JP2005150438A - 半導体デバイスの製造方法 - Google Patents

半導体デバイスの製造方法 Download PDF

Info

Publication number
JP2005150438A
JP2005150438A JP2003386522A JP2003386522A JP2005150438A JP 2005150438 A JP2005150438 A JP 2005150438A JP 2003386522 A JP2003386522 A JP 2003386522A JP 2003386522 A JP2003386522 A JP 2003386522A JP 2005150438 A JP2005150438 A JP 2005150438A
Authority
JP
Japan
Prior art keywords
film
cap
cap film
semiconductor film
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003386522A
Other languages
English (en)
Inventor
Shinya Okazaki
真也 岡崎
Junichiro Nakayama
純一郎 中山
Tetsuya Inui
哲也 乾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2003386522A priority Critical patent/JP2005150438A/ja
Publication of JP2005150438A publication Critical patent/JP2005150438A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Thin Film Transistor (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

【課題】 キャッピング法を用いたラテラル成長法を利用して形成される結晶質半導体膜が、結晶性に優れた結晶で構成されているため、安定して高特性を有する薄膜トランジスタを作製することが可能な、半導体デバイスの製造方法を提供する。
【解決手段】 基板と、この基板上に直接または間接に積層された結晶質半導体膜と、を備える半導体デバイスの製造方法であって、この基板上に直接または間接に非晶質半導体膜を積層する工程と、この非晶質半導体膜の表面上に、互いに特定の位置関係にある、第一のキャップ膜および第二のキャップ膜を積層する工程と、これらにレーザ光を照射することにより、固体状態にあるこの非晶質半導体膜の一部を液体状態に溶融させる工程と、この液体状態の半導体を結晶化してこの結晶質半導体膜に変換する工程と、を備える、半導体デバイスの製造方法。
【選択図】 図8

