかつ高生産性で製造することができる。 Thus, the temperature gradient in the crystal pulling axis direction at the crystal center of the crystal growth interface, and in particular, the rate of change α (= dGm / dV) with respect to the single crystal pulling speed V of the absolute value Gm of the temperature gradient on the melt side is as follows. If the silicon single crystal is grown so as to be −0.63 to 0 K · min / mm 2 , the margin of the pulling rate can be widened regardless of the increase in G or the increase in the cooling rate. Even if this is difficult, a silicon single crystal of a desired defect region such as the entire N region can be manufactured with high yield and high productivity.

この場合、少なくともシリコン単結晶を育成するための操業条件ならびに育成炉内部のホットゾーン条件から、電子計算機を用いたシミュレーションにより前記αを求め、該求めたαが−0.63〜0K・min/mmの値となるような育成炉内部の温度分布条件を用いて、シリコン単結晶を育成することが好ましい(請求項2)。
このように、引上げ速度等のシリコン単結晶育成の操業条件ならびに育成炉内部の炉内構造等のホットゾーン条件を用いてシミュレーションにより求めたαが−0.63〜0K・min/mmの値となるような育成炉内部の温度分布条件を用いてシリコン単結晶を育成すれば、引上げ速度のマージンを拡大できる温度分布条件を効率的に決定できるので、より効率的に全面N領域等の所望の結晶領域のシリコン単結晶を製造することができる。
In this case, at least from the operating conditions for growing the silicon single crystal and the hot zone conditions inside the growth furnace, the α is obtained by simulation using an electronic computer, and the obtained α is -0.63 to 0 K · min / It is preferable to grow a silicon single crystal by using a temperature distribution condition inside the growth furnace so as to have a value of mm 2 (Claim 2).
Thus, α obtained by simulation using operating conditions for silicon single crystal growth such as pulling speed and hot zone conditions such as the in-furnace structure inside the growth furnace is a value of −0.63 to 0 K · min / mm 2 . If the silicon single crystal is grown using the temperature distribution conditions inside the growth furnace, the temperature distribution conditions capable of expanding the pulling speed margin can be determined efficiently, so that the desired N region, etc., can be more efficiently obtained. A silicon single crystal of the crystal region can be manufactured.

また、前記育成するシリコン単結晶の引上げ軸に垂直な面が全面N領域となるように単結晶を育成することが好ましい(請求項3)。
このように、シリコン単結晶の引上げ軸に垂直な面が全面N領域となるように単結晶を育成すれば、このシリコン単結晶から全面N領域のシリコン単結晶ウェーハを作製することができるで、デバイスを作製しても酸化膜耐圧特性等の電気特性の劣化が生じず、近年の高集積度の半導体回路の基板作製に適するシリコン単結晶を高歩留まりかつ高生産性で製造することができる。
Further, it is preferable to grow the single crystal so that the plane perpendicular to the pulling axis of the silicon single crystal to be grown becomes the entire N region.
Thus, if the single crystal is grown so that the plane perpendicular to the pulling axis of the silicon single crystal is the entire N region, a silicon single crystal wafer of the entire N region can be produced from this silicon single crystal. Even if a device is manufactured, electrical characteristics such as oxide breakdown voltage characteristics are not deteriorated, and a silicon single crystal suitable for manufacturing a substrate of a highly integrated semiconductor circuit in recent years can be manufactured with high yield and high productivity.

この場合、前記面内が全面Nv領域または全面Ni領域となるように単結晶を育成することが好ましい(請求項4)。
このように、マージンが広がったことにより、全面がNv領域またはNi領域となるように単結晶を育成することが可能になるので、全面にわたって酸素析出が十分高くゲッタリング能力の高い全面Nv領域となるシリコン単結晶ウェーハの提供や、過剰な酸素析出によりウェーハのソリなどの不具合が発生する恐れのあるデバイス工程においては、酸素析出がほとんど生じない全面Ni領域となるシリコン単結晶ウェーハの提供に適するシリコン単結晶を高歩留まりかつ高生産性で製造することができる。
In this case, it is preferable to grow the single crystal so that the in-plane is the entire Nv region or the entire Ni region.
As described above, since the single crystal can be grown so that the entire surface becomes the Nv region or the Ni region due to the widening of the margin, the entire surface Nv region having a sufficiently high oxygen precipitation and a high gettering ability can be obtained. It is suitable for providing a silicon single crystal wafer that is an entire Ni region in which oxygen precipitation hardly occurs in the device process where there is a risk of occurrence of defects such as warping of the wafer due to excessive oxygen precipitation. A silicon single crystal can be manufactured with high yield and high productivity.

また、本発明は、チョクラルスキー法によるシリコン単結晶製造装置の設計方法であって、少なくとも、シリコン単結晶を育成するための操業条件ならびに育成炉内部のホットゾーン条件から、結晶成長界面の結晶中心における結晶引上げ軸方向の融液側温度勾配の絶対値Gmの単結晶引上げ速度Vに対する変化率α(=dGm/dV)を電子計算機を用いたシミュレーションにより求め、該求めたαが−0.63〜0K・min/mmの値となるように、育成炉内部の温度分布設計を行うことを特徴とするシリコン単結晶製造装置の設計方法を提供する(請求項5)。 The present invention also relates to a method for designing a silicon single crystal production apparatus by the Czochralski method, which is based on at least the operation conditions for growing a silicon single crystal and the hot zone conditions inside the growth furnace, The rate of change α (= dGm / dV) of the absolute value Gm of the melt-side temperature gradient in the crystal pulling axis direction at the center with respect to the single crystal pulling speed V is obtained by simulation using an electronic computer, and the obtained α is −0. A design method of a silicon single crystal manufacturing apparatus is provided, wherein a temperature distribution design inside a growth furnace is performed so as to have a value of 63 to 0 K · min / mm 2 .

このように、引上げ速度等のシリコン単結晶育成の操業条件ならびに育成炉内部の炉内構造等のホットゾーン条件を用いてシミュレーションにより求めたαが−0.63〜0K・min/mmの値となるよう、育成炉内部の温度分布設計を行なえば、Gの増大や冷却速度の高速化によらず引上げマージンを拡大できる温度分布条件を効率的に決定できるので、全面N領域等の所望の結晶領域のシリコン単結晶を高歩留まりかつ高生産性で製造するのに適するシリコン単結晶製造装置をより効率的に設計することができる。 Thus, α obtained by simulation using operating conditions for silicon single crystal growth such as pulling speed and hot zone conditions such as the in-furnace structure inside the growth furnace is a value of −0.63 to 0 K · min / mm 2 . By designing the temperature distribution inside the growth furnace so that the temperature distribution condition can be efficiently determined regardless of the increase in G or the increase in the cooling rate, the temperature distribution condition can be efficiently determined. A silicon single crystal manufacturing apparatus suitable for manufacturing a silicon single crystal in a crystal region with high yield and high productivity can be designed more efficiently.

また、本発明は、上記の方法によって設計されたシリコン単結晶製造装置を提供する(請求項6)。
上記の方法によって設計されたシリコン単結晶製造装置は、全面N領域等の所望の結晶領域のシリコン単結晶を高歩留まりかつ高生産性で製造するのに適するシリコン単結晶製造装置となる。
The present invention also provides a silicon single crystal manufacturing apparatus designed by the above method.
The silicon single crystal manufacturing apparatus designed by the above method is a silicon single crystal manufacturing apparatus suitable for manufacturing a silicon single crystal in a desired crystal region such as the entire N region with high yield and high productivity.