Description

本発明は、半導体デバイスの製造方法に関する。本発明は、レーザを用いて非晶質半導体膜を結晶化することにより、結晶質半導体膜を有する薄膜トランジスタなどの半導体デバイスを製造する、半導体デバイスの製造方法に関する。
液晶やエレクトロルミネッセンス(EL)を応用した表示装置に用いられている薄膜トランジスタ(TFT、Thin Film Trangister)は、非晶質もしくは結晶性のシリコンを活性層として用いる場合が多い。このうち、多結晶シリコンまたは単結晶シリコンなどの結晶性シリコンの薄膜トランジスタは、電子の移動度が高いため、非晶質シリコンの薄膜トランジスタに比較し、多くの長所を有している。
たとえば、結晶性シリコンの薄膜トランジスタを用いた場合には、表示装置の画素部分にスイッチング素子を形成するだけでなく、画素周辺部分に駆動回路や周辺回路を形成することもでき、これらの素子や回路を一枚の基板上に形成することができる。このため、別途ドライバICや駆動回路基板を表示装置に実装する必要がなくなるので、これらの表示装置を低価格で提供することが可能となる。また、トランジスタの寸法を微細化できるので、画素部分に形成するスイッチング素子が小さくなり、表示装置の高開口率化が図れる。このため、高輝度、高精細な表示装置を提供することが可能となる。
多結晶シリコンまたは単結晶シリコンなどの結晶性シリコン薄膜の製造方法としては、レーザ光を用いた再結晶化技術が古くから提案されているが、例えば、基板上に堆積している(アモルファス系シリコン膜、微結晶シリコン膜および結晶性の低い多結晶シリコン膜などを含む)非晶質シリコン膜にエキシマレーザを照射して結晶化(ELC、Excimer Laser Crystallization)する方法がある。
上記ELC法は、サンプルに対し、一定速度で走査しながら、長さ200〜400mm、幅0.2〜1.0mm程度の線状レーザビームを半導体膜上に連続的に照射する方法が一般的である。このときレーザを照射した部分の半導体膜は、一般的に厚さ方向全域に亘って溶融するのではなく、一部の半導体膜領域を残したまま溶融する。このため、未溶融領域/溶融領域界面全面において、いたるところに結晶核が発生し、半導体膜最表層に向かって結晶が成長し、ランダムな方位の結晶粒が形成されるため、結晶粒径は100〜200nmと非常に小さくなる場合が多い。
多結晶シリコン膜の結晶粒界には、不対電子が多数存在するためポテンシャル障壁を形成し、キャリアの強い散乱体として作用する。従って結晶粒界が少ない、つまり結晶粒径が大きい多結晶シリコン膜で形成されたTFTほど、一般に電界効果移動度は高くなる。
しかしながら、従来のELC法では、前述のように、未溶融領域/溶融領域界面のランダムな位置において結晶化が起こる縦方向結晶成長であるので、大粒径の多結晶シリコン膜を得ることは難しいため、電界効果移動度の高いTFTを得ることが困難であった。また、ランダムに結晶化することに起因して、各TFT間の膜構造に不均一性が生じるため、TFTアレイにスイッチング特性の不均一性が生じてしまうという不具合が生じる。また、このような不具合が生じると、TFT液晶表示装置において、1つの表示画面中に表示速度の速い画素と表示速度の遅い画素とが並存するという問題が生じる。
そこで、さらに高性能なTFT液晶表示装置を得るためには、上記の多結晶シリコン膜の結晶粒径を大きくすることや、シリコン結晶の方位を制御することなどが必要である。そこで、単結晶シリコンに近い性能を有する多結晶シリコン膜を得ることを目的として、数多くの提案がなされている。
その中でも特に、「ラテラル成長法」に分類されるレーザ結晶化技術は、結晶の成長方向に方位の揃った長結晶が得られるため、注目を集めている。
上記のラテラル成長法の一つに、半導体膜上に、結晶化に用いるレーザ光に対する反射防止膜ないしは遮光膜のいずれかを形成し、これらの膜を介して半導体膜にレーザ光を照射し、上記の半導体膜を溶融、凝固させて結晶化を行う方法(本明細書において「キャッピング法」とも記載する)がある(たとえば、特許文献1および特許文献2参照。)。この方法は、大粒径の結晶を得られるだけでなく、結晶化する領域の位置制御が容易になるという特徴を有する。
図3は、ラテラル成長法に用いる半導体デバイスの製造装置の一例を示す構成図である。この方法は、図3に示すような半導体デバイス製造装置200によって、パルスレーザを半導体膜に照射し、半導体膜の一部をレーザ照射領域の厚さ方向全域にわたって溶融、凝固させて結晶化を行うものである。この半導体デバイス製造装置200によれば、レーザ発振器11から出たレーザ光が、半導体デバイス1の上面に照射される。
図6は、従来のラテラル成長法における作製途中の半導体デバイスの一例の断面図である。ここで、半導体デバイス1は、図6に示すように基板2と、バッファ膜5と、非晶質半導体膜3と、キャップ膜6と、から構成される。このとき、キャップ膜6がレーザ光に対して反射防止効果を有する場合には、レーザ光照射領域Cの面積が、キャップ膜6が形成されている領域の面積より大きくなるようにレーザ照射すると、キャップ膜6が形成されている領域の非晶質半導体膜3のほうに、キャップ膜6が形成されていない領域の非晶質半導体膜3より、より多くのレーザ光8が吸収される。このため、レーザ照射により、非晶質半導体膜3内のキャップ膜6が形成されている領域に熱が優先的に誘導される。これにより、レーザ光照射領域Cのうち、キャップ膜6が形成されている領域の非晶質半導体膜3を厚さにわたって溶融させることができる。
つぎに、溶融している非晶質半導体膜3を冷却することにより凝固させると、レーザ光照射領域Cのうち、厚さに亘って溶融している領域と、厚さに亘って溶融していない領域との境界から、キャップ膜6の中心に向かうようにして、横方向に結晶が成長する。
以上のように、従来のキャッピング法を用いたラテラル成長法によれば、特定の位置にキャップ膜を形成しておくことにより、結晶質半導体膜を形成する領域および結晶の成長方向の方位を制御することができ、特定の場所に薄膜トランジスタのチャネル領域を形成することができる。
しかし、従来のキャッピング法を用いたラテラル成長法により成長させた結晶性半導体膜上にチャネル領域を形成し、薄膜トランジスタを作製した場合には、薄膜トランジスタのチャネル領域を形成する位置の違いによって、薄膜トランジスタの特性にばらつきが生じる問題が多く発生していた。
このような薄膜トランジスタの特性のばらつきの原因は、ラテラル成長法による結晶成長の基点となる結晶核が非晶質半導体膜の溶融領域と非溶融領域との境界のランダムな位置に発生するため、チャネル領域を形成する結晶質半導体膜を構成する結晶の大きさや幅が半導体膜の結晶化領域内の位置によって異なることである。
そのため、上記の従来のキャッピング法を用いたラテラル成長法により成長させた結晶質半導体膜上にチャネル領域を形成し、薄膜トランジスタを作成した場合においても、結晶化領域の位置制御は容易になるものの、未だ十分に満足行くほどチャネル領域の結晶性が高く、電界効果移動度に優れる、安定した特性の薄膜トランジスタは得られていない。
特開昭58−184720号公報 特開2000−260709号公報
上記のように、従来のキャッピング法を用いたラテラル成長法では、結晶化領域の位置制御は容易になるものの、得られた結晶を用いてチャネル領域を形成しても、安定して高特性の薄膜トランジスタを得ることは出来ないという問題を有していた。
上記の問題に鑑み、本発明が解決しようとする課題は、キャッピング法を用いたラテラル成長法を利用して形成される結晶質半導体膜が、結晶性に優れた結晶で構成されているため、安定して高特性を有する薄膜トランジスタを作製することが可能な、半導体デバイスの製造方法を提供することである。
本発明者は、上記の課題を解決するために、従来のキャッピング法を用いたラテラル成長法の有する問題点について、さらなる検討をした。
その結果、本発明者は、従来のキャッピング法を用いたラテラル成長法においては、非晶質半導体膜の表面上にキャップ膜が存在することにより、基板から溶融した非晶質半導体膜の最表層に向かう方向の結晶成長が抑制されるため、成長結晶内に大きな内部応力が発生し、この応力を緩和するために、結晶内部に多数の亜粒界が形成されることを見出した。そして、本発明者は、この多数の亜粒界がキャリア散乱の原因となるため、薄膜トランジスタの特性を低下させる、との結論に至った。
そこで、本発明者は、上記の亜粒界の発生の問題を解決するために、キャッピング法を用いたラテラル成長法の改良を試み、試行錯誤を繰返した。
その結果、本発明者は、非晶質半導体膜の表面上に、互いに特定の位置関係にある、第一のキャップ膜および第二のキャップ膜を積層することにより、この第一のキャップ膜および第二のキャップ膜に挟まれた領域に、薄膜トランジスタのチャネル領域に好適に用いることができるほど結晶性が高い領域を作製することができることを見出し、本発明を完成した。
すなわち、本発明の半導体デバイスの製造方法は、基板と、この基板上に直接または間接に積層された結晶質半導体膜と、を備える半導体デバイスの製造方法であって、この基板上に直接または間接に非晶質半導体膜を積層する工程と、この非晶質半導体膜の表面上の一部に第一のキャップ膜を形成する工程と、この非晶質半導体膜の表面上のこの第一のキャップ膜が形成されていない領域上の一部に第二のキャップ膜を形成する工程と、この非晶質半導体膜の表面のうち、この第一のキャップ膜およびこの第二のキャップ膜の両方を含む領域と、この第一のキャップ膜と、この第二のキャップ膜と、に対してレーザ光を照射することにより、固体状態にあるこの非晶質半導体膜の一部を液体状態に溶融させる工程と、この液体状態の半導体を結晶化してこの結晶質半導体膜に変換する工程と、を備える、半導体デバイスの製造方法である。
ここで、この非晶質半導体膜を液体状態に溶融させる工程は、この第一のキャップ膜およびこの第二のキャップ膜が形成されている領域と、この第一のキャップ膜およびこの第二のキャップ膜に挟まれた領域と、をこの非晶質半導体膜の厚みにわたって溶融させ、かつこの第一のキャップ膜およびこの第二のキャップ膜が形成されている領域と、この第一のキャップ膜およびこの第二のキャップ膜に挟まれた領域と、以外の領域をこの非晶質半導体膜の厚みにわたって溶融させない、放射照度および照射時間のレーザ光を、この非晶質半導体膜の表面のうち、この第一のキャップ膜およびこの第二のキャップ膜の両方を含む領域と、この第一のキャップ膜と、この第二のキャップ膜と、に対して照射することにより、固体状態にあるこの非晶質半導体膜の一部を液体状態に溶融させる工程を含むことが好ましい。
また、この結晶質半導体膜に変換する工程は、この非晶質半導体膜の表面のうち、この第一のキャップ膜およびこの第二のキャップ膜の両方を含む領域と、この第一のキャップ膜と、この第二のキャップ膜と、に対して、第二のレーザ光を照射した状態で、この液体状態の半導体を結晶化してこの結晶質半導体膜に変換する工程を含むことが望ましい。
そして、この結晶質半導体膜に変換する工程は、この非晶質半導体膜の表面のうち、この第一のキャップ膜およびこの第二のキャップ膜の両方を含む領域と、この第一のキャップ膜と、この第二のキャップ膜と、に対して、単独照射の場合にはこの非晶質半導体膜を融点以上の温度に加熱することのできない放射照度および照射時間の条件でこの第二のレーザ光を照射した状態で、この液体状態の半導体を結晶化してこの結晶質半導体膜に変換する工程を含むことが好ましい。
また、この非晶質半導体膜を液体状態に溶融させる工程は、この非晶質半導体膜の表面のうち、この第一のキャップ膜およびこの第二のキャップ膜の両方を含む領域と、この第一のキャップ膜と、この第二のキャップ膜と、に対して、第一のレーザ光および第二のレーザ光を照射することにより、固体状態にあるこの非晶質半導体膜の一部を液体状態に溶融させる工程を含み、この結晶質半導体膜に変換する工程は、この第二のレーザ光を照射した状態で、この液体状態の半導体を結晶化してこの結晶質半導体膜に変換する工程を含むことが望ましい。
さらに、上記の場合には、この非晶質半導体膜を液体状態に溶融させる工程は、この第一のキャップ膜およびこの第二のキャップ膜の両方を含む領域と、この第一のキャップ膜と、この第二のキャップ膜と、に対して、この第一のレーザ光およびこの第一のレーザ光の照射領域を含む照射領域を有する第二のレーザ光を照射することにより、固体状態にあるこの非晶質半導体膜の一部を液体状態に溶融させる工程を含むことが好ましい。
また、この第一のキャップ膜を形成する工程は、このレーザ光に対してこの非晶質半導体膜の反射率より低い反射率を有する第一のキャップ膜を形成する工程を含み、この第二のキャップ膜を形成する工程は、この非晶質半導体膜の表面上のこの第一のキャップ膜が形成されていない領域上の一部に、このレーザ光に対してこの非晶質半導体膜の反射率より低い反射率を有する第二のキャップ膜を形成する工程を含むことが好ましい。
そして、この第二のキャップ膜を形成する工程は、この第一のキャップ膜に対向する境界面の少なくとも1部が凹形である第二のキャップ膜を形成する工程を含むことが望ましい。
さらに、本発明の半導体デバイスの製造方法は、上記の工程に加えて、この結晶質半導体膜のうち、第一のキャップ膜および第二のキャップ膜が形成されない領域に、薄膜トランジスタのチャネル領域を形成する工程をさらに備えることが好ましい。
また、この結晶質半導体膜に変換する工程は、この液体状態の半導体を結晶化して、単結晶質半導体膜および/または多結晶質半導体膜に変換する工程を含むことが望ましい。
そして、この非晶質半導体膜を積層する工程は、この基板上に直接または間接に、この結晶質半導体膜よりも結晶性の低い、多結晶質半導体膜、微結晶質半導体膜およびアモルファス質半導体膜からなる群より選ばれる1種以上を積層する工程を含むことが好ましい。
また、この非晶質半導体膜を積層する工程は、この基板上に直接または間接に、シリコン系半導体を材質として含む非晶質半導体膜を積層する工程を含むことが望ましい。
そして、この第一のキャップ膜を形成する工程は、二酸化シリコンを材質として含む第一のキャップ膜を形成する工程を含み、この第二のキャップ膜を形成する工程は、この非晶質半導体膜の表面上のこの第一のキャップ膜が形成されていない領域上の一部に、二酸化シリコンを材質として含む第二のキャップ膜を形成する工程を含むことが好ましい。
この第二のキャップ膜を形成する工程は、この非晶質半導体膜の表面上のこの第一のキャップ膜が形成されていない領域上の一部に、この第一のキャップ膜と第二のキャップ膜との最短の距離が薄膜トランジスタのチャネル領域の幅以上の長さとなる位置に、第二のキャップ膜を形成する工程を含むことが望ましい。
本発明の半導体デバイスの製造方法は、非晶質半導体膜の表面上に、互いに特定の位置関係となるように積層された第一のキャップ膜および第二のキャップ膜を用いるため、下記に示すように、この第一のキャップ膜および第二のキャップ膜に挟まれた領域に、薄膜トランジスタのチャネル領域に好適に用いることができるほど結晶性が高く、亜粒界を含まない領域を作製することができる。
すなわち、本発明の半導体デバイスの製造方法を用いることにより、キャッピング法を用いたラテラル成長法を利用して結晶質半導体膜を形成した場合にも、結晶性に優れた結晶で構成されている半導体膜を得ることができる。したがって、このような亜粒界を含まない結晶の上に薄膜トランジスタを作成することで、安定して高特性の薄膜トランジスタを提供することができる。
以下、実施の形態を示して本発明をより詳細に説明する。
<半導体デバイスの製造方法>
図1は、本発明の半導体デバイスの製造方法の一例の工程を示すフロー図である。
本発明の半導体デバイスの製造方法は、たとえば、図1に示すように、基板と、この基板上に直接または間接に積層された結晶質半導体膜と、を備える半導体デバイスの製造方法であって、この基板上に直接または間接に非晶質半導体膜を積層する工程(S101)と、この非晶質半導体膜の表面上の一部に第一のキャップ膜を形成する工程(S103)と、この非晶質半導体膜の表面上のこの第一のキャップ膜が形成されていない領域上の一部に第二のキャップ膜を形成する工程(S105)と、この非晶質半導体膜の表面のうち、この第一のキャップ膜およびこの第二のキャップ膜の両方を含む領域と、この第一のキャップ膜と、この第二のキャップ膜と、に対してレーザ光を照射することにより、固体状態にあるこの非晶質半導体膜の一部を液体状態に溶融させる工程(S107)と、この液体状態の半導体を結晶化してこの結晶質半導体膜に変換する工程(S109)と、を備える、半導体デバイスの製造方法である。
本発明の半導体デバイスの製造方法が上記の複数の工程を有する理由は、このように非晶質半導体膜の表面上に、互いに特定の位置関係となるように積層された第一のキャップ膜および第二のキャップ膜を積層すると、レーザ光を照射することにより、この第一のキャップ膜および第二のキャップ膜に挟まれた領域に、薄膜トランジスタのチャネル領域に好適に用いることができるほど結晶性が高く、亜粒界を含まない領域を作製することができるからである。
<薄膜積層工程>
図2は、本発明の半導体デバイスの製造方法の一例の工程を示す断面図である。
この例では、図2に示す手順にしたがい、半導体デバイス1の製造のために、基板2上に複数の薄膜を順次積層形成する。
まず、図2(a)に示すように、基板2上に直接または間接に非晶質半導体膜3を形成する。ここで基板2としては、絶縁性であることが好ましくガラス基板や石英基板などを用いることができるが、安価である点および大面積基板を容易に製造できる点でガラス基板を用いることが好適である。
この非晶質半導体膜3は、膜厚が10nm〜100nmの範囲内となるように、プラズマエンハンスド化学気相堆積(PECVD)法、蒸着法、またはスパッタリング法などにより積層されることが好ましい。
かかる非晶質半導体膜3の材質としては、半導体特性を示す従来公知のものであれば特に限定されないが、ラテラル結晶成長の長さを長くすることにより種々の特性が顕著に向上するアモルファス系シリコン膜とすることが好ましい。なお、この非晶質半導体膜3の材質は、シリコンのみからなる材質に限られるものではなく、ゲルマニウムなどの他の元素を含んだシリコンを主成分とする材質であってもよい。これらの中でも、特に二酸化シリコンを材質として含むことが望ましい。
また、第一のキャップ膜は、レーザ光に対して非晶質半導体膜の反射率より低い反射率を有することが好ましい。さらに、第二のキャップ膜は、非晶質半導体膜の表面上の第一のキャップ膜が形成されていない領域上の一部に形成され、レーザ光に対して非晶質半導体膜の反射率より低い反射率を有することが好ましい。これらのキャップ膜のレーザ光に対する反射率が低ければ、レーザ光の吸収性が高まるため、キャップ膜の下部およびその周辺領域の非晶質半導体膜が他の領域よりもよく加熱され、容易かつ短時間に目的の領域のみが溶融することとなるためである。
ここで、基板2と非晶質半導体膜3の間には、図2(a)に示すように、バッファ膜5を形成してもよい。このバッファ膜5を形成することにより、主としてレーザ光による溶融、再結晶化の際に、溶融した非晶質半導体膜3の熱影響が基板2に及ばないようにすることができ、さらに基板2から非晶質半導体膜3への不純物拡散を防止することができる。このようなバッファ膜5としては、膜厚が100〜300nmの範囲内の、蒸着法、イオンプレーティング法、またはスパッタリング法などにより積層された、酸化シリコン膜、窒化シリコン膜、酸化窒化シリコン膜などが挙げられる。
次に、図2(b)に示すように、非晶質半導体膜3上に第一のキャップ膜30および第二のキャップ膜31を含むキャップ膜6を形成する。キャップ膜6は、プラズマエンハンスド化学気相堆積(PECVD)法、蒸着法、またはスパッタリング法などにより積層される。キャップ膜6の材質は、この後の工程で照射されるレーザ光に対して溶融しないものであれば特に限定されないが、材料の安定性、膜厚設計の容易さなどの点から、二酸化シリコンを主要な材質とすることが望ましい。
図8は、本発明に用いるキャップ膜の形成方法の一例を示す平面図である。
ここで、形成されるキャップ膜6は、図8に示すように、所定の形状を有し、特定の位置関係にある、第一のキャップ膜30および第二のキャップ膜31から構成される。すなわち、第二のキャップ膜は、この第一のキャップ膜に対向する境界面の少なくとも1部が凹形であるように形成されることが好ましい。後述するように、溶融した非晶質半導体膜が凹型の部位を核として結晶成長を開始するため、多くの結晶成長がランダムに発生することがなく、より大きな単結晶領域を得ることができるためである。
第一のキャップ30と第二のキャップ膜31との最短の長さ34は、薄膜トランジスタのチャネル領域の幅の1倍以上であることが好ましく、特に1.5倍以上であることがより好ましい。この長さが小さすぎる場合には、チャネル領域内に単結晶でない領域が含まれる傾向があるからである。