以下、本発明についてさらに詳細に説明する。
前述のように、全面N領域が得られる引き上げ速度のマージンを拡大させる方法として、結晶成長界面におけるV/Gの引き上げ速度Vに対する変化を小さくする方法と、グローンイン欠陥が凝集する温度帯での結晶の冷却速度を大きくする方法とがあるが、本発明では、前者の方法に着目した。
Hereinafter, the present invention will be described in more detail.
As described above, as a method of expanding the pull-up rate margin for obtaining the entire N region, a method of reducing the change of V / G with respect to the pull-up rate V at the crystal growth interface, and a crystal in a temperature zone where the grown-in defects are aggregated. However, in the present invention, the former method has been focused on.

このV/Gの引上げ速度Vに対する変化を小さくするのに、従来は専ら結晶の急冷等によるGの増大により達成してきたが、Gの増大のためにホットゾーン条件等を調整するのが困難であったり、十分効果的でない場合があった。
本発明者らは、Gの増大以外で、結晶成長界面の結晶中心における結晶引上げ軸方向の融液側温度勾配の絶対値Gmの単結晶引上げ速度Vに対する変化率α(=dGm/dV)という新たな指標に着目した。
結晶成長界面では結晶側に流出する熱流速、融液側から流入する熱流速、および固化潜熱が以下の式のようにバランスを保っている。
G=HρV+K
ここで、KおよびKはそれぞれ結晶と融液の熱伝導率、Hは単位結晶重量当たりの固化潜熱、ρは結晶の密度である。また、GおよびGは正の値をもつ温度勾配の絶対値である。このバランスに基づいてV/GのVによる変化を詳細に検討した結果、その変化は以下の式のようにGとαによって決まることが分った。
∂(V/G)/∂V=(K−Hρξ−ξKα)/(KG)
ここでξは無欠陥領域を形成するV/Gの臨界値を示す。
そして、αが−0.63〜0K・min/mmとなるようにシリコン単結晶を育成すれば、Gを増大させなくても、V/Gの引上げ速度Vに対する変化が小さくなり、その結果、全面N領域の結晶が得られる引上げ速度のマージンを十分に拡大させることができることを見出し、本発明を完成させた。
In order to reduce the change of the V / G with respect to the pulling speed V, conventionally, it has been achieved mainly by increasing G due to rapid cooling of the crystal, but it is difficult to adjust the hot zone condition and the like due to the increase of G. Sometimes it was not effective enough.
In addition to the increase in G, the inventors referred to the rate of change α (= dGm / dV) with respect to the single crystal pulling speed V of the absolute value Gm of the melt-side temperature gradient in the crystal pulling axis direction at the crystal center at the crystal growth interface. Focused on new indicators.
At the crystal growth interface, the heat flow rate flowing out to the crystal side, the heat flow rate flowing from the melt side, and the latent heat of solidification are balanced as in the following equation.
K c G = H f ρV + K m G m
Here, K c and K m are the thermal conductivities of the crystal and the melt, H f is the latent heat of solidification per unit crystal weight, and ρ is the density of the crystal. Also, G and G m is the absolute value of the temperature gradient with a positive value. As a result of examining in detail the change of V / G due to V based on this balance, it was found that the change was determined by G and α as in the following equation.
∂ (V / G) / ∂V = (K c −H f ρξ−ξK m α) / (K c G)
Here, ξ represents a critical value of V / G that forms a defect-free region.
Then, if the silicon single crystal is grown so that α is −0.63 to 0 K · min / mm 2 , the change of V / G with respect to the pulling speed V is reduced without increasing G, and as a result. The present inventors have found that the margin of the pulling speed at which crystals of the entire N region can be obtained can be sufficiently expanded, and the present invention has been completed.

また、すでに説明したとおり、グローンイン欠陥は、単結晶の引上げ速度等の操業条件や育成した結晶が冷却される際の冷却熱履歴によって、欠陥サイズや密度が左右される。従って、全面N領域の結晶品質を有するシリコン単結晶を育成するためには、シリコン単結晶製造装置の育成炉内部の温度分布の設計を適切なものにする必要がある。しかし、育成炉内部構造を、新規に、あるいは仕様変更のために設計する場合、炉内構造物を実際に種々の態様にて作製して単結晶の引上げ試験を繰り返しながら、目的とする品質を有するシリコン単結晶を得ることは、膨大な手間と時間を要し、非常に効率が悪い。特に、Gの増大が困難であるとか効果的でない場合には、それに代わる適当な設計指針が存在しなかった。   Further, as already described, the size and density of the grown-in defect are affected by the operating conditions such as the pulling rate of the single crystal and the cooling heat history when the grown crystal is cooled. Therefore, in order to grow a silicon single crystal having crystal quality in the entire N region, it is necessary to design an appropriate temperature distribution inside the growth furnace of the silicon single crystal manufacturing apparatus. However, when the growth furnace internal structure is designed for new or specification changes, the desired quality is achieved while the furnace internal structure is actually produced in various forms and the single crystal pulling test is repeated. Obtaining a silicon single crystal having a large amount of time and labor is very inefficient. In particular, when the increase of G is difficult or ineffective, there has been no appropriate design guideline to replace it.

そこで、シリコン単結晶製造装置の育成炉内部を構成する炉内構造物を検討するにあたり、引き上げ速度等の操業条件と炉内構造物の配置や形状あるいは材質等のホットゾーン条件をもとに計算機シミュレーションを行い、育成炉内に形成される温度雰囲気と育成した単結晶にもたらされる結晶欠陥との関係を数値的に求め、この結果に基づいてαが−0.63〜0K・min/mmとなるような温度分布条件を実現するようにホットゾーン条件等を決めるようにすれば、より効率的に、かつ確実に全面N領域の結晶品質を有するシリコン単結晶の育成が可能なシリコン単結晶製造装置を設計することが可能になる。
そして、そのように設計した製造装置によりシリコン単結晶の育成を行なえば、単結晶の引上げ実験等を必要以上に繰り返し行なうことなく、全面N領域となるシリコン単結晶を精度よく育成可能となる。また、さらに狭い全面Nv領域または全面Ni領域とすることも可能である。
また、これは、全面N領域とする場合に限らず、その他の所望とされる欠陥領域のシリコン単結晶を育成する場合にも適用できる。
Therefore, when examining the internal structure of the growth furnace of the silicon single crystal manufacturing equipment, the computer is based on the operating conditions such as the pulling speed and the hot zone conditions such as the arrangement, shape, and material of the internal structure. A simulation is performed to numerically determine the relationship between the temperature atmosphere formed in the growth furnace and the crystal defects caused in the grown single crystal. Based on this result, α is −0.63 to 0 K · min / mm 2. A silicon single crystal capable of growing a silicon single crystal having a crystal quality of the entire N region more efficiently and reliably by determining the hot zone condition or the like so as to realize a temperature distribution condition such that It becomes possible to design a manufacturing apparatus.
If the silicon single crystal is grown by the manufacturing apparatus designed as described above, the silicon single crystal that becomes the entire N region can be accurately grown without repeating the pulling experiment of the single crystal more than necessary. Further, a narrower overall Nv region or overall Ni region can be used.
This is not limited to the case where the entire surface is the N region, but can be applied to the case where a silicon single crystal of other desired defect region is grown.