これらの範囲内でも、第一のキャップ30と第二のキャップ膜31との最短の長さ34は、薄膜トランジスタ作成時に、チャネル領域を構成するのに十分な長さの約2倍の長さが最も好適である。この第一のキャップと第二のキャップ膜とに挟まれ、第一のキャップ膜および第二のキャップ膜が形成されない領域に、後述するようにおおきな単結晶領域が成長するため、この領域に薄膜トランジスタのチャネル領域を形成すれば、特性に優れた薄膜トランジスタを作製することができるためである。
その後、図2(c)に示すように、レーザ光8を非晶質半導体膜3と、第一のキャップ膜30と、第二のキャップ膜31と、に照射する工程に移るが、詳細については、下記にて説明する。
<半導体膜結晶化工程>
図3は、ラテラル成長法に用いる半導体デバイス製造装置の一例を示す構成図である。
本発明の半導体デバイスの製造方法においては、上記の薄膜積層工程に続いて、図3に示すような半導体デバイス製造装置を用いて、積層された非晶質半導体膜を結晶化し、結晶質半導体膜を形成することが好ましい。
なぜなら、図3に示すような半導体デバイス製造装置は、本発明の半導体デバイスの製造方法の備える、非晶質半導体膜の表面のうち、第一のキャップ膜および第二のキャップ膜の両方を含む領域と、第一のキャップ膜と、第二のキャップ膜と、に対してレーザ光を照射することにより、固体状態にある非晶質半導体膜の一部を液体状態に溶融させる工程を実施するために好適だからである。
まず、図3は非晶質半導体膜を結晶化するための半導体デバイス製造装置200の概念図を示しており、レーザ発振器11、可変減衰器12、フィールドレンズ13、マスク14、結像レンズ15、サンプルステージ16およびいくつかのミラー10a,10b,10cを含んでいる。レーザ発振器11およびサンプルステージ16は、コントローラ17により制御されていて、レーザの照射タイミングおよびサンプルステージ16の位置を調整することができる。これにより、上記装置において、サンプルステージ16を図中矢印方向に移動させることで、レーザ光が照射されるエリアを移動させることができる。この半導体デバイス製造装置200を用いることにより、ステージ16上の半導体デバイス1にレーザ光18を供給することができる。
レーザ光18は、固体状態にある非晶質半導体膜3への吸収率が高い範囲の波長を有することが好ましい。具体的には、レーザ発振器11は、エキシマレーザ、YAGレーザに代表される各種固体レーザなどの紫外域の波長を有するレーザ発振器11であることが望ましい。なお、これらの中でも、パルス放射可能な波長308nmのエキシマレーザ発振器11が特に好ましい。
さらに、レーザ光は、少なくとも、固体状態にある、キャップ膜が形成されている領域の非晶質半導体膜を溶融させる放射照度および照射時間を有していることが好ましい。この放射照度および照射時間は、半導体膜の材質、半導体膜の膜厚、結晶化領域の面積、キャップ膜のレーザ光に対する反射率などにより変化し、一義的に定めることはできないため、本発明の実施の態様に合わせて適宜適当な放射照度および照射時間を有する第一のレーザ光18を用いることが望ましい。具体的には、1回の照射によってキャップ膜が形成されている領域の非晶質半導体膜を、全膜厚において融点以上の温度に加熱することができ、かつ、キャップ膜が形成されていない領域の非晶質半導体膜を、全膜厚において融点以上の温度に加熱することができない放射照度および照射時間の第一のレーザ光18を用いることが推奨される。
ここで、非晶質半導体膜の表面のうち、第一のキャップ膜および第二のキャップ膜の両方を含む領域は、第一のキャップ膜の周辺領域および上記の第二のキャップ膜の周辺領域を併せた領域であって、第一のキャップ膜と第二のキャップ膜とに挟まれた領域を含む領域であることが好ましい。
このとき、非晶質半導体膜の表面のうち、第一のキャップ膜および第二のキャップ膜の両方を含む領域と、第一のキャップ膜と、第二のキャップ膜と、に対してレーザ光を照射する場合には、レーザ光は第一のキャップ膜の周辺領域と、第二のキャップ膜の周辺領域と、第一のキャップ膜と、第二のキャップ膜と、に照射されることになる。
また、非晶質半導体膜の表面のうち、第一のキャップ膜および第二のキャップ膜の両方を含む領域のうち、第一のキャップ膜および第二のキャップ膜が積層された領域にはレーザ光は直接照射されることはない。レーザ照射経路の途中に第一のキャップ膜および第二のキャップ膜が存在するためである。
図4は、ラテラル成長法に用いる半導体デバイス製造装置の一例を示す構成図である。
本発明に用いる半導体デバイス製造装置は、図4に示すように、第一のレーザ光18および第二のレーザ光19を備えた半導体デバイス装置202であってもよい。
第一のレーザ光18は、第二のレーザ光19よりも固体状態にある非晶質半導体膜への吸収率が高い範囲の波長を有することが好ましい。
レーザ発振器としては、第一のレーザ光18に用いる第一のレーザ発振器20は、エキシマレーザや、YAGレーザに代表される各種固体レーザなどの紫外域の波長を有することが望ましい。なお、これらの中でも、パルス放射可能な波長308nmの第一のエキシマレーザ発振器20が特に好ましい。
さらに第一のレーザ光18は、少なくとも、固体状態にある、キャップ膜が形成されている領域の非晶質半導体膜を溶融させる放射照度および照射時間を有している。このエネルギー量は、半導体膜の材質、半導体膜の膜厚、結晶化領域の面積、キャップ膜のレーザ光に対する反射率などにより変化し、一義的に定めることはできないため、本発明の実施の態様に合わせて適宜適当な放射照度および照射時間を有する第一のレーザ光18を用いることが望ましい。具体的には、1回の照射によって、キャップ膜が形成されている領域の非晶質半導体膜を、全膜厚において融点以上の温度に加熱することができ、かつ、キャップ膜が形成されていない領域の非晶質半導体膜を、全膜厚において融点以上の温度に加熱することができない放射照度および照射時間の第一のレーザ光18を用いることが推奨される。
また、第二のレーザ光19は、第一のレーザ光18よりも液体状態にあるこの非晶質半導体膜への吸収率が高い範囲の波長を有することが好ましい。
発振器としては、第二のレーザ光19に用いる第二のレーザ発振器21は、可視域から赤外域の波長を有することが好ましい。たとえば、波長532nmのYAGレーザ、波長1064nmのYAGレーザ、波長10.6μmの炭酸ガスレーザを放射できる第二のレーザ発振器21などがあげられる。
さらに、第二のレーザ光19は、固体状態にあるこの非晶質半導体膜を溶融させない放射照度および照射時間とする。このエネルギー量は、半導体膜の材質、半導体膜の膜厚、結晶化領域の面積などにより変化し、一義的に定めることはできないため、本発明の実施の態様に合わせて適宜適当な放射照度および照射時間の第二のレーザ光19を用いることが望ましい。具体的には、第二のレーザ光19を単独で照射した場合には、非晶質半導体膜を、融点以上の温度に加熱することのできない放射照度および照射時間の第二のレーザ光19を用いることが推奨される。
すなわち、本発明に用いる第二のレーザ光は、単独照射の場合には非晶質半導体膜を融点以上の温度に加熱することのできない放射照度および照射時間の条件でレーザ光であることが好ましい。なぜなら、第二のレーザ光は、半導体の温度低下速度を低下させることができ、固化するまでの時間を延長することを目的として照射するものだからである。
また、本実施の形態においては、たとえば、第一のレーザ光18を垂直方向から入射させ、第二のレーザ光19を斜方向から入射させることができる。
さらに、第二のレーザ光19の照射領域は、第一のレーザ光18の照射領域を包含する、第一のレーザ光18の照射領域より広い面積を有する照射領域であることが好ましい。
なお、図4には、説明のために、可変減衰器25、ミラー10a,10b,10c,10dが記載されている。
図5は、本発明の半導体デバイスの製造方法を実施する際のレーザ光の照射方法の一例を説明するグラフ図である。
上記の第一のレーザ光および第二のレーザ光の照射時刻と出力との関係は、図5に示す関係と同様の関係にあることが望ましい。ここで、第一のレーザ光のパルス波形23は、時刻t=0に第一のレーザ光の照射を開始することを示し、第二のレーザ光のパルス波形24は、第二のレーザ光が、時刻t=t1〜t2を除く時間では低出力で(低い放射照度で)放射され、時刻t=t1〜t2において高出力で(高い放射照度で)放射されることを示している。
時刻t1において、非晶質半導体膜は溶融し、液体状態にある。この液体状態にある非晶質半導体膜に対して、第一のレーザ光に加えて第二のレーザ光の照射を高出力で行うことにより、半導体の温度低下速度を低下させることができ、固化するまでの時間を延長することができるため、液体状態にある非晶質半導体膜の固化により生成する結晶質半導体膜を構成する結晶の結晶成長の長さを大幅に延ばすことができる。
よって、上記の非晶質半導体膜を液体状態に溶融させる工程は、非晶質半導体膜の表面のうち、第一のキャップ膜および第二のキャップ膜の両方を含む領域と、第一のキャップ膜と、第二のキャップ膜と、に対して、第二のレーザ光を照射した状態で、液体状態の半導体を結晶化して結晶質半導体膜に変換する工程を含むことが好ましい。
<半導体膜の結晶性>
上記の結晶質半導体膜に変換する工程は、液体状態の半導体を結晶化して、単結晶質半導体膜および/または多結晶質半導体膜に変換する工程を含むことが好ましい。なお、本明細書において、結晶質半導体膜とは、単結晶半導体膜や多結晶半導体膜を含む概念であり、結晶性の高い半導体を主要な材質として含む半導体膜を示すものとする。ただし、結晶質半導体膜は、完全にすべての材質が単結晶半導体や多結晶半導体からなる必要はなく、一部にアモルファス系半導体や微結晶半導体や結晶性の低い多結晶半導体からなる材質を含んでいても、結晶性の高い半導体を主要な材質として含んでいればよいものとする。
また、上記の非晶質半導体膜を積層する工程は、基板上に直接または間接に、結晶質半導体膜よりも結晶性の低い、多結晶質半導体膜、微結晶質半導体膜およびアモルファス質半導体膜からなる群より選ばれる1種以上を積層する工程を含んでいてもよい。かかる結晶性の低い非晶質半導体膜であっても、上記のレーザ照射方法により、容易かつ確実に結晶質半導体膜に変換することが可能だからである。なお、本明細書において、非晶質半導体膜とは、結晶質半導体膜よりも結晶性の低い多結晶質半導体膜や、微結晶質半導体膜やアモルファス質半導体膜などを含む概念であり、結晶性の低い半導体を主要な材質として含む半導体膜を示すものとする。ただし、非晶質半導体膜は、完全にすべての材質が結晶性の低い多結晶質半導体膜や微結晶質半導体膜やアモルファス質半導体膜などからなる必要はなく、一部に単結晶半導体や多結晶半導体からなる材質を含んでいても、結晶性の低い多結晶質半導体膜や微結晶質半導体膜やアモルファス質半導体膜などを主要な材質として含んでいればよいものとする。
以下、実施の形態を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。
〔実施の形態1〕
本発明の実施の形態1について、説明すると以下の通りである。
図2は、本発明の半導体デバイスの製造方法の一例の工程を示す断面図である。
まず、図2に示す手順にしたがい、ガラス基板からなる基板2上に、二酸化シリコン膜からなるバッファ膜5を形成し、二酸化シリコン膜上に、アモルファスシリコン膜からなる非晶質半導体膜3を形成し、アモルファスシリコン膜上に、二酸化シリコンを主成分とするキャップ膜6を形成した。
二酸化シリコン膜は、蒸着、イオンプレーティング、またはスパッタリングなどにより、ガラス基板上に、300nmの膜厚で積層される。そして、アモルファスシリコン膜は、プラズマエンハンスド化学気相堆積(PECVD)、蒸着、またはスパッタリングなどにより二酸化シリコン膜上に、50nmの膜厚で積層される。
キャップ膜6は、蒸着、イオンプレーティング、またはスパッタリングなどにより、アモルファスシリコン膜上に50nmの膜厚で積層した後、フォトリソグラフィ工程により所定の形状、位置にパターニングすることにより形成される。
図8は、本発明に用いるキャップ膜の形成方法の一例を示す平面図である。
形成されるキャップ膜6は、図8に示すように、第一のキャップ膜30、および第二のキャップ膜31から構成される。
ここで、この第二のキャップ膜31は、第一のキャップ膜30より小さく、第一のキャップ膜30と所定の距離を有するように形成することが望ましい。また、第二のキャップ膜31は、上面視形状において、第一のキャップ膜30と対向している境界の一部が、凹形(例えば、内角45度の切り欠き形状)を有する形状であることが望ましい。本実施の形態では、第一のキャップ膜30は、第一のキャップ膜の長さ32が50μm、第一のキャップ膜の幅33が20μmである矩形形状を有するものとした。また、第二のキャップ膜31の形状を、一辺の長さが5μmである正方形パターンの、第一のキャップ膜に対向する一辺に、切り欠部を有する形状とした。この際、第二のキャップ膜が有する切り欠部の内角35が45°となるようにした。第一のキャップおよび第二のキャップ膜間の最短距離34は16μmとした。
図3は、ラテラル成長法に用いる半導体デバイス製造装置の一例を示す構成図である。
次に、図3に示す装置を用いて、キャップ膜を通してアモルファスシリコン膜に対し、レーザ光を照射し、アモルファスシリコン膜を多結晶シリコン膜に変換する。レーザ光としてエキシマレーザを用い、波長は308nm、一回の照射のエネルギーフルエンスは2kJ/m2、照射時間は約50ns、照射領域の大きさは(5mm×5mm)とした。また、本実施の形態においては、レーザ光が照射される領域以外の領域における基板の温度を、室温(25℃)と同等の温度に維持した状態でレーザ光の照射を行った。
図7は、波長308nmのレーザ光に対する反射率が、二酸化シリコン膜からなるキャップ膜の膜厚に依存することを説明するグラフ図である。
ここで、キャップ膜を通してシリコン膜に対してレーザ照射を行う場合、レーザの波長、キャップ膜の材質、シリコン膜の膜厚などに依存して、反射率が変化する。図7には、膜厚50nmのシリコン上に形成した二酸化シリコン膜からなるキャップ膜の膜厚に対する、波長308nmのエキシマレーザの反射率の変化が示されている。
キャップ膜の膜厚が100nmの場合、レーザ光に対する反射率は最大となり、キャップ膜の膜厚が50nmの場合、レーザ光に対する反射率は最低となる。したがって、アモルファスシリコン膜上に膜厚が50nmのキャップ膜を形成した場合、反射率が最低となるため、より多くのレーザ光が吸収され、このキャップ膜を形成した領域を、選択的に加熱することができる。
また、本実施の形態に従い、多結晶シリコン膜を作成するとともに、従来のキャッピング法に従い、以下の工程で多結晶シリコン膜を作成した。ガラス基板上に、50nmの膜厚であるアモルファスシリコン膜を形成し、アモルファスシリコン膜上に、50nmの膜厚である二酸化シリコンからなるキャップ膜を形成した後、レーザ照射して多結晶シリコン膜を形成した。薄膜の作成方法、半導体デバイス製造装置、レーザ照射方法などは、本実施の形態と同様なので省略する。
図9のうち、図9(a)は、本発明の半導体デバイスの製造方法により得られる半導体デバイスに含まれる結晶質半導体膜の一例の膜表面をSEMによって撮影した膜表面像の模式図であり、図9(b)は、従来のラテラル成長法により得られる結晶質半導体膜の一例の膜表面をSEMによって撮影した膜表面像の模式図である。
次に、本実施の形態に従うシリコン膜と、従来技術に従うシリコン膜の結晶性を比較するため、SEM(Scanning Electron Microscope)により結晶観察を行う。まず、各多結晶シリコン膜について、SECCOエッチングを行う。このようにして処理された後のシリコン膜について、SEMにより拡大観察した結果を図9に示す。図9(a)は本実施の形態に従う多結晶シリコン膜の膜表面を上記SEMによって撮影した膜表面像であり、図9(b)は従来技術に従う多結晶シリコン膜の膜表面を上記SEMによって撮影した膜表面像である。なお、図9には第二のキャップ膜、および、第二のキャップ膜内において成長する結晶を省略してある。
従来技術に従う多結晶シリコン膜は、図9(b)に示すように、長さ約11μm、幅約1μmの通常結晶37から構成され、通常結晶37は、キャップ膜が形成されている領域の若干外側からキャップ膜中央部にわたって形成されている。
ここで、従来技術において、キャップ膜が形成されていない領域にも、レーザ光が照射されるため、キャップ膜が形成されている領域ほど効率的ではないものの、レーザ光のエネルギーが熱エネルギーに変換される。また、レーザ光の照射中にキャップ膜が形成されている領域で発生した熱エネルギーが、キャップ膜が形成されていない領域へ拡散する。これらにより、キャップ膜が形成されている領域と、形成されていない領域の界面付近にアモルファスシリコン膜が厚さに亘って溶融する領域が生じる。
このため、キャップ膜が形成されている領域の若干外側まで、厚さに亘って溶融する領域が広がることになる。したがって、厚さに亘って溶融している領域と、厚さに亘って溶融していない領域との境界である通常結晶の起点40は、キャップ膜が形成されている領域の若干外側に形成される。そして、通常結晶の起点40の位置からキャップ膜中へ結晶成長が起こり、逆側の照射領域端部から成長した結晶と衝突し、成長が終了する。
このようにして成長した結晶のうち、第一のキャップ膜30が形成されている領域に成長したものは、結晶粒内に多数の亜粒界39を含んでいるが、第一のキャップ膜30が形成されていない領域に成長したものは、結晶粒内に亜粒界39を含んでいない。
これは、第一のキャップ膜30が形成されている領域は、基板から半導体膜最表層に向かう方向の成長が抑制されるため、成長結晶内に大きな内部応力が発生し、この応力を緩和するために、結晶内部に多数の亜粒界39が形成される一方、第一のキャップ膜30が形成されていない領域は、基板から半導体膜最表層に向かう方向の成長が抑制されないため、成長結晶内に内部応力が非常に小さく、結晶内部に亜粒界39が形成されないことによる。
このキャップ膜が形成されていない領域に成長する結晶は、たとえば、照射するレーザ光のエネルギーを高くすることにより、増大する傾向にある。しかしながら、過度のエネルギーでレーザ光を照射するとキャップ膜が形成された領域のシリコン膜が爆発(アブレート)するため、結果として、キャップ膜が形成されていない領域に成長する結晶は、それほど増大させることはできない。
従来技術の場合、この亜粒界39を含まない領域は高々、長さ約1μm、幅約1μmと非常に狭く、チャネル領域を形成し、薄膜トランジスタを作成するのに十分な広さではない。したがって、亜粒界39を多く含む通常結晶37の上に薄膜トランジスタのチャネル領域を形成することになる。このような薄膜トランジスタは、亜粒界39でのキャリアの散乱が起こるため、特性が大幅に低いものとなる。
一方、本実施の形態に従う多結晶シリコン膜は、図9(a)に示すように、長さ約11μm、幅約1μmの通常結晶37に加えて、長さ約18μm、幅約3μmの大型結晶38から構成され、いずれの結晶も、第一のキャップ膜30が形成されている領域の外側から、第一のキャップ膜30の中央部にわたって形成されているが、大型結晶38は通常結晶37に比べて、より外側から成長が起こっている。
大型結晶38が形成される理由は以下のとおりである。
キャッピング法による結晶化であるため、本実施の形態においても、従来技術同様、キャップ膜が形成されている領域の若干外側まで、厚さに亘って溶融する領域が広がることになる。しかし、本実施の形態の場合、第一のキャップ膜30加えて、第二のキャップ膜31が形成されているために、第一のキャップ膜30が形成されていない領域のうち、第二のキャップ膜31付近の領域は、第二のキャップ膜31からの熱拡散の影響を受けて、アモルファスシリコン膜が厚さに亘って溶融する領域が第二のキャップ31側へ、より広がることになる。
この結果、図9(a)に示すように、結晶核が形成される大型結晶の起点41は、通常結晶の起点40に比べて、第二のキャップ膜31寄りの位置に形成される。そして、大型結晶の起点41の位置からキャップ膜中へ結晶成長が起こり、逆側の照射領域端部から成長した結晶と衝突し、成長が終了する。
また、第二のキャップ膜31が切り欠部を有する形状であるため、単一の核が形成されやすくなる。したがって、大型結晶の起点41から成長した結晶は、周囲に形成される結晶に阻害されることなく成長することができるため、幅方向にも大きく成長することができる。
したがって、本実施の形態の場合、通常結晶37よりも、長さ、幅の両方向に拡大された大型結晶38を形成することができる。
このようにして成長した大型結晶38のうち、従来技術の場合と同様、第一のキャップ膜30が形成されている領域に成長したものは、結晶粒内に多数の亜粒界39を含んでいるが、第一のキャップ膜30が形成されていない領域に成長したものは、結晶粒内に亜粒界39を含んでいない。
本実施の形態の場合、この亜粒界39を含まない領域は長さ約8μm、幅約3μmと、従来技術の場合に比べ、非常に広く、チャネル領域を形成する薄膜トランジスタを作成するのに十分な広さとなる。したがって、大型結晶38のうち亜粒界39を含まない領域の上に薄膜トランジスタを形成することができる。