特に、最近では、直径が300mmを超えるシリコン単結晶を育成するための、大型のCZ法シリコン単結晶製造装置が開発されつつあるが、育成炉の大型化により炉内構造物の設計がますます困難となり、また炉内構造物自体も高価になることから、設計の失敗に伴う経済的損失のリスクを軽減する意味においても、本発明に示すシリコン単結晶製造装置の設計方法を用いれば、より適切なシリコン単結晶製造装置を容易に得ることができる。   In particular, recently, large-scale CZ method silicon single crystal manufacturing equipment for growing silicon single crystals with a diameter exceeding 300 mm is being developed. However, the size of the growth furnace is increasing, and the design of the internal structure of the furnace is increasing. Since it becomes difficult and the in-furnace structure itself is expensive, in the sense of reducing the risk of economic loss due to design failure, if the method for designing a silicon single crystal manufacturing apparatus shown in the present invention is used, it is more An appropriate silicon single crystal manufacturing apparatus can be easily obtained.

本発明によれば、例えば結晶全面にわたりN領域の結晶を製造する場合において、引上げ速度のマージンが大きいシリコン単結晶の製造条件を設計する際に、電子計算機(総合伝熱解析)によるシミュレーション等によって得られたGmとVの関係を利用した指標である変化率α(=dGm/dV)を検討に加えることにより、V/Gの検討だけで設計したシリコン単結晶の製造条件よりも、引上げ速度のマージンが広いシリコン単結晶の製造条件を確実にしかも効率よく設計することができ、結晶全面にわたりN領域の結晶を高歩留、高生産性で製造することができる。
さらに、引上げ速度のマージンが広がったことにより、全面にわたって酸素析出が十分高くゲッタリング能力の高い全面Nv領域となるシリコン単結晶ウェーハの提供や、過剰な酸素析出によりウェーハのソリなどの不具合が発生する恐れのあるデバイス工程においては、酸素析出がほとんど生じない全面Ni領域となるシリコン単結晶ウェーハの提供をすることができる。
According to the present invention, for example, in the case of manufacturing an N region crystal over the entire crystal surface, when designing a manufacturing condition of a silicon single crystal having a large pulling speed margin, a simulation by an electronic computer (total heat transfer analysis) is used. By adding the change rate α (= dGm / dV), which is an index using the relationship between the obtained Gm and V, to the examination, the pulling rate is higher than the production conditions of the silicon single crystal designed only by the examination of V / G. The manufacturing conditions of a silicon single crystal with a wide margin can be surely and efficiently designed, and a crystal in the N region can be manufactured with high yield and high productivity over the entire surface of the crystal.
Furthermore, due to the widening of the pulling speed margin, the provision of a silicon single crystal wafer that has a sufficiently high oxygen precipitation over the entire surface and a high-performance gettering Nv region, and excessive oxygen precipitation causes problems such as wafer warping. In a device process where there is a risk of this, it is possible to provide a silicon single crystal wafer that forms an entire Ni region in which oxygen precipitation hardly occurs.

以下では、本発明の実施の形態について添付の図面を参照しながら説明するが、本発明はこれに限定されるものではない。
図1は、本発明のシリコン単結晶製造装置の一例を示す概略断面図である。該シリコン単結晶製造装置100の金属製の育成炉1には、内側が石英製ルツボで外側が黒鉛製ルツボからなるルツボ7が配置されている。さらに、ルツボ7の外側周囲には、ルツボ7内に収容された多結晶シリコン塊原料を加熱溶融しシリコン融液10とするための加熱ヒータ6が設置され、シリコン単結晶の育成時は、この加熱ヒータ6に供給される電力を調整してシリコン融液10の温度を所望の値とし、シリコン単結晶を育成する。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings, but the present invention is not limited thereto.
FIG. 1 is a schematic cross-sectional view showing an example of the silicon single crystal manufacturing apparatus of the present invention. A crucible 7 having a quartz crucible on the inside and a graphite crucible on the outside is disposed in the metal growth furnace 1 of the silicon single crystal manufacturing apparatus 100. Further, a heater 6 is installed around the outside of the crucible 7 to heat and melt the polycrystalline silicon lump raw material accommodated in the crucible 7 to form a silicon melt 10. The electric power supplied to the heater 6 is adjusted to bring the temperature of the silicon melt 10 to a desired value, and a silicon single crystal is grown.

また、加熱ヒータ6と育成炉1の間には、金属製の育成炉1の炉壁を保護し、育成炉1内部を効率的に保温するために断熱材5が置かれている。また、ルツボ7は、ルツボ支持軸14によって育成炉1の略中央に配置され、ルツボ支持軸14の下端に取り付けられた不図示のルツボ軸駆動機構によって、上下動、回転動自在とされている。一方、シリコン融液10を収容したルツボ7の上方には、引き上げられたシリコン単結晶8を囲繞するように冷却筒19が設けられている。冷却筒19は金属あるいはグラファイトにより構成され、シリコン単結晶8の冷却熱履歴を所望の値に調整して、シリコン単結晶の育成を行なう役割を果たす。   A heat insulating material 5 is placed between the heater 6 and the growth furnace 1 in order to protect the furnace wall of the metal growth furnace 1 and to keep the inside of the growth furnace 1 efficiently. Also, the crucible 7 is arranged substantially at the center of the breeding furnace 1 by the crucible support shaft 14 and can be moved up and down and rotated by a crucible shaft drive mechanism (not shown) attached to the lower end of the crucible support shaft 14. . On the other hand, a cooling cylinder 19 is provided above the crucible 7 containing the silicon melt 10 so as to surround the pulled silicon single crystal 8. The cooling cylinder 19 is made of metal or graphite, and plays the role of growing the silicon single crystal by adjusting the cooling heat history of the silicon single crystal 8 to a desired value.

また、育成炉1の上部には、シリコン単結晶8を引き上げるための引上げワイヤー9を巻き出しあるいは巻き取る不図示のワイヤー巻取り機構が備えられている。そして、このワイヤー巻取り機構から巻き出された引上げワイヤー9の先端部に、種結晶2を保持するための種ホルダー13があり、この種ホルダー13に種結晶2を係止して種結晶2の下方に、シリコン単結晶8を育成するものである。なお、育成炉1の上方には、育成炉1内部に不活性ガスを導入するためのガス導入管11が備えられており、シリコン単結晶8の育成条件に合わせて、ガス導入管11上に設けられたガス流量制御装置3により、所望量のアルゴン(Ar)ガス等の不活性ガスを育成炉1内部に送入可能とされている。   In addition, a wire winding mechanism (not shown) for unwinding or winding a pulling wire 9 for pulling up the silicon single crystal 8 is provided on the upper portion of the growth furnace 1. And there is a seed holder 13 for holding the seed crystal 2 at the tip of the pulling wire 9 unwound from the wire winding mechanism. The silicon single crystal 8 is grown below. Note that a gas introduction pipe 11 for introducing an inert gas into the growth furnace 1 is provided above the growth furnace 1, and is arranged on the gas introduction pipe 11 according to the growth conditions of the silicon single crystal 8. The provided gas flow rate control device 3 can feed a desired amount of inert gas such as argon (Ar) gas into the growth furnace 1.