なお、本実施の形態では、第二のキャップ膜31を、切り欠部を有するパターンとしたが、形状、サイズなどがこれ以外の場合でも、同様の効果が得られる場合がある。
図10は、本発明の半導体デバイスの製造方法により得られる半導体デバイスに含まれる結晶質半導体膜を活性層として備える、薄膜トランジスタの製造方法の一例を説明する図である。
まず、アモルファスシリコン膜を、本発明の半導体デバイスの製造方法に用いられるキャッピング法を利用するラテラル成長法により結晶化し、キャップ膜を、エッチングにより除去する(図10(a))。
次に、シリコンアイランド領域(活性化層)45をフォトリソグラフィ法によって形成する(図10(b))。このとき、チャネル領域44は、大型結晶38の第一のキャップ膜30が形成されていない領域でのみ構成されるように、シリコンアイランド領域45を配置する。
次に、シリコン膜上に絶縁層を形成した後、ゲート電極46を形成し(図10(c))、イオンドーピング法により不純物をイオン注入し、活性化処理を行い、続いて層間絶縁膜を形成し、コンタクトホールをあけて電極配線を設けることにより、薄膜トランジスタの製造が完了する。なお、必要に応じて、トランジスタの特性改善のための水素化処理を行ってもよい。
図11は、本発明の半導体デバイスの製造方法により得られる、薄膜トランジスタの構造の一例を説明する断面図である。
図11には、説明のために、ソース電極61、ドレイン電極62、ゲート電極63、チャネル領域64、シリコンアイランド領域(活性層)65、絶縁層66、バッファ層(絶縁層)67、絶縁性基板68が記載されている。
図12は、従来のラテラル成長法による結晶質半導体膜を活性層とする薄膜トランジスタの製造方法の一例を説明する図である。
従来技術により作成した半導体デバイスを用いた薄膜トランジスタでは、チャネル領域44が成長した結晶性半導体膜のうち、第一のキャップ膜30が形成されている領域で構成されている。このため、チャネル領域44のシリコン膜は多数の亜粒界を含む。したがって、粒界でのキャリア散乱が生じ、薄膜トランジスタの性能が低下する。また、チャネル領域44を形成する結晶性半導体膜を構成する結晶の大きさや幅が結晶化領域内の位置によって異なるため、薄膜トランジスタのチャネル領域44を形成する位置によって、トランジスタ特性にばらつきが生じる。
一方、本実施の形態により作成した半導体デバイスを用いた薄膜トランジスタでは、チャネル領域が大型結晶上のうち、第一のキャップ膜が形成されていない領域で構成されている。このため、チャネル領域のシリコン膜は亜粒界を含まない。このような薄膜トランジスタは、亜粒界でのキャリアの散乱が抑制されるため、従来よりも特性が大幅に向上したものとなる。また、さらに、大型結晶は必ず、第一のキャップ膜と第二のキャップ膜の間に形成されるため、この領域に薄膜トランジスタを形成すれば、必ず高特性の薄膜トランジスタを得ることができる。
以上のように、本実施の形態によれば、大型結晶のうち、亜粒界が形成されていない領域に薄膜トランジスタのチャネル領域を形成することにより、安定して、高特性の薄膜トランジスタを提供することができる。
すなわち、本実施の形態によれば、アモルファスシリコン膜上に、第一のキャップ膜および第二のキャップ膜を形成し、これらのキャップ膜を含むようにレーザ光を照射することで、結晶性に優れた多結晶シリコン膜で構成されている結晶性半導体膜を得ることができる。そして、このような多結晶シリコン膜上に薄膜トランジスタのチャネル領域を形成することで、安定して高特性の薄膜トランジスタを提供することができる。
〔実施の形態2〕
本発明の実施の形態2について、説明すると以下の通りである。
本実施の形態は、レーザ照射に用いる装置およびレーザ照射方法が実施の形態1と異なり、他は同様である。従って、同様である部分についての詳細な説明を略し、レーザ照射に用いる装置およびレーザ照射方法について詳細に説明する。
図4は、ラテラル成長法に用いる半導体デバイス製造装置の一例を示す構成図である。
本実施の形態は、図3に示す装置を用いる代わりに図4に示す装置を用いる。すなわち、第一のレーザ照射に加えて第二のレーザ照射を行う。
図5は、本発明の半導体デバイスの製造方法を実施する際のレーザ光の照射方法の一例を説明するグラフ図である。
本実施の形態では、図5に示される第一のレーザ光と第二のレーザ光との照射時間と出力との関係において、時刻t1=40nsとした条件で、第一のレーザ光と第二のレーザ光とをアモルファスシリコン膜に照射した。
そして、図5に示される第一のレーザ光と第二のレーザ光との照射時間と出力との関係において、第一のレーザ光としては、エキシマレーザを用い、波長は308nm、1回の照射あたりのエネルギーフルエンスは2kJ/m2、照射時間は約50ns、照射領域の大きさは(5mm×5mm)とし、第二のレーザ光としては、炭酸ガスレーザを用い、波長は10.6μm、エネルギーフルエンスは約50kJ/m2、照射時間は約3ms、照射領域の大きさは(5.5mm×5.5mm)とした。
さらに、本実施の形態においては、第一のレーザ光と第二のレーザ光とが照射される領域以外の領域における基板の温度を、室温(25℃)と同等の温度に維持した状態で第一のレーザ光と第二のレーザ光との照射を行なった。
また、本実施の形態においては、第一のレーザ光を垂直方向から入射させ、第二のレーザ光を垂直方向と30度をなす角度で入射させた。
このように、液体状態にあるアモルファスシリコン膜に対して、第一のレーザ光に加えて第二のレーザ光の照射を行うことにより、シリコン膜の温度低下速度を低下させることができ、固化するまでの時間を延長することができるため、さらに大粒径の多結晶シリコン膜を効率よく得ることができる。
図7は、波長308nmのレーザ光に対する反射率が、二酸化シリコン膜からなるキャップ膜の膜厚に依存することを説明するグラフ図である。
ここで、キャップ膜を通してシリコン膜に対してレーザ照射を行う場合、レーザの波長、キャップ膜の材質、シリコン膜の膜厚などに依存して、反射率が変化する。図7に、膜厚50nmのシリコン上に形成した二酸化シリコン膜からなるキャップ膜の膜厚に対する、波長308nmのエキシマレーザの反射率の変化を示す。
キャップ膜の膜厚が100nmの場合、レーザ光に対する反射率は最大となり、キャップ膜の膜厚が50nmの場合、レーザ光に対する反射率は最低となる。この結果、アモルファスシリコン膜3上に膜厚が50nmのキャップ膜を形成した場合、レーザ照射により、このキャップ膜を形成した領域を、選択的に加熱することができる。
図9のうち、図9(a)は、本発明の半導体デバイスの製造方法により得られる半導体デバイスに含まれる結晶質半導体膜の一例の膜表面をSEMによって撮影した膜表面像の模式図であり、図9(b)は、従来のラテラル成長法により得られる結晶質半導体膜の一例の膜表面をSEMによって撮影した膜表面像の模式図である。
本実施の形態に従うシリコン膜と、従来技術に従うシリコン膜の結晶性を比較するため、SEM(Scanning Electron Microscope)により結晶観察を行った所、本実施の形態に従う多結晶シリコン膜は、図9(a)に示す大型結晶38の寸法が、長さ約20μm、幅約5μmとなっており、実施の形態1と比較して結晶をさらに大きくすることが可能であることが実証された。
以上のように、本実施の形態によれば、アモルファスシリコン膜上に、第一のキャップ膜および第二のキャップ膜を形成し、これらのキャップ膜を含むようにレーザ光を照射することで、結晶性に優れた多結晶シリコン膜で構成されている半導体膜を得ることができる。そして、このような多結晶シリコン膜上に薄膜トランジスタのチャネル領域を形成することで、安定して高特性の薄膜トランジスタを提供することができる。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
本発明の半導体デバイスの製造方法の一例の工程を示すフロー図である。 本発明の半導体デバイスの製造方法の一例の工程を示す断面図である。 ラテラル成長法に用いる半導体デバイス製造装置の一例を示す構成図である。 ラテラル成長法に用いる半導体デバイス製造装置の一例を示す構成図である。 本発明の半導体デバイスの製造方法を実施する際のレーザ光の照射方法の一例を説明するグラフ図である。 従来のラテラル成長法における作製途中の半導体デバイスの一例の断面図である。 波長308nmのレーザ光に対する反射率が、二酸化シリコン膜からなるキャップ膜の膜厚に依存することを説明するグラフ図である。 本発明に用いるキャップ膜の形成方法の一例を示す平面図である。 図9(a)は、本発明の半導体デバイスの製造方法により得られる半導体デバイスに含まれる結晶質半導体膜の一例の膜表面をSEMによって撮影した膜表面像の模式図であり、図9(b)は、従来のラテラル成長法により得られる結晶質半導体膜の一例の膜表面をSEMによって撮影した膜表面像の模式図である。 本発明の半導体デバイスの製造方法により得られる半導体デバイスに含まれる結晶質半導体膜を活性層とする薄膜トランジスタと、その製造方法の一例を説明する図である。 本発明の半導体デバイスの製造方法により得られる、薄膜トランジスタの構造の一例を説明する断面図である。 従来のラテラル成長法による結晶質半導体膜を活性層とする薄膜トランジスタの製造方法の一例を説明する図である。
符号の説明
1 半導体デバイス、2 基板、3 非晶質半導体膜、5 バッファ膜、6 キャップ膜、8 レーザ光、10a,10b,10c,10d ミラー、11 レーザ発振器、12 可変減衰器、13 フィールドレンズ、14 投影マスク、15 結像レンズ、16 サンプルステージ、17 コントローラ、18 第一のレーザ光、19 第二のレーザ光、20 第一のレーザ発振器、21 第二のレーザ発振器、23 第一のレーザ光のパルス波形、24 第二のレーザ光のパルス波形、25 可変減衰器、30 第一のキャップ膜、31 第二のキャップ膜、32 第一のキャップ膜の長さ、33 第一のキャップ膜の幅、34 第一のキャップ膜および第二のキャップ膜間の最短距離、35 第二のキャップ膜が有する切り欠部の内角、37 通常結晶、38 大型結晶、39 亜粒界、40 通常結晶の起点、41 大型結晶の起点、44 チャネル領域、45 シリコンアイランド領域(活性層)、46 ゲート電極、61 ソース電極、62 ドレイン電極、63 ゲート電極、64 チャネル領域、65 シリコンアイランド領域(活性層)、66 絶縁層、67 バッファ層(絶縁層)、68 絶縁性基板、200,202 半導体デバイス製造装置、C レーザ光照射領域。

Claims (14)

  1. 基板と、前記基板上に直接または間接に積層された結晶質半導体膜と、を備える半導体デバイスの製造方法であって、
    前記基板上に直接または間接に非晶質半導体膜を積層する工程と、
    前記非晶質半導体膜の表面上の一部に第一のキャップ膜を形成する工程と、
    前記非晶質半導体膜の表面上の前記第一のキャップ膜が形成されていない領域上の一部に第二のキャップ膜を形成する工程と、
    前記非晶質半導体膜の表面のうち、前記第一のキャップ膜および前記第二のキャップ膜の両方を含む領域と、前記第一のキャップ膜と、前記第二のキャップ膜と、に対してレーザ光を照射することにより、固体状態にある前記非晶質半導体膜の一部を液体状態に溶融させる工程と、
    前記液体状態の半導体を結晶化して前記結晶質半導体膜に変換する工程と、
    を備える、半導体デバイスの製造方法。
  2. 前記非晶質半導体膜を液体状態に溶融させる工程は、前記第一のキャップ膜および前記第二のキャップ膜が形成されている領域と、前記第一のキャップ膜および前記第二のキャップ膜に挟まれた領域と、を前記非晶質半導体膜の厚みにわたって溶融させ、かつ前記第一のキャップ膜および前記第二のキャップ膜が形成されている領域と、前記第一のキャップ膜および前記第二のキャップ膜に挟まれた領域と、以外の領域を前記非晶質半導体膜の厚みにわたって溶融させない、放射照度および照射時間のレーザ光を、前記非晶質半導体膜の表面のうち、前記第一のキャップ膜および前記第二のキャップ膜の両方を含む領域と、前記第一のキャップ膜と、前記第二のキャップ膜と、に対して照射することにより、固体状態にある前記非晶質半導体膜の一部を液体状態に溶融させる工程を含む、請求項1に記載の半導体デバイスの製造方法。
  3. 前記結晶質半導体膜に変換する工程は、前記非晶質半導体膜の表面のうち、前記第一のキャップ膜および前記第二のキャップ膜の両方を含む領域と、前記第一のキャップ膜と、前記第二のキャップ膜と、に対して、第二のレーザ光を照射した状態で、前記液体状態の半導体を結晶化して前記結晶質半導体膜に変換する工程を含む、請求項1に記載の半導体デバイスの製造方法。
  4. 前記結晶質半導体膜に変換する工程は、前記非晶質半導体膜の表面のうち、前記第一のキャップ膜および前記第二のキャップ膜の両方を含む領域と、前記第一のキャップ膜と、前記第二のキャップ膜と、に対して、単独照射の場合には前記非晶質半導体膜を融点以上の温度に加熱することのできない放射照度および照射時間の条件で前記第二のレーザ光を照射した状態で、前記液体状態の半導体を結晶化して前記結晶質半導体膜に変換する工程を含む、請求項1に記載の半導体デバイスの製造方法。
  5. 前記非晶質半導体膜を液体状態に溶融させる工程は、前記非晶質半導体膜の表面のうち、前記第一のキャップ膜および前記第二のキャップ膜の両方を含む領域と、前記第一のキャップ膜と、前記第二のキャップ膜と、に対して、第一のレーザ光および第二のレーザ光を照射することにより、固体状態にある前記非晶質半導体膜の一部を液体状態に溶融させる工程を含み、前記結晶質半導体膜に変換する工程は、前記第二のレーザ光を照射した状態で、前記液体状態の半導体を結晶化して前記結晶質半導体膜に変換する工程を含む、請求項1に記載の半導体デバイスの製造方法。
  6. 前記非晶質半導体膜を液体状態に溶融させる工程は、前記第一のキャップ膜および前記第二のキャップ膜の両方を含む領域と、前記第一のキャップ膜と、前記第二のキャップ膜と、に対して、前記第一のレーザ光および前記第一のレーザ光の照射領域を含む照射領域を有する第二のレーザ光を照射することにより、固体状態にある前記非晶質半導体膜の一部を液体状態に溶融させる工程を含む、請求項5に記載の半導体デバイスの製造方法。
  7. 前記第一のキャップ膜を形成する工程は、前記レーザ光に対して前記非晶質半導体膜の反射率より低い反射率を有する第一のキャップ膜を形成する工程を含み、前記第二のキャップ膜を形成する工程は、前記非晶質半導体膜の表面上の前記第一のキャップ膜が形成されていない領域上の一部に、前記レーザ光に対して前記非晶質半導体膜の反射率より低い反射率を有する第二のキャップ膜を形成する工程を含む、請求項1に記載の半導体デバイスの製造方法。
  8. 前記第二のキャップ膜を形成する工程は、前記第一のキャップ膜に対向する境界面の少なくとも1部が凹形である第二のキャップ膜を形成する工程を含む、請求項1に記載の半導体デバイスの製造方法。
  9. 前記結晶質半導体膜のうち、第一のキャップ膜および第二のキャップ膜が形成されない領域に、薄膜トランジスタのチャネル領域を形成する工程をさらに備える、請求項1に記載の半導体デバイスの製造方法。
  10. 前記結晶質半導体膜に変換する工程は、前記液体状態の半導体を結晶化して、単結晶質半導体膜および/または多結晶質半導体膜に変換する工程を含む、請求項1に記載の半導体デバイスの製造方法。
  11. 前記非晶質半導体膜を積層する工程は、前記基板上に直接または間接に、前記結晶質半導体膜よりも結晶性の低い、多結晶質半導体膜、微結晶質半導体膜およびアモルファス質半導体膜からなる群より選ばれる1種以上を積層する工程を含む、請求項1に記載の半導体デバイスの製造方法。
  12. 前記非晶質半導体膜を積層する工程は、前記基板上に直接または間接に、シリコン系半導体を材質として含む非晶質半導体膜を積層する工程を含む、請求項1に記載の半導体デバイスの製造方法。
  13. 前記第一のキャップ膜を形成する工程は、二酸化シリコンを材質として含む第一のキャップ膜を形成する工程を含み、前記第二のキャップ膜を形成する工程は、前記非晶質半導体膜の表面上の前記第一のキャップ膜が形成されていない領域上の一部に、二酸化シリコンを材質として含む第二のキャップ膜を形成する工程を含む、請求項1に記載の半導体デバイスの製造方法。
  14. 前記第二のキャップ膜を形成する工程は、前記非晶質半導体膜の表面上の前記第一のキャップ膜が形成されていない領域上の一部に、前記第一のキャップ膜と第二のキャップ膜との最短の距離が薄膜トランジスタのチャネル領域の幅以上の長さとなる位置に、第二のキャップ膜を形成する工程を含む、請求項1に記載の半導体デバイスの製造方法。
JP2003386522A 2003-11-17 2003-11-17 半導体デバイスの製造方法 Withdrawn JP2005150438A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003386522A JP2005150438A (ja) 2003-11-17 2003-11-17 半導体デバイスの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003386522A JP2005150438A (ja) 2003-11-17 2003-11-17 半導体デバイスの製造方法