そして、育成炉1の下部には、シリコン単結晶8の育成時にシリコン融液10からの蒸発物を育成炉1の外部に排出しながら、シリコン単結晶8の育成を行なう必要があることから、育成炉1内部に還流するArガス等の不活性ガスを排気するための排ガス管12と、育成炉1内部の圧力を制御し不活性ガスを育成炉1の外部へ排出するための炉内圧力制御装置4が備えられている。シリコン単結晶8の育成時には、この炉内圧制御装置4によって、育成炉1の内部の圧力が所望の値とされる。   In the lower part of the growth furnace 1, it is necessary to grow the silicon single crystal 8 while discharging the evaporated material from the silicon melt 10 to the outside of the growth furnace 1 when growing the silicon single crystal 8. An exhaust gas pipe 12 for exhausting an inert gas such as Ar gas that circulates inside the growth furnace 1, and an internal pressure for discharging the inert gas to the outside of the growth furnace 1 by controlling the pressure inside the growth furnace 1 A control device 4 is provided. When the silicon single crystal 8 is grown, the pressure inside the growth furnace 1 is set to a desired value by the furnace pressure control device 4.

このようなシリコン単結晶製造装置の設計は次のようにして行なう。まず、結晶径方向のGの分布が均一で、且つ、結晶成長界面における結晶中心での融液側温度勾配の絶対値Gmの引上げ速度Vに対する変化率α(=dGm/dV)の絶対値が小さくなるように育成炉内部の構造を設計する。このとき、Gmは実際の測温に基づいて算出しても良いが、一般に、結晶成長中における成長界面中の温度の実測は効率的でない。したがって、総合伝熱解析を用いてGmを算出するのが好ましい。
そして、育成炉内部のホットゾーン条件(冷却筒、熱遮蔽物、断熱材、ヒータ等の材質、形状や配置、熱輻射率等の物性値)を設定し、結晶中心でのV/Gが所望の値近くになるように引上げ速度Vを与えて、総合伝熱解析を行なう。
Such a silicon single crystal manufacturing apparatus is designed as follows. First, the distribution of G in the crystal diameter direction is uniform, and the absolute value of the rate of change α (= dGm / dV) with respect to the pulling rate V of the absolute value Gm of the melt-side temperature gradient at the crystal center at the crystal growth interface is The structure inside the growth furnace is designed to be small. At this time, Gm may be calculated based on actual temperature measurement, but in general, actual measurement of the temperature at the growth interface during crystal growth is not efficient. Therefore, it is preferable to calculate Gm using a comprehensive heat transfer analysis.
Then, set the hot zone conditions inside the growth furnace (materials such as cooling cylinders, heat shields, heat insulating materials, heaters, physical properties such as shape and arrangement, thermal emissivity), and V / G at the crystal center is desired An overall heat transfer analysis is performed by giving a pulling speed V so as to be close to the value of.

総合伝熱解析ソフトとして、例えば、University of Catholic Lou vainにて開発された総合伝熱解析プログラムFEMAG(F. Dupret et al., Int. J. Heat Mass Transfer, volume33, 1849(1990))や、Massachusetts Institute of Technologyで開発されたITCM(D. Bornside et al., Int. J. Numerical Methods in Engineering, volume30,133(1990))等を用いる。   As a comprehensive heat transfer analysis software, for example, a comprehensive heat transfer analysis program FEMAG (F. Dupret et al., Int. J. Heat Mass Transfer, volume 33, 1849 (1990), developed by the University of Catalytic Lou vain). ITCM (D. Bornside et al., Int. J. Numerical Methods in Engineering, volume 30, 133 (1990)) developed at Massachusetts Institute of Technology.

次に、引上げ速度Vを例えば±0.05mm/minの範囲内でいくつか変化させて、総合伝熱解析を行う。そして、それぞれの引上げ速度Vでの総合伝熱解析から結晶中心のGmを求め、引上げ速度Vに対する変化率αを算出する。
このとき、融液内対流を考慮して総合伝熱解析を実施しても良いが、総合伝熱解析の計算時間を短縮するために、融液内対流は無視して計算を行ってもよい。
Next, an overall heat transfer analysis is performed by changing several pulling speeds V within a range of ± 0.05 mm / min, for example. And Gm of a crystal center is calculated | required from the comprehensive heat-transfer analysis in each pulling speed V, and change rate (alpha) with respect to pulling speed V is calculated.
At this time, the total heat transfer analysis may be performed in consideration of the convection in the melt, but in order to shorten the calculation time of the total heat transfer analysis, the calculation may be performed ignoring the convection in the melt. .

図2は、結晶の冷却速度が充分に遅くなるHZにおいてGmのVに対する変化率αと結晶中心がN領域となる引上げ速度Vのマージンとの関係を、V=0.4mm/min、V=0.5mm/minのそれぞれの場合において示した図である。このようにαは負の値となり、いずれの引上げ速度の場合も、αの値が0に近づくほど、結晶中心においてN領域となる引上げ速度Vのマージンが拡大する。
従来の直径300mmの無欠陥結晶の製造では、V=0.4mm/minのときのαは−0.63K・min/mmより小さく、引上げ速度Vのマージンは0.01mm/min以下であった。このため、引上げられた結晶の無欠陥領域の歩留まりが低く、この歩留まりを維持するのでさえも、結晶育成中に高精度のプロセス制御を必要としていた。そして、本発明であるαを−0.63K・min/mm以上にすることにより、引上げ速度Vのマージンが0.01mm/min以上となり、無欠陥領域の歩留まりも飛躍的に向上し、且つ、結晶育成中のプロセス制御の許容範囲が広くなった。また、αの上限値は0K・min/mmであり、HZを改善することにより、この上限値に近づけることができる。
図3は、結晶の冷却速度が充分に遅くなるHZにおいて引上げ速度Vと結晶中心がN領域となる引上げ速度Vのマージンとの関係を、α=−0.63K・min/mmとα=0K・min/mmのそれぞれの場合において示した図である。例えば、V=0.4mm/minでα=−0.63K・min/mmのときの結晶中心での引上げ速度Vのマージンは0.0102mm/minとなり、αがこれ以上であればマージンは拡大し、実際のシリコン単結晶の製造におけるVの制御が充分に可能となる。さらに、Vが上記と同じ0.4mm/minで、αのみα=0K・min/mmとしたときの引上げ速度Vのマージンは0.012mm/minとなり、結晶中心がN領域となる引上げ速度Vのマージンはさらに拡大する。
この変化率αの調節は育成炉内部のホットゾーン条件(冷却筒、熱遮蔽物、断熱材、ヒータ等の材質、形状や配置、熱輻射率等の物性値)を変えることによって行う。
FIG. 2 shows the relationship between the rate of change α of Gm with respect to V and the margin of the pulling rate V at which the crystal center becomes the N region in HZ where the cooling rate of the crystal is sufficiently slow, V = 0.4 mm / min, V = It is the figure shown in each case of 0.5 mm / min. As described above, α has a negative value, and the margin of the pulling rate V that becomes the N region at the center of the crystal increases as the value of α approaches 0 at any pulling rate.
In the manufacture of a conventional defect-free crystal having a diameter of 300 mm, α when V = 0.4 mm / min is smaller than −0.63 K · min / mm 2 and the margin of the pulling speed V is 0.01 mm / min or less. It was. For this reason, the yield of the defect-free region of the pulled crystal is low, and even when this yield is maintained, high-precision process control is required during crystal growth. Then, by making α according to the present invention −0.63 K · min / mm 2 or more, the margin of the pulling speed V becomes 0.01 mm / min or more, the yield of the defect-free region is dramatically improved, and The tolerance of process control during crystal growth has increased. Further, the upper limit value of α is 0 K · min / mm 2 , and can be brought close to this upper limit value by improving HZ.
FIG. 3 shows the relationship between the pulling rate V and the margin of the pulling rate V at which the crystal center is in the N region in HZ where the cooling rate of the crystal is sufficiently slow, and α = −0.63 K · min / mm 2 and α = is a diagram showing in each case the 0K · min / mm 2. For example, when V = 0.4 mm / min and α = −0.63 K · min / mm 2 , the margin of the pulling speed V at the crystal center is 0.0102 mm / min. As a result, it is possible to sufficiently control V in the actual production of a silicon single crystal. Furthermore, when V is 0.4 mm / min as described above, and α is α = 0 K · min / mm 2 , the pulling speed V margin is 0.012 mm / min, and the pulling speed at which the crystal center is the N region The margin of V is further expanded.
The rate of change α is adjusted by changing the hot zone conditions inside the growth furnace (materials such as cooling cylinders, heat shields, heat insulating materials, heaters, physical properties such as shape and arrangement, heat radiation rate, etc.).