Publications (1)

Publication Number Publication Date
JP2005150438A true JP2005150438A (ja) 2005-06-09

Family

ID=34694185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003386522A Withdrawn JP2005150438A (ja) 2003-11-17 2003-11-17 半導体デバイスの製造方法

Country Status (1)

Country Link
JP (1) JP2005150438A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120000261A (ko) * 2010-06-25 2012-01-02 엘지디스플레이 주식회사 간접 열 결정화 박막 트랜지스터 기판 및 그 제조 방법
WO2019138674A1 (ja) * 2018-01-10 2019-07-18 株式会社ブイ・テクノロジー レーザ照射装置、及び、レーザ照射方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120000261A (ko) * 2010-06-25 2012-01-02 엘지디스플레이 주식회사 간접 열 결정화 박막 트랜지스터 기판 및 그 제조 방법
KR101695024B1 (ko) * 2010-06-25 2017-01-11 엘지디스플레이 주식회사 간접 열 결정화 박막 트랜지스터 기판 및 그 제조 방법
WO2019138674A1 (ja) * 2018-01-10 2019-07-18 株式会社ブイ・テクノロジー レーザ照射装置、及び、レーザ照射方法

Similar Documents

Publication Publication Date Title
JP3586558B2 (ja) 薄膜の改質方法及びその実施に使用する装置
TWI402989B (zh) 形成多晶矽薄膜之方法及使用該方法以製造薄膜電晶體之方法
JP2003059831A (ja) 半導体装置の作製方法
JP4637410B2 (ja) 半導体基板の製造方法及び半導体装置
US20080087895A1 (en) Polysilicon thin film transistor and method of fabricating the same
KR20060046344A (ko) 결정화방법, 박막 트랜지스터의 제조방법, 박막 트랜지스터및 표시장치
JP2004335839A (ja) 半導体薄膜、薄膜トランジスタ、それらの製造方法および半導体薄膜の製造装置
US7651931B2 (en) Laser beam projection mask, and laser beam machining method and laser beam machine using same
JP3859978B2 (ja) 基板上の半導体材料膜に横方向に延在する結晶領域を形成する装置
JP2005197656A (ja) 多結晶シリコン膜の形成方法
JP2007281420A (ja) 半導体薄膜の結晶化方法
JP2006196539A (ja) 多結晶半導体薄膜の製造方法および製造装置
JP4769491B2 (ja) 結晶化方法、薄膜トランジスタの製造方法、薄膜トランジスタおよび表示装置
JP2004063478A (ja) 薄膜トランジスタ及びその製造方法
JP2009302171A (ja) 半導体装置の製造方法、トランジスタの製造方法ならびに電気光学装置の製造方法
JP2005150438A (ja) 半導体デバイスの製造方法
JP2006237042A (ja) レーザーアニール装置、これを用いた半導体薄膜の製造方法、および薄膜トランジスター
JP2007281465A (ja) 多結晶膜の形成方法
JP2005136138A (ja) 薄膜半導体装置の製造方法、薄膜半導体装置、表示装置の製造方法、および表示装置
JP2003151904A (ja) 半導体薄膜の結晶化方法、半導体薄膜、及び、薄膜半導体装置
JP2003249448A (ja) 半導体装置の製造方法、半導体装置の製造装置、半導体膜の製造装置、および半導体装置
JP2008243843A (ja) 結晶化方法、薄膜トランジスタの製造方法、レーザ結晶化用基板、薄膜トランジスタおよび表示装置
JP2005123262A (ja) 半導体デバイスおよびその製造方法
JP2011216665A (ja) 結晶性半導体膜の形成方法、および、半導体デバイスの製造方法
JP2007207896A (ja) レーザビーム投影マスクおよびそれを用いたレーザ加工方法、レーザ加工装置

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070206