次に、変化率αが変動する理由について簡単に説明する。例えば、引上げ速度Vが変化すると、結晶界面形状が変化し、結晶直径を維持するためのヒーターパワーが変化する。その結果、結晶成長界面における結晶中心の融液側温度勾配の絶対値Gmが変化するのでαがある値で算出される。異なる炉内構造では炉内の熱環境が異なるため、引上げ速度Vの変化に対する結晶界面形状の変化やヒーターパワーに対する炉内の熱的状態の変化も異なる。このことにより、炉内構造が異なる場合も、結晶成長界面における結晶中心の融液側温度勾配の絶対値Gmが変化し、その結果、変化率αが変動する。   Next, the reason why the change rate α varies will be briefly described. For example, when the pulling speed V changes, the crystal interface shape changes, and the heater power for maintaining the crystal diameter changes. As a result, since the absolute value Gm of the melt side temperature gradient at the crystal center at the crystal growth interface changes, α is calculated as a certain value. In different furnace structures, the thermal environment in the furnace is different, so the change in the crystal interface shape with respect to the change in the pulling speed V and the change in the thermal state in the furnace with respect to the heater power are also different. As a result, even when the in-furnace structure is different, the absolute value Gm of the melt side temperature gradient at the crystal center at the crystal growth interface changes, and as a result, the change rate α varies.

このような総合伝熱解析を育成炉内部のホットゾーン条件を変えて繰り返し行うことにより、変化率αが0に近い条件に絞り込む。このようにして得られた、計算上引上げ速度Vのマージンが大きくなるように操業条件と炉内温度分布を設計する。   Such a comprehensive heat transfer analysis is repeatedly performed by changing the hot zone conditions inside the growth furnace, thereby narrowing the change rate α to a condition close to zero. The operating conditions and the furnace temperature distribution are designed so that the margin of the pulling speed V obtained in this way is increased.

次に、上記の装置を用いたCZ法によるシリコン単結晶の育成方法について説明する。まず、シリコン単結晶製造装置100の育成炉1内部に設置されたルツボ7に多結晶シリコン塊を仕込み、育成炉1内部を不活性ガスで満たした後に、ルツボ7周囲に置かれた加熱ヒータ6に電力を供給して、シリコンの融点である1420℃以上に多結晶シリコン塊を加熱することによってシリコン融液10を得る。   Next, a method for growing a silicon single crystal by the CZ method using the above apparatus will be described. First, a polycrystalline silicon lump is charged into a crucible 7 installed in the growth furnace 1 of the silicon single crystal manufacturing apparatus 100, and the inside of the growth furnace 1 is filled with an inert gas, and then a heater 6 placed around the crucible 7 is used. The silicon melt 10 is obtained by supplying electric power to and heating the polycrystalline silicon lump to a melting point of silicon of 1420 ° C. or higher.

そして、ルツボ7内の全ての多結晶シリコン塊がシリコン融液10となったところで、融液温度をシリコン単結晶8の成長に適した温度に安定させ、引上げワイヤー9を巻き出して種結晶2の先端をシリコン融液10の表面に接融させ、ルツボ7と種結晶2をそれぞれ反対方向に回転させながら静かに引上げ、シリコン単結晶8のネック部8aと拡径部8bとを形成する。その後、シリコン単結晶8の拡径部8bが所望の値の直径となったところで、シリコン単結晶8の引上げ速度とシリコン融液の温度を調整し、単結晶定径部8cの形成工程に移行する。   When all the polycrystalline silicon chunks in the crucible 7 become the silicon melt 10, the melt temperature is stabilized at a temperature suitable for the growth of the silicon single crystal 8, and the pulling wire 9 is unwound to seed the seed crystal 2. The tip of the silicon melt is brought into contact with the surface of the silicon melt 10, and the crucible 7 and the seed crystal 2 are gently pulled up while rotating in opposite directions to form the neck portion 8 a and the enlarged diameter portion 8 b of the silicon single crystal 8. Thereafter, when the enlarged diameter portion 8b of the silicon single crystal 8 has a desired diameter, the pulling speed of the silicon single crystal 8 and the temperature of the silicon melt are adjusted, and the process proceeds to the step of forming the single crystal constant diameter portion 8c. To do.

シリコン単結晶8の定型部8cの形成工程では、引上げワイヤー9の巻き上げ速度を調整し、上述のシミュレーションで得られた単結晶の成長速度となるように引上げワイヤー9を徐々に巻き取って引上げ、シリコン単結晶の定型部8cを形成していく。このときαは−0.63〜0K・min/mmであり、引上げ速度Vのマージンが十分にあるので、シリコン単結晶8の定型部8cの結晶中心が安定してN領域となる。
また、このとき、結晶中心をNv領域やNi領域となるように単結晶8を引上げてもよいし、その他所望の欠陥領域となるようにしてもよい。
In the step of forming the fixed portion 8c of the silicon single crystal 8, the winding speed of the pulling wire 9 is adjusted, and the pulling wire 9 is gradually wound up and pulled up to the single crystal growth rate obtained by the above-mentioned simulation, A fixed portion 8c of silicon single crystal is formed. At this time, α is −0.63 to 0 K · min / mm 2 , and there is a sufficient margin for the pulling speed V, so that the crystal center of the fixed portion 8c of the silicon single crystal 8 is stably an N region.
At this time, the single crystal 8 may be pulled up so that the center of the crystal becomes the Nv region or the Ni region, or other desired defect region may be formed.

その後、定型部8cを必要長さ引き上げたら、再びシリコン単結晶8の引上げ速度とシリコン融液の温度を変化させて、不図示の単結晶縮径部の形成工程に移行し、シリコン単結晶8の直径を徐々に縮径していってシリコン単結晶8をシリコン融液10から切り離す。
シリコン単結晶8をシリコン融液10から切り離した後は、静かに育成炉1の上方で単結晶が常温付近まで冷えるのを待ち、最後にシリコン単結晶8を育成炉1から取り出して育成を終了する。
Thereafter, when the required length of the fixed portion 8c is raised, the pulling speed of the silicon single crystal 8 and the temperature of the silicon melt are changed again to move to a step of forming a single crystal reduced diameter portion (not shown). The silicon single crystal 8 is separated from the silicon melt 10 by gradually reducing the diameter of the silicon single crystal 8.
After the silicon single crystal 8 is separated from the silicon melt 10, it waits until the single crystal cools to near room temperature above the growth furnace 1, and finally the silicon single crystal 8 is taken out from the growth furnace 1 to complete the growth. To do.

なお、実際の引き上げにおいては、上記のシミュレーションで検討した結晶成長界面の結晶中心における結晶引上げ軸方向の融液側温度勾配の絶対値Gmの単結晶引上げ速度Vに対する変化率αの影響の他にグローンイン欠陥の凝集温度帯での冷却速度の影響が加わるため、全面がN領域となる引き上げ速度Vのマージンは図3に示された値以上になる。例えば、α=−0.63K・min/mmとして直径200mmの結晶を実際に引き上げたとき、V=0.45mm/minにおいて、結晶中心がN領域となる引き上げ速度Vのマージンは約0.025mm/minであった。 In the actual pulling, in addition to the influence of the rate of change α on the single crystal pulling rate V of the absolute value Gm of the melt side temperature gradient in the crystal pulling axis direction at the crystal center at the crystal growth interface studied in the above simulation. Since the influence of the cooling rate in the aggregation temperature zone of the grown-in defect is added, the margin of the pulling rate V at which the entire surface becomes the N region becomes greater than the value shown in FIG. For example, when a crystal having a diameter of 200 mm is actually pulled with α = −0.63 K · min / mm 2 , the margin of the pulling speed V at which the crystal center becomes the N region at V = 0.45 mm / min is about 0.2 mm. It was 025 mm / min.

このように、シミュレーションを実施するにあたり、総合伝熱解析プログラムから得られる算出値に誤差を生じる場合もある。このような場合は、当然ではあるが実際にシリコン単結晶を引き上げて品質を確認した後にシミュレーション結果に補正を加えることによって、適切な操業条件や育成炉内雰囲気を見出すことができる。   As described above, when the simulation is performed, an error may occur in the calculated value obtained from the comprehensive heat transfer analysis program. In such a case, as a matter of course, appropriate operating conditions and atmosphere in the growth furnace can be found by actually raising the silicon single crystal and confirming the quality, and then correcting the simulation result.

本発明は、上記に結晶中心における引き上げ速度Vのマージンについて説明したが、これは、結晶径方向のGの分布が均一であれば、結晶中心でのαの値を代表値として検討すれば、結晶全面にわたりN領域が得られる引き上げ速度Vのマージンが拡大することを意味している。
したがって、まず結晶径方向のGの分布が均一となる育成炉内部の構造を設計した上で、伝熱解析ソフトFEMAG等により結晶中心でのαの値が−0.63〜0K・min/mmとなる製造条件を検討し、その結果得られた最適製造条件を選択し、結晶中心がN領域となる引き上げ速度Vに設定することにより、マージンを十分広くして結晶全面にわたってN領域とすることができる。
特に、マージンが広いので、結晶全面にわたってNv領域または結晶全面にわたってNi領域となるようなより狭い製造条件にすることができ、このような条件でシリコン単結晶を育成すれば、ゲッタリング能力の高い全面N領域シリコン単結晶ウェーハの作製や、あるいは、ウェーハソリを生じない全面N領域シリコン単結晶ウェーハの作製に適するものとすることができる。
In the present invention, the margin of the pulling speed V at the crystal center has been described above. If the distribution of G in the crystal diameter direction is uniform, if the value of α at the crystal center is considered as a representative value, This means that the margin of the pulling speed V at which the N region can be obtained over the entire crystal surface is increased.
Therefore, after designing the structure inside the growth furnace in which the distribution of G in the crystal diameter direction is uniform, the value of α at the crystal center is −0.63 to 0 K · min / mm by heat transfer analysis software FEMAG or the like. 2 is studied, the optimum manufacturing condition obtained as a result is selected, and the pulling speed V is set so that the crystal center becomes the N region, so that the margin is sufficiently widened to make the N region over the entire crystal surface. be able to.
In particular, since the margin is wide, the manufacturing conditions can be made narrower such that the entire surface of the crystal becomes the Nv region or the entire surface of the crystal becomes the Ni region. If a silicon single crystal is grown under such conditions, the gettering ability is high. It can be suitable for the production of a whole surface N region silicon single crystal wafer or the production of a whole surface N region silicon single crystal wafer that does not cause wafer warping.

以上、CZ法によるシリコン単結晶の育成を例に挙げて本発明の具体例を説明したが、本発明はこれのみに限定されるものではない。例えば、本発明のシリコン単結晶の育成に用いる種結晶ならびにシリコン単結晶の製造方法は、シリコン融液に磁場を印加しながら単結晶を育成するMCZ法(Magnetic field applied Czochralski Method)を用いたシリコン単結晶の製造にも、当然適用することが可能である。   The specific examples of the present invention have been described above by taking the growth of a silicon single crystal by the CZ method as an example, but the present invention is not limited to this. For example, the seed crystal used for the growth of the silicon single crystal of the present invention and the silicon single crystal manufacturing method include silicon using an MCZ method (Magnetic field applied Czochralski method) for growing a single crystal while applying a magnetic field to the silicon melt. Of course, it can also be applied to the production of single crystals.

以下に本発明の実施例及び比較例をあげてさらに具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例1、比較例1)
実施例として、図1に示す装置100を用いて、結晶径方向のGの分布が均一となるような育成炉内部の構造を設計し、冷却筒19の輻射率のみを変えて(0.77(実施例1)と0.40(比較例1)の2種類)、総合伝熱解析プログラムFEMAGを用いて、シリコン単結晶の製造装置の加熱ヒータ、断熱材、ルツボ等の炉内構造物の配置や組成および熱物性値等を入力し、シリコン融液150kgを収容した口径が600mmルツボから直径200mmのシリコン単結晶を引上げた場合の、結晶中心におけるV/Gおよび変化率αを求めた。
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to these examples.
(Example 1, Comparative Example 1)
As an example, using the apparatus 100 shown in FIG. 1, the structure inside the growth furnace is designed so that the distribution of G in the crystal diameter direction is uniform, and only the emissivity of the cooling cylinder 19 is changed (0.77). (Embodiment 1) and 0.40 (Comparative Example 1)), using a comprehensive heat transfer analysis program FEMAG, a heater of a silicon single crystal manufacturing apparatus, a heat insulating material, a furnace structure such as a crucible Arrangement, composition, thermophysical property values, etc. were input, and V / G and rate of change α at the crystal center when a 200 mm diameter silicon single crystal was pulled from a 600 mm crucible containing 150 kg of silicon melt were determined.

そして、上記のシミュレーションを行なった結果、結晶中心における引上げ軸方向のV/Gのシミュレーション結果では、N領域を形成する引上げ速度の臨界値は、上記の実施例1および比較例1とも同じ0.4mm/minであると予測された。   As a result of the above simulation, in the V / G simulation result in the pulling axis direction at the crystal center, the critical value of the pulling rate for forming the N region is the same as that in the above-described Example 1 and Comparative Example 1. It was predicted to be 4 mm / min.

一方、結晶成長界面の結晶中心における変化率αのシミュレーションの結果では、比較例1では変化率αが−0.71K・min/mm、実施例1では変化率αが−0.54K・min/mmとなり、図2または図3に示す関係から、V=0.4mm/minにおいて、結晶中心におけるN領域を形成する引上げ速度Vのマージンを予測した結果、変化率αが本発明の範囲内である実施例1の方が約4%拡大し、実際の製造の際に十分なマージンになると予測された。 On the other hand, as a result of the simulation of the change rate α at the crystal center at the crystal growth interface, the change rate α is −0.71 K · min / mm 2 in Comparative Example 1, and the change rate α is −0.54 K · min in Example 1. / Mm 2 , and from the relationship shown in FIG. 2 or FIG. 3, as a result of predicting the margin of the pulling speed V for forming the N region at the crystal center at V = 0.4 mm / min, the change rate α is within the range of the present invention. The first example, which is one of them, was expanded by about 4%, and it was predicted that a sufficient margin would be obtained in actual production.

次に、上記のシミュレーション結果をもとに、上記比較例1と実施例1の炉内構造を用いて、シリコン融液150kgを収容した口径が600mmのルツボから直径200mmのシリコン単結晶を実際に引上げた。そして、シリコン単結晶の結晶中心におけるN領域を形成する引上げ速度Vのマージンを確認したところ、上記シミュレーションの予測通り実施例1の方が比較例1に比べ、引上げ速度のマージンが大きくなり、その値は上記シミュレーション結果よりもさらに大きくなり、約30%拡大していたことが確認された。   Next, based on the simulation results described above, using the furnace structures of Comparative Example 1 and Example 1, a silicon single crystal having a diameter of 200 mm was actually produced from a crucible having a diameter of 600 mm containing 150 kg of silicon melt. Pulled up. Then, when the margin of the pulling speed V for forming the N region at the crystal center of the silicon single crystal was confirmed, the pulling speed margin in Example 1 was larger than that in Comparative Example 1 as predicted by the simulation. It was confirmed that the value was further larger than the simulation result and expanded by about 30%.

このように、実際のシリコン単結晶を引上げたときの引上げ速度のマージンが、FEMAGのシミュレーションの値より大きくなる理由は、すでに上記に説明したように、変化率αの影響の他にグローンイン欠陥の凝集温度帯での冷却速度の影響が加わったためと考えられるが、αが本発明の範囲内の場合、上記の冷却速度の影響によるマージンの拡大がなくても、製造上十分なマージンとなった。   In this way, the reason why the margin of the pulling speed when pulling up the actual silicon single crystal is larger than the value of the FEMAG simulation is that, as already explained above, in addition to the influence of the rate of change α, This is considered to be due to the effect of the cooling rate in the coagulation temperature zone. However, when α is within the range of the present invention, the margin is sufficient for manufacturing even if the margin is not expanded due to the effect of the cooling rate. .

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
例えば、実施例では直径200mmのシリコン単結晶を引上げたが、直径はこれ以上、例えば300mmであってもよい。本発明はこのように大直径化の際に引上げ速度のマージンの拡大を効果的に行なうことができる。
The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.
For example, although a silicon single crystal having a diameter of 200 mm is pulled up in the embodiment, the diameter may be more than this, for example, 300 mm. Thus, the present invention can effectively increase the margin of the pulling speed when the diameter is increased.

本発明のシリコン単結晶の製造装置の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the manufacturing apparatus of the silicon single crystal of this invention. 引上げ速度V=0.4mm/minおよび0.5mm/minにおいて、変化率αと結晶中心がN領域となる引上げ速度Vのマージンとの関係の一例を示した図である。It is the figure which showed an example of the relationship between the change rate (alpha) and the margin of the pulling-up speed V from which a crystal center becomes N area | region in pulling-up speed V = 0.4mm / min and 0.5mm / min. 変化率α=−0.63K・min/mmおよび0.0K・min/mmにおいて、引上げ速度Vと結晶中心がN領域となる引上げ速度Vのマージンとの関係の一例を示した図である。FIG. 6 is a diagram showing an example of the relationship between the pulling speed V and the margin of the pulling speed V at which the crystal center is in the N region when the change rate α = −0.63 K · min / mm 2 and 0.0 K · min / mm 2 . is there.

符号の説明Explanation of symbols

1…育成炉、 2…種結晶、 3…ガス流量制御装置、 4…炉内圧力制御装置、
5…断熱材、 6…加熱ヒータ、 7…ルツボ、 8…シリコン単結晶、
8a…ネック部、 8b…拡径部、 8c…単結晶定径部、
9…ワイヤー、 10…シリコン融液、 11…ガス導入管、 12…排ガス管、
13…種ホルダー、 14…ルツボ支持軸、 19…冷却筒、
100…シリコン単結晶製造装置。
DESCRIPTION OF SYMBOLS 1 ... Growth furnace, 2 ... Seed crystal, 3 ... Gas flow rate control apparatus, 4 ... In-furnace pressure control apparatus,
5 ... Insulating material, 6 ... Heater, 7 ... Crucible, 8 ... Silicon single crystal,
8a ... neck portion, 8b ... enlarged diameter portion, 8c ... single crystal constant diameter portion,
9 ... wire, 10 ... silicon melt, 11 ... gas introduction pipe, 12 ... exhaust pipe,
13 ... Seed holder, 14 ... Crucible support shaft, 19 ... Cooling tube,
100: Silicon single crystal manufacturing apparatus.

Claims (6)

チョクラルスキー法によりシリコン単結晶を製造する方法であって、少なくとも、結晶成長界面の結晶中心における結晶引上げ軸方向の融液側温度勾配の絶対値Gmの単結晶引上げ速度Vに対する変化率α(=dGm/dV)が−0.63〜0K・min/mmとなるようにしてシリコン単結晶を育成することを特徴とするシリコン単結晶の製造方法。 A method for producing a silicon single crystal by the Czochralski method, wherein at least the rate of change α (with respect to the single crystal pulling rate V of the absolute value Gm of the melt side temperature gradient in the crystal pulling axis direction at the crystal center at the crystal growth interface. = DGm / dV) is -0.63 to 0 K · min / mm 2, and the silicon single crystal is grown. 少なくともシリコン単結晶を育成するための操業条件ならびに育成炉内部のホットゾーン条件から、電子計算機を用いたシミュレーションにより前記αを求め、該求めたαが−0.63〜0K・min/mmの値となるような育成炉内部の温度分布条件を用いて、シリコン単結晶を育成することを特徴とする請求項1に記載されたシリコン単結晶の製造方法。 The α is determined by simulation using an electronic computer from at least the operating conditions for growing the silicon single crystal and the hot zone conditions inside the growth furnace, and the obtained α is −0.63 to 0 K · min / mm 2 . 2. The method for producing a silicon single crystal according to claim 1, wherein the silicon single crystal is grown using a temperature distribution condition inside the growth furnace so as to be a value. 前記育成するシリコン単結晶の引上げ軸に垂直な面が全面N領域となるように単結晶を育成することを特徴とする請求項1または請求項2に記載されたシリコン単結晶の製造方法。   3. The method for producing a silicon single crystal according to claim 1, wherein the single crystal is grown so that a surface perpendicular to a pulling axis of the silicon single crystal to be grown becomes an entire N region. 4. 前記面内が全面Nv領域または全面Ni領域となるように単結晶を育成することを特徴とする請求項3に記載されたシリコン単結晶の製造方法。   4. The method for producing a silicon single crystal according to claim 3, wherein the single crystal is grown so that the in-plane is an entire Nv region or an entire Ni region. チョクラルスキー法によるシリコン単結晶製造装置の設計方法であって、少なくとも、シリコン単結晶を育成するための操業条件ならびに育成炉内部のホットゾーン条件から、結晶成長界面の結晶中心における結晶引上げ軸方向の融液側温度勾配の絶対値Gmの単結晶引上げ速度Vに対する変化率α(=dGm/dV)を電子計算機を用いたシミュレーションにより求め、該求めたαが−0.63〜0K・min/mmの値となるように、育成炉内部の温度分布設計を行うことを特徴とするシリコン単結晶製造装置の設計方法。 A method for designing a silicon single crystal manufacturing apparatus by the Czochralski method, which is based on at least the operating conditions for growing a silicon single crystal and the hot zone conditions inside the growth furnace, and the crystal pulling axial direction at the crystal center of the crystal growth interface The rate of change α (= dGm / dV) of the absolute value Gm of the melt-side temperature gradient with respect to the single crystal pulling rate V is obtained by simulation using an electronic computer, and the obtained α is −0.63 to 0 K · min / A design method of a silicon single crystal manufacturing apparatus, wherein a temperature distribution design inside a growth furnace is performed so as to have a value of mm 2 . 請求項5に記載された方法によって設計されたシリコン単結晶製造装置。   A silicon single crystal manufacturing apparatus designed by the method according to claim 5.
JP2003392384A 2003-11-21 2003-11-21 Silicon single crystal manufacturing method, silicon single crystal manufacturing apparatus design method, and silicon single crystal manufacturing apparatus Expired - Fee Related JP4461781B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003392384A JP4461781B2 (en) 2003-11-21 2003-11-21 Silicon single crystal manufacturing method, silicon single crystal manufacturing apparatus design method, and silicon single crystal manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003392384A JP4461781B2 (en) 2003-11-21 2003-11-21 Silicon single crystal manufacturing method, silicon single crystal manufacturing apparatus design method, and silicon single crystal manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2005154172A true JP2005154172A (en) 2005-06-16
JP4461781B2 JP4461781B2 (en) 2010-05-12

Family

ID=34719098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003392384A Expired - Fee Related JP4461781B2 (en) 2003-11-21 2003-11-21 Silicon single crystal manufacturing method, silicon single crystal manufacturing apparatus design method, and silicon single crystal manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP4461781B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009025339A1 (en) * 2007-08-21 2009-02-26 Sumco Corporation Silicon single crystal wafer for igbt and method for manufacturing silicon single crystal wafer for igbt
WO2009025342A1 (en) * 2007-08-21 2009-02-26 Sumco Corporation Silicon single crystal wafer for igbt and method for manufacturing silicon single crystal wafer for igbt
WO2009025336A1 (en) * 2007-08-21 2009-02-26 Sumco Corporation Silicon single crystal wafer for igbt and process for producing silicon single crystal wafer for igbt
WO2009025340A1 (en) * 2007-08-21 2009-02-26 Sumco Corporation Silicon single crystal wafer for igbt and method for manufacturing silicon single crystal wafer for igbt
WO2009025337A1 (en) * 2007-08-21 2009-02-26 Sumco Corporation Silicon single crystal wafer for igbt, process for producing silicon single crystal wafer for igbt, and method for ensuring electric resistivity of silicon single crystal wafer for igbt
WO2009025338A1 (en) * 2007-08-21 2009-02-26 Sumco Corporation Silicon single crystal wafer for igbt and method for manufacturing silicon single crystal wafer for igbt
WO2009025341A1 (en) * 2007-08-21 2009-02-26 Sumco Corporation Silicon single crystal wafer for igbt and method for manufacturing silicon single crystal wafer for igbt

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009025339A1 (en) * 2007-08-21 2009-02-26 Sumco Corporation Silicon single crystal wafer for igbt and method for manufacturing silicon single crystal wafer for igbt
WO2009025342A1 (en) * 2007-08-21 2009-02-26 Sumco Corporation Silicon single crystal wafer for igbt and method for manufacturing silicon single crystal wafer for igbt
WO2009025336A1 (en) * 2007-08-21 2009-02-26 Sumco Corporation Silicon single crystal wafer for igbt and process for producing silicon single crystal wafer for igbt
WO2009025340A1 (en) * 2007-08-21 2009-02-26 Sumco Corporation Silicon single crystal wafer for igbt and method for manufacturing silicon single crystal wafer for igbt
WO2009025337A1 (en) * 2007-08-21 2009-02-26 Sumco Corporation Silicon single crystal wafer for igbt, process for producing silicon single crystal wafer for igbt, and method for ensuring electric resistivity of silicon single crystal wafer for igbt
WO2009025338A1 (en) * 2007-08-21 2009-02-26 Sumco Corporation Silicon single crystal wafer for igbt and method for manufacturing silicon single crystal wafer for igbt
WO2009025341A1 (en) * 2007-08-21 2009-02-26 Sumco Corporation Silicon single crystal wafer for igbt and method for manufacturing silicon single crystal wafer for igbt
JPWO2009025339A1 (en) * 2007-08-21 2010-11-25 株式会社Sumco Silicon single crystal wafer for IGBT and manufacturing method of silicon single crystal wafer for IGBT
JP5304649B2 (en) * 2007-08-21 2013-10-02 株式会社Sumco Manufacturing method of silicon single crystal wafer for IGBT
JP5359874B2 (en) * 2007-08-21 2013-12-04 株式会社Sumco Manufacturing method of silicon single crystal wafer for IGBT
JP5387408B2 (en) * 2007-08-21 2014-01-15 株式会社Sumco Manufacturing method of silicon single crystal wafer for IGBT

Also Published As

Publication number Publication date
JP4461781B2 (en) 2010-05-12

Similar Documents

Publication Publication Date Title
JPH1179889A (en) Production of and production unit for silicon single crystal with few crystal defect, and silicon single crystal and silicon wafer produced thereby
JP2010100474A (en) Method for optimizing horizontal magnetic field in pulling-up silicon single crystal, and method for manufacturing silicon single crystal
JP2001220289A (en) Production unit of high quality silicon single crystal
JP4806974B2 (en) Silicon single crystal growth method
WO2006137179A1 (en) Method of growing silicon single crystal
US7235133B2 (en) Method for growing single crystal of semiconductor
JP2003002780A (en) Apparatus for producing silicon single crystal and method for producing silicon single crystal using the same
JP2005162599A (en) Single crystal silicon ingot and wafer having homogeneous vacancy defect, and method and apparatus for making same
JP3601328B2 (en) Method for producing silicon single crystal and silicon single crystal and silicon wafer produced by this method
JP4461781B2 (en) Silicon single crystal manufacturing method, silicon single crystal manufacturing apparatus design method, and silicon single crystal manufacturing apparatus
JP2007284260A (en) Method for manufacturing silicon single crystal
JP4151474B2 (en) Method for producing single crystal and single crystal
JP3533812B2 (en) Crystal manufacturing apparatus by Czochralski method, crystal manufacturing method, and crystal manufactured by this method
JP5415052B2 (en) Ultra-low defect semiconductor single crystal manufacturing method and manufacturing apparatus thereof
JP6263999B2 (en) Method for growing silicon single crystal
JP4422813B2 (en) Method for producing silicon single crystal
JP2009242237A (en) Apparatus and method for producing single crystal ingot
JP5223513B2 (en) Single crystal manufacturing method
JP2009274888A (en) Production method of silicon single crystal, and silicon single crystal wafer
JP5136518B2 (en) Method for growing silicon single crystal
JP2011105526A (en) Method for growing silicon single crystal
JP2007210820A (en) Method of manufacturing silicon single crystal
JP4134800B2 (en) Graphite heater for single crystal production, single crystal production apparatus and single crystal production method
JP5282762B2 (en) Method for producing silicon single crystal
JP3823717B2 (en) Method for producing silicon single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4461781

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140226

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees