JP2005140501A - Separating/purifying device and separating/purifying method for biological constituent substance, and separated/purified substance - Google Patents

Separating/purifying device and separating/purifying method for biological constituent substance, and separated/purified substance Download PDF

Info

Publication number
JP2005140501A
JP2005140501A JP2003367637A JP2003367637A JP2005140501A JP 2005140501 A JP2005140501 A JP 2005140501A JP 2003367637 A JP2003367637 A JP 2003367637A JP 2003367637 A JP2003367637 A JP 2003367637A JP 2005140501 A JP2005140501 A JP 2005140501A
Authority
JP
Japan
Prior art keywords
magnetic particles
magnetic
biological
liquid
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003367637A
Other languages
Japanese (ja)
Inventor
Kenichi Suzuki
建一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003367637A priority Critical patent/JP2005140501A/en
Publication of JP2005140501A publication Critical patent/JP2005140501A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Peptides Or Proteins (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve dispersivity of a magnetic particle bonded to a biological constituent substance in a solution by demagnetizing residual magnetization of the magnetic particle attracted and captured by magnetic attraction force by use of an alternating magnetic field. <P>SOLUTION: When demagnetizing a magnetic body, the alternating magnetic field is applied to the magnetic body, and intensity of the alternating magnetic field is gradually reduced to zero. Thereby, an area of a magnetization-magnetic field hysteresis curve (a B-H curve) of the magnetic body is reduced while the hysteresis curve draws hysteresis, finally an operation point thereof reaches a point of magnetization (B) = 0, a magnetic field (H) = 0 that is the origin of the hysteresis curve, and the magnetic body is demagnetized. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は生体構成物質の分離・精製装置及び分離・精製方法とそれを用いて分離・精製された生体構成物質に関する。   The present invention relates to a biological component separating / purifying apparatus, a separation / purifying method, and a biological component separated / purified using the same.

従来、多用されているマグネタイト磁性体粒子を用いて生体構成物質を分離・精製する場合に、予め磁性体粒子の表面を生体構成物質が結合しやすいような物質で被覆し、生体構成物質を含む液体と混合し、磁性体粒子を含む液体をピペットで吸い上げて吸引・吐出を繰り返し、生体構成物質と磁性体粒子を結合させ、次に永久磁石による磁気吸引力を用いて磁性体粒子を液体容器(M22,M36)の内壁面に吸着して生体構成物質と共に捕集し、捕集した状態で磁性体粒子に結合した生体構成物質以外の夾雑物を洗い流した後、永久磁石を遠ざけ、磁性体粒子を含む液体に、磁性体粒子から生体構成物質の結合を外す物質の溶液を加えるが、残留磁化が残っている為、再分散しにくいので再びピペットで吸い上げて吸引・吐出を繰り返し、磁性体粒子に結合した生体構成物質を溶液中に強制的に再分散させ、磁性体粒子と生体構成物質の結合を外し、次に磁性体粒子のみを磁気吸引力を用いて液体容器(M22,M36)の内壁面に吸着・捕集し、残液を吸い上げて生体構成物質のみを得ていた。
(特許文献1、特許文献3)
特開平8−154678 みなし取り下げ;2002.03.26 特開平1−125395 みなし取り下げ;1995.10.17 特開平10−316593 処分未定 特開平6−313767 拒絶査定;1996.12.03 特開平9−329602 処分未定 特開平8−62224 登録;2000.09.26 特開2003−93918 処分未定 特開平1−193647 登録;1997.01.29 特開平6−109735 みなし取り下げ;1999.12.14 特開平5−268961 みなし取り下げ;1999.06.22 特開平2−151767 みなし取り下げ;1996.03.26 “交流消磁(A.C.demagnetization)”;裳華房刊;近角聡信著「強磁性体の物理」(下)、第7章;磁化過程、P.237〜238、(1984年3月20日、第1版印刷 ;“微粒子の磁区“;裳華房刊;近角聡信著「強磁性体の物理」(下)、第6章;磁区構造、P.213〜216、(1984年3月20日、第1版印刷9 ;“磁壁移動”日刊工業新聞社刊;加藤哲男著;「磁気・磁性材料」p.78 ;“マグネタイト粒子集合体の保磁力=100〜350 Oe”工業調査会刊;「新時代の磁性材料」p.176。”スーパー・パラマグネティズム“p.178。 ;“マグネタイト多結晶体の飽和磁化=6000 Gauss”日刊工業新聞社刊;加藤哲男著;「磁気・磁性材料」p.217
Conventionally, when separating and purifying biological constituents using magnetite magnetic particles that are frequently used, the surface of the magnetic particles is previously coated with a substance that easily binds the biological constituents and contains the biological constituents. Mixing with liquid, sucking up liquid containing magnetic particles with a pipette, repeating suction and discharge, combining biological constituents and magnetic particles, then using magnetic attraction force by permanent magnets to store magnetic particles in liquid container (M22, M36) is adsorbed on the inner wall surface and collected together with the biological constituents. In the collected state, impurities other than the biological constituents bound to the magnetic particles are washed away, then the permanent magnet is moved away, and the magnetic substance Add a solution of the substance that removes the binding of biological constituents from the magnetic particles to the liquid containing the particles, but since the residual magnetization remains, it is difficult to re-disperse. grain The biological material bound to the child is forcibly re-dispersed in the solution, the bond between the magnetic particles and the biological material is removed, and then only the magnetic particles are liquid containers using magnetic attraction (M22, M36) It was adsorbed and collected on the inner wall surface of the slag, and the remaining liquid was sucked up to obtain only the biological component.
(Patent Document 1, Patent Document 3)
JP-A-8-154678, deemed withdrawal; 2002.03.26 JP-A-1-125395, deemed withdrawal; 1995.10.17 JP-A-10-316593 Disposition undecided JP-A-6-313767 rejection decision; 1996.12.03 JP-A-9-329602 Disposition undecided JP-A-8-62224 Registration; 2000.09.26 JP-A-2003-93918 Disposition undecided JP-A-1-193647 registration; 1997.01.29 JP-A-6-109735 deemed deemed withdrawal; 1999.12.14 JP-A-5-268691 Deemed withdrawal; 1999.06.22 JP-A-2-151767 deemed deemed withdrawal; 1996.03.26 “AC demagnetization”; published by Suga Hanafusa; Nagisa Kakunobu, “Physics of Ferromagnetic Materials” (bottom), Chapter 7; Magnetization Process, P.237-238, (March 20, 1984, 1st Plate printing ; “Magnetic domain of fine particles”; published by Junhuabo; “Science of Ferromagnetic Materials” written by Kazunobu Kakunobu, Chapter 6; Magnetic domain structure, P.213-216, (March 20, 1984, 1st edition) Print 9 ; “Movement of Domain Wall” published by Nikkan Kogyo Shimbun; Tetsuo Kato; “Magnetic and Magnetic Materials” p.78 ; “Coercive force of magnetite particle aggregate = 100 to 350 Oe” published by the Industrial Research Council; “Magnetic Materials in a New Era” p.176. “Super Paramagneticism” p.178. ; “Saturation magnetization of magnetite polycrystals = 6000 Gauss” published by Nikkan Kogyo Shimbun; Tetsuo Kato; “Magnetic and Magnetic Materials” p.217

上記のような従来の工程では、永久磁石を遠ざけて磁性体粒子に結合した生体構成物質を溶液中に再分散させる時、永久磁石を遠ざけて、磁性体粒子にかかる磁界をゼロにしても、磁性体粒子の保磁力(Hc)により磁性体粒子には残留磁化(Br)が残るため、磁性体粒子はそれぞれ粒子状の磁石となり、互いに吸着し大きな磁性体粒子の塊(クラスター)が出来てしまう。また上記永久磁石の代わりに直流電磁石を用いて磁性体粒子を吸着することも出来るが、直流電磁石の磁力をゼロに消磁しても、同様に磁性体粒子には残留磁化(Br)が残る。また電磁石に流す電流が磁性体粒子を吸着できる強さの交流電流である場合は、交流電磁石の磁力により磁性体粒子が振動し、この振動によって磁性体粒子に捕捉された生体構成物質とりわけDNA、RNAが大きく損傷を受け、切断されてしまう、という問題が発生するので、今までは磁性体粒子を吸着できる強さの交流電流を用いることが出来なかった。また前記のピペットによる強制的な吸引・吐出の繰り返しによっても磁性体粒子に捕捉された生体構成物質とりわけDNA、RNAが損傷を受け、切断されていた。
そのため従来は上記永久磁石を用いるか又は、電磁石に直流電流を流して直流電磁石とし、磁性体粒子を吸着する案を想定するほか無かった。しかし直流電磁石や交流電磁石を用いて磁性体粒子を捕集する実施例は、特許文献5に於いては、現在に至るも実用化されていない。
In the conventional process as described above, when the bioconstituent material bound to the magnetic particles is moved away from the permanent magnet and re-dispersed in the solution, the permanent magnet is moved away to make the magnetic field applied to the magnetic particles zero. Due to the coercive force (Hc) of the magnetic particles, residual magnetization (Br) remains in the magnetic particles, so that the magnetic particles become particle magnets that can be attracted to each other to form large clusters of magnetic particles. End up. Moreover, although a magnetic material particle can be adsorbed using a DC electromagnet instead of the permanent magnet, even if the magnetic force of the DC electromagnet is demagnetized to zero, residual magnetization (Br) remains in the magnetic material particle. In addition, when the current flowing through the electromagnet is an alternating current strong enough to adsorb the magnetic particles, the magnetic particles vibrate due to the magnetic force of the AC electromagnet, and the biological constituents captured by the magnetic particles, especially DNA, by this vibration, The problem of RNA being severely damaged and being cleaved occurs, so far it has not been possible to use an alternating current strong enough to adsorb magnetic particles. In addition, the biological constituents captured by the magnetic particles, particularly DNA and RNA, were damaged and cut by repeated forced suction and discharge by the pipette.
For this reason, conventionally, there has been no other way than using the above-mentioned permanent magnets, or assuming that a direct current is passed through the electromagnet to form a direct current electromagnet to attract the magnetic particles. However, an embodiment in which magnetic particles are collected using a DC electromagnet or an AC electromagnet has not been put into practical use in Patent Document 5 until now.

その原因は次の通りである。
仮に前記直流電磁石の直流電流をゼロにまで下げて直流電磁石を消磁するか、十分減少させても、図17に示すような従来のマグネタイト磁性体粒子の保磁力(Hc1)は150エルステッド(Oe)と小さいが、磁性体粒子には300 Gの残留磁化(Br1)が残り、複数の磁性体粒子はそれぞれが粒子磁石となり互いに強く吸着し、粒子と粒子の間に不純な生体構成物質の滓などを抱き込んでしまうため、精製度が上がらない。なぜならマグネタイト磁性体粒子の粉体はその飽和磁束密度(Bm1、Bm2)は3000ガウス(Gauss)程度である為、比透磁率(原点0とBm1の点を結んだ線の傾きの大きさで近似できる比透磁率)は3とかなり低く、その為従来の磁性体粒子を交流電磁石を用いて消磁するためには図17のBm1の磁界強度である1000 Oeまで磁界を印加しなければならない。この磁界強度は本発明で用いる磁性体粒子のBm2の磁界強度である200エルステッド(Oe)よりもかなり大きい。(ちなみに本発明で用いる磁性体粒子の比透磁率=15であり、残留磁化(Br2)=1200 G である)。従来の磁性体粒子では、このように強力な磁界によらなければ、Hc1からBm1とBr1をたどって反時計廻りにヒステリシス・ループを一周できず、消磁出来ないことになる(非特許文献1)。
The cause is as follows.
Even if the DC current of the DC electromagnet is lowered to zero and the DC electromagnet is demagnetized or sufficiently reduced, the coercive force (Hc1) of the conventional magnetite magnetic particles as shown in FIG. 17 is 150 oersted (Oe). However, 300 G of residual magnetization (Br1) remains in the magnetic particles, and each of the multiple magnetic particles acts as a particle magnet and strongly adsorbs each other. Will not increase the degree of purification. Because magnetite magnetic particles have a saturation magnetic flux density (Bm1, Bm2) of about 3000 Gauss, the relative permeability (approximate with the slope of the line connecting the origin 0 and Bm1 points) Therefore, in order to demagnetize conventional magnetic particles using an AC electromagnet, a magnetic field must be applied up to 1000 Oe, which is the magnetic field strength of Bm1 in FIG. This magnetic field strength is considerably larger than 200 Oersted (Oe) which is the magnetic field strength of Bm2 of the magnetic particles used in the present invention. (By the way, the relative permeability of the magnetic particles used in the present invention is 15 and the residual magnetization (Br2) is 1200 G). In conventional magnetic particles, unless a strong magnetic field is used in this way, the hysteresis loop cannot be made to go counterclockwise by tracing Bm1 and Br1 from Hc1 (Non-patent Document 1). .

そのように強力な交流電磁石による磁界では、交流電磁石の磁極に現れる磁荷密度をQとし、従来の磁性体粒子に現れる磁荷密度をQ1とすると磁性体粒子に働く力F1は、
F1=k(Q×Q1)/(R×R)である。ここでRはQとQ1の距離で、kは定数である。
そこでQ=1000
G, Q1=3000 Gを代入すれば、F1=k×3,000,000/(R×R)となる。その結果従来の比透磁率=3の磁性体粒子はF1の力を受けて振動することになる。

ところが本発明で用いる比透磁率=15の磁性体粒子の場合は、交流電磁石の磁極に現れる磁荷密度はQ=200 G 、磁性体粒子に現れる磁荷密度はQ2=3000 Gであるから、磁性体粒子の受ける力F2は、
F2=k(Q×Q2)/(R×R)=k×6,000,000/(R×R)となる。F1/F2=5であるから、
従来の磁性体粒子は本発明で用いる磁性体粒子の5倍の力で振動することになる。

この強力な振動によって従来の磁性体粒子に捕捉された生体構成物質とりわけDNA、RNAは大きな損傷を受け、切断されてしまう。
In such a strong AC electromagnet magnetic field, the magnetic charge density that appears in the magnetic pole of the AC electromagnet is Q, and the magnetic charge density that appears in the conventional magnetic particles is Q1, the force F1 acting on the magnetic particles is
F1 = k (Q × Q1) / (R × R). Here, R is the distance between Q and Q1, and k is a constant.
So Q = 1000
Substituting G, Q1 = 3000 G yields F1 = k × 3,000,000 / (R × R). As a result, the conventional magnetic particles having a relative permeability = 3 vibrate under the force of F1.

However, in the case of magnetic particles having a relative permeability of 15 used in the present invention, the magnetic charge density appearing in the magnetic pole of the AC electromagnet is Q = 200 G, and the magnetic charge density appearing in the magnetic particles is Q2 = 3000 G. The force F2 received by the magnetic particles is
F2 = k (Q × Q2) / (R × R) = k × 6,000,000 / (R × R). Since F1 / F2 = 5,
Conventional magnetic particles vibrate with a force five times that of the magnetic particles used in the present invention.

Due to this powerful vibration, the biological constituents captured by the conventional magnetic particles, especially DNA and RNA, are severely damaged and cut.

その為従来は交流電磁石による消磁を諦めざるを得なかった。その結果磁性体粒子には約300 Gの残留磁化(Br1)が残り塊が出来ることになる。しかしこれでは困るので、従来は特許文献5が述べるように、ピペットで吸い上げて吸引・吐出を5回から30回繰り返し、生体構成物質がある程度損傷しても磁性体粒子に結合した生体構成物質を溶液中に強制的に再分散させていた(特許文献5)。これが従来の大きな問題点である。 Therefore, in the past, it has been necessary to give up degaussing with an AC electromagnet. As a result, about 300 G of remanent magnetization (Br1) remains in the magnetic particles. However, since this is troublesome, conventionally, as described in Patent Document 5, sucking with a pipette and sucking and discharging are repeated 5 to 30 times, and even if the biological constituent is damaged to some extent, the biological constituent bound to the magnetic particles is removed. It was forcibly redispersed in the solution (Patent Document 5). This is the conventional big problem.

また従来は残留磁化(Br1)が出来る限り小さく高純度で極めて高価な磁性体粒子を用いて少しでも残留磁化(Br1)を少なくしようとしていた。しかしそれでも壁面に固着した状態で残る磁性体粒子もあり、従来は液体容器内から液体を吸引し吐出する分注機等の液体吸引ピペットを用いて、これら残留磁化を持った磁性体粒子を吸い上げて吸引・吐出を5回から30回繰り返し、強制的に液中に分散せざるを得なかった。しかしそれでもなお磁性体粒子の塊が解けて、個々の磁性体粒子になることもなく、個々の磁性体粒子を溶液中に再分散することが困難であった。また永久磁石と磁性体粒子の距離 (R)を離して磁性体粒子にかかる磁界を弱め、磁性体粒子に残る残留磁化(Br)を小さくしようとしていたので、充分に捕集できず精製品に磁性体粒子の混入が増していた。 Conventionally, the residual magnetization (Br1) is as small as possible and high purity and extremely expensive magnetic particles have been used to reduce the residual magnetization (Br1) as much as possible. However, there are still magnetic particles that remain attached to the wall surface. Conventionally, these magnetic particles with residual magnetization are sucked up using a liquid suction pipette such as a dispenser that sucks and discharges liquid from the liquid container. Thus, suction and discharge were repeated 5 to 30 times and forcedly dispersed in the liquid. However, it was still difficult to re-disperse the individual magnetic particles in the solution without melting the magnetic particles and forming individual magnetic particles. Also, because the magnetic field applied to the magnetic particles was weakened by separating the distance (R) between the permanent magnet and the magnetic particles, and the residual magnetization (Br) remaining on the magnetic particles was to be reduced, it could not be collected sufficiently and became a refined product. Inclusion of magnetic particles increased.

ところで残留磁化(Br)が出来る限り小さく高純度で極めて高価なマグネタイト磁性体粒子を製造しようとすると、飽和磁束密度(Bm1)は物性常数である為、あまり変わらないので必然的に比透磁率(原点0とBm1の点を結んだ線の傾きの大きさで近似できる比透磁率)が3と小さくなってしまう。その結果磁性体粒子の磁石に対する吸着力が極めて弱くなっていた。
ところがこれでは磁性体粒子を充分に捕集することが出来ず、分離・精製した生体構成物質中に磁性体粒子が混入してしまい、捕集した生体構成物質の紫外光吸光度を測定すると磁性体粒子の混入により260nmから320nmにかけて同程度の見かけ上のバックグラウンド吸収を生じていた。これは実は吸収ではなく混入した磁性体粒子による散乱であるが、DNAの吸収を表す260nmと蛋白質の吸収を表す280nmの吸収が共に大きく表示されてしまう。しかもこの値が磁性体粒子の混入の度合いによってばらつくので、精製度(260/280nmの比)のデータの信頼性に大きく影響する、という事態が起こっていた。
更に互いに残留磁気で結合している粒子状の磁石である磁性体粒子クラスターの間に挟まっている夾雑物を完全に取り除くことが難しく、精製の純度を一定限度以上に上げられないだけでなく、吸引・吐出を数回繰り返すため作業工程に時間が掛かり、自動化した場合、装置の性能を低下させていた。
By the way, when trying to produce magnetite magnetic particles with as small a remanence (Br) as possible and high purity and extremely high purity, the saturation magnetic flux density (Bm1) is a physical constant, so it does not change so much. The relative permeability that can be approximated by the slope of the line connecting the point of origin 0 and Bm1) is reduced to 3. As a result, the attractive force of the magnetic particles on the magnet was extremely weak.
However, in this case, the magnetic particles cannot be sufficiently collected, and the magnetic particles are mixed in the separated / purified biological constituents, and the ultraviolet light absorbance of the collected biological constituents is measured. The appearance of the same background absorption from 260 nm to 320 nm was caused by mixing of the particles. This is actually not scattering but scattering by the mixed magnetic particles, and both 260 nm representing DNA absorption and 280 nm representing protein absorption are greatly displayed. Moreover, since this value varies depending on the degree of mixing of the magnetic particles, there has been a situation where the reliability of the data of the degree of purification (ratio of 260/280 nm) is greatly affected.
Furthermore, it is difficult to completely remove the foreign substances sandwiched between the magnetic particle clusters, which are particulate magnets that are coupled with each other by residual magnetism, and the purity of the purification cannot be raised beyond a certain limit. Since the suction and discharge are repeated several times, the work process takes time, and when automated, the performance of the apparatus is degraded.

交流消磁を諦めてしまい、それ以上のブレークスルーが無かった為、妥協策として磁性体粒子の残留磁化(Br)を小さくし、極めて高価な高純度かつ特殊な組成の磁性体粒子、しかも磁石に対する吸着力が極めて弱い磁性体粒子を用いざるを得ない、という結果になったのである。 Since there was no further breakthrough due to abandoning AC demagnetization, the remanent magnetization (Br) of the magnetic particles was reduced as a compromise, extremely high-priced high-purity and special composition magnetic particles, and against magnets The result was that magnetic particles with very weak adsorption power had to be used.

実測によれば、内径が10mmの液体容器に15mmの深さまで純水を入れ、従来の高価でしかも吸着力が極めて弱いマグネタイト磁性体粒子を分散させ、外底面にNd磁石を当てて磁性体粒子を捕集するとき、上澄みが清澄になるまで20秒もかかる。しかし本発明で用いる安価で吸着力は強いが残留磁化(Br2)が大きいマグネタイト磁性体粒子の場合は、2秒で上澄みが清澄になる。
なぜなら本発明で用いる安価で吸着力は強いが残留磁化(Br2)が1200 Gと大きいマグネタイト磁性体粒子は、その比透磁率(原点0とBm2の点を結んだ線の傾きの大きさで近似できる比透磁率)も15と大きいので、磁石により強く吸着・捕集されるからである。例えば印加磁界強度が100 Oeの時を例にとると、従来のマグネタイト磁性体粒子には比透磁率=3の為、300 Gの磁荷密度が現れ、今回のマグネタイト磁性体粒子には、比透磁率=15なので1500 Gの磁荷密度が現れる。その為今回のマグネタイト磁性体粒子の方が磁石により強く吸着・捕集される。従って今回のマグネタイト磁性体粒子を磁気吸引力(M4)を用いて捕集する場合は、1秒以上の時間をかけて漸増する磁気吸引力(M4)を用いることが望ましい。また消磁する場合も20Hz以下、または200Hz以上の周波数帯の漸増・漸減する交番磁界が望ましい。しかし従来のマグネタイト磁性体粒子については、磁気吸引力(M4)の漸増は不必要であるが、交流消磁には適さない。
しかも図17に示すように、本発明で用いる安価で吸着力の強いマグネタイト磁性体粒子を交流消磁する場合には、高々200エルステッド(Oe)を印加すればよいので、従来のマグネタイト磁性体粒子の場合の1000 Oeと比べて生体構成物質を損傷する確率が極めてわずかなのである。
According to actual measurements, pure water is poured into a liquid container having an inner diameter of 10 mm to a depth of 15 mm, and conventional magnetite magnetic particles having an extremely weak adsorptive power are dispersed, and an Nd magnet is applied to the outer bottom surface to form magnetic particles. It takes 20 seconds for the supernatant to become clear. However, in the case of magnetite magnetic particles having a low remanent magnetization (Br2), which is inexpensive and strong in the present invention, the supernatant becomes clear in 2 seconds.
This is because magnetite magnetic particles with a low remanent magnetization (Br2) of 1200 G, which is cheap and strong in the present invention, are approximated by the relative permeability (the slope of the line connecting the point of origin 0 and Bm2). This is because the relative permeability (which can be obtained) is as large as 15 and is strongly attracted and collected by the magnet. For example, when the applied magnetic field strength is 100 Oe, the magnetic permeability of 300 G appears in the conventional magnetite magnetic particles because of the relative permeability = 3. Since magnetic permeability = 15, a magnetic charge density of 1500 G appears. Therefore, the magnetite magnetic particles this time are more strongly adsorbed and collected by the magnet. Therefore, when collecting the magnetite magnetic particles of this time using the magnetic attractive force (M4), it is desirable to use the magnetic attractive force (M4) that gradually increases over a time of 1 second or more. In the case of demagnetization, an alternating magnetic field that gradually increases and decreases in a frequency band of 20 Hz or less or 200 Hz or more is desirable. However, conventional magnetite magnetic particles need not gradually increase the magnetic attractive force (M4), but are not suitable for AC demagnetization.
Moreover, as shown in FIG. 17, in the case of magnetizing the magnetite magnetic particles that are inexpensive and have strong adsorption power used in the present invention, it is only necessary to apply 200 oersted (Oe) at most, so the conventional magnetite magnetic particles Compared to 1000 Oe in the case, there is very little probability of damaging biological components.

現在用いられている高価な高純度かつ特殊な組成のマグネタイト磁性体粒子の価格はDNA用の安いものでも200万円/Kgと極めて高価であり、これでは一検体あたり数十μgしか用いることが出来ず、例えば96検体用のDNA捕集キットでは1キットの価格が30,000円もする。
また従来の蛋白質捕集キットのマグネタイト磁性体粒子は9,500万円/Kgである。その為キットとして用いる場合でも、その価格は極めて高価である為大きな問題となっていた。
本発明で用いる、残留磁化(Br2)が1200 Gと大きく且つ安価なマグネタイト磁性体粒子の原価は、DNA用は2、000円/Kgと極めて安価で、従来の約千分の一である。
また蛋白質用のマグネタイト磁性体粒子の原価は3,000円/kgであり、従来の約三万分の一である。何ゆえ従来はこんなにも高価な磁性体粒子を用いていたのであろうか?
The price of expensive, high-purity and specially-structured magnetite magnetic particles that are currently used is extremely expensive at 2 million yen / Kg, even if it is cheap for DNA. For example, for a 96-sample DNA collection kit, the cost of one kit is 30,000 yen.
Moreover, the magnetite magnetic particle of the conventional protein collection kit is 95 million yen / Kg. Therefore, even when used as a kit, the price is extremely high, which is a big problem.
The cost of magnetite magnetic particles having a large remanent magnetization (Br2) of 1200 G and being used in the present invention is as low as 2,000 yen / Kg for DNA and is about a thousandth of the conventional.
The cost of magnetite magnetic particles for protein is 3,000 yen / kg, which is about 1 / 30,000 that of the conventional one. Why have you ever used such expensive magnetic particles?

この原因は、磁性体粒子を用いた捕集の場合、強力な捕集を行う必要があり磁性体粒子にかかる磁界の強さが少なくとも1キロガウス(液体中では1キロOe)以上の強い磁界なので、磁性体粒子の磁化過程は非可逆的磁壁移動(Irreversible domain wall displacement)となり捕集用の磁石を遠ざけても、磁性体粒子には残留磁化が残ることに起因している。
この磁性体粒子にかかる磁界が、例えば10ガウス(液体中では10 Oe)程度の微弱な磁界であるならば、磁性体粒子の物理的性質上、初透磁率範囲内(Initial permeability range)であり磁化過程は可逆的磁壁移動(Reversible domain wall displacement)なので、磁界を取り去ったときには、磁性体粒子には、もはや残留磁化は残らない。この現象は古くは英国のLord Rayleighによって発見された(非特許文献3)。
This is because, in the case of collection using magnetic particles, it is necessary to perform powerful collection, and the magnetic field applied to the magnetic particles is a strong magnetic field of at least 1 kilogauss (1 kiloOe in liquid) or more. The magnetization process of the magnetic particles is caused by irreversible domain wall displacement, and residual magnetization remains in the magnetic particles even if the collecting magnet is moved away.
If the magnetic field applied to the magnetic particles is, for example, a weak magnetic field of about 10 gauss (10 Oe in a liquid), it is within the initial permeability range due to the physical properties of the magnetic particles. Since the magnetization process is reversible domain wall displacement, when the magnetic field is removed, no residual magnetization remains in the magnetic particles. This phenomenon was discovered in the past by Lord Rayleigh (UK) (Non-Patent Document 3).

事実、免疫反応測定で用いる抗体を固定した磁性体粒子を液体中の抗原と反応させ、抗原と結合して重くなった磁性体粒子に10ガウスの微弱な直流磁界を間歇的に印加して沈降を加速させ、沈降速度および沈降パターンの差より抗原の濃度を判定する装置等では、上記のように磁性体粒子には10ガウスの微弱な直流磁界を印加するので、磁性体粒子には残留磁化は残らないが、直流磁界を印加するための電磁石の鉄心自体は液体容器の広い範囲に磁界を放射しなければならず、このため電磁石の鉄心自体は遥かに大きな磁束を発生する必要があるので、電磁石の鉄心自体の磁化過程は非可逆的磁壁移動となり、鉄心に残る残留磁化が問題となるため、前記電磁石の鉄心の残留磁化を毎回消磁しなければ、10ガウスの強さの微弱な直流磁界を正確に発生出来なくなり沈降速度に誤差が出るので、電磁石の鉄心自体を毎回消磁している(特開2000−97943)。 In fact, magnetic particles fixed with antibodies used in the measurement of immune reaction are reacted with antigens in the liquid, and a 10-gauss weak DC magnetic field is intermittently applied to the magnetic particles that have become heavy by binding to the antigen and sedimented. In an apparatus for determining the concentration of an antigen from the difference in sedimentation velocity and sedimentation pattern, a weak DC magnetic field of 10 gauss is applied to the magnetic particles as described above, so that residual magnetization is applied to the magnetic particles. However, the electromagnet core itself for applying a DC magnetic field must radiate a magnetic field over a wide area of the liquid container, and therefore the electromagnet core itself must generate a much larger magnetic flux. Since the magnetization process of the iron core of the electromagnet becomes irreversible domain wall movement, and the residual magnetization remaining in the iron core becomes a problem, the DC magnetization of 10 gauss is weak if the residual magnetization of the iron core of the electromagnet is not demagnetized every time. Magnetism Because exactly can no longer error enters the sedimentation rate occurs, and every time demagnetize the core itself of the electromagnet (Japanese Patent Laid-open No. 2000-97943).

その為10ガウス程度の微弱な直流磁界の印加と、1キロガウス以上の強い捕集磁界の印加では磁性体粒子に対する物理的磁化過程の様相がまるで違ってしまう。本発明は上記の1キロガウス以上の強い捕集磁界に一義的に起因して起こる磁性体粒子の非可逆的磁化過程による残留磁化が磁性体粒子に残り、磁性体粒子クラスターを形成してしまう、という困難を回避し個々の磁性体粒子をばらばらにしてクラスターを解き、磁性体粒子と結合した生体構成物質を溶液中に良好に再分散する手段と、残留磁化(Br2)が大きくても比透磁率が高く、磁石に対する吸着力が大きくて安価な磁性体粒子を使用可能にする手段を提供すること、加えて従来よりも大量かつ安価に生体構成物質を分離・精製する装置を提供することを目的としている。並びにそれらの手段によって安価に分離・精製された生体構成物質を提供することを目的としている。 Therefore, the application of a weak DC magnetic field of about 10 gauss and the application of a strong collecting magnetic field of 1 kilogauss or more cause a completely different aspect of the physical magnetization process for the magnetic particles. In the present invention, the remanent magnetization due to the irreversible magnetization process of the magnetic particles that occurs uniquely due to the above-described strong collection magnetic field of 1 kilogauss or more remains in the magnetic particles to form a magnetic particle cluster. The means to break apart the individual magnetic particles to break up the cluster and redistribute the biological constituents bound to the magnetic particles well in the solution, and the relative permeability even if the residual magnetization (Br2) is large To provide a means for enabling the use of inexpensive magnetic particles having a high magnetic susceptibility and a large attractive force on a magnet, and to provide a device for separating and purifying biological constituents in a larger amount and at a lower cost than in the past. It is aimed. In addition, an object of the present invention is to provide a biological component separated and purified at low cost by these means.

上記目的を達成するために、本発明の手段においては、磁気吸引力により吸着し捕捉した磁性体粒子の残留磁化を、その振幅が漸増・漸減する波形の交番磁界や回転磁界を用いて消磁し、消磁に止まらず回転磁界により磁性体粒子を液体中で攪拌する事により、生体構成物質と結合した磁性体粒子の溶液中での分散性を大きく改善する。そのため残留磁化(Br2)が大きくても比透磁率が高く、安価な磁性体粒子が使用可能になる。しかもピペットを通して強制的に吸引・吐出を繰り返し分散させるようなことは決してしない(特許文献5)。
その結果磁性体粒子に捕捉された生体構成物質とりわけDNA、RNAを損傷しないような手段を提供できる。また本発明で用いるマグネタイト磁性体粒子の残留磁化を高々200エルステッド(Oe)程度の磁界で容易に消磁できる事により、磁性体粒子の塊を無くし個々の磁性体粒子にまでばらばらにできるので、磁性体粒子間に挟まっている夾雑物を完全に取り除くことができる。ここで用いる振幅が漸増・漸減する交番磁界や回転磁界の周波数はマグネタイト磁性体粒子が磁界に追随できないような高い周波数(200Hz以上)であるか、または磁性体粒子が磁界に追随したとしても、極めてゆっくりと流れるように追随し、もはや振動による生体構成物質の損傷がないような極めて低い周波数(20Hz以下)を選ぶべきである。そのような周波数帯で200エルステッド(Oe)程度の磁界ならば、もはや生体構成物質と結合したマグネタイト磁性体粒子は磁界による振動を受けることが少なく、損傷しないことが確認されている。上記の周波数帯は1μ程度のマグネタイト磁性体粒子には好適であるが、請求項11に示す他の磁性体粒子に対しては、それぞれに固有の最適周波数帯域が存在する。一般に最適周波数帯域は磁性体粒子の比透磁率、質量、粒子径、液体の粘度により最も磁性体粒子が振動し難く、生体構成物質が損傷し難いような周波数帯域が実験により決定される。
In order to achieve the above object, in the means of the present invention, the residual magnetization of the magnetic particles attracted and captured by the magnetic attractive force is demagnetized using an alternating magnetic field or a rotating magnetic field having a waveform whose amplitude gradually increases or decreases. The dispersibility in the solution of the magnetic particles combined with the biological constituent material is greatly improved by stirring the magnetic particles in the liquid by the rotating magnetic field without stopping the demagnetization. Therefore, even if the remanent magnetization (Br2) is large, the relative permeability is high, and inexpensive magnetic particles can be used. In addition, the suction and discharge are forcibly dispersed repeatedly through the pipette (Patent Document 5).
As a result, it is possible to provide a means that does not damage the biological constituents trapped by the magnetic particles, particularly DNA and RNA. In addition, since the residual magnetization of the magnetite magnetic particles used in the present invention can be easily demagnetized by a magnetic field of about 200 oersted (Oe) at most, it is possible to eliminate the lump of magnetic particles and to separate the individual magnetic particles. It is possible to completely remove foreign substances sandwiched between body particles. Even if the frequency of the alternating magnetic field or the rotating magnetic field where the amplitude used here gradually increases / decreases is a high frequency (200 Hz or more) such that the magnetite magnetic particles cannot follow the magnetic field, or even if the magnetic particles follow the magnetic field, A very low frequency (20 Hz or less) should be chosen that follows very slowly and that no longer damages biological components due to vibration. In a magnetic field of about 200 Oersted (Oe) in such a frequency band, it has been confirmed that magnetite magnetic particles bonded to biological constituents are less susceptible to vibration due to the magnetic field and are not damaged. The above frequency band is suitable for magnetite magnetic particles having a size of about 1 μm, but each of the other magnetic particles shown in claim 11 has its own optimum frequency band. In general, the optimum frequency band is determined by experiments so that the magnetic particles are most difficult to vibrate and the biological constituents are hardly damaged by the relative permeability, mass, particle diameter, and liquid viscosity of the magnetic particles.

磁性体の消磁を行うときは、磁性体に上記周波数の交番磁界をかけるが、始めはその振幅をゼロから次第に(1秒以上の時間をかけて)増大させ飽和磁束密度(Bm)の点を通過して最大のヒステリシス曲線を描くように交番磁界をかける。次に交番磁界の強度を0.3秒以上の時間をかけてゼロにまで漸減させると、磁性体の磁化―磁界のヒステリシス曲線(B―Hカーブ)はヒステリシスを描きながらヒステリシス曲線の面積を減少させ、ついにその動作点はヒステリシス曲線の原点である磁化(B)=0、磁界(H)=0
の点に到達し、磁性体は消磁される(非特許文献1)。
従来磁気テープの交流消磁器においては、同じく磁性体粒子を交流電磁石で消磁しており、公知の技術であるが、その時は磁気ヘッドまたはバルク・テープ消磁器の電磁石から一定の消磁用交流磁界を発生させておき、一定の消磁用磁界をすばやく磁気テープに印加しており、本発明のような磁界の漸増は行っておらず、その必要もない。
なぜなら磁気テープではいきなり消磁用磁界を与えても何ら問題が無いからである。
しかし本発明の磁性体粒子には生体構成物質が結合しているので、いきなり消磁用磁界を与えると磁性体粒子は激しく駆動され、その結果生体構成物質は損傷を受ける。その為本発明では前記のような20Hz以下、または200Hz以上の周波数の磁界であっても、いきなり消磁用磁界を与えてはならず、その振幅をゼロから次第に(1秒以上の時間をかけて)増大させる。ここが従来の消磁器とは異なる。
このようにして消磁された磁性体粒子はもはや残留磁化(Br2)を持たず、粒子磁石とはならないため、互いに吸引しあうことがなく、磁性体粒子を溶液中に分散することが容易であることは明白である。これは粒子の懸濁液をつくる時と同様だからである。
When demagnetizing a magnetic material, an alternating magnetic field of the above frequency is applied to the magnetic material. At first, the amplitude is gradually increased from zero (over 1 second or more) to set the saturation magnetic flux density (Bm) point. Apply an alternating magnetic field to pass through and draw the maximum hysteresis curve. Next, when the strength of the alternating magnetic field is gradually reduced to zero over 0.3 seconds, the magnetization curve of the magnetic substance-magnetic field hysteresis curve (BH curve) reduces the area of the hysteresis curve while drawing hysteresis. Finally, the operating point is the magnetization curve (B) = 0, the magnetic field (H) = 0, which is the origin of the hysteresis curve.
This point is reached and the magnetic material is demagnetized (Non-Patent Document 1).
In conventional magnetic tape AC demagnetizers, magnetic particles are similarly demagnetized by an AC electromagnet, which is a known technique. At that time, a constant demagnetizing AC magnetic field is generated from the magnetic head or the electromagnet of the bulk tape demagnetizer. A constant demagnetizing magnetic field is quickly applied to the magnetic tape, and the magnetic field is not gradually increased as in the present invention.
This is because there is no problem even if a magnetic field for demagnetization is suddenly applied to the magnetic tape.
However, since the biological material is bound to the magnetic particles of the present invention, when the magnetic field for demagnetization is suddenly applied, the magnetic particles are driven violently, and as a result, the biological material is damaged. Therefore, in the present invention, even if the magnetic field has a frequency of 20 Hz or less or 200 Hz or more as described above, a demagnetizing magnetic field should not be suddenly applied, and its amplitude gradually increases from zero (takes time of 1 second or more). ) Increase. This is different from the conventional demagnetizer.
Since the magnetic particles demagnetized in this way no longer have residual magnetization (Br2) and do not become particle magnets, they do not attract each other and can easily be dispersed in a solution. It is obvious. This is because it is similar to making a suspension of particles.

本発明では、磁気吸引力により吸着し捕捉した磁性体粒子の残留磁化(Br2)を、上記のような漸増・漸減する波形の交番磁界・回転磁界を用いて消磁し、分散する事により生体構成物質と結合した磁性体粒子の溶液中での分散性を改善できる効果がある。   In the present invention, the remanent magnetization (Br2) of the magnetic particles attracted and captured by the magnetic attraction force is demagnetized using the alternating magnetic field / rotating magnetic field of the gradually increasing / decreasing waveform as described above, and dispersed to form a living body structure. This has the effect of improving the dispersibility of the magnetic particles bonded to the substance in the solution.

具体的には先ず磁性体粒子(M1)の表面を被覆する物質(M2)と結合した図1(a)(b)(c)のような粒子を、目的の生体構成物質(M3)を含む液体に添加し、生体構成物質(M3)を磁性体粒子(M1)の表面を被覆する物質(M2)に結合させ、懸濁液をつくる。
次に電源(M21)から発生する交流又は直流電流を通じた図2のような電磁石(M5)のギャップ(M13)の間に液体容器(M22,M36)を1秒以上の挿入時間をかけて挿入するか、又は図5に示す永久磁石(M19)のような図示しない永久磁石(M6)を液体容器(M22,M36)の外壁面に1秒以上の時間をかけて接近させて磁気吸引力(M4)を発生させ、磁性体粒子(M1)を液体容器(M22,M36)の内壁面に吸着し、吸着した状態で洗浄液を用いて磁性体粒子(M1)と結合した生体構成物質(M3)以外の夾雑物を洗い流す。その後液体容器(M22,M36)の内壁面に吸着された磁性体粒子(M1)に、電磁石(M5)または回転磁界(M8)を近づけ、電磁石(M5)には1秒以上の時間をかけて漸増し、0.3秒以上の時間をかけて漸減する交流電流を通じるか、または回転磁界(M8)の強度を1秒以上の時間をかけて漸増し、0.3秒以上の時間をかけて漸減するようにして磁性体粒子(M1)等を分散した液体容器(M22,M36)の内壁面に吸着された磁性体粒子(M1)の残留磁化(Br2)を消磁する。こうして生体構成物質(M3)と結合した磁性体粒子(M1)の溶液中での分散性を改善し、次に磁性体粒子(M1)に結合した生体構成物質(M3)を、磁性体粒子(M1)から生体構成物質(M3)の結合を外す物質を加えた別の溶液中に再分散させ、磁性体粒子(M1)と生体構成物質(M3)の結合を外し、次に磁性体粒子(M1)のみを磁気吸引力(M4)を用いて磁性体粒子(M1)等を分散した液体容器(M22,M36)の内壁面に吸着・捕集し、残液を吸い上げて残液中の生体構成物質(M3)のみを得ることができる。
ここで言う液体容器(M22,M36)の内壁面とは内底面をも含む広義の内壁面である。また磁性体粒子(M1)とは図1の(a),(b),(c)に示す磁性体粒子(M1、M12)のことで、以降磁性体粒子(M1)というときは、本文、請求項を含めて図1の(a),(b),(c)に示す磁性体粒子(M1、M12)を総称する。
Specifically, the particles as shown in FIGS. 1 (a), (b), and (c), which are bonded to the substance (M2) that coats the surface of the magnetic particles (M1), contain the target biological constituent (M3). It is added to the liquid, and the biological component (M3) is bound to the substance (M2) that covers the surface of the magnetic particles (M1) to form a suspension.
Next, the liquid container (M22, M36) is inserted between the gaps (M13) of the electromagnet (M5) as shown in Fig. 2 through the AC or DC current generated from the power source (M21) with an insertion time of 1 second or more. Or a permanent magnet (M6) (not shown) such as the permanent magnet (M19) shown in FIG. 5 is brought close to the outer wall surface of the liquid container (M22, M36) over a period of 1 second or more, and the magnetic attractive force ( M4) is generated, the magnetic particles (M1) are adsorbed on the inner wall surface of the liquid container (M22, M36), and the adsorbed state is combined with the magnetic particles (M1) using the cleaning liquid (M3) Wash away any other foreign matter. Then, bring the electromagnet (M5) or rotating magnetic field (M8) closer to the magnetic particles (M1) adsorbed on the inner wall of the liquid container (M22, M36), and spend more than 1 second on the electromagnet (M5). Increasing gradually, through alternating current gradually decreasing over 0.3 seconds, or gradually increasing the intensity of the rotating magnetic field (M8) over 1 second, taking 0.3 seconds or more The residual magnetization (Br2) of the magnetic particles (M1) adsorbed on the inner wall surface of the liquid container (M22, M36) in which the magnetic particles (M1) and the like are dispersed is demagnetized so as to gradually decrease. In this way, the dispersibility of the magnetic particles (M1) bonded to the biological material (M3) in the solution is improved, and then the biological material (M3) bonded to the magnetic particles (M1) is changed to the magnetic particles ( Re-disperse in another solution containing a substance that removes the binding of biological constituent (M3) from M1) to remove the binding between magnetic particles (M1) and biological constituent (M3), then magnetic particles ( Only M1) is absorbed and collected on the inner wall of the liquid container (M22, M36) in which the magnetic particles (M1) etc. are dispersed using the magnetic attraction force (M4), and the remaining liquid is sucked up and the living body in the remaining liquid Only the constituent (M3) can be obtained.
The inner wall surfaces of the liquid containers (M22, M36) mentioned here are inner wall surfaces in a broad sense including the inner bottom surface. The magnetic particles (M1) are the magnetic particles (M1, M12) shown in (a), (b), and (c) of FIG. 1. Hereinafter, the magnetic particles (M1) are referred to as the text, The magnetic particles (M1, M12) shown in (a), (b), and (c) of FIG.

また液体容器(M22,M36)の内壁面に吸着し捕捉した磁性体粒子(M1)の残留磁化(Br2)を、交番磁界・回転磁界を用いて消磁する際に、先ず一定の強さの交番磁界・回転磁界の中に1秒以上の時間をかけて液体容器(M22,M36)挿入し、その後交番磁界・回転磁界の中から0.3秒以上の時間をかけて液体容器(M22,M36)を取り去ることで液体容器(M22,M36)中の磁性体粒子(M1)に作用する交番磁界・回転磁界を漸増・漸減させ、消磁することも出来る。その結果磁性体粒子(M1)の溶液中での分散性を改善することが出来る。   In addition, when demagnetizing the residual magnetization (Br2) of the magnetic particles (M1) adsorbed and trapped on the inner wall surface of the liquid container (M22, M36) using an alternating magnetic field / rotating magnetic field, first the alternating strength of a certain strength The liquid container (M22, M36) is inserted in the magnetic field / rotating magnetic field over 1 second or more, and then the liquid container (M22, M36) is placed in the alternating magnetic field / rotating magnetic field over 0.3 seconds. ), The alternating magnetic field / rotating magnetic field acting on the magnetic particles (M1) in the liquid containers (M22, M36) can be gradually increased / decreased to demagnetize them. As a result, the dispersibility of the magnetic particles (M1) in the solution can be improved.

また前記のように磁性体粒子(M1)から生体構成物質(M3)の結合を外す物質を加えた別の溶液中に、磁性体粒子(M1)と結合した生体構成物質(M3)を再分散させる時、更に効果的に再分散を助けるため、図3のように回転磁界(M8)を用いて生体構成物質(M3)と結合した磁性体粒子(M1)を溶液中に分散させ、生体構成物質(M3)と結合した磁性体粒子(M1)の溶液中での分散を助けることもできる。この回転磁界(M8)は公知のインナー・ローター・モーターからインナー・ローターを取り去った後のステーターと同じ構造のステーター(M9)に巻回されているステーターコイル(M10)に電源(M21)から発生しその振幅が漸増・漸減する交流電流を通じて、インナー・ローターのあるべき位置に置いた磁性体粒子(M1)等を分散した液体容器(M22,M36)中の磁性体粒子(M1)に回転する磁界を与え、生体構成物質が損傷しないように流れるように静かに駆動・周回させて磁性体粒子(M1)を溶液中に分散させ攪拌することができる。もちろん分散した後はステーターコイル(M10)の交流電流はゼロにまで漸減させ磁性体粒子を消磁する。消磁された磁性体粒子は個々の粒子にまで、ばらばらにされて分散する。
しかし図2のような電磁石の場合、消磁は出来ても回転磁界(M8)のように磁性体粒子を分散・攪拌しながら消磁することは出来ない。その為、図3の回転磁界(M8)を発生するステーターコイル(M10)や、後述の図5、図9、図12、図16、図19、図20のような回転する磁石による回転磁界(M8)発生手段は、図2のような電磁石(特許文献5)とは全く異なり消磁・攪拌・分散を経時的に出来るという回転磁界ならではの特性がある。このような回転磁界(M8)を用いることにより特許文献5のようなピペットによる数回の強制的吸引・吐出が不要になるので生体構成物質は損傷し難い。
In addition, as described above, the bioconstituent material (M3) bound to the magnetic particles (M1) is redispersed in another solution in which a substance that removes the binding of the bioconstituent material (M3) from the magnetic particles (M1) is added. In order to help re-dispersion more effectively, the magnetic particles (M1) combined with the biological constituent (M3) are dispersed in the solution using the rotating magnetic field (M8) as shown in Fig. The dispersion of the magnetic particles (M1) bound to the substance (M3) in the solution can also be assisted. This rotating magnetic field (M8) is generated from the power source (M21) in the stator coil (M10) wound around the stator (M9) having the same structure as the stator after removing the inner rotor from the known inner rotor motor. However, it rotates to the magnetic particles (M1) in the liquid container (M22, M36) in which the magnetic particles (M1) placed at the position where the inner rotor should be, through the alternating current whose amplitude gradually increases and decreases. The magnetic particles (M1) can be dispersed and stirred in the solution by applying a magnetic field and gently driving and circulating so as not to damage the biological constituents. Of course, after the dispersion, the alternating current of the stator coil (M10) is gradually reduced to zero to demagnetize the magnetic particles. The demagnetized magnetic particles are dispersed and dispersed into individual particles.
However, in the case of the electromagnet as shown in FIG. 2, even if demagnetization is possible, it is not possible to demagnetize the magnetic particles while dispersing and stirring them like the rotating magnetic field (M8). Therefore, a rotating magnetic field (M10) that generates the rotating magnetic field (M8) of FIG. 3 and a rotating magnetic field (FIG. 5, 9, 12, 16, 19, and 20 described later) M8) The generating means is completely different from the electromagnet as shown in FIG. 2 (Patent Document 5), and has a characteristic unique to a rotating magnetic field that allows demagnetization, stirring, and dispersion over time. By using such a rotating magnetic field (M8), several forced suctions / discharges by a pipette as in Patent Document 5 are not required, and thus the biological constituents are hardly damaged.

また次のようにすることもできる。図2のようにギャップ(M13)のある磁路を持つ磁性体磁心(M14)にコイル(M15)を巻回し、コイル(M15)に電源(M21)から発生する漸増する直流または漸増・漸減する交流電流を通じると、磁性体磁心(M14)のギャップ(M13)の部分には電流の通電方向に応じてNおよびS極が生じる。これは電磁石(M5)である。
あるいは図4のような空芯のソレノイドコイル(M16)に電源(M21)から発生する漸増する直流または漸増・漸減する交流電流を通じると、ソレノイドコイル(M16)の内外には電流の通電方向に応じて磁界が生じる。これも一種の電磁石(M5)である。
更に図3のように公知のインナー・ローター・モーターからインナー・ローターを取り去った後のステーターと同じ構造のステーター(M9)に巻回されているステーターコイル(M10)に電源(M21)から発生し漸増・漸減する直流または交流電流を通じると、ステーター(M9)の極(M11)には電流の通電方向に応じて回転する磁界が生じる。この回転磁界発生手段は電磁石(M5)の範疇には入らないが、図6、図7における説明の便宜上ステーターコイル(M10)のインダクタンスを考える時のみ、電磁石(M5)のインダクタンスと同等に扱い、直列・並列共振を考えることが出来る。
It can also be as follows. As shown in Fig. 2, the coil (M15) is wound around the magnetic core (M14) having a magnetic path with a gap (M13), and the coil (M15) is gradually increased or decreased or gradually increased from the power source (M21). When an alternating current is passed, N and S poles are generated in the gap (M13) of the magnetic core (M14) according to the direction of current flow. This is an electromagnet (M5).
Alternatively, if a gradually increasing direct current or gradually increasing / decreasing alternating current generated from the power source (M21) is passed through the air-core solenoid coil (M16) as shown in Fig. 4, the solenoid coil (M16) will have a current flowing in and out of the solenoid coil (M16). A magnetic field is generated accordingly. This is also a kind of electromagnet (M5).
Further, as shown in FIG. 3, the stator coil (M10) wound around the stator (M9) having the same structure as the stator after removing the inner rotor from the known inner rotor motor is generated from the power source (M21). When a gradually increasing / decreasing direct current or alternating current is passed, a magnetic field that rotates in accordance with the direction of current flow is generated at the pole (M11) of the stator (M9). This rotating magnetic field generating means does not fall within the category of the electromagnet (M5), but for the convenience of explanation in FIGS. 6 and 7, only when considering the inductance of the stator coil (M10), treat it as equivalent to the inductance of the electromagnet (M5). Series and parallel resonance can be considered.

始めにこれらの電磁石(M5)に漸増する直流または漸増する交流電流を通じると、電磁石(M5)である磁性体磁心(M14)のギャップ(M13)やステーター(M9)の極(M11)に生じる磁極による磁気吸引力(M4)により、それら磁極の近傍に置いた液体容器(M22,M36)の内壁面に磁性体粒子(M1)を吸着できる。また空芯のソレノイドコイル(M16)の内に生じる磁界の中に置いた磁性体粒子(M1)等を分散した液体容器(M22,M36)中の磁性体粒子(M1)も液体容器(M22,M36)の内壁面に吸着することができる。
次に磁性体粒子(M1)が液体容器(M22,M36)の内壁面に吸着した状態で洗浄液を用いて磁性体粒子(M1)と結合した生体構成物質(M3)以外の夾雑物を洗い流す。その後これら磁性体磁心(M14)やステーター(M9) また空芯のソレノイドコイル(M16)にはゼロにまで漸減する交流電流を通じ、液体容器(M22,M36)の内壁面に吸着された磁性体粒子(M1)の残留磁化を消磁する。こうして生体構成物質(M3)と結合した磁性体粒子(M1)の溶液中での分散性を改善し、磁性体粒子(M1)に結合した生体構成物質(M3)を、磁性体粒子(M1)から生体構成物質(M3)の結合を外す物質を加えた別の溶液中に回転磁界により再分散させ、磁性体粒子(M1)と生体構成物質(M3)の結合を外し、次に磁性体粒子(M1)のみを磁気吸引力(M4)を用いて吸着・捕集し、残液を吸い上げて残液中の生体構成物質(M3)のみを得ることができる。
When a gradually increasing direct current or gradually increasing alternating current is passed through these electromagnets (M5), they are generated in the gap (M13) of the magnetic core (M14), which is the electromagnet (M5), and in the pole (M11) of the stator (M9). Magnetic particles (M1) can be attracted to the inner wall surface of the liquid container (M22, M36) placed in the vicinity of the magnetic poles by the magnetic attractive force (M4) by the magnetic poles. Also, the magnetic particles (M1) in the liquid containers (M22, M36) in which the magnetic particles (M1) placed in the magnetic field generated in the air core solenoid coil (M16) are dispersed are also the liquid containers (M22, M36) can be adsorbed on the inner wall surface.
Next, with the magnetic particles (M1) adsorbed on the inner wall surface of the liquid container (M22, M36), impurities other than the biological constituent (M3) bonded to the magnetic particles (M1) are washed away using a cleaning liquid. After that, magnetic particles adsorbed on the inner wall of the liquid container (M22, M36) are passed through the magnetic core (M14), stator (M9) and air-core solenoid coil (M16) through an alternating current that gradually decreases to zero. Demagnetize the residual magnetization of (M1). In this way, the dispersibility of the magnetic particles (M1) bonded to the biological material (M3) in the solution is improved, and the biological material (M3) bonded to the magnetic particles (M1) is converted into the magnetic particles (M1). Re-dispersed in a different solution containing a substance that removes the binding of the biological constituent (M3) from the rotating magnetic field to release the binding between the magnetic particles (M1) and the biological constituent (M3), and then the magnetic particles Only (M1) can be adsorbed and collected using the magnetic attractive force (M4), and the remaining liquid can be sucked up to obtain only the biological component (M3) in the remaining liquid.

ここでこれらの電磁石(M5)に通電する交流電流の波形に周期的に振幅が漸増・漸減する公知の振幅変調をかけると、磁気吸引力(M4)の強さもこの振幅変調に従って変動し、磁性体粒子(M1)はそれにより液体容器(M22,M36)の内壁面に静かに吸着、消磁、脱着を繰り返すため磁性体粒子(M1)間に挟まっている夾雑物は溶液中に更に放出され易くなる。
またこれらの電磁石(M5)に通電する交流電流の周波数が一定の周波数以下(例;20HZ以下)の場合も、磁気吸引力(M4)の強さの変動により、磁性体粒子(M1)は静かに吸着、脱着を繰り返すため磁性体粒子(M1)間に挟まっている夾雑物は溶液中に放出されてそれに続く分散手段により分散しやすくなる。
またこれらの電磁石(M5)に通電する交流電流の周波数と磁界強度には一定の制約があり、1μのマグネタイト磁性体粒子(M1)が磁界によって大きな機械的振動を受ける場合は、DNAやRNAは破壊されるので、周波数については20HZ以下の比較的低い周波数か、またはマグネタイト磁性体粒子(M1)が追随できず機械的に動けないような200Hz以上の高い周波数が望ましい。 50Hz程度の周波数ではDNAやRNAは壊れやすいので、本発明で用いるマグネタイト磁性体粒子(M1)の場合は、50Hz程度の周波数では磁界強度を一定値以下に制限すべきである。また50Hz程度の周波数では磁界強度をあまり強く出来ないので、特に従来のマグネタイト磁性体粒子(M1)の場合に関しては不完全にしか消磁されない。
更に始めに図示しない永久磁石(M6)を1秒以上の時間をかけて液体容器(M22,M36)の外壁面に近づけ、磁気吸引力(M4)を発生させ磁性体粒子(M1)を磁性体粒子(M1)等を分散した液体容器(M22,M36)の内壁面に吸着した後、永久磁石(M6)を遠ざけることにより前記磁気吸引力(M4)を弱め、その後磁性体粒子(M1)に電磁石(M7)を近づけ、電磁石(M7)には漸増・漸減する交流電流を通電して磁性体粒子(M1)を消磁することも出来る。
Here, when a known amplitude modulation in which the amplitude gradually increases and decreases periodically is applied to the waveform of the alternating current applied to these electromagnets (M5), the strength of the magnetic attraction force (M4) also fluctuates according to this amplitude modulation, and the magnetic As a result, the body particles (M1) are gently adsorbed, demagnetized and desorbed on the inner wall of the liquid container (M22, M36), so that the foreign matter sandwiched between the magnetic particles (M1) is more easily released into the solution. Become.
In addition, even when the frequency of the alternating current applied to these electromagnets (M5) is below a certain frequency (eg, 20HZ or less), the magnetic particles (M1) remain quiet due to fluctuations in the strength of the magnetic attractive force (M4). Since the adsorption and desorption are repeated, the foreign matter sandwiched between the magnetic particles (M1) is released into the solution and easily dispersed by the subsequent dispersion means.
In addition, there are certain restrictions on the frequency and magnetic field strength of the alternating current applied to these electromagnets (M5), and when 1 μm magnetite magnetic particles (M1) are subjected to large mechanical vibrations by the magnetic field, DNA and RNA are Since it is destroyed, the frequency is preferably a relatively low frequency of 20 Hz or less, or a high frequency of 200 Hz or more so that the magnetite magnetic particles (M1) cannot follow and cannot move mechanically. Since DNA and RNA are easily broken at a frequency of about 50 Hz, in the case of magnetite magnetic particles (M1) used in the present invention, the magnetic field strength should be limited to a certain value or less at a frequency of about 50 Hz. Further, since the magnetic field strength cannot be increased at a frequency of about 50 Hz, the demagnetization can be performed only incomplete particularly in the case of the conventional magnetite magnetic particles (M1).
First, a permanent magnet (M6) (not shown) is brought closer to the outer wall surface of the liquid container (M22, M36) over a period of 1 second or more to generate a magnetic attractive force (M4) to cause the magnetic particles (M1) to become magnetic. After adsorbing to the inner wall of the liquid container (M22, M36) in which particles (M1) etc. are dispersed, the magnetic attractive force (M4) is weakened by moving the permanent magnet (M6) away, and then the magnetic particles (M1) It is also possible to demagnetize the magnetic particles (M1) by bringing the electromagnet (M7) closer to the electromagnet (M7) and applying an alternating current that gradually increases and decreases.

更に図3のように公知のインナー・ローター・モーターからインナー・ローターを取り去った後のステーターと同じ構造のステーター(M9)に巻回されているステーターコイル(M10)に漸増・漸減する交流電流を通じて回転磁界(M8)を発生させる場合、回転磁界(M8)の回転方向を周期的に逆転させると磁性体粒子(M1)は時計回りや反時計回りに駆動され吸着、脱着を繰り返すため磁性体粒子(M1)間に挟まっている夾雑物は溶液中に放出されて分散しやすくなる。
通常は二対の極(M11)を持ち、二対の極(M11)を生じるように巻回された二対のステーターコイル(M10)の一方には漸増・漸減する正弦波の電流を、他方にはこれと90度位相の異なる漸増・漸減する正弦波の電流を通電することにより、回転磁界が生じる。
90度位相が進んでいれば時計回り、90度位相が遅れていれば反時計回りの回転磁界(M8)となる。これは二相交流の回転磁界(M8)である。
一般にN対の極(M11)を持ち、N対の極(M11)を生じるように巻回されたN対のステーターコイル(M10)の各々に、N相交流の電流を通電しても回転磁界(M8)は発生する。
Further, as shown in FIG. 3, through the alternating current gradually increasing / decreasing to the stator coil (M10) wound around the stator (M9) having the same structure as the stator after removing the inner rotor from the known inner rotor motor. When a rotating magnetic field (M8) is generated, the magnetic particles (M1) are driven clockwise and counterclockwise when the rotating direction of the rotating magnetic field (M8) is periodically reversed. The impurities sandwiched between (M1) are released into the solution and easily dispersed.
Usually, two pairs of poles (M11) have two pairs of poles (M11). One of two pairs of stator coils (M10) wound to produce two pairs of poles (M11) has a gradually increasing / decreasing sine wave current and the other. In this case, a rotating magnetic field is generated by applying a current of a sine wave gradually increasing / decreasing with a phase difference of 90 degrees.
If the phase is advanced by 90 degrees, the magnetic field is rotated clockwise, and if the phase is delayed by 90 degrees, the magnetic field is rotated counterclockwise (M8). This is a two-phase AC rotating magnetic field (M8).
Generally, a rotating magnetic field is generated even if an N-phase AC current is passed through each of the N pairs of stator coils (M10) that has N pairs of poles (M11) and is wound so as to generate N pairs of poles (M11). (M8) occurs.

また図6、図10のように電磁石(M5,M7)に巻回されているコイル(M15)または、回転磁界(M8)を発生できるステーター(M9)に巻回されているステーターコイル(M10)または空芯のソレノイドコイル(M16)と直列にキャパシタ(M17)を接続し、上記直列に接続したコイル(M15、M10、M16)のインダクタンスLと、キャパシタ(M17)の容量Cが直列共振する周波数f=1/2π√LC近くの周波数を持ち、漸増・漸減する正弦波の交流電流を、上記コイル(M15、M10、M16)とキャパシタ(M17)の直列回路に供給すれば、コイル(M15、M10、M16)には大きな直列共振電流を流す事ができるので、コイル(M15、M10、M16)は大きな起磁力を持ち、周波数fが高くても大きな磁界を発生できる。何故なら直列共振においてはインダクタンスLと容量Cのインピーダンスが相殺するので、インダクタンスLと容量Cの直列インピーダンスZs=(r+jωL―j/ωC) は直列共振のωで、ほぼコイル(M15、M10、M16)の巻線抵抗rに等しくなり、周波数fが高くても低くても、容量Cの値を調整すれば周波数fの如何によらず、大きな直列共振電流を流す事ができるからである。ここでωは角周波数でω=2πfである。 Further, as shown in FIGS. 6 and 10, a coil (M15) wound around an electromagnet (M5, M7) or a stator coil (M10) wound around a stator (M9) capable of generating a rotating magnetic field (M8). Or a capacitor (M17) is connected in series with an air-core solenoid coil (M16), and the frequency at which the inductance L of the coil (M15, M10, M16) connected in series and the capacitance C of the capacitor (M17) resonates in series. When a sine wave alternating current having a frequency near f = 1 / 2π√LC and gradually increasing / decreasing is supplied to the series circuit of the coil (M15, M10, M16) and the capacitor (M17), the coil (M15, Since a large series resonance current can flow through M10, M16), the coils (M15, M10, M16) have a large magnetomotive force and can generate a large magnetic field even if the frequency f is high. This is because the impedance of the inductance L and the capacitance C cancels in series resonance, and the series impedance Zs = (r + jωL−j / ωC) of the inductance L and capacitance C is ω of the series resonance and is almost a coil (M15, M10 , M16) is equal to the winding resistance r, and even if the frequency f is high or low, if the value of the capacitance C is adjusted, a large series resonance current can flow regardless of the frequency f. . Here, ω is an angular frequency and ω = 2πf.

また図7、図11のように電磁石(M5,M7)に巻回されているコイル(M15)または、回転磁界(M8)を発生できるステーター(M9)に巻回されているステーターコイル(M10)または空芯のソレノイドコイル(M16)と並列にキャパシタ(M18)を接続し、上記並列に接続したコイル(M15、M10、M16)のインダクタンスLと、キャパシタ(M18)の容量Cが並列共振する周波数f=1/2π√LC近くの周波数を持ち、漸増・漸減する正弦波の交流電圧を、上記コイル(M15、M10、M16)とキャパシタ(M18)の並列回路に供給すれば、コイル(M15、M10、M16)には大きな並列共振電流を流す事ができるので、コイル(M15、M10、M16)は大きな起磁力を持ち、周波数fが高くても大きな磁界を発生できる。何故なら並列共振においてはインダクタンスLと容量Cの並列インピーダンスZp=Zl・Zc/(Zl+Zc)は巨大な値となり、周波数fの如何によらず、並列インピーダンスに接続した電源(M21)からはあまり電流が流れ出ない。容量Cの値を調整すればインダクタンスLには周波数fによらず大きな並列共振電流を流す事ができるからである。ここでコイル(M15、M10、M16)のインピーダンスをZl= r+jωL, キャパシタ(M18)のインピーダンスをZc=―j/ωCとした。 Further, as shown in FIGS. 7 and 11, a coil (M15) wound around an electromagnet (M5, M7) or a stator coil (M10) wound around a stator (M9) capable of generating a rotating magnetic field (M8). Or a capacitor (M18) is connected in parallel with an air-core solenoid coil (M16), and the frequency at which the inductance L of the coil (M15, M10, M16) connected in parallel and the capacitance C of the capacitor (M18) resonates in parallel. If a sinusoidal AC voltage having a frequency near f = 1 / 2π√LC and gradually increasing / decreasing is supplied to the parallel circuit of the coil (M15, M10, M16) and the capacitor (M18), the coil (M15, Since a large parallel resonance current can flow through M10, M16), the coils (M15, M10, M16) have a large magnetomotive force and can generate a large magnetic field even if the frequency f is high. Because in parallel resonance, the parallel impedance Zp = Zl · Zc / (Zl + Zc) of inductance L and capacitance C is a huge value, regardless of the frequency f, from the power supply (M21) connected to the parallel impedance Not much current flows out. This is because, if the value of the capacitance C is adjusted, a large parallel resonance current can flow through the inductance L regardless of the frequency f. Here, the impedance of the coils (M15, M10, M16) is Zl = r + jωL, and the impedance of the capacitor (M18) is Zc = −j / ωC.

これらのことはコイル(M15、M10、M16)のサイズが小さくても大きな起磁力を持たせ、大きな磁界を発生できる事を意味するだけでなく、周波数fを高くすることができるので、消磁のスピードを速めることができる。また周波数fを磁性体粒子(M1)の種類にあった適当な値に選ぶことにより磁性体粒子(M1)を磁界に静かに追随させ、液中で駆動することも可能で、磁性体粒子(M1)の液中での分散性を改善できる。また直列・並列共振状態では電源(M21)から供給する電力を最小にすることが出来るのは言うまでも無い。 These not only mean that a large magnetomotive force can be generated even if the size of the coils (M15, M10, M16) is small and a large magnetic field can be generated, but also that the frequency f can be increased, so that You can speed up. Further, by selecting the frequency f to an appropriate value according to the type of the magnetic particles (M1), the magnetic particles (M1) can be made to follow the magnetic field gently and can be driven in the liquid. Dispersibility in the liquid of M1) can be improved. Needless to say, the power supplied from the power source (M21) can be minimized in the series / parallel resonance state.

また図10、図11のように、直列又は並列に接続したコイル(M15、M10、M16)のインダクタンスLと、キャパシタ(M17、M18)の容量Cに、直流電源(M25)又はキャパシタ(M28)から電流を供給する際に、スイッチ(M26、M27)を開閉する事により過渡的に供給して過渡現象を起させ、直列または並列に接続したコイル(M15、M10、M16)のコイル端電圧を始めは上昇させ、次いでコイル(M15、M10、M16)に漸減する振動電流を発生させ、コイルによる磁界を漸増・漸減する交番磁界とすることも出来る。これは図10、図11の回路例に限定せず、直流電源(M25)とスイッチ(M27)を用いて直列又は並列に接続したLとCの回路に電流を過渡的に供給しても良いし、また直流電源(M25)とスイッチ(M26)を用いて予めキャパシタ(M28)に充電しておいた電荷を、直列又は並列に接続したLとCの回路に過渡的に供給することも出来る。   Further, as shown in FIGS. 10 and 11, an inductance L of coils (M15, M10, M16) connected in series or in parallel and a capacitance C of capacitors (M17, M18) are connected to a DC power supply (M25) or a capacitor (M28). When supplying current from the switch, the switch (M26, M27) is turned on and off to generate a transient phenomenon, and the coil end voltage of the coils (M15, M10, M16) connected in series or in parallel It is possible to generate an oscillating current that gradually increases at the beginning and then gradually decreases in the coils (M15, M10, M16), so that the magnetic field generated by the coil gradually increases and decreases. This is not limited to the circuit examples of FIGS. 10 and 11, and current may be transiently supplied to L and C circuits connected in series or in parallel using a DC power source (M25) and a switch (M27). In addition, the charge previously charged in the capacitor (M28) using the DC power supply (M25) and switch (M26) can be transiently supplied to the L and C circuits connected in series or in parallel. .

また図5のように磁性体粒子(M1)等を分散した液体容器(M22,M36)の外壁面の近傍に少なくとも一個の永久磁石(M19)を設置し、永久磁石(M19)を前記容器の外壁面の周りで回転させるか、または図9のように磁性体粒子等を分散した液体容器(M22,M36)の外壁面又は外底面の近傍に少なくとも一個の永久磁石(M19)を設置し、永久磁石(M19)を回転軸(M24)の周りに回転してN極、S極を反転させながら液体容器(M22,M36)の外壁面又は外底面から遠ざける事により、液体容器(M22,M36)内の磁性体粒子(M1、M12)に漸増・漸減する回転磁界を作用させる事もできる。図5では永久磁石(M19)が液体容器(M22,M36)の外壁面に近接しているとき、磁性体粒子(M1、M12)は互いに吸着し塊(クラスター)を造っている。このクラスターの隙間に本来は磁性体粒子(M1、M12)に吸着しない生体構成物質の滓等を物理的に抱きこんでおり、この現象は永久磁石(M19)を回転しないで遠ざけても継続し、磁性体粒子(M1、M12)が消磁されてばらばらの磁性体粒子(M1、M12)にならない限り解消されない。本発明は消磁によってこの問題を解消するものである。 Further, as shown in FIG. 5, at least one permanent magnet (M19) is installed in the vicinity of the outer wall surface of the liquid container (M22, M36) in which the magnetic particles (M1) are dispersed, and the permanent magnet (M19) is placed in the container. At least one permanent magnet (M19) is installed in the vicinity of the outer wall surface or the outer bottom surface of the liquid container (M22, M36) in which the magnetic particles are dispersed as shown in FIG. By rotating the permanent magnet (M19) around the rotation axis (M24) and reversing the N and S poles, the liquid container (M22, M36) is moved away from the outer wall or bottom surface of the liquid container (M22, M36). ) A rotating magnetic field that gradually increases and decreases can be applied to the magnetic particles (M1, M12) in (). In FIG. 5, when the permanent magnet (M19) is close to the outer wall surface of the liquid container (M22, M36), the magnetic particles (M1, M12) are attracted to each other to form a cluster. This cluster gap physically encases biological materials that are not adsorbed on the magnetic particles (M1, M12), and this phenomenon continues even if the permanent magnet (M19) is moved away without rotating. Unless the magnetic particles (M1, M12) are demagnetized into discrete magnetic particles (M1, M12), they are not resolved. The present invention solves this problem by demagnetization.

また図12のように液体容器(M22)であるエッペン・チューブ(M36)の外底面の近傍に永久磁石(M32)を設置し、前記永久磁石(M32)をモータ(M34)で回転させ、エッペン・チューブ(M36)を矢印のように次第に上方へ引き上げることにより、エッペン・チューブ(M36)内の磁性体粒子(M1)に漸減する回転磁界・交番磁界を作用させ消磁する事ができるのは明白である。このときエッペン・チューブ(M36)を始めに永久磁石(M32)に近づけるときは、永久磁石(M32)が回転している場合は、電磁石(M5)の場合のように1秒以上の時間をかける必要は無く、高々0.2秒もあれば生体構成物質は損傷しないことが解っている。
また図19の(a)に示す実施例は図19の(b)に示す回転する磁石(M32)を複数個モータ軸(M35)に取り付け、一対の磁石はその磁極(M33)が一定距離を隔てて対向するように設置し、モータ(M34)を回転させる。そして前記一対の磁石(M32)の間にエッペンチューブ(M36)を挿入し、次に次第に引き離し、エッペンチューブ(M36)内の磁性体粒子に回転磁界による交番磁界を作用させ、その磁界の強さを減衰させることが出来るので、磁性体粒子は消磁され、消磁に止まらず、回転磁界により攪拌されて液中に分散する。このようにして複数個のエッペンチューブ(M36)中の磁性体粒子を同時に消磁し、エッペンチューブ(M36)内の液体中に分散・攪拌することができる。
図19に示す実施例は図12に示す実施例と原理的に同一であることは明白である。
また実験によれば図5、図9、図12、図19、図20の実施例では永久磁石の回転磁界・交番磁界の周波数には電磁石(M5)の場合のような周波数帯域の制限は無いことが確認されている。この理由は永久磁石による回転磁界・交番磁界は電磁石(M5)による回転磁界・交番磁界の場合と違い、磁性体粒子を常に永久磁石の方へ引き付けながら、回転磁界・交番磁界を印加するので、磁性体粒子に不要な振動を与えにくいからである。
Also, as shown in FIG. 12, a permanent magnet (M32) is installed in the vicinity of the outer bottom surface of the Eppendorf tube (M36), which is a liquid container (M22), and the permanent magnet (M32) is rotated by a motor (M34).・ It is obvious that the magnet (M1) in the Eppendorf tube (M36) can be demagnetized by acting on the rotating magnetic field / alternating magnetic field that gradually decreases by pulling the tube (M36) gradually upward as indicated by the arrow. It is. At this time, when the Eppendorf tube (M36) is first brought close to the permanent magnet (M32), if the permanent magnet (M32) is rotating, it takes more than 1 second as in the case of the electromagnet (M5). It is not necessary, and it is known that the bioconstituent material will not be damaged within 0.2 seconds at most.
In the embodiment shown in FIG. 19 (a), a plurality of rotating magnets (M32) shown in FIG. 19 (b) are attached to a motor shaft (M35). Install so as to face each other and rotate the motor (M34). Then, an Eppendorf tube (M36) is inserted between the pair of magnets (M32), and then gradually pulled away to cause an alternating magnetic field by a rotating magnetic field to act on the magnetic particles in the Eppendorf tube (M36). Thus, the magnetic particles are demagnetized and do not stop demagnetizing, but are agitated by the rotating magnetic field and dispersed in the liquid. In this way, the magnetic particles in the plurality of Eppendorf tubes (M36) can be demagnetized at the same time, and dispersed and stirred in the liquid in the Eppendorf tube (M36).
It is obvious that the embodiment shown in FIG. 19 is identical in principle to the embodiment shown in FIG.
Further, according to experiments, in the embodiments of FIGS. 5, 9, 12, 19, and 20, there are no frequency band restrictions on the frequency of the rotating magnetic field / alternating magnetic field of the permanent magnet as in the case of the electromagnet (M5). It has been confirmed. The reason is that the rotating magnetic field / alternating magnetic field by the permanent magnet is different from the rotating magnetic field / alternating magnetic field by the electromagnet (M5), and the rotating magnetic field / alternating magnetic field is applied while always attracting the magnetic particles toward the permanent magnet. This is because it is difficult to give unnecessary vibration to the magnetic particles.

また図16のようにエッペン・チューブ(M36)を図12の位置ではなく、モータ(M34)のモータ軸(M35)上に設置すれば、エッペン・チューブ(M36)の直下には磁極(M33)が無い状態で、エッペン・チューブ(M36)に回転磁界を作用させることが出来る。その結果エッペン・チューブ(M36)内の磁性体粒子はエッペン・チューブ(M36)の底面に引き付けられることなく、エッペン・チューブ(M36)内の磁性体粒子は底に溜まらず竜巻のように巻き上げられ攪拌される。図16の実施例は生体構成物質を最も損傷しにくい実施例である。 If the Eppendorf tube (M36) is installed on the motor shaft (M35) of the motor (M34) instead of the position shown in Fig. 12, as shown in Fig. 16, the magnetic pole (M33) is located directly under the Eppendorf tube (M36). A rotating magnetic field can be applied to the Eppendorf tube (M36) in the absence of the above. As a result, the magnetic particles in the Eppendorf tube (M36) are not attracted to the bottom surface of the Eppendorf tube (M36), and the magnetic particles in the Eppendorf tube (M36) do not collect on the bottom and are rolled up like a tornado. Stir. The embodiment of FIG. 16 is an embodiment that hardly damages the biological constituent material.

また図15のように磁石(M32)を固定しておいて、液体容器(M22)であるエッペン・チューブ(M36)を磁極(M33)の直上で円周方向に周回させながら次第に上方へ引き離していっても、エッペン・チューブ(M36)に漸減する回転磁界・交番磁界を作用させることが出来るのは明白であり、このようにしてもエッペン・チューブ(M36)内の磁性体粒子を消磁出来る。図18はその為に便利なように円錐(M30)をガイドとして用いた実施例であが、円錐ガイドに限定されるものではなく、同様の趣旨を実現できるすべての図示しない手段は、請求項10の範疇に含まれることは明白である。
つまり磁石(M32)をまわしても、エッペン・チューブ(M36)を磁極(M33)の直上で円周方向に周回させても、その相対位置関係は変わらないため、これも実施例に含まれる。また図12、図15、図16、図18の磁石(M32)の磁極(M33)の数は仮に8極として図示しているが、8極に限定せず、2極以上の複数の磁極であって良いことは明白である。
更に磁石(M32)は必ずしもリング状磁石である必要は無く、個々の磁極(M33)毎に独立した2個以上複数個の磁石であっても良い事は明白である。
As shown in FIG. 15, the magnet (M32) is fixed and the Eppendorf tube (M36), which is the liquid container (M22), is gradually pulled upward while rotating in the circumferential direction immediately above the magnetic pole (M33). However, it is obvious that a rotating magnetic field / alternating magnetic field that gradually decreases can be applied to the Eppendorf tube (M36). In this way, the magnetic particles in the Eppendorf tube (M36) can be demagnetized. FIG. 18 shows an embodiment in which a cone (M30) is used as a guide for convenience. However, the present invention is not limited to the cone guide, and all means (not shown) capable of realizing the same purpose are described in the claims. It is clear that it is included in 10 categories.
That is, even if the magnet (M32) is turned, even if the Eppendorf tube (M36) is rotated in the circumferential direction immediately above the magnetic pole (M33), the relative positional relationship does not change, so this is also included in the embodiment. In addition, the number of magnetic poles (M33) of the magnet (M32) in FIGS. 12, 15, 16, and 18 is assumed to be 8 poles. However, the number is not limited to 8 poles, but a plurality of magnetic poles having 2 poles or more. It is obvious that it is good.
Furthermore, the magnet (M32) does not necessarily have to be a ring-shaped magnet, and it is obvious that two or more magnets may be provided independently for each magnetic pole (M33).

また磁性体粒子(M1)等を含む液体に公知のボルテックスのような低周波の機械的振動を与えてもある程度までは磁性体粒子(M1)の溶液中での分散性を改善することが出来る。更に前述のように回転磁界を与えても溶液中での分散性を改善することが出来る。
特に保磁力(Hc)が比較的小さい磁性体粒子(M1)や金属磁性体粒子(M1)などの場合には、交番磁界による消磁や回転磁界印加の手段を省略し、低周波の機械的振動を与えるだけでも、ある程度までは磁性体粒子(M1)の溶液中での分散性を改善することが出来る。
Moreover, even if low frequency mechanical vibration such as a known vortex is applied to a liquid containing magnetic particles (M1) etc., the dispersibility of the magnetic particles (M1) in the solution can be improved to some extent. . Furthermore, dispersibility in the solution can be improved even if a rotating magnetic field is applied as described above.
Especially in the case of magnetic particles (M1) or metal magnetic particles (M1) with a relatively small coercive force (Hc), the means of demagnetization by an alternating magnetic field and the application of a rotating magnetic field are omitted, and low-frequency mechanical vibrations are used. Even if it gives only, it can improve the dispersibility in the solution of a magnetic substance particle (M1) to some extent.

また図8のようにピペット状の液体容器(M22,M36)の上部にピストン(M23)を設け、
ピストン(M23)を上下させてピペット状の液体容器(M22,M36)内部の液体を吐出したり、
ピペット状の液体容器(M22,M36)内部に液体を吸い上げたり出来るようにすることも出来
る。本発明で用いられる液体容器(M22,M36)は、このようなピペット状の液体容器(M22
であってもよい。
従って本発明で用いられる総ての液体容器(M22,M36)の形状は、本明細書と図面に示された液体容器(M22,M36)の形状に限定されるものでなく、液体一般を収納したり、排出したり出来る総ての容器形状及びパイプと送液ポンプ、バルブ等を含むことは明白である
Also, as shown in FIG. 8, a piston (M23) is provided at the top of the pipette-like liquid container (M22, M36),
The piston (M23) is moved up and down to discharge the liquid inside the pipette-like liquid container (M22, M36)
The liquid can be sucked into the pipette-like liquid container (M22, M36). The liquid containers (M22, M36) used in the present invention are such pipette-shaped liquid containers (M22
It may be.
Therefore, the shape of all the liquid containers (M22, M36) used in the present invention is not limited to the shape of the liquid containers (M22, M36) shown in this specification and the drawings, and contains general liquids. It is obvious that all container shapes and pipes, liquid pumps, valves, etc. that can be discharged and discharged are included.

また磁性体粒子(M1、M12)は純鉄、ニッケル、コバルト、センダスト、珪素含有鉄、Fe・Si・Al合金、Fe・Ni合金、Fe・Co合金、Fe・Cr合金等の金属磁性材料又はマグネタイト(Feフェライト)、Co被覆したマグネタイト、γ−へマタイト、Co被覆したγ−へマタイトあるいはMnフェライト,Niフェライト,Coフェライト,Cuフェライト、Mgフェライト、Liフェライト等の単一フェライト又はそれらとZnフェライトとの複合フェライトか、Baフェライト、Stフェライト、二酸化クロム、及び磁性細菌が造るバイオマグネタイトの内、少なくとも一種類の磁性材料を含む磁性体粒子(M1、M12)であってもよいことは明白である。これらは総て磁界によって駆動できるからである。 Magnetic particles (M1, M12) are pure iron, nickel, cobalt, sendust, silicon-containing iron, Fe / Si / Al alloys, Fe / Ni alloys, Fe / Co alloys, Fe / Cr alloys, or other metal magnetic materials or Magnetite (Fe ferrite), Co-coated magnetite, γ-hematite, Co-coated γ-hematite or single ferrite such as Mn ferrite, Ni ferrite, Co ferrite, Cu ferrite, Mg ferrite, Li ferrite or Zn and those It is obvious that it may be a composite ferrite with ferrite, or magnetic particles (M1, M12) containing at least one kind of magnetic material among Ba ferrite, St ferrite, chromium dioxide, and biomagnetite produced by magnetic bacteria. It is. This is because all of these can be driven by a magnetic field.

磁性体粒子(M1)の表面を被覆する物質(M2)がシリカ、ニッケル、コバルト、または任意の無機ポリマー例えばアルミナゲル、チタニアゲル等の無機物質またはニッケルニトリロ3酢酸樹脂、その他のニッケルキレート樹脂等の樹脂や、任意の有機ポリマー、たとえばカゼイン、ゼラチン、卵白アルブミン、BSA、ポリスチレン、アクリルアミド、各種界面活性剤あるいはストレプトアビジン、ビオチン、レクチン、ヒスチジン、グルタチオン、フォスフォリルコリンなどの有機物質の内、少なくとも一種類を含む物質であるか、またはシラン化した磁性体粒子(M1)の表面にビオチンを固定し、固定したビオチンにはストレプトアビジンを固定してビオチン化した生体構成物質(M3)を捕集できるようにするか、あるいはビオチン化又はヒスチジン化したDNA、cDNA、mRNA、tRNA、rRNA、抗体、酵素、蛋白質、または細胞やリポゾームや、その他公知のアフィニティタグをつけた生体構成物質(M3)と結合する物質例えばグルタチオンSトランスフェラーゼ、プロテインA、マルト−ス結合蛋白質、等の内、少なくとも一種類を含む物質であるか、又は公知の液体クロマトグラフに用いる分離材、吸着材、イオン交換樹脂例えばジエチルアミノエチル基を持つものやカルボキシメチルセルロース、DEAEまたは公知のアフィニティ液体クロマトグラフに用いる公知のアフィニティ物質、及び疎水性リガンドであるアルキル基やフェニル基を導入したアガロースなどのゲル支持体やメソポーラスシリカ等のメソポーラス材料あるいはゼオライト等の内、少なくとも一種類の物質を含む物質である場合、
一例を挙げるとシリカはDNAと結合し、ストレプトアビジンはビオチン化したm−RNAと結合し、ニッケルやニッケルニトリロ3酢酸樹脂はヒスチジンタグを持った蛋白質と結合する。またまた磁性体粒子(M1)の表面をビオチンで被覆し、その上にストレプトアビジンをつけた磁性体粒子はビオチン化した生体構成物質(M3)を捕捉できる。また磁性体粒子(M1)の表面のヒスチジン部分に結合したストレプトアビジンは、ヒスチジン化した蛋白質に結合したビオチンと結合する。その他のニッケルキレート樹脂もまたヒスチジンタグを持った蛋白質と結合しやすい。また磁性体粒子(M1)の表面のビオチン化した抗体は抗原と結合する。グルタチオンはグルタチオンーSトランスフェラーゼ化した蛋白質と結合する。またレクチンは糖鎖やマルトース結合蛋白質を認識しこれに結合しやすい。さらに各種抗体にもそれぞれ結合しやすい抗原蛋白質があり、これらに結合する。ある種の酵素にもそれぞれ結合しやすい蛋白質があり、これらに結合する。
The substance (M2) that coats the surface of the magnetic particles (M1) is silica, nickel, cobalt, or any inorganic polymer such as alumina gel, titania gel or other inorganic substance such as nickel nitrilotriacetic acid resin, other nickel chelate resins, etc. Resin and any organic polymer such as casein, gelatin, ovalbumin, BSA, polystyrene, acrylamide, various surfactants or streptavidin, biotin, lectin, histidine, glutathione, phosphorylcholine, and other organic substances. Biotin is immobilized on the surface of a magnetic substance particle (M1) that is a kind of substance or silanized, and biotinylated biological substance (M3) can be collected by immobilizing streptavidin to the immobilized biotin Or biotinylation or hiss Ginylated DNA, cDNA, mRNA, tRNA, rRNA, antibody, enzyme, protein, or a substance that binds to cells, liposomes, or other biological constituents with a known affinity tag (M3) such as glutathione S transferase, protein A A separation material, adsorbent, ion exchange resin such as those having a diethylaminoethyl group, carboxymethylcellulose, DEAE, which is a substance containing at least one of maltose-binding protein, etc. Alternatively, at least one of a known affinity substance used in a known affinity liquid chromatograph and a gel support such as agarose having an alkyl group or phenyl group as a hydrophobic ligand, a mesoporous material such as mesoporous silica, or zeolite. It is a substance that contains If,
For example, silica binds to DNA, streptavidin binds to biotinylated m-RNA, and nickel or nickel nitrilotriacetic acid resin binds to a protein having a histidine tag. The magnetic particles (M1) coated with biotin and streptavidin coated thereon can capture biotinylated biological components (M3). The streptavidin bound to the histidine moiety on the surface of the magnetic particle (M1) binds to biotin bound to the histylated protein. Other nickel chelating resins are also likely to bind to proteins with histidine tags. The biotinylated antibody on the surface of the magnetic particle (M1) binds to the antigen. Glutathione binds to glutathione-S transferase protein. Lectins can easily recognize and bind to sugar chains and maltose-binding proteins. Furthermore, there are antigen proteins that are easily bound to various antibodies, and bind to these. Some enzymes also bind easily to certain enzymes and bind to them.

また磁性体粒子(M1)の表面を被覆する物質(M2)がメソポーラスシリカ等のメソポーラス材料あるいはゼオライト等であるとき、蛋白質は1〜10nmの大きさであるので、例えば6nmの細孔を持つメソポーラス材料で被覆した磁性体粒子(M1)は6nm以下の蛋白質を総て細孔に吸着し収納できる。そこでこの磁性体粒子(M1)を排出した後、7nmの細孔を持つメソポーラス材料で被覆した磁性体粒子(M1)を用いると6nmより大きく7nmまでの蛋白質を7nmの細孔に吸着し収納できる。
その結果残液には7nmより大きい蛋白質が存在することになる。
7nmの細孔に蛋白質を吸着している磁性体粒子(M1)を磁気吸引力(M4)を用いて残液から分離し、吸着されている蛋白質を脱着させれば、6nmより大きく7nmまでの蛋白質を獲得することが出来る。
When the substance (M2) that coats the surface of the magnetic particles (M1) is a mesoporous material such as mesoporous silica or zeolite, the protein has a size of 1 to 10 nm. The magnetic particles (M1) coated with the material can absorb and store all proteins of 6 nm or less in the pores. Therefore, after discharging the magnetic particles (M1) and using magnetic particles (M1) coated with a mesoporous material having 7 nm pores, proteins larger than 6 nm and up to 7 nm can be adsorbed and stored in the 7 nm pores. .
As a result, proteins larger than 7 nm are present in the remaining liquid.
If magnetic particles (M1) adsorbing protein in 7 nm pores are separated from the residual liquid using magnetic attraction force (M4), and the adsorbed protein is desorbed, it will be larger than 6 nm to 7 nm. You can acquire protein.

また公知の液体クロマトグラフに用いる分離材、吸着材、イオン交換樹脂例えばジエチルアミノエチル基を持つものやカルボキシメチルセルロース、DEAEまたは公知のアフィニティ液体クロマトグラフに用いる公知のアフィニティ物質、及び疎水性リガンドであるアルキル基やフェニル基を導入したアガロースなどのゲル支持体など2種類以上の性質の異なる表面を被覆する物質(M2)によって被覆された磁性体粒子(M1)を順番又は同時に用いると従来の液体クロマトグラフと類似の分離・精製方法により生体構成物質(M3)の分離・精製を行うことができるのは明白である。つまり従来の液体クロマトグラフではカラムの非磁性体ビーズに担持させた前記被覆する物質(M2)により起こっている精製作用を磁性体粒子(M1)の表面を被覆する物質(M2)によって起こすことができるからである。   In addition, separation materials, adsorbents, ion exchange resins such as those having a diethylaminoethyl group, carboxymethylcellulose, DEAE, known affinity substances used in known affinity liquid chromatographs, and alkyls that are hydrophobic ligands When using magnetic particles (M1) coated with a substance (M2) that coats two or more different surfaces, such as a gel support such as agarose with a group or a phenyl group, in order or simultaneously, conventional liquid chromatography It is clear that the biological component (M3) can be separated and purified by a separation and purification method similar to the above. In other words, in the conventional liquid chromatograph, the purification effect caused by the coating substance (M2) supported on the non-magnetic beads of the column can be caused by the substance (M2) that coats the surface of the magnetic particles (M1). Because it can.

しかも磁性体粒子(M1)を用いた本技術のほうが液体クロマトグラフよりも遥かに分離・精製速度が速い。なぜなら生体構成物質(M3)を含む液中に磁性体粒子(M1)が自由に分散しているので、磁性体粒子(M1)と生体構成物質(M3)の遭遇確率が液体クロマトグラフよりも遥かに高いからである。また液体クロマトグラフのようにカラム充填剤の隙間を液体が極めて遅い速度でしみわたるように流れ下って行く訳ではない。
磁性体粒子(M1)を用いた本技術はさらさらした液体を扱うので、流れ速度が速いからである。したがって2種類以上の性質の異なる表面を被覆する物質(M2)によって被覆された磁性体粒子(M1)を順番に用いても分離・精製速度は問題になるほどは低下しない。
このように2種類以上の性質の異なる表面を被覆する物質(M2)によって被覆された磁性体粒子(M1)を順番に用いることによりアフィニティタグを着けない生体構成物質(M3)を捕捉し分離・精製する事が出来る。また上記以外にも請求項12に記載された2種類以上の性質の異なる表面を被覆する物質(M2)によって被覆された磁性体粒子(M1)を順番に用いることも、また同時に用いることも出来るのは言うまでも無い。
Moreover, this technology using magnetic particles (M1) has a much faster separation / purification speed than liquid chromatograph. Because the magnetic particles (M1) are freely dispersed in the liquid containing the biological component (M3), the encounter probability between the magnetic particles (M1) and the biological component (M3) is far greater than that of the liquid chromatograph. Because it is very expensive. In addition, unlike a liquid chromatograph, the liquid does not flow down through the gaps between the column packing materials so that the liquid spills at an extremely low speed.
This is because the present technology using magnetic particles (M1) handles a free flowing liquid and thus has a high flow velocity. Therefore, even if the magnetic particles (M1) coated with the substance (M2) that coats two or more kinds of different surfaces are used in order, the separation / purification speed does not decrease so much as to be a problem.
In this way, by using the magnetic particles (M1) coated with two or more types of substances (M2) that coat different surfaces in order, the biological component (M3) that does not have an affinity tag can be captured and separated. It can be purified. In addition to the above, the magnetic particles (M1) coated with the substance (M2) covering the surface having two or more kinds of different properties described in claim 12 can be used in order or simultaneously. Needless to say.

また図1(b)のように磁性体粒子(M1)の表面を被覆する時、まず特定の有機ポリマー(M49)で磁性体粒子(M1)の表面を被覆し、その後上に列記した表面を被覆する物質(M2)で被覆し3層構造の粒子としてもよい。特定の有機ポリマー(M49)はアガロースゲル、アクリルアミドポリマー、ポリスチロール、エポキシ、カゼイン、ゼラチン、卵白アルブミン、BSA、各種界面活性剤他、磁性体粒子(M1)の表面を被覆できる有機ポリマーならば何でもよい。   When coating the surface of the magnetic particles (M1) as shown in FIG. 1B, the surface of the magnetic particles (M1) is first coated with a specific organic polymer (M49), and then the surfaces listed above are coated. Three-layered particles may be coated with the substance to be coated (M2). The specific organic polymer (M49) can be any agarose gel, acrylamide polymer, polystyrene, epoxy, casein, gelatin, ovalbumin, BSA, various surfactants, or any other organic polymer that can coat the surface of magnetic particles (M1). Good.

また無機ポリマー(M49)例えばシリカゲル、アルミナゲル、チタニアゲル等の無機ポリマーも用いうる。また上記のように3層構造の磁性体粒子(M1)を造る代わりに、図1(c)のようにこれらの有機ポリマー又は無機ポリマーと、上に列記した表面を被覆する物質(M2)を混合した物質で磁性体粒子の表面を被覆してもよい事は明白である。   Further, inorganic polymers (M49) such as silica gel, alumina gel, titania gel and the like can also be used. Instead of producing magnetic particles (M1) having a three-layer structure as described above, these organic polymers or inorganic polymers and substances (M2) covering the surface listed above are used as shown in FIG. 1 (c). Obviously, the surface of the magnetic particles may be coated with the mixed substance.

上記以外にも磁性体粒子(M1)の表面を被覆する物質(M2)は数多くあり、今後発見されるものも含めて総てを列挙すること省略しても、本発明の本質にはいささかの影響もない。総ての生体蛋白質、合成蛋白質又は各種のタグを有する蛋白質、タグを持たない蛋白質、抗体、酵素、DNA、cDNA、mRNA、tRNA、rRNAに選択的に結合しやすい物質は総て本発明の磁性体粒子(M1)の表面を被覆する物質(M2)として用い得るのは明白であり、本発明の技術範囲に属することも明白である。   In addition to the above, there are many substances (M2) that coat the surface of the magnetic particles (M1), and even if it is omitted to list all of them including those that will be discovered in the future, there is some essence in the essence of the present invention. There is no effect. All biological proteins, synthetic proteins, proteins with various tags, proteins without tags, antibodies, enzymes, DNA, cDNA, mRNA, tRNA, and rRNA are all substances that easily bind selectively. It is obvious that it can be used as the substance (M2) for coating the surface of the body particles (M1), and it is also clear that it belongs to the technical scope of the present invention.

また総ての生体細胞やリポゾームの場合も同様であり、それぞれの生体細胞やリポゾームを認識してこれに選択的に結合しやすい物資をすべて列挙することを省略しても、本発明の本質にはいささかの影響もない。これらの生体細胞やリポゾームに選択的に結合しやすい物質は今後発見されるものも含めて、総て本発明の磁性体粒子(M1)の表面を被覆する物質(M2)として用い得るのは明白であり、本発明の技術範囲に属することは明白である。   The same applies to all living cells and liposomes, and the essence of the present invention can be omitted even if it is omitted to list all the materials that easily recognize and selectively bind to each living cell or liposome. There is no influence at all. It is clear that all of these substances that easily bind selectively to living cells and liposomes, including those to be discovered in the future, can be used as substances (M2) that coat the surface of the magnetic particles (M1) of the present invention. It is clear that it belongs to the technical scope of the present invention.

また磁性体粒子(M1)の表面を被覆する物質(M2)で被覆した図1(a)のような2層構造の磁性体粒子の代わりに、蛋白質やDNA、cDNA、mRNA、tRNA、rRNA、生体細胞やリポゾームのような生体構成物質(M3)を選択的に認識してそれらに結合する物質、即ち請求項12で列記した物質(M2)と磁性体粒子(M1)を、必要なら特定の多孔質・有機ポリマー(M49)例えばアガロースゲル、アクリルアミドポリマー、ポリスチロール、エポキシ、カゼイン、ゼラチン、卵白アルブミン、BSA、各種界面活性剤他のバインダーや、多孔質・無機ポリマー(M49)例えばシリカゲル、アルミナゲル、チタニアゲル等の無機ポリマーをバインダーとして混合した図1(c)のような混合構造の磁性体粒子(M12)か、または図1(a)のような2層構造の磁性体粒子(M1)複数個を特定の多孔質・有機ポリマー又は無機ポリマー(M49)をバインダーとして接着した同じく図1(c)のような混合構造の磁性体粒子(M12)を用いることも出来る。生体構成物質(M3)は上記多孔質バインダーの隙間に入って行き、請求項12で列記した物質(M2)に吸着性のあるものは物質(M2)に吸着する。
また上記磁性体粒子(M1)の表面を被覆する物質(M2)で被覆した磁性体粒子の代わりに、アガロースゲルとニッケルニトリロ3酢酸樹脂またはその他のニッケルキレート樹脂と磁性体粒子を混合または結合させた物質で造った磁性体粒子(M12)を用い、ヒスチジンタグを持った蛋白質を磁性体粒子(M12)の表面に結合させることができる。
In addition, instead of the two-layered magnetic particles as shown in FIG. 1 (a) coated with the substance (M2) that covers the surface of the magnetic particles (M1), proteins, DNA, cDNA, mRNA, tRNA, rRNA, If necessary, a substance (M2) and a magnetic substance particle (M1) listed in claim 12 are identified if necessary, by selectively recognizing and binding to biological constituents (M3) such as biological cells and liposomes. Porous / organic polymer (M49) such as agarose gel, acrylamide polymer, polystyrene, epoxy, casein, gelatin, ovalbumin, BSA, various surfactants and other binders, porous / inorganic polymer (M49) such as silica gel, alumina A magnetic particle (M12) having a mixed structure as shown in FIG. 1C mixed with an inorganic polymer such as gel or titania gel as a binder, or a magnetic particle having a two-layer structure as shown in FIG. 1A (M1). ) Magnetic particles (M12) having a mixed structure as shown in FIG. 1C, in which a plurality of specific porous / organic polymers or inorganic polymers (M49) are bonded as binders, can also be used. The biological constituent material (M3) enters the gap between the porous binders, and the substance (M2) listed in claim 12 adsorbs to the substance (M2).
Also, instead of the magnetic particles coated with the substance (M2) covering the surface of the magnetic particles (M1), agarose gel and nickel nitrilotriacetic acid resin or other nickel chelate resin and magnetic particles are mixed or bonded. Using magnetic particles (M12) made of the above substances, a protein having a histidine tag can be bound to the surface of the magnetic particles (M12).

その結果、本発明の技術範囲は磁性体粒子(M1)の表面を被覆する物質(M2)で被覆した磁性体粒子のような2層構造、3層構造の磁性体粒子のみでなく、蛋白質やDNA、cDNA、mRNA、tRNA、rRNA、生体細胞やリポゾームを選択的に認識してそれらに結合する物質と磁性体粒子を、必要ならアガロースゲル他の適当なバインダーをも用いて混合した構造の磁性体粒子(M12)であってもよい事は明白である。 As a result, the technical scope of the present invention is not limited to magnetic particles having a two-layer structure and three-layer structure such as magnetic particles coated with a substance (M2) that covers the surface of magnetic particles (M1), but also proteins and Magnetic structure with a mixture of DNA, cDNA, mRNA, tRNA, rRNA, a substance that selectively recognizes and binds to living cells and liposomes, and magnetic particles, if necessary, using agarose gel or other appropriate binder. Obviously, it may be a body particle (M12).

また磁性体粒子(M1)がNi、Co のような金属であるか、Ni-Znフェライト、NiフェライトのようなNiを含むフェライトの何れかである時、ヒスチジンタグを有する蛋白質内のヒスチジンのイミダゾール基は、これらの磁性体粒子(M1)の表面のNiやCoと結合することは明白である。 Also, when the magnetic particle (M1) is a metal such as Ni or Co or a ferrite containing Ni such as Ni-Zn ferrite or Ni ferrite, imidazole of histidine in a protein having a histidine tag. It is clear that the group binds to Ni or Co on the surface of these magnetic particles (M1).

また表面を被覆する物質(M2)で被覆された2層構造、3層構造の磁性体粒子(M1)又は混合構造の磁性体粒子(M12)が生体構成物質(M3)と結合していない状態にあり、かつ磁性体粒子(M1)又は磁性体粒子(M12)が残留磁化を持っているとき、磁性体粒子(M1)又は磁性体粒子(M12)の残留磁化を、交番磁界を用いて消磁する事により、磁性体粒子(M1)又は磁性体粒子(M12)の溶液中での分散性を改善出来る事も明白である。
表面を被覆する物質(M2)で被覆された2層構造、3層構造の磁性体粒子(M1)又は混合構造の磁性体粒子(M12)が生体構成物質(M3)と結合していない状態とは、生体構成物質(M3)を含む溶液と混合する前において、磁性体粒子(M1)又は磁性体粒子(M12)等を溶液中に分散した状態か、または表面を被覆する物質(M2)で被覆された2層構造の磁性体粒子(M1)又は磁性体粒子(M12)と生体構成物質(M3)の結合を溶液中で切断した状態の磁性体粒子(M1)又は磁性体粒子(M12)を意味する。
In addition, the two-layered, three-layered magnetic particles (M1) or the mixed-structured magnetic particles (M12) coated with the surface coating material (M2) are not bound to the biological component (M3). When the magnetic particles (M1) or magnetic particles (M12) have residual magnetization, the residual magnetization of the magnetic particles (M1) or magnetic particles (M12) is demagnetized using an alternating magnetic field. It is apparent that the dispersibility of the magnetic particles (M1) or magnetic particles (M12) in the solution can be improved by doing so.
The two-layered, three-layered magnetic particles (M1) coated with the surface coating material (M2) or the mixed-structured magnetic particles (M12) are not bonded to the biological component (M3). Is a state in which the magnetic particles (M1) or magnetic particles (M12) are dispersed in the solution before mixing with the solution containing the biological constituent (M3), or the surface coating material (M2). Magnetic particles (M1) or magnetic particles (M12) in a state in which the bonds between the coated magnetic particles (M1) or magnetic particles (M12) and the biological constituent (M3) are cut in solution. Means.

また図13に示す自動化装置の一つの構成は次の通りである。
生体構成物質(M3)を含む原料タンク(M37)内の液体をパイプ(M38)内の一定位置にある液溜(M44)に送り、次に同じ液溜(M44)に磁性体粒子(M1、M12)を含む液体(M40)と細胞膜を溶かすBuffer1(M39)を送り、上記液溜(M44)にある生体構成物質(M3)と磁性体粒子(M1、M12)等を含む液体(M40)に、下記のいずれかの手段(M45)即ち、
(A)漸増・漸減する直流磁界、交番磁界又は回転磁界を印加して磁性体粒子(M1,M12)を捕捉した後、消磁する手段、、
(B)漸増・漸減する回転磁界を印加して磁性体粒子(M1、M12)等を攪拌する手段、
(C)低周波の機械的振動(ボルテックスとして公知な振動)を与える手段、
の内、少なくとも(A),(B)の内一つを含む手段を用いて磁性体粒子(M1、M12)等を液体中に分散させて、生体構成物質(M3)と磁性体粒子(M1、M12)を結合させ、
次に液溜(M44)の外壁面に磁気吸引力(M4)を作用させ、液体容器(M22)としての液溜(M44)の内壁面に生体構成物質(M3)と結合した磁性体粒子(M1、M12)を吸着することにより、磁性体粒子(M1、M12)と結合した生体構成物質(M3)を捕捉し、捕捉した状態で液溜(M44)内の残りの液体を排出し、次に洗浄液を液溜(M44)内に流して磁性体粒子(M1、M12)と結合した生体構成物質(M3)以外の夾雑物を少なくとも一回以上洗い流した後、液溜(M44)内に磁性体粒子(M1、M12)と生体構成物質(M3)の結合を外す液体(M31)を送り、磁気吸引力(M4)をゼロにして、液溜(M44)内にある生体構成物質(M3)と磁性体粒子(M1、M12)等を含む液体に、下記のいずれかの手段(M45)即ち、
(A)漸増・漸減する直流磁界、交番磁界又は回転磁界を印加して磁性体粒子(M1,M12)を捕捉した後、消磁する手段、、
(B)漸増・漸減する回転磁界を印加して磁性体粒子(M1、M12)等を攪拌する手段、
(C)低周波の機械的振動(ボルテックスとして公知な振動)を与える手段、
の内、少なくとも(A),(B)の内一つを含む手段を用いて磁性体粒子(M1、M12)等を液体(M31)中に再分散させて磁性体粒子(M1、M12)と生体構成物質(M3)の結合を外した後、液溜(M44)の外壁面に再び磁気吸引力(M4)を作用させ、液溜(M44)の内壁面に磁性体粒子(M1、M12)のみを吸着し、液溜(M44)内の液体を排出することにより、排出された液体中に分散している生体構成物質(M3)を獲得することを特徴とする、生体構成物質の自動分離・精製装置を得ることが出来る。
ここでBuffer1(M39)に示す容器には、細胞膜を溶かすBuffer(緩衝液)、Buffer2(M41)に示す容器には、塩類を洗浄するBuffer(緩衝液) 、Buffer3(M42)に示す容器には夾雑物を洗い流すBuffer 、Buffer4(M43)に示す容器には磁性体粒子(M1、M12)と生体構成物質(M3)の結合を外すBuffer(緩衝液)(M31)等を入れておき、上記の手順に従って液溜(M44)に供給する。また図13では送液ポンプ、バルブ類は省略し図示していない。
図13の磁界発生装置等(M45)の一例を図20に示す。図20に示す磁石(M32)をモータ軸(M35)に取り付ける。磁極(M33)は図20(a)の液溜(M44)の外側面に対向するように設置する。磁極(M33)は始めは液溜(M44)の外側面に近接し静止しており、磁極(M33)の直流磁界による磁気吸引力(M4)により、液溜(M44)中の図示しない磁性体粒子は液溜(M44)の内側面に捕捉される。次にモータ(M34)を回転させつつ、磁石(M32)を矢印の方向に次第に液溜(M44)から遠ざけると、液溜(M44)中の磁性体粒子に減衰する交番磁界・回転磁界を作用させ、消磁出来るだけでなく、回転磁界(M8)の作用により、磁性体粒子を液溜(M44)中の液体に分散し攪拌出来る効果がある。図20(a)では図20の(b)に示す装置を2台設置し液溜(M44)の両外側面に回転磁界(M8)を作用させているが、2台のモータは互いに逆回転するようにしても良い。また2個の磁石(M32)の磁極(M33)の数は必ずしも同じでなくても良い。また図20の(b)に示す装置を1台用いて液溜(M44)の片方の外側面のみに回転磁界(M8)を作用させても良いことは明白である。図20の実施例は図5、図9に示す実施例と原理的に同一であることも明白である。
One configuration of the automation apparatus shown in FIG. 13 is as follows.
The liquid in the raw material tank (M37) containing the biological component (M3) is sent to the liquid reservoir (M44) at a fixed position in the pipe (M38), and then the magnetic particles (M1, The liquid (M40) containing M12) and Buffer1 (M39) that dissolves the cell membrane are sent to the liquid (M40) containing the biological constituents (M3) and magnetic particles (M1, M12) in the liquid reservoir (M44). , Any of the following means (M45):
(A) Means to demagnetize after capturing magnetic particles (M1, M12) by applying a gradually increasing / decreasing DC magnetic field, alternating magnetic field or rotating magnetic field,
(B) Means for stirring magnetic particles (M1, M12), etc. by applying a gradually increasing / decreasing rotating magnetic field,
(C) means for applying low frequency mechanical vibration (vibration known as vortex),
Among them, the magnetic particles (M1, M12) and the like are dispersed in a liquid using a means including at least one of (A) and (B), so that the biological constituent (M3) and the magnetic particles (M1 , M12)
Next, a magnetic attractive force (M4) is applied to the outer wall surface of the liquid reservoir (M44), and the magnetic particles (M3) bound to the biological constituent (M3) on the inner wall surface of the liquid reservoir (M44) as the liquid container (M22) M1 and M12) are adsorbed to capture the biological component (M3) bound to the magnetic particles (M1 and M12), and the remaining liquid in the reservoir (M44) is discharged in the captured state. The washing liquid is poured into the liquid reservoir (M44), and at least one contaminant other than the biological material (M3) bound to the magnetic particles (M1, M12) is washed away at least once, and then magnetized in the liquid reservoir (M44). The liquid (M31) that removes the bond between the body particles (M1, M12) and the biological constituent (M3) is sent, the magnetic attractive force (M4) is zeroed, and the biological constituent (M3) in the liquid reservoir (M44) And a liquid containing magnetic particles (M1, M12), etc., one of the following means (M45):
(A) Means to demagnetize after capturing magnetic particles (M1, M12) by applying a gradually increasing / decreasing DC magnetic field, alternating magnetic field or rotating magnetic field,
(B) Means that stirs the magnetic particles (M1, M12) etc. by applying a gradually increasing / decreasing rotating magnetic field,
(C) means for applying low frequency mechanical vibration (vibration known as vortex),
Among them, the magnetic particles (M1, M12) are re-dispersed in the liquid (M31) by using means including at least one of (A), (B) and the magnetic particles (M1, M12). After the binding of the biological component (M3) is removed, the magnetic attractive force (M4) is applied again to the outer wall surface of the liquid reservoir (M44), and the magnetic particles (M1, M12) are applied to the inner wall surface of the liquid reservoir (M44). Automatic separation of biological constituents characterized in that the biological constituents (M3) dispersed in the discharged liquid are obtained by adsorbing only the liquid and discharging the liquid in the liquid reservoir (M44) -A purification device can be obtained.
Here, the container shown in Buffer 1 (M39) contains a buffer (buffer solution) that dissolves the cell membrane, the container shown in Buffer 2 (M41) contains a buffer (buffer solution) for washing salts, and the container shown in Buffer 3 (M42). In the container shown in Buffer 4 and Buffer 4 (M43) to wash away contaminants, put the buffer (M31) etc. that removes the binding between the magnetic particles (M1 and M12) and the biological constituent (M3), etc. Supply to the reservoir (M44) according to the procedure. In FIG. 13, the liquid feed pump and valves are omitted and not shown.
An example of the magnetic field generator and the like (M45) of FIG. 13 is shown in FIG. The magnet (M32) shown in FIG. 20 is attached to the motor shaft (M35). The magnetic pole (M33) is installed so as to face the outer surface of the liquid reservoir (M44) in FIG. The magnetic pole (M33) is initially close to the outer surface of the liquid reservoir (M44) and is stationary, and a magnetic body (not shown) in the liquid reservoir (M44) is generated by the magnetic attraction (M4) due to the DC magnetic field of the magnetic pole (M33). The particles are trapped on the inner surface of the liquid reservoir (M44). Next, while rotating the motor (M34), move the magnet (M32) gradually away from the liquid reservoir (M44) in the direction of the arrow, and an alternating magnetic field / rotating magnetic field will be applied to the magnetic particles in the liquid reservoir (M44). The magnetic particles can be dispersed and stirred in the liquid in the liquid reservoir (M44) by the action of the rotating magnetic field (M8). In FIG. 20 (a), two devices shown in FIG. 20 (b) are installed and a rotating magnetic field (M8) is applied to both outer surfaces of the liquid reservoir (M44). You may make it do. Further, the number of magnetic poles (M33) of the two magnets (M32) is not necessarily the same. Further, it is obvious that the rotating magnetic field (M8) may be applied to only one outer surface of the liquid reservoir (M44) by using one device shown in FIG. 20 (b). It is also apparent that the embodiment of FIG. 20 is identical in principle to the embodiments shown in FIGS.

また図13に示す自動化装置の他の構成は次の通りである。
生体構成物質(M3)を含む原料タンク(M37)に細胞膜を溶かすBuffer(緩衝液)を予め混合した後、混合液をパイプ(M38)内の一定位置にある液溜(M44)に送り、次に液溜(M44)に磁性体粒子(M1、M12)を含む液体を送り、液溜(M44)にある生体構成物質(M3)と磁性体粒子(M1、M12)等を含む液体に、下記のいずれかの手段(M45)即ち、
(A)漸増・漸減する直流磁界、交番磁界又は回転磁界を印加して磁性体粒子(M1,M12)を捕捉した後、消磁する手段、
(B)漸増・漸減する回転磁界を印加して磁性体粒子(M1、M12)等を攪拌する手段、
(C)低周波の機械的振動(ボルテックスとして公知な振動)を与える手段、
の内、少なくとも(A),(B)の内一つを含む手段を用いて磁性体粒子(M1、M12)等を液体中に分散させて、生体構成物質(M3)と磁性体粒子(M1、M12)を結合させ、
次に液溜(M44)の外壁面に磁気吸引力(M4)を作用させ、液体容器(M22)としての液溜(M44)の内壁面に生体構成物質(M3)と結合した磁性体粒子(M1、M12)を吸着することにより、磁性体粒子(M1、M12)と結合した生体構成物質(M3)を捕捉し、捕捉した状態で液溜(M44)内の残りの液体を排出し、次に洗浄液を液溜(M44)内に流して磁性体粒子(M1、M12)と結合した生体構成物質(M3)以外の夾雑物を少なくとも一回以上洗い流した後、液溜(M44)内に磁性体粒子(M1、M12)と生体構成物質(M3)の結合を外す液体(M31)を送り、磁気吸引力(M4)をゼロにして、液溜(M44)内にある生体構成物質(M3)と磁性体粒子(M1、M12)等を含む液体に、下記のいずれかの手段(M45)即ち、
(A)漸増・漸減する直流磁界、交番磁界又は回転磁界を印加して磁性体粒子(M1,M12)を捕捉した後、消磁する手段、、
(B)漸増・漸減する回転磁界を印加して磁性体粒子(M1、M12)等を攪拌する手段、
(C)低周波の機械的振動(ボルテックスとして公知な振動)を与える手段、
の内、少なくとも(A),(B)の内一つを含む手段を用いて磁性体粒子(M1、M12)等を液体(M31)中に再分散させて磁性体粒子(M1、M12)と生体構成物質(M3)の結合を外した後、液溜(M44)の外壁面に再び磁気吸引力(M4)を作用させ、液溜(M44)の内壁面に磁性体粒子(M1、M12)のみを吸着し、液溜(M44)内の液体を排出することにより、排出された液体中に分散している生体構成物質(M3)を獲得することを特徴とする、生体構成物質の自動分離・精製装置を得ることが出来る。
Another configuration of the automation apparatus shown in FIG. 13 is as follows.
After mixing the buffer (buffer solution) that dissolves the cell membrane in the raw material tank (M37) containing the biological constituent (M3) in advance, the mixed solution is sent to the liquid reservoir (M44) at a fixed position in the pipe (M38). The liquid containing the magnetic particles (M1, M12) is sent to the liquid reservoir (M44), and the liquid containing the biological constituent (M3) and magnetic particles (M1, M12) in the liquid reservoir (M44) Any means (M45) of
(A) Means to demagnetize after capturing magnetic particles (M1, M12) by applying gradually increasing / decreasing DC magnetic field, alternating magnetic field or rotating magnetic field,
(B) Means for stirring magnetic particles (M1, M12), etc. by applying a gradually increasing / decreasing rotating magnetic field,
(C) means for applying low frequency mechanical vibration (vibration known as vortex),
Among them, the magnetic particles (M1, M12) and the like are dispersed in a liquid using a means including at least one of (A) and (B), so that the biological constituent (M3) and the magnetic particles (M1 , M12)
Next, a magnetic attractive force (M4) is applied to the outer wall surface of the liquid reservoir (M44), and the magnetic particles (M3) bound to the biological constituent (M3) on the inner wall surface of the liquid reservoir (M44) as the liquid container (M22) ( M1 and M12) are adsorbed to capture the biological component (M3) bound to the magnetic particles (M1 and M12), and the remaining liquid in the reservoir (M44) is discharged in the captured state. The washing liquid is poured into the liquid reservoir (M44), and at least one contaminant other than the biological material (M3) bound to the magnetic particles (M1, M12) is washed away at least once, and then magnetized in the liquid reservoir (M44). The liquid (M31) that removes the bond between the body particles (M1, M12) and the biological constituent (M3) is sent, the magnetic attractive force (M4) is zeroed, and the biological constituent (M3) in the liquid reservoir (M44) And a liquid containing magnetic particles (M1, M12), etc., one of the following means (M45):
(A) Means to demagnetize after capturing magnetic particles (M1, M12) by applying a gradually increasing / decreasing DC magnetic field, alternating magnetic field or rotating magnetic field,
(B) Means for stirring magnetic particles (M1, M12), etc. by applying a gradually increasing / decreasing rotating magnetic field,
(C) means for applying low frequency mechanical vibration (vibration known as vortex),
Among them, the magnetic particles (M1, M12) are re-dispersed in the liquid (M31) by using means including at least one of (A), (B) and the magnetic particles (M1, M12). After the binding of the biological component (M3) is removed, the magnetic attractive force (M4) is applied again to the outer wall surface of the liquid reservoir (M44), and the magnetic particles (M1, M12) are applied to the inner wall surface of the liquid reservoir (M44). Automatic separation of biological constituents characterized in that the biological constituents (M3) dispersed in the discharged liquid are obtained by adsorbing only the liquid and discharging the liquid in the liquid reservoir (M44) -A purification device can be obtained.

また請求項1から請求項25に示す生体構成物質の分離・精製装置の内、少なくとも一つの装置を用いて生体構成物質の分離・精製を行うことを特徴とする生体構成物質の分離・精製方法を構成できる。
更に請求項1から請求項25に示す生体構成物質の分離・精製装置の内、少なくとも一つの装置と製法を用いて生体構成物質の分離・精製を行った結果得られたことを特徴とする、請求項16に示す生体構成物質(M3)を得る事ができる。
A separation / purification method for a biological constituent material, wherein the biological constituent material separation / purification is performed using at least one of the biological constituent separation / purification devices shown in claims 1 to 25. Can be configured.
Further, the bioconstituent material separation / purification apparatus according to claims 1 to 25 is characterized in that it is obtained as a result of separation / purification of the bioconstituent substance using at least one apparatus and manufacturing method. The biological constituent (M3) shown in claim 16 can be obtained.

本発明は、以上説明したように構成されているので、以下に記載されるような効果を有する。   Since the present invention is configured as described above, it has the following effects.

本発明では、磁気吸引力により吸着し捕捉した磁性体粒子の残留磁化を、漸増・漸減する交番磁界を用いて消磁する事により生体構成物質と結合した磁性体粒子の溶液中での分散性を改善できる効果がある。   In the present invention, the dispersibility in the solution of the magnetic particles combined with the biological constituents is reduced by demagnetizing the residual magnetization of the magnetic particles attracted and captured by the magnetic attractive force using an alternating magnetic field that gradually increases and decreases. There is an effect that can be improved.

このように消磁された磁性体粒子はもはや残留磁化(Br)を持たず、粒子磁石とはならないため、互いに吸引しあうことがなく、磁性体粒子を溶液中に分散することは容易であることは明白である。 The demagnetized magnetic particles no longer have residual magnetization (Br) and do not become particle magnets. Therefore, the magnetic particles are not attracted to each other, and it is easy to disperse the magnetic particles in the solution. Is obvious.

このため従来のように夾雑物を除去するために、細いピペット等を用いて吸引、吐出を繰り返し、磁性体粒子を含む液を強制的に再分散させる必要がなくなるので、生体構成物質を損傷することがなく、精製の純度を上げることもでき、工程も短縮できると言う効果がある。また従来は磁性体粒子の残留磁化(Br)を小さくするため永久磁石と磁性体粒子の距離を離して磁性体粒子にかかる磁界を弱め、磁性体粒子に残る残留磁化(Br)を小さくしようとしていたが、このような制御は永久磁石の磁極の強さのばらつきと、距離の二乗に反比例する磁界強度の影響を受け、磁性体粒子にかかる磁界の強さがばらつくため、極めて微妙な制御を必要としていた。また磁界を弱めると充分に磁性体粒子を捕集できず、精製品に磁性体粒子の混入を招いていた。しかし本発明によりこのような問題を回避することができる。   For this reason, in order to remove impurities as in the conventional case, it is not necessary to repeatedly re-disperse the liquid containing magnetic particles using a thin pipette or the like, thereby damaging the biological constituents. In other words, the purity of the purification can be increased, and the process can be shortened. Conventionally, in order to reduce the remanent magnetization (Br) of the magnetic particles, the magnetic field applied to the magnetic particles is weakened by increasing the distance between the permanent magnet and the magnetic particles, so that the residual magnetization (Br) remaining on the magnetic particles is reduced. However, this kind of control is affected by variations in the strength of the magnetic poles of the permanent magnet and the magnetic field strength that is inversely proportional to the square of the distance, and the strength of the magnetic field applied to the magnetic particles varies. I needed it. Further, when the magnetic field is weakened, the magnetic particles cannot be sufficiently collected, and the purified product is mixed with the magnetic particles. However, this problem can be avoided by the present invention.

更に磁性体粒子に残る残留磁化(Br)を小さくするため、保磁力(Hc)と飽和磁束密度(Bm)の小さい高純度の磁性体粒子を用いねばならず、このような高純度の磁性体粒子は極めて高価であった。また上記の高価な磁性体粒子は磁透率が小さく、その為磁界から大きな力を受けないので、永久磁石を用いて捕集するとき、永久磁石をいきなり近づけても磁性体粒子はゆっくり集まってくるので、生体構成物質はこの段階では大きな力を受けず損傷を免れていた。透磁率を小さくするのはまさにこの為なのである。しかしその代わり精製品には磁性体粒子の混入があった。
しかし本発明で用い得る磁性体粒子は比較的低純度で保磁力(Hc)も飽和磁束密度(Bm)も高いが安価であり透磁率も高いもので良い。なぜなら透磁率が高いことにより高々200エルステッド(Oe)の磁界で消磁出来る。その為生体構成物質を損傷せずに消磁できるので残留磁化(Br)の大小は関係ないからである。安価であるが透磁率が高く磁界からは大きな力を受ける筈であるが、消磁に用いる磁界の強さは200エルステッド(Oe)程度と弱くてもよく、この程度なら漸増・漸減する磁界から大きな力は受けず安全であることが解っている。周波数帯を20Hz以下または200Hz以上にすれば更に良いこともわかっている。
Furthermore, in order to reduce the residual magnetization (Br) remaining in the magnetic particles, high-purity magnetic particles having a small coercive force (Hc) and saturation magnetic flux density (Bm) must be used. The particles were very expensive. In addition, the above expensive magnetic particles have a low magnetic permeability, and therefore do not receive a large force from the magnetic field. Therefore, when collecting using a permanent magnet, the magnetic particles are slowly gathered even if the permanent magnet is suddenly brought closer. Therefore, the biological constituents were not damaged at this stage and were not damaged. This is why the permeability is reduced. Instead, however, the refined product contained magnetic particles.
However, the magnetic particles that can be used in the present invention may be those having relatively low purity and high coercive force (Hc) and saturation magnetic flux density (Bm), but are inexpensive and have high magnetic permeability. Because of its high magnetic permeability, it can be demagnetized with a magnetic field of at most 200 Oersted (Oe). For this reason, demagnetization can be performed without damaging the biological constituent material, so the magnitude of remanent magnetization (Br) is irrelevant. Although it is inexpensive but has a high magnetic permeability, it should receive a large force from the magnetic field. However, the strength of the magnetic field used for demagnetization may be as weak as 200 Oersted (Oe). It is understood that it is safe without receiving power. It has also been found that it is better if the frequency band is 20 Hz or less or 200 Hz or more.

また磁性体粒子(M1)としてニッケル、コバルトや鉄、センダストなどの比重の大きい磁性体粒子を用いた場合、従来は残留磁化の為、粒子同士が吸引しあって粒子塊ができたとき、溶液中に分散しにくいだけでなく、その比重が重いのですぐ沈降してしまうという欠点があった。
しかし本発明を用いると残留磁化が無くなるので粒子塊ができず、更に回転磁界や交番磁界等を用いると、前記の金属磁性体粒子は駆動され吸着、脱着を繰り返すため磁性体粒子(M1)間に挟まっている夾雑物は溶液中に放出されて分散しやすくなりまた磁性体粒子自体も分散しやすくなる。また使用後の金属磁性体粒子を回収し炉の中で焼成し有機物を燃焼させ、金属磁性体粒子表面をクリーンにすることも容易であるので、金属磁性体粒子の再利用ができる。
In addition, when magnetic particles with high specific gravity such as nickel, cobalt, iron, sendust, etc. are used as magnetic particles (M1), the particles are attracted to each other due to remanent magnetization. In addition to being difficult to disperse in, it has the disadvantage that it settles immediately because its specific gravity is heavy.
However, if the present invention is used, the residual magnetization disappears, so that the particle agglomeration cannot be formed. Further, when a rotating magnetic field or an alternating magnetic field is used, the metal magnetic particles are driven and repeatedly adsorbed and desorbed, so that the magnetic particles (M1) The contaminants sandwiched between the particles are released into the solution and easily dispersed, and the magnetic particles themselves are also easily dispersed. In addition, it is easy to collect the metal magnetic particles after use and burn them in a furnace to burn organic substances and clean the surface of the metal magnetic particles, so that the metal magnetic particles can be reused.

また磁性体粒子(M1)の直径を小さく出来る限界は次の通りである。即ち粒子一つが単磁区構造となって、もはや粒子の中に磁壁が存在できないような直径は、例えば鉄の場合20Åである。粒子一つが単磁区構造になると粒子は永久磁石になり消磁が極めて困難になる。しかし少なくとも20Åの数倍の粒子径にまで粒子の直径を小さくしても単磁区構造にはならない(非特許文献2)。そこで例えば粒子一つが20Åの数倍から50nm程度の粒子径である時、粒子全体の表面積は莫大なものとなり、それだけ多くの生体構成物質を捕捉出来ることになるが、微粒子であるため粒子表面積/粒子体積の比が大きく、形状効果により必然的に保磁力(Hc)も大きくなり消磁し難く、残留磁化(Br)も大きくなる。
またマグネタイト微粒子では針状の長軸/短軸の形状比を7として、短軸が0.35μの時、もっとも保磁力(Hc)が大きく350 Oeである。それより小さくなるとスーパー・パラマグネティズムにより、逆に保磁力(Hc)は小さく、しかも磁石で吸着しにくくなる(非特許文献4)。
しかし従来は1〜7μ程度の粒子径のものしか用いられていなかった。ところが本発明により、粒子の残留磁化(Br)を安全に消磁しゼロにできるので、粒子径を20Åの数倍から0.35ミクロン程度にしても良いことになり、粒子全体の表面積は莫大であるので、それだけ多くの生体構成物質を捕捉出来ることになる。従来は20Åの数倍から0.35ミクロン程度の磁性体粒子径のものは、保磁力(Hc)が大きすぎるかスーパー・パラマグネティズムのため用いることが困難であった。
しかし本発明では漸増・漸減する交番磁界や回転磁界を用い、また前記のように最適な周波数帯(例えば20Hz以下または200Hz以上)を用いるので、20Åの数倍から350nm程度の保磁力(Hc)が大きい磁性体粒子でも用いることが出来る。消磁するので吸引・吐出を強制的に繰り返すことを回避して安全に再分散できるからである。このため画期的に捕集効率の上昇が期待できる為、本技術は従来技術と比べて性能・価格とも著しく格差が大きい。
Further, the limit of reducing the diameter of the magnetic particles (M1) is as follows. That is, the diameter of one particle having a single-domain structure and no longer having a domain wall in the particle is, for example, 20 mm in the case of iron. When one particle has a single domain structure, the particle becomes a permanent magnet and demagnetization becomes extremely difficult. However, even if the particle diameter is reduced to a particle diameter that is several times as large as 20 mm, a single magnetic domain structure cannot be obtained (Non-patent Document 2). Therefore, for example, when one particle has a particle size of several times 20 to about 50 nm, the entire surface area of the particle becomes enormous, and so much biological constituents can be captured. The particle volume ratio is large, the coercive force (Hc) inevitably increases due to the shape effect, and it is difficult to demagnetize, and the residual magnetization (Br) also increases.
In the case of magnetite fine particles, the coercive force (Hc) is as large as 350 Oe when the shape ratio of acicular major axis / minor axis is 7 and the minor axis is 0.35 μm. If it becomes smaller than that, the coercive force (Hc) is conversely small due to super paramagneticism, and it is difficult to be attracted by a magnet (Non-patent Document 4).
However, conventionally, only particles having a particle size of about 1 to 7 μm have been used. However, according to the present invention, the residual magnetization (Br) of the particles can be safely demagnetized to zero, so that the particle diameter may be increased from several times 20 mm to about 0.35 microns, and the entire surface area of the particles is enormous. So much biological material can be captured. Conventionally, magnetic particles having a particle size of several times 20 to 0.35 microns have been difficult to use due to excessive coercivity (Hc) or super paramagnetism.
However, in the present invention, an alternating magnetic field and a rotating magnetic field that gradually increase / decrease are used, and an optimal frequency band (for example, 20 Hz or less or 200 Hz or more) is used as described above, so that the coercive force (Hc) is several times 20 to 350 nm. Even large magnetic particles can be used. This is because the demagnetization can be safely redispersed while avoiding forced repetition of suction and discharge. For this reason, since the collection efficiency can be expected to increase epoch-makingly, the present technology has a significant difference in performance and price compared to the conventional technology.

更に本発明は自動化に向き、且つ原理的に液体容器(M22)が大きなものであってもよく、またパイプと送液ポンプを用いて工程も短縮できるので、スループットが大幅に向上する。そのため2種類以上の性質を持った磁性体粒子を順番に用いても工程をあまり増大させる事が無い。また磁性体粒子が極めて安価であるため、大量の生体構成物質を取り扱うことができるようになる事から、生体構成物質の大量連続精製装置を造ることが可能になる。これはポスト・ゲノムの重要な課題であり、この課題を解決できる手段を提供できる。本技術はポスト・ゲノムの一つの重要な分離・精製技術であることは明白である。   Furthermore, the present invention is suitable for automation, and in principle, the liquid container (M22) may be large, and the process can be shortened using a pipe and a liquid feed pump, so that the throughput is greatly improved. Therefore, even if magnetic particles having two or more kinds of properties are used in order, the number of steps is not increased significantly. In addition, since magnetic particles are extremely inexpensive, it becomes possible to handle a large amount of biological constituents, so that it is possible to build a large-scale continuous purification apparatus for biological constituents. This is an important issue for the post-genome and can provide a means to solve this problem. It is clear that this technique is an important post-genome separation and purification technique.

また本発明の生体構成物質の分離・精製装置及び分離・精製方法を用いると従来よりも大量かつ安価に生体構成物質を分離・精製することが出来るので、このようにして得られた安価な生体構成物質は特別な価値を産むことは明らかである。例えばゲノムDNAの大量分離・精製を行うと、PCRを用いてDNAの増幅を行う必要がなくなる。PCRでDNAを増幅すると、何かしらNative DNAと違ったDNAが出来ることが指摘されており、このため、NativeゲノムDNAを大量に分離・精製することには大きな意義がある。またmRNAの大量分離・精製ができることも明白である。   In addition, since the biological constituents can be separated and purified in a larger amount and at a lower cost than in the past by using the biological constituent separating and purifying apparatus and separation / purification method of the present invention, the inexpensive biological body thus obtained can be obtained. It is clear that the constituents have special value. For example, when mass separation and purification of genomic DNA is performed, it is not necessary to amplify DNA using PCR. It has been pointed out that when DNA is amplified by PCR, DNA different from Native DNA can be produced. For this reason, it is of great significance to separate and purify a large amount of Native genomic DNA. It is also clear that mRNA can be separated and purified in large quantities.

またプラスミドDNAはベクターとしての工業的用途が大きいので、プラスミドDNAの大量分離・精製も意義が大きい。また蛋白質、抗体、酵素、細胞、リポゾーム等の大量分離・精製も重要であることは論を待たない。このため本発明は本装置とその製法により生体構成物質を従来よりもきわめて安価かつ高収率・高スループットで大量分離・精製できるという画期的な技術であるので、本発明は従来と違った製法により得られた上記生体構成物質の物質特許としての性格も有することは明白である。 In addition, since plasmid DNA has great industrial use as a vector, mass separation and purification of plasmid DNA is also significant. In addition, there is no doubt that mass separation / purification of proteins, antibodies, enzymes, cells, liposomes, etc. is also important. For this reason, the present invention is an epoch-making technique in which a large amount of biological constituents can be separated and purified at a lower cost, higher yield, and higher throughput than before by using this apparatus and its manufacturing method. It is obvious that the above-mentioned biological constituents obtained by the production method also have a character as a substance patent.

また本発明と類似の作用を有し、類似の効果が得られる、ここに示さなかった多くの実施例は均等の原則に従い、本発明と同一の発明とみなされることは明白である。
更に明細書中に示した総ての実施例及び上記のここに示さなかった多くの実施例を、明細書中に述べられた要素技術を用いて実施する場合、その要素技術はすべて公知の技術を用いて実施できるので、本発明の構成が完成しているのは明白である。
また本明細書および特許請求の範囲で用いた用語である“漸増”の定義は“ある時間をかけて増大する”の意であり、“漸減”
の定義は“ある時間をかけて減少する”の意である。
In addition, it is apparent that many embodiments not shown here, which have similar actions and obtain similar effects as those of the present invention, are regarded as the same invention as the present invention in accordance with the principle of equality.
Further, when all the embodiments shown in the specification and many of the above-described embodiments not shown here are carried out using the element technologies described in the specification, all the element technologies are known techniques. It is obvious that the configuration of the present invention is completed.
Also, the term “gradual increase” as used in the specification and claims means “increase over time”, and “gradual decrease”
The definition is “decreases over time”.

磁性体粒子(M1、M12)を示す断面図。Sectional drawing which shows magnetic body particle | grains (M1, M12). ギャップ(M13)のある磁性体磁心(M14)に巻回されているコイル(M15)と電源(M21)の俯瞰図。An overhead view of a coil (M15) and a power source (M21) wound around a magnetic core (M14) having a gap (M13). 回転磁界(M8)を発生できるステーター(M9)に巻回されているステーターコイル(M10)の一つと磁界の中に置いた磁性体粒子(M1)等を分散した液体容器(M22)の平面図。 ステーターコイル(M10)は図では上下左右に2対示す。互いに対向するステーターに巻かれた1対のコイルは接続されている。1対のコイルと他の1対のコイルは互いに90度位相の異なる電流が通電され、回転磁界(M8)を発生する。ステーター(M9)の極(M11)の一つも示す。Plan view of a liquid container (M22) in which one of the stator coils (M10) wound around a stator (M9) capable of generating a rotating magnetic field (M8) and magnetic particles (M1) placed in the magnetic field are dispersed. . In the figure, two pairs of stator coils (M10) are shown on the top, bottom, left and right. A pair of coils wound around stators facing each other are connected. One pair of coils and the other pair of coils are energized with currents that are 90 degrees out of phase with each other to generate a rotating magnetic field (M8). Also shown is one of the poles (M11) of the stator (M9). 空芯のソレノイドコイル(M16)と磁界の中に置いた磁性体粒子等を分散した液体容器(M22)および電源(M21)の俯瞰図。An overhead view of a liquid container (M22) and a power supply (M21) in which air core solenoid coils (M16) and magnetic particles placed in a magnetic field are dispersed. 磁性体粒子等を分散した液体容器(M22)とその外壁面の近傍に設けた少なくとも一個の永久磁石(M19)を示す。永久磁石(M19)は固定されていても良いし、回転軸(M24)の周りに矢印のように回転してN極、S極を反転させるようにしてもよい。また永久磁石(M19)が回転しながら液体容器(M22)の外壁面から遠ざかるようにすれば、液体容器(M22)内の磁性体粒子(M1、M12)に漸増・漸減する回転磁界を作用させることが出来る。その俯瞰図。A liquid container (M22) in which magnetic particles and the like are dispersed and at least one permanent magnet (M19) provided in the vicinity of the outer wall surface are shown. The permanent magnet (M19) may be fixed, or may be rotated around the rotation axis (M24) as indicated by an arrow so that the north and south poles are reversed. If the permanent magnet (M19) is rotated away from the outer wall surface of the liquid container (M22), a rotating magnetic field that gradually increases and decreases is applied to the magnetic particles (M1, M12) in the liquid container (M22). I can do it. The overhead view. インダクタンスLを持つコイル(M15、M10、M16)と直列に接続された容量Cを持つキャパシタ(M17)電源(M21)からの電流を流す回路図。The circuit diagram which sends the electric current from the capacitor | condenser (M17) power supply (M21) with the capacity | capacitance C connected in series with the coil (M15, M10, M16) with the inductance L. インダクタンスLを持つコイル(M15、M10、M16)と並列に接続された容量Cを持つキャパシタ(M18)に電源(M21)からの電流を流す回路図。The circuit diagram which sends the electric current from a power supply (M21) to the capacitor (M18) with the capacity | capacitance C connected in parallel with the coil (M15, M10, M16) with the inductance L. ピペット状の液体容器(M22)の上部にピストン(M23)を設け、ピストン(M23)を上下させてピペット状の液体容器(M22)内部の液体を吐出したり、ピペット状の液体容器(M22)内部に液体を吸い上げたり出来るようにした、ピペット状の液体容器(M22)の断面図。A pipette-shaped liquid container (M22) is provided with a piston (M23), and the piston (M23) is moved up and down to discharge the liquid inside the pipette-shaped liquid container (M22), or a pipette-shaped liquid container (M22) Cross-sectional view of a pipette-like liquid container (M22) that can suck up liquid inside. 図5の永久磁石(M19)を液体容器(M22)の底面に近接して設置した図を示す。永久磁石(M19)は固定されていても良いし、回転軸(M24)の周りに矢印のように回転してN極、S極を反転させるようにしてもよい。また永久磁石(M19)が回転しながら液体容器(M22)の底面から遠ざかるようにすれば、液体容器(M22)内の磁性体粒子(M1、M12)に漸増・漸減する回転磁界を作用させることが出来る。その俯瞰図。The figure which installed the permanent magnet (M19) of FIG. 5 near the bottom face of the liquid container (M22) is shown. The permanent magnet (M19) may be fixed, or may be rotated around the rotation axis (M24) as indicated by an arrow so that the north and south poles are reversed. Also, if the permanent magnet (M19) is rotated away from the bottom surface of the liquid container (M22), a rotating magnetic field that gradually increases and decreases is applied to the magnetic particles (M1, M12) in the liquid container (M22). I can do it. The overhead view. 三接点スイッチ(M26)を用いて直流電源(M25)からの電荷をコンデンサ(M28)に充電し、次にインダクタンスLを持つコイル(M15、M10、M16)と直列に接続された容量Cを持つキャパシタ(M17)にその電荷を放電するようにして、共振によりコイル(M15、M10、M16)に漸増・漸減する振動電流を流すようにした回路図。The capacitor (M28) is charged with the charge from the DC power supply (M25) using a three-contact switch (M26), and then has a capacitance C connected in series with a coil (M15, M10, M16) having an inductance L A circuit diagram in which an oscillating current that gradually increases and decreases is caused to flow through coils (M15, M10, and M16) due to resonance by discharging the electric charge to the capacitor (M17). 二接点スイッチ(M27)をONにして直流電源(M25)からの電流をインダクタンスLを持つコイル(M15、M10、M16)と並列に接続された容量Cを持つキャパシタ(M17)に流し、次にスイッチ(M27)をOFFにして、逆起電力によりコイル(M15、M10、M16)には漸増・漸減する振動電圧が発生するようにした回路図。Turn on the two-contact switch (M27) and let the current from the DC power supply (M25) flow to the capacitor (M17) with the capacitance C connected in parallel with the coils (M15, M10, M16) with the inductance L, then A circuit diagram in which the switch (M27) is turned OFF, and an oscillating voltage that gradually increases and decreases is generated in the coils (M15, M10, M16) due to the back electromotive force. リング状磁石(M32)を回転させて消磁する装置。A device that rotates a ring magnet (M32) to demagnetize it. 生体構成物質(M3)の大量連続分離・精製装置。Large-scale continuous separation and purification equipment for biological components (M3). 永久磁石(M19)を用いて磁性体粒子を捕集する他の実施例で、永久磁石(M19)を永久磁石の容器(M48)に入れ、液体容器(M22)に図のように挿入し、液体容器(M22)の内にある磁性体粒子(M1,M12)を永久磁石の容器(M48)の外壁面に捕集し、捕集したまま永久磁石を容器(M48)ごと液体容器(M22)から抜き去り、 図示しない別の液体容器に移して後、永久磁石を容器(M48)から抜き、図示しない液体容器の外壁面に電磁石(M5)を近づけ、容器(M48)の外壁面に吸着している磁性体粒子(M1,M12)を消磁し、再分散する実施例。In another example of collecting magnetic particles using a permanent magnet (M19), put the permanent magnet (M19) in a permanent magnet container (M48) and insert it into a liquid container (M22) as shown in the figure. The magnetic particles (M1, M12) in the liquid container (M22) are collected on the outer wall surface of the permanent magnet container (M48), and the permanent magnet is collected in the liquid container (M22) together with the container (M48). After removing from the container and moving to another liquid container (not shown), pull out the permanent magnet from the container (M48), bring the electromagnet (M5) close to the outer wall surface of the liquid container (not shown) Example of demagnetizing and redispersing the magnetic particles (M1, M12). 静止している永久磁石(M32)の磁極(M33)の真上を円周に沿って液体容器(M22,M36)を磁極(M33)から遠ざかるように周回させながら次第に引き上げて液体容器(M22,M36)内の磁性体粒子(M1)に漸減する交番・回転磁界を作用させ、消磁する実施例。Gradually pull up the liquid container (M22, M36) while rotating the liquid container (M22, M36) away from the magnetic pole (M33) along the circumference just above the magnetic pole (M33) of the stationary permanent magnet (M32) An example of demagnetizing the magnetic particles (M1) in M36) by applying an alternating / rotating magnetic field that gradually decreases. リング状磁石(M32)を回転させ、リング状磁石(M32)の中心であるモータ軸(M35)上に液体容器(M22,M36)を設置し、液体容器(M22,M36)内の磁性体粒子(M1)を液中で竜巻のように巻き上げ、攪拌する実施例。Rotate the ring magnet (M32), place the liquid container (M22, M36) on the motor shaft (M35), which is the center of the ring magnet (M32), and magnetic particles in the liquid container (M22, M36) Example in which (M1) is rolled up in a liquid like a tornado and stirred. マグネタイト磁性体粒子・粉体の磁気特性を表すヒステリシス・ループ。第一象限を示す。実線は本発明で用いる保磁力(Hc2)と飽和磁束密度(Bm2)は大きいが透磁率も大きい安価なマグネタイト磁性体粒子を示し、点線は従来用いていた保磁力(Hc1)と飽和磁束密度(Bm1)は小さいが透磁率も小さい高価なマグネタイト磁性体粒子の磁気特性を示す。Hysteresis loop representing the magnetic properties of magnetite magnetic particles and powders. Indicates the first quadrant. The solid line shows inexpensive magnetite magnetic particles with a large coercive force (Hc2) and saturation magnetic flux density (Bm2) used in the present invention but a large magnetic permeability, and the dotted line shows the coercive force (Hc1) and saturation magnetic flux density ( Bm1) shows the magnetic properties of expensive magnetite magnetic particles that are small but have low permeability. 静止している永久磁石(M32)の磁極(M33)の上を円周に沿って液体容器(M22,M36)を磁極(M33)から遠ざかるように周回させながら次第に引き上げて液体容器(M22,M36)内の磁性体粒子(M1)に漸増・漸減する交番・回転磁界を作用させ、消磁する他の実施例で、円錐(M30)の斜面に沿って液体容器(M22,M36)を螺旋を描くように周回させながら次第に引き上げる実施例の俯瞰図。The liquid container (M22, M36) is gradually lifted while rotating around the magnetic pole (M33) of the stationary permanent magnet (M32) along the circumference so as to move away from the magnetic pole (M33). ) In another embodiment, the magnetic particles (M1) in the parenthesis are acted on by increasing / decreasing alternating / rotating magnetic fields to demagnetize them, and the liquid containers (M22, M36) are drawn along the slope of the cone (M30). The bird's-eye view of the Example pulled up gradually while making it circulate like this. 図12と同一原理の実施例で、一対の磁石(M32)の磁極(M33)を対向させたものを、複数対用いて回転させ、一対の磁石(M32)の磁極(M33)の間に挿入したエッペンチューブ(M36)に回転磁界・交番磁界を作用させ消磁および攪拌・分散させる実施例。In the embodiment of the same principle as in FIG. 12, a pair of magnets (M32) with the magnetic poles (M33) facing each other are rotated using a plurality of pairs and inserted between the magnetic poles (M33) of the pair of magnets (M32). Example in which a rotating magnetic field / alternating magnetic field is applied to the Eppendorf tube (M36) to demagnetize, stir and disperse. 図13の生体構成物質(M3)の大量連続分離・精製装置において、液溜(M44)中の磁性体粒子に交番磁界・回転磁界を作用させ、消磁および攪拌・分散させる為の磁界発生装置等(M45)の一実施例。In the large-scale continuous separation / purification apparatus for biological constituents (M3) shown in FIG. 13, a magnetic field generator for applying an alternating magnetic field / rotating magnetic field to the magnetic particles in the liquid reservoir (M44) to demagnetize, stir / disperse, etc. One example of (M45).

符号の説明Explanation of symbols

M1; 2層構造の磁性体粒子の内核である磁性体粒子(M1)または2層構造の磁性体粒子そのもの(M1)の総称。
M2; 2層構造の磁性体粒子(M1)の表面を被覆する物質(M2)。
M3; 蛋白質やDNA、cDNA、mRNA、tRNA、rRNA、生体細胞やリポゾームのような生体構成物質(M3)。図示しない。
M4; 磁気吸引力(M4)。図示しない。
M5; 電磁石(M5)。それに巻回されているコイルは(M15、M10、M16)
である。ギャップ(M13)のある磁性体磁心(M14)や回転磁界
(M8)を発生できるステーター(M9)、空芯のソレノイドコイル
(M16)などを総称する。
M6; 永久磁石(M6)。図示しない。
M7; 電磁石(M5)と同種であるが、別の電磁石(M7)。図示しない。
M8: 回転磁界(M8)。
M9; 回転磁界(M8)を発生できるステーター(M9)。
M10; 回転磁界(M8)を発生できるステーター(M9)に巻回されているス
テーターコイル(M10)。
M11; 回転磁界(M8)を発生できるステーター(M9)の極(M11)。
M12; 蛋白質やDNA、cDNA、mRNA、tRNA、rRNA、生体細胞やリポゾームのよ
うな生体構成物質(M3)を択的に認識してそれらに結合する物質と磁性体粒子を、
必要ならバインダーを用いて混合した構造の磁性体粒子(M12)、または複数個の
2層造の磁性体粒子(M1)を特定の有機ポリマー又は無機ポリマー(M49)をバ
インダーとして接着した混合構造の磁性体粒子(M12)。
M13 磁性体磁心(M14)のギャップ(M13)。
M14; ギャップ(M13)のある磁性体磁心(M14)。
M15; ギャップ(M13)のある磁性体磁心(M14)に巻回したコイル(M15)。
M16; 空芯のソレノイドコイル(M16)。
M17; インダクタンスLを持つコイル(M15、M10、M16)と直列に接
続された容量Cを持つキャパシタ(M17)。
M18; インダクタンスLを持つコイル(M15、M10、M16)と並列に接
続された容量Cを持つキャパシタ(M18)。
M19; 磁性体粒子等を分散した液体容器(M22)の外壁面の近傍に設け
られた少なくとも一個の永久磁石(M19)。
M20; 磁性体粒子(M1)等を分散した液体容器(M22)の外壁面の近傍
に永久磁石(M19)を固定し、前記液体容器(M22)自体を回転
させることにより発生させた回転磁界(M20)。図示しない。
M21; 任意の周波数の交流又は直流電流を発生する電源(M21)。
M22; 磁極の近傍や磁界の中に置いた液体容器(M22)。
M23; ピペット状の液体容器(M22)の上部に設けたピストン(M23)
M24; 永久磁石(M19)を回転する回転軸(M24)
M25; 直流電源(M25)
M26; 三接点スイッチ(M26)
M27; 二接点スイッチ(M27)
M28; コンデンサ(M28)
M29; 永久磁石(M19)が回転軸(M24)の周りに回転することによっ
て発生する回転磁界(図示しない)
M30; 円錐。斜面に沿って螺旋状のガイドを持っていても良い。
M31; 磁性体粒子(M1)と生体構成物質(M3)の結合を外す液体(M31)、図示しない。
M32; リング状に配置された磁石。必ずしもリング磁石である必要は無く、円周上に配置された複数の磁石でもよい。
M33; 磁極
M34; モータ
M35; モータの回転軸
M36; 液体容器(M22)の一種でエッペンドルフ・チューブ
M37; 生体構成物質(M3)の原料タンク
M38; パイプ
M39; Buffer1の容器
M40; 磁性体粒子を分散した液体の容器
M41; Buffer2の容器
M42; Buffer3の容器
M43; Buffer4の容器
M44; 液溜
M45; 磁界発生装置等で直流磁界や交番磁界を発生する電磁石、回転磁界を発生するステータ、および低周波振動を発生する電磁石等の総称。
M46; 精製品を収納するタンク
M47; 廃液タンク
M48; 永久磁石M19を収める容器
M49; 磁性体粒子(M1)の表面を被覆する時、まず特定の有機ポリマー又は無機ポリマー(M49)で磁性体粒子(M1)の表面を被覆しその後、請求項12で列記した少なくとも1種類の表面を被覆する物質(M2)で被覆する。その下地である特定の有機ポリマー又は無機ポリマー(M49)を示す。
Bm1; 従来用いていた保磁力(Hc1)と飽和磁束密度(Bm1)は小さいが透磁率も小さい高価な磁性体粒子の飽和磁束密度(Bm1)
Br1; 従来用いていた保磁力(Hc1)と飽和磁束密度(Bm1)は小さいが透磁率も小さい高価な磁性体粒子の残留磁束密度(Br1)
Hc1; 従来用いていた保磁力(Hc1)と飽和磁束密度(Bm1)は小さいが透磁率も小さい高価な磁性体粒子の保磁力(Hc1)
Bm2; 本発明で用いる保磁力(Hc2)と飽和磁束密度(Bm2)は大きいが透磁率も大きい安価な磁性体粒子の飽和磁束密度(Bm2)
Br2; 本発明で用いる保磁力(Hc2)と飽和磁束密度(Bm2)は大きいが透磁率も大きい安価な磁性体粒子の残留磁束密度(Br2)
Hc2; 本発明で用いる保磁力(Hc2)と飽和磁束密度(Bm2)は大きいが透磁率も大きい安価な磁性体粒子の保磁力(Hc2)
M1: A general term for magnetic particles (M1) that are the inner core of magnetic particles having a two-layer structure, or magnetic particles themselves having a two-layer structure (M1).
M2: A substance (M2) that covers the surface of the magnetic particles (M1) having a two-layer structure.
M3; protein, DNA, cDNA, mRNA, tRNA, rRNA, biological constituents (M3) such as living cells and liposomes. Not shown.
M4; magnetic attraction (M4). Not shown.
M5; Electromagnet (M5). The coils wound around it (M15, M10, M16)
It is. A magnetic core (M14) having a gap (M13), a stator (M9) capable of generating a rotating magnetic field (M8), an air-core solenoid coil (M16), etc. are collectively referred to.
M6; permanent magnet (M6). Not shown.
M7; Same type of electromagnet (M5) but different electromagnet (M7). Not shown.
M8: Rotating magnetic field (M8).
M9; Stator (M9) capable of generating rotating magnetic field (M8).
M10; a stator coil (M10) wound around a stator (M9) capable of generating a rotating magnetic field (M8).
M11; A pole (M11) of a stator (M9) that can generate a rotating magnetic field (M8).
M12; Proteins, DNA, cDNA, mRNA, tRNA, rRNA, biological substances (M3) such as living cells and liposomes, and substances that bind to them and magnetic particles,
If necessary, magnetic particles (M12) with a mixed structure using a binder, or a mixed structure in which a plurality of two-layer magnetic particles (M1) are bonded with a specific organic polymer or inorganic polymer (M49) as a binder Magnetic particles (M12).
M13 Magnetic material core (M14) gap (M13).
M14; Magnetic core (M14) with gap (M13).
M15; A coil (M15) wound around a magnetic core (M14) with a gap (M13).
M16; Air-core solenoid coil (M16).
M17; a capacitor (M17) having a capacitance C connected in series with a coil (M15, M10, M16) having an inductance L.
M18; Capacitor (M18) with capacitance C connected in parallel with coils with inductance L (M15, M10, M16).
M19; at least one permanent magnet (M19) provided in the vicinity of the outer wall surface of the liquid container (M22) in which magnetic particles are dispersed.
M20; A rotating magnetic field generated by fixing a permanent magnet (M19) near the outer wall surface of the liquid container (M22) in which the magnetic particles (M1) and the like are dispersed, and rotating the liquid container (M22) itself ( M20). Not shown.
M21; Power supply (M21) that generates alternating current or direct current of any frequency.
M22; Liquid container (M22) placed near magnetic pole or in magnetic field.
M23; Piston (M23) provided on top of pipette-shaped liquid container (M22)
M24; Rotating shaft (M24) for rotating the permanent magnet (M19)
M25; DC power supply (M25)
M26; Three-contact switch (M26)
M27; Two-contact switch (M27)
M28; Capacitor (M28)
M29; Rotating magnetic field generated by rotating the permanent magnet (M19) around the rotation axis (M24) (not shown)
M30; cone. You may have a spiral guide along the slope.
M31; Liquid (M31) for removing the bond between the magnetic particles (M1) and the biological constituent (M3), not shown.
M32; Magnet arranged in a ring shape. It does not necessarily have to be a ring magnet, and may be a plurality of magnets arranged on the circumference.
M33; magnetic pole
M34; Motor
M35; Motor rotating shaft
M36; Eppendorf tube as a kind of liquid container (M22)
M37; Raw material tank for biological components (M3)
M38; Pipe
M39; Buffer1 container
M40; Liquid container with dispersed magnetic particles
M41; Buffer2 container
M42; Buffer3 container
M43; Buffer4 container
M44; Reservoir
M45: A general term for electromagnets that generate DC magnetic fields and alternating magnetic fields in magnetic field generators, stators that generate rotating magnetic fields, and electromagnets that generate low-frequency vibrations.
M46; Tank for storing purified products
M47; Waste liquid tank
M48; Container for permanent magnet M19
M49; When the surface of the magnetic particles (M1) is coated, the surface of the magnetic particles (M1) is first coated with a specific organic polymer or inorganic polymer (M49), and then at least one kind listed in claim 12 The surface is coated with a material (M2). A specific organic polymer or inorganic polymer (M49) as the base is shown.
Bm1; Saturation magnetic flux density (Bm1) of expensive magnetic particles with low coercivity (Hc1) and saturation magnetic flux density (Bm1), but low permeability
Br1; Residual magnetic flux density (Br1) of expensive magnetic particles with small coercivity (Hc1) and saturation magnetic flux density (Bm1), but low permeability
Hc1; Coercivity (Hc1) of expensive magnetic particles with low coercivity (Hc1) and saturation magnetic flux density (Bm1), but low permeability
Bm2; Saturation magnetic flux density (Bm2) of inexpensive magnetic particles with large coercive force (Hc2) and saturation magnetic flux density (Bm2) used in the present invention, but with high permeability
Br2; Residual magnetic flux density (Br2) of inexpensive magnetic particles with large coercive force (Hc2) and saturation magnetic flux density (Bm2) but high permeability
Hc2; Coercivity (Hc2) of inexpensive magnetic particles with large coercive force (Hc2) and saturation magnetic flux density (Bm2) but high permeability

Claims (27)

磁性体粒子(M1)の表面を被覆する物質(M2)により被覆し、生体構成物質(M3)を磁性体粒子(M1)の表面を被覆する物質(M2)に結合させ、磁気吸引力(M4)により磁性体粒子(M1)を、磁性体粒子(M1)等を分散した液体容器(M22,M36)の壁面に吸着することにより、磁性体粒子(M1)と結合した生体構成物質(M3)を捕捉し分離・精製する装置において、
液体容器(M22,M36)の壁面に吸着し捕捉した磁性体粒子(M1)の残留磁化を、交番磁界を用いて消磁する事により生体構成物質(M3)と結合した磁性体粒子(M1)の溶液中での分散性を改善したことを特徴とする生体構成物質の分離・精製装置。
The surface of the magnetic particles (M1) is coated with the substance (M2), and the biological constituent (M3) is bound to the substance (M2) that covers the surfaces of the magnetic particles (M1), and the magnetic attractive force (M4) ) By adsorbing the magnetic particles (M1) to the wall surface of the liquid container (M22, M36) in which the magnetic particles (M1) etc. are dispersed, and thereby the biological constituent (M3) bound to the magnetic particles (M1) In a device that captures, separates and purifies
The magnetic particles (M1) bound to the biological constituent (M3) by demagnetizing the residual magnetization of the magnetic particles (M1) adsorbed and captured on the wall of the liquid container (M22, M36) using an alternating magnetic field An apparatus for separating and purifying biological constituents characterized by improved dispersibility in a solution.
磁性体粒子(M1)の表面を被覆する物質(M2)により被覆し、生体構成物質(M3)を磁性体粒子(M1)の表面を被覆する物質(M2)に結合させ、磁気吸引力(M4)により磁性体粒子(M1)を、磁性体粒子(M1)等を分散した液体容器(M22,M36)の壁面に吸着することにより、磁性体粒子(M1)と結合した生体構成物質(M3)を捕捉し分離・精製する装置において、漸増・漸減する直流電流を通じた電磁石(M5)を用いて磁気吸引力(M4)を発生させ磁性体粒子(M1)を液体容器(M22,M36)の壁面に吸着し、その後電磁石(M5)には漸増・漸減する交流電流を通じ、液体容器(M22,M36)の壁面に吸着された磁性体粒子(M1)の残留磁化を消磁する事により生体構成物質(M3)と結合した磁性体粒子(M1)の溶液中での分散性を改善したことを特徴とする生体構成物質の分離・精製装置。 The surface of the magnetic particles (M1) is coated with the substance (M2), and the biological constituent (M3) is bound to the substance (M2) that covers the surfaces of the magnetic particles (M1), and the magnetic attractive force (M4) ) By adsorbing the magnetic particles (M1) to the wall surface of the liquid container (M22, M36) in which the magnetic particles (M1) etc. are dispersed, and thereby the biological constituent (M3) bound to the magnetic particles (M1) In a device that captures, separates, and purifies the particles, magnetic attraction (M4) is generated using an electromagnet (M5) through a DC current that increases and decreases gradually, and magnetic particles (M1) are separated from the walls of the liquid container (M22, M36). And then demagnetize the residual magnetization of the magnetic particles (M1) adsorbed on the wall of the liquid container (M22, M36) through an alternating current that gradually increases and decreases to the electromagnet (M5). Biological composition characterized by improved dispersibility of M3) and magnetic particles (M1) in solution Substance separation and purification equipment. 磁性体粒子(M1)の表面を被覆する物質(M2)により被覆し、生体構成物質(M3)を磁性体粒子(M1)の表面を被覆する物質(M2)に結合させ、磁気吸引力(M4)により磁性体粒子(M1)を、磁性体粒子(M1)等を分散した液体容器(M22,M36)の壁面に吸着することにより、磁性体粒子(M1)と結合した生体構成物質(M3)を捕捉し分離・精製する装置において、永久磁石(M6)を用いて磁気吸引力(M4)を発生させ磁性体粒子(M1)を液体容器(M22,M36)の壁面に吸着した後、永久磁石(M6)を磁性体粒子(M1)から遠ざけることにより磁気吸引力(M4)を弱め、その後
磁性体粒子(M1)に電磁石(M7)を近づけ、電磁石(M7)には漸増・漸減する交流電流を通じ、液体容器(M22,M36)の壁面に吸着された磁性体粒子(M1)の残留磁化を消磁する事により生体構成物質(M3)と結合した磁性体粒子(M1)の溶液中での分散性を改善したことを特徴とする生体構成物質の分離・精製装置。
The surface of the magnetic particles (M1) is coated with the substance (M2), and the biological constituent (M3) is bound to the substance (M2) that covers the surfaces of the magnetic particles (M1), and the magnetic attractive force (M4) ) By adsorbing the magnetic particles (M1) to the wall surface of the liquid container (M22, M36) in which the magnetic particles (M1) etc. are dispersed, and thereby the biological constituent (M3) bound to the magnetic particles (M1) In a device that captures, separates and purifies particles, a permanent magnet (M6) is used to generate a magnetic attractive force (M4) to attract the magnetic particles (M1) to the wall of the liquid container (M22, M36), and then the permanent magnet The magnetic current (M4) is weakened by moving (M6) away from the magnetic particles (M1), and then the electromagnet (M7) is brought closer to the magnetic particles (M1), and the alternating current gradually increases and decreases toward the electromagnet (M7). Through the demagnetization of the residual magnetization of the magnetic particles (M1) adsorbed on the wall of the liquid container (M22, M36) An apparatus for separating and purifying biological constituents characterized by improved dispersibility in solution of magnetic particles (M1) bound to constituents (M3).
磁性体粒子(M1)の表面を被覆する物質(M2)により被覆し、生体構成物質(M3)を磁性体粒子(M1)の表面を被覆する物質(M2)に結合させ、磁気吸引力(M4)により磁性体粒子(M1)を、磁性体粒子(M1)等を分散した液体容器(M22,M36)の壁面に吸着することにより、磁性体粒子(M1)と結合した生体構成物質(M3)を捕捉し分離・精製する装置において、磁性体粒子(M1)の残留磁化を消磁する手段および磁性体粒子(M1)を溶液中で攪拌し分散させる手段として漸増・漸減する回転磁界(M8)を用いて生体構成物質(M3)と結合した磁性体粒子(M1)の残留磁化を消磁して溶液中に分散させ、生体構成物質(M3)と結合した磁性体粒子(M1)の溶液中での分散性を改善したことを特徴とする生体構成物質の分離・精製装置。 The surface of the magnetic particles (M1) is coated with the substance (M2), and the biological constituent (M3) is bound to the substance (M2) that covers the surfaces of the magnetic particles (M1), and the magnetic attractive force (M4) ) By adsorbing the magnetic particles (M1) to the wall surface of the liquid container (M22, M36) in which the magnetic particles (M1) etc. are dispersed, and thereby the biological constituent (M3) bound to the magnetic particles (M1) In the device that captures, separates and purifies the magnetic field, the rotating magnetic field (M8) that gradually increases and decreases as a means to demagnetize the residual magnetization of the magnetic particles (M1) and a means to stir and disperse the magnetic particles (M1) in the solution. Demagnetize the residual magnetization of the magnetic particles (M1) bound to the biological constituent (M3) and disperse it in the solution, and then add the magnetic particles (M1) bound to the biological constituent (M3) in the solution. An apparatus for separating and purifying biological constituents characterized by improved dispersibility. 請求項4において、磁界強度が漸増する回転磁界(M8)を発生するステーター(M9)の極(M11)の近傍に設置した液体容器(M22,M36)中の磁性体粒子(M1)を液体容器(M22,M36)の内壁面に吸着することにより、磁性体粒子(M1)と結合した生体構成物質(M3)を捕捉し、その後回転磁界(M8)を発生する交流電流の強度を漸減させて液体容器(M22,M36)の内壁面に吸着された磁性体粒子(M1)の残留磁化を消磁する事により生体構成物質(M3)と結合した磁性体粒子(M1)を溶液中に分散させ、溶液中での分散性を改善したことを特徴とする生体構成物質の分離・精製装置。 5. The magnetic particles (M1) in the liquid containers (M22, M36) installed in the vicinity of the pole (M11) of the stator (M9) that generates a rotating magnetic field (M8) whose magnetic field strength gradually increases. By adsorbing to the inner wall surface of (M22, M36), the biological material (M3) bound to the magnetic particles (M1) is captured, and then the intensity of the alternating current that generates the rotating magnetic field (M8) is gradually reduced. By demagnetizing the residual magnetization of the magnetic particles (M1) adsorbed on the inner wall surface of the liquid container (M22, M36), the magnetic particles (M1) combined with the biological constituent (M3) are dispersed in the solution. An apparatus for separating and purifying biological constituents characterized by improved dispersibility in a solution. 請求項4において、回転磁界(M8)を発生できるステーター(M9)に巻回されているステーターコイル(M10)に、当初は漸増・漸減する直流電流を通じ、前記ステーターの極(M11)の近傍に設置した液体容器(M22,M36)中の磁性体粒子(M1)を液体容器(M22,M36)の内壁面に吸着することにより、磁性体粒子(M1)と結合した生体構成物質(M3)を捕捉し、その後ステーターコイル(M10)には、漸増・漸減する交流電流を通じる事により回転磁界(M8)の強度をゼロにまで減衰させて液体容器(M22,M36)の内壁面に吸着された磁性体粒子(M1)の残留磁化を消磁して生体構成物質(M3)と結合した磁性体粒子(M1)を溶液中に分散させ、溶液中での分散性を改善したことを特徴とする生体構成物質の分離・精製装置。 5. The stator coil (M10) wound around a stator (M9) capable of generating a rotating magnetic field (M8) according to claim 4, through a DC current that gradually increases and decreases, to the vicinity of the stator pole (M11). By adsorbing the magnetic particles (M1) in the installed liquid container (M22, M36) to the inner wall surface of the liquid container (M22, M36), the biological component (M3) combined with the magnetic particles (M1) After that, the stator coil (M10) was adsorbed on the inner wall of the liquid container (M22, M36) by passing the alternating current that gradually increased and decreased to attenuate the strength of the rotating magnetic field (M8) to zero. A living body characterized by improving the dispersibility in a solution by demagnetizing the remanent magnetization of the magnetic particles (M1) and dispersing the magnetic particles (M1) bound to the biological constituent (M3) in the solution. Constituent material separation and purification equipment. 請求項1から請求項6において、電磁石(M5)に巻回されているコイル(M15)または、回転磁界(M8)を発生できるステーター(M9)に巻回されているステーターコイル(M10)または空芯のソレノイドコイル(M16)と直列にキャパシタ(M17)を接続し、上記直列に接続したコイル(M15、M10、M16)のインダクタンスLと、キャパシタ(M17)の容量Cが直列共振する周波数f=1/2π√LC近くの周波数を持つ正弦波の交流電流を、上記コイル(M15、M10、M16)とキャパシタ(M17)の直列回路に供給することを特徴とする、生体構成物質の分離・精製装置。 7. A coil (M15) wound around an electromagnet (M5), a stator coil (M10) wound around a stator (M9) capable of generating a rotating magnetic field (M8) or an empty coil according to claims 1 to 6. A capacitor (M17) is connected in series with the core solenoid coil (M16), and the frequency f = in which the inductance L of the coil (M15, M10, M16) connected in series and the capacitance C of the capacitor (M17) resonates in series. Separation and purification of biological constituents, characterized by supplying sinusoidal alternating current with a frequency close to 1 / 2π√LC to the series circuit of the coil (M15, M10, M16) and capacitor (M17) apparatus. 請求項1から請求項6において、電磁石(M5)に巻回されているコイル(M15)または、回転磁界(M8)を発生できるステーター(M9)に巻回されているステーターコイル(M10)または空芯のソレノイドコイル(M16)と並列にキャパシタ(M18)を接続し、上記並列に接続したコイル(M15、M10、M16)のインダクタンスLと、キャパシタ(M18)の容量Cが並列共振する周波数f=1/2π√LC近くの周波数を持つ正弦波の交流電圧を、上記コイル(M15、M10、M16)とキャパシタ(M18)の並列回路に供給することを特徴とする、生体構成物質の分離・精製装置。 7. A coil (M15) wound around an electromagnet (M5), a stator coil (M10) wound around a stator (M9) capable of generating a rotating magnetic field (M8) or an empty coil according to claims 1 to 6. A capacitor (M18) is connected in parallel with the core solenoid coil (M16), and the frequency f = the frequency at which the inductance L of the coils (M15, M10, M16) connected in parallel and the capacitance C of the capacitor (M18) resonate in parallel. Separation and purification of biological constituents, characterized by supplying a sinusoidal AC voltage with a frequency close to 1 / 2π√LC to the parallel circuit of the coil (M15, M10, M16) and capacitor (M18) apparatus. 請求項4において、磁性体粒子(M1)等を分散した液体容器(M22,M36)の近傍に少なくとも一個の永久磁石(M19)を設置し、永久磁石(M19)を前記容器の近傍で回転させるか、または永久磁石(M19)を固定し、液体容器(M22,M36)自体を永久磁石(M19)の周りで回転させることにより、液体容器(M22,M36)内の磁性体粒子(M1)に回転磁界(M20)を作用させる事を特徴とする、生体構成物質の分離・精製装置。 5. At least one permanent magnet (M19) is installed in the vicinity of the liquid container (M22, M36) in which the magnetic particles (M1) and the like are dispersed, and the permanent magnet (M19) is rotated in the vicinity of the container. Or by fixing the permanent magnet (M19) and rotating the liquid container (M22, M36) itself around the permanent magnet (M19) to the magnetic particles (M1) in the liquid container (M22, M36) An apparatus for separating and purifying biological constituents, characterized by applying a rotating magnetic field (M20). 請求項4において、磁性体粒子等を分散した液体容器(M22、M36)の外壁面又は外底面の近傍に、複数の磁極(M33)を持つ回転する永久磁石(M32)または複数の磁極(M33)を持つ固定された永久磁石(M32)を設置し、永久磁石(M32)を回転軸(M35)の周りに回転させながら液体容器(M22、M36)を永久磁石(M32)の回転する磁極(M33)から遠ざけるか、又は固定された永久磁石(M32)の磁極(M33)の上で液体容器(M22、M36)自体を複数の磁極(M33)の上を巡るように周回させながら磁極(M33)から遠ざける事により、液体容器(M22、M36)内の磁性体粒子(M1、M12)に漸減する回転磁界・交番磁界を作用させ磁性体粒子(M1)の残留磁化を消磁する事を特徴とする、生体構成物質の分離・精製装置。 5. A rotating permanent magnet (M32) having a plurality of magnetic poles (M33) or a plurality of magnetic poles (M33) in the vicinity of an outer wall surface or an outer bottom surface of a liquid container (M22, M36) in which magnetic particles are dispersed. ) With a fixed permanent magnet (M32) and rotating the permanent magnet (M32) around the rotation axis (M35) while rotating the liquid container (M22, M36) with the rotating magnetic pole (M32) The magnetic pole (M33) moves away from the M33) or circulates the liquid container (M22, M36) itself over the plurality of magnetic poles (M33) on the magnetic pole (M33) of the fixed permanent magnet (M32). It is characterized by demagnetizing the remanent magnetization of the magnetic particles (M1) by moving the magnetic particles (M1, M12) in the liquid container (M22, M36) in a rotating magnetic field / alternating magnetic field that gradually decreases. An apparatus for separating and purifying biological constituents. 請求項1から請求項4において、磁性体粒子(M1、M12)は純鉄、ニッケル、コバルト、センダスト、珪素含有鉄、Fe・Si・Al合金、Fe・Ni合金、Fe・Co合金、Fe・Cr合金等の金属磁性材料又はマグネタイト(Feフェライト)、Co被覆したマグネタイト、γ−へマタイト、Co被覆したγ−へマタイトあるいはMnフェライト,Niフェライト,Coフェライト,Cuフェライト、Mgフェライト、Liフェライト等の単一フェライト又はそれらとZnフェライトとの複合フェライトか、Baフェライト、Stフェライト、二酸化クロム、及び磁性細菌が造るバイオマグネタイトの内、少なくとも一種類の磁性材料を含む磁性体粒子(M1、M12)であることを特徴とする、生体構成物質の分離・精製装置。 The magnetic particles (M1, M12) according to claims 1 to 4 are pure iron, nickel, cobalt, sendust, silicon-containing iron, Fe.Si.Al alloy, Fe.Ni alloy, Fe.Co alloy, Fe.Co. Metal magnetic material such as Cr alloy or magnetite (Fe ferrite), Co-coated magnetite, γ-hematite, Co-coated γ-hematite or Mn ferrite, Ni ferrite, Co ferrite, Cu ferrite, Mg ferrite, Li ferrite, etc. Magnetic particles (M1, M12) containing at least one kind of magnetic material among single ferrites of the above or composite ferrites of them and Zn ferrite, or Ba ferrite, St ferrite, chromium dioxide, and biomagnetite produced by magnetic bacteria An apparatus for separating and purifying biological constituents, characterized in that 請求項1から請求項4において、磁性体粒子(M1)の表面を被覆する物質(M2)は、シリカ、ニッケル、コバルト、アルミナゲル、チタニアゲル、任意の無機ポリマー等の無機物質またはニッケルニトリロ3酢酸樹脂、その他のニッケルキレート樹脂等の樹脂や、任意の有機ポリマーたとえばカゼイン、ゼラチン、卵白アルブミン、BSA、ポリスチレン、アクリルアミド、各種界面活性剤あるいはストレプトアビジン、ビオチン、レクチン、ヒスチジン、グルタチオン、フォスフォリルコリンなどの有機物質の内、少なくとも一種類を含む物質であるか、またはシラン化した磁性体粒子(M1)の表面にビオチンを固定し、固定したビオチンにはストレプトアビジンを固定してビオチン化した生体構成物質(M3)を捕集できるようにするか、あるいはビオチン化又はヒスチジン化したDNA、cDNA、mRNA、tRNA、rRNA、抗体、酵素、蛋白質、または細胞やリポゾーム、その他公知のアフィニティタグをつけた生体構成物質(M3)と結合する物質等の内、少なくとも一種類を含む物質であるか、又は公知の液体クロマトグラフに用いる分離材、吸着材、イオン交換樹脂、または公知のアフィニティ液体クロマトグラフに用いる公知のアフィニティ物質、及びメソポーラス材料あるいはゼオライト等の内、少なくとも一種類の物質を含むことを特徴とする、生体構成物質の分離・精製装置。 5. The substance (M2) covering the surface of the magnetic particles (M1) according to claim 1 is an inorganic substance such as silica, nickel, cobalt, alumina gel, titania gel, any inorganic polymer, or nickel nitrilotriacetic acid. Resins, other nickel chelate resins, and other organic polymers such as casein, gelatin, ovalbumin, BSA, polystyrene, acrylamide, various surfactants or streptavidin, biotin, lectin, histidine, glutathione, phosphorylcholine, etc. Biological structure in which biotin is immobilized on the surface of magnetic particles (M1) that contain at least one of the organic substances or silanized, and streptavidin is immobilized on the immobilized biotin. Make it possible to collect material (M3) or At least among biotinylated or histidined DNA, cDNA, mRNA, tRNA, rRNA, antibody, enzyme, protein, cell or liposome, and other substances that bind to a biological substance (M3) with a known affinity tag, etc. Among substances including one kind, or separation materials, adsorbents, ion exchange resins used in known liquid chromatographs, known affinity substances used in known affinity liquid chromatographs, and mesoporous materials or zeolites, An apparatus for separating and purifying biological constituents, comprising at least one kind of substance. 請求項1から請求項4において、磁性体粒子(M1)の表面を被覆する物質(M2)で被覆した磁性体粒子のような2層構造の磁性体粒子の代わりに、蛋白質やDNA、cDNA、mRNA、tRNA、rRNA、生体細胞やリポゾームのような生体構成物質(M3)を選択的に認識してそれらに結合する物質、即ち請求項12で列記した物質(M2)と磁性体粒子を、必要ならアガロースゲル他のバインダーをも用いて混合した構造の磁性体粒子(M12)を用いることを特徴とする、生体構成物質の分離・精製装置。 In claim 1 to claim 4, instead of magnetic particles having a two-layer structure such as magnetic particles coated with a substance (M2) covering the surface of magnetic particles (M1), proteins, DNA, cDNA, A substance that selectively recognizes and binds to biological components (M3) such as mRNA, tRNA, rRNA, living cells and liposomes, that is, the substance (M2) listed in claim 12 and magnetic particles are required. Then, a separation / purification apparatus for biological constituents, characterized by using magnetic particles (M12) having a structure mixed with agarose gel and other binders. 請求項1から請求項4及び請求項12において、磁性体粒子(M1)の表面を被覆する物質(M2)を2種類以上用意し、そのうち1種類の物質(M2)で磁性体粒子(M1)の表面を被覆し、他の1種類の物質(M2)で他の磁性体粒子(M1)の表面を被覆した2種類以上の磁性体粒子(M1)を用い、前記2種類以上の磁性体粒子(M1)を順番に用いるか、あるいは同時に用いて生体構成物質(M3)を磁性体粒子(M1)の表面に結合させて捕集し精製することを特徴とする、生体構成物質の分離・精製装置。 In claim 1 to claim 4 and claim 12, two or more kinds of substances (M2) covering the surface of the magnetic particles (M1) are prepared, and one kind of the substance (M2) is used as the magnetic particles (M1). Using two or more kinds of magnetic particles (M1) coated with the other surface, and the surface of another magnetic substance particle (M1) with another kind of substance (M2), the two or more kinds of magnetic particles Separation and purification of biological constituents, characterized in that (M1) are used sequentially or simultaneously, and biological constituents (M3) are bound to the surface of magnetic particles (M1) and collected and purified. apparatus. 請求項1から請求項4及び請求項12及び請求項14において、磁性体粒子(M1)の表面を被覆する時、まず特定の有機ポリマー又は無機ポリマー(M49)で磁性体粒子(M1)の表面を被覆しその後、請求項12で列記した少なくとも1種類の表面を被覆する物質(M2)で被覆することを特徴とする、生体構成物質の分離・精製装置。 The surface of the magnetic particles (M1) is coated with a specific organic polymer or inorganic polymer (M49) when coating the surfaces of the magnetic particles (M1) in claims 1 to 4, 12 and 14. And then coating with at least one type of material (M2) which covers at least one surface listed in claim 12. 請求項1から請求項4において、生体構成物質(M3)はDNA、cDNA、mRNA、tRNA、rRNA、生体中の蛋白質、合成した蛋白質、酵素、抗体、生体細胞、リポゾームのいずれかであることを特徴とする生体構成物質の分離・精製装置。 The biological component (M3) according to any one of claims 1 to 4, wherein the biological constituent (M3) is any one of DNA, cDNA, mRNA, tRNA, rRNA, a protein in a living body, a synthesized protein, an enzyme, an antibody, a living cell, and a liposome. Characteristic biological component separation / purification equipment. 請求項1から請求項4及び請求項12から請求項15において、磁性体粒子(M1、M12)が未だ生体構成物質(M3)と結合していない状態にあり、かつ磁性体粒子(M1、M12)が残留磁化を持っているとき、磁性体粒子(M1、M12)の残留磁化を、交番磁界や回転磁界を用いて消磁する事により、磁性体粒子(M1、M12)の溶液中での分散性を改善したことを特徴とする生体構成物質の分離・精製装置。 In Claims 1 to 4 and Claims 12 to 15, the magnetic particles (M1, M12) are not yet bonded to the biological constituent (M3), and the magnetic particles (M1, M12) ) Has residual magnetization, the magnetic particles (M1, M12) are dispersed in the solution by demagnetizing the residual magnetization of the magnetic particles (M1, M12) using an alternating magnetic field or rotating magnetic field. An apparatus for separating and purifying biological constituents characterized by improved properties. 請求項1から請求項4及び請求項12から請求項15において、液体容器(M22,M36)の内壁面に吸着し捕捉した磁性体粒子(M1、M12)の残留磁化を、交番磁界や回転磁界を用いて消磁する際に、先ず一定に強さの交番磁界・回転磁界の中に液体容器(M22,M36)を置き、その後交番磁界・回転磁界の中から液体容器(M22,M36)を取り去ることで液体容器(M22,M36)中の磁性体粒子(M1、M12)に作用する交番磁界・回転磁界を漸増・漸減させ、消磁することにより磁性体粒子(M1、M12)の溶液中での分散性を改善したことを特徴とする、生体構成物質の分離・精製装置。 The residual magnetization of the magnetic particles (M1, M12) adsorbed and captured on the inner wall surface of the liquid container (M22, M36) according to claim 1 to claim 4 and claim 12 to claim 15, When demagnetizing using the, first place the liquid container (M22, M36) in a constant strength alternating magnetic field / rotating magnetic field, then remove the liquid container (M22, M36) from the alternating magnetic field / rotating magnetic field By gradually increasing / decreasing the alternating magnetic field / rotating magnetic field acting on the magnetic particles (M1, M12) in the liquid container (M22, M36) and demagnetizing the magnetic particles (M1, M12) in the solution An apparatus for separating and purifying biological constituents characterized by improved dispersibility. 請求項1から請求項4において、直列又は並列に接続したコイル(M15、M10、M16)と、キャパシタ(M17、M18)に、直流電源(M25)又はキャパシタ(M28)から電流を供給する際に、過渡的に供給して過渡現象を起させ、直列または並列に接続したコイル(M15、M10、M16)のコイル端電圧を始めは上昇させ、次いでコイル(M15、M10、M16)に漸増・漸減する振動電流を発生させ、コイルによる磁界を漸増・漸減する交番磁界にして磁性体粒子(M1、M12)を消磁すること特徴とする、生体構成物質の分離・精製装置。 When supplying current from a DC power supply (M25) or a capacitor (M28) to a coil (M15, M10, M16) and a capacitor (M17, M18) connected in series or in parallel in claim 1 to claim 4. , Transiently supply to cause a transient phenomenon, increase the coil end voltage of the coils (M15, M10, M16) connected in series or in parallel first, then gradually increase / decrease to the coils (M15, M10, M16) An apparatus for separating and purifying biological constituents, wherein the magnetic particles (M1, M12) are demagnetized by generating an oscillating current to generate an alternating magnetic field that gradually increases and decreases the magnetic field generated by the coil. 請求項1から請求項4において、磁性体粒子(M1、M12)等を分散した液体容器(M36、M44)の外壁面又は外底面の近傍に少なくとも一個の永久磁石(M32)を設置し、永久磁石(M32)を液体容器(M36、M44)の外壁面又は外底面に近づけることにより磁性体粒子(M1、M12)を液体容器(M36、M44)の内壁面又は内底面に吸着させ、その後永久磁石(M32)を回転軸(M35)の周りに回転させながら液体容器(M36、M44)と永久磁石(M32)の距離を遠ざける事により、液体容器(M36、M44)内の磁性体粒子(M1、M12)に漸減する回転磁界・交番磁界を作用させ消磁する事を特徴とし、かつ前記回転磁界によって磁性体粒子(M1、M12)を液体容器(M36、M44)の液体中で攪拌し分散させる事を特徴とする、生体構成物質の分離・精製装置。 In Claims 1 to 4, at least one permanent magnet (M32) is installed in the vicinity of the outer wall surface or the outer bottom surface of the liquid container (M36, M44) in which the magnetic particles (M1, M12) and the like are dispersed. The magnetic particles (M1, M12) are adsorbed on the inner wall surface or inner bottom surface of the liquid container (M36, M44) by bringing the magnet (M32) closer to the outer wall surface or outer bottom surface of the liquid container (M36, M44), and then permanent. By rotating the magnet (M32) around the rotation axis (M35) while keeping the distance between the liquid container (M36, M44) and the permanent magnet (M32), the magnetic particles (M1 in the liquid container (M36, M44)) , M12) is applied to a rotating magnetic field / alternating magnetic field that gradually decreases to demagnetize, and the magnetic particles (M1, M12) are stirred and dispersed in the liquid in the liquid container (M36, M44) by the rotating magnetic field. An apparatus for separating and purifying biological constituents characterized by this. 請求項20において、液体容器(M36)の外底面の直下を避けて設置した永久磁石(M32)は、そのN極からS極へと発生する磁束が少なくとも液体容器(M36)の底面に作用するようにし、液体容器(M36)の外底面の直下には永久磁石(M32)の磁極(M33)が対向しないようにしたことを特徴とする、生体構成物質の分離・精製装置。 In Claim 20, in the permanent magnet (M32) installed so as to avoid being directly under the outer bottom surface of the liquid container (M36), the magnetic flux generated from the N pole to the S pole acts on at least the bottom surface of the liquid container (M36). In this way, the biological material separating / purifying apparatus is characterized in that the magnetic pole (M33) of the permanent magnet (M32) does not face directly below the outer bottom surface of the liquid container (M36). 磁性体粒子(M1)の表面を被覆する物質(M2)により被覆し、生体構成物質(M3)を磁性体粒子(M1)の表面を被覆する物質(M2)に結合させ、磁気吸引力(M4)により磁性体粒子(M1)を、磁性体粒子(M1)等を分散した液体容器(M22)の壁面に吸着することにより、磁性体粒子(M1)と結合した生体構成物質(M3)を捕捉し分離・精製する装置において、
生体構成物質(M3)を含む原料タンク(M37)内の液体をパイプ(M38)内の一定位置にある液溜(M44)に送り、
次に同じ液溜(M44)に磁性体粒子(M1、M12)を含む液体(M40)と細胞膜を溶かすBuffer(緩衝液)(M39)を送り、上記液溜(M44)にある生体構成物質(M3)と磁性体粒子(M1、M12)等を含む液体に、下記のいずれかの手段(M45)即ち、
(A)漸増・漸減する直流磁界、交番磁界又は回転磁界を印加して磁性体粒子(M1,M12)を捕捉した後、消磁する手段、
(B)漸増・漸減する回転磁界を印加して磁性体粒子(M1、M12)等を攪拌する手段、
(C)低周波の機械的振動を与える手段、
の内、少なくとも(A),(B)の内一つを含む手段を用いて磁性体粒子(M1、M12)等を液体中に分散させて、生体構成物質(M3)と磁性体粒子(M1、M12)を結合させ、
次に液溜(M44)の外壁面に磁気吸引力(M4)を作用させ、液体容器(M22)としての液溜(M44)の内壁面に生体構成物質(M3)と結合した磁性体粒子(M1、M12)を吸着することにより、磁性体粒子(M1、M12)と結合した生体構成物質(M3)を捕捉し、捕捉した状態で液溜(M44)内の残りの液体を排出し、次に洗浄液を液溜(M44)内に流して磁性体粒子(M1、M12)と結合した生体構成物質(M3)以外の夾雑物を少なくとも一回以上洗い流した後、液溜(M44)内に磁性体粒子(M1、M12)と生体構成物質(M3)の結合を外す液体(M31)を送り、磁気吸引力(M4)をゼロにして、液溜(M44)内にある生体構成物質(M3)と磁性体粒子(M1、M12)等を含む液体に、下記のいずれかの手段(M45)即ち、
(A)漸増・漸減する直流磁界、交番磁界又は回転磁界を印加して磁性体粒子(M1,M12)を捕捉した後、消磁する手段、、
(B)漸増・漸減する回転磁界を印加して磁性体粒子(M1、M12)等を攪拌する手段、
(C)低周波の機械的振動を与える手段、
の内、少なくとも(A),(B)の内一つを含む手段を用いて磁性体粒子(M1、M12)等を液体(M31)中に再分散させて磁性体粒子(M1、M12)と生体構成物質(M3)の結合を外した後、液溜(M44)の外壁面に再び磁気吸引力(M4)を作用させ、液溜(M44)の内壁面に磁性体粒子(M1、M12)のみを吸着し、液溜(M44)内の液体を排出することにより、排出された液体中に分散している生体構成物質(M3)を獲得することを特徴とする、生体構成物質の分離・精製装置。
The surface of the magnetic particles (M1) is coated with the substance (M2), and the biological constituent (M3) is bound to the substance (M2) that covers the surfaces of the magnetic particles (M1), and the magnetic attractive force (M4) ) Captures the biological material (M3) bound to the magnetic particles (M1) by adsorbing the magnetic particles (M1) to the wall of the liquid container (M22) in which the magnetic particles (M1) are dispersed. In the equipment for separation and purification,
The liquid in the raw material tank (M37) containing the biological component (M3) is sent to the liquid reservoir (M44) at a fixed position in the pipe (M38)
Next, the liquid (M40) containing magnetic particles (M1, M12) and the buffer (M39) that dissolves the cell membrane are sent to the same reservoir (M44), and the biological constituents in the reservoir (M44) (M44) M3) and a liquid containing magnetic particles (M1, M12), etc., to any of the following means (M45):
(A) Means to demagnetize after capturing magnetic particles (M1, M12) by applying gradually increasing / decreasing DC magnetic field, alternating magnetic field or rotating magnetic field,
(B) Means for stirring magnetic particles (M1, M12), etc. by applying a gradually increasing / decreasing rotating magnetic field,
(C) means for applying low frequency mechanical vibration,
Among them, the magnetic particles (M1, M12) and the like are dispersed in a liquid using a means including at least one of (A) and (B), so that the biological constituent (M3) and the magnetic particles (M1 , M12)
Next, a magnetic attractive force (M4) is applied to the outer wall surface of the liquid reservoir (M44), and the magnetic particles (M3) bound to the biological constituent (M3) on the inner wall surface of the liquid reservoir (M44) as the liquid container (M22) ( M1 and M12) are adsorbed to capture the biological component (M3) bound to the magnetic particles (M1 and M12), and the remaining liquid in the reservoir (M44) is discharged in the captured state. The washing liquid is poured into the liquid reservoir (M44), and at least one contaminant other than the biological material (M3) bound to the magnetic particles (M1, M12) is washed away at least once, and then magnetized in the liquid reservoir (M44). The liquid (M31) that removes the bond between the body particles (M1, M12) and the biological constituent (M3) is sent, the magnetic attractive force (M4) is zeroed, and the biological constituent (M3) in the liquid reservoir (M44) And a liquid containing magnetic particles (M1, M12) etc., any of the following means (M45):
(A) Means to demagnetize after capturing magnetic particles (M1, M12) by applying a gradually increasing / decreasing DC magnetic field, alternating magnetic field or rotating magnetic field,
(B) Means for stirring magnetic particles (M1, M12), etc. by applying a gradually increasing / decreasing rotating magnetic field,
(C) means for applying low frequency mechanical vibration,
Among them, the magnetic particles (M1, M12) are re-dispersed in the liquid (M31) by using means including at least one of (A), (B) and the magnetic particles (M1, M12). After the binding of the biological component (M3) is removed, the magnetic attractive force (M4) is applied again to the outer wall surface of the liquid reservoir (M44), and the magnetic particles (M1, M12) are applied to the inner wall surface of the liquid reservoir (M44). The bio-constituent material is separated and absorbed by adsorbing only the liquid and discharging the liquid in the liquid reservoir (M44) to obtain the bio-constituent substance (M3) dispersed in the discharged liquid. Purification equipment.
磁性体粒子(M1)の表面を被覆する物質(M2)により被覆し、生体構成物質(M3)を磁性体粒子(M1)の表面を被覆する物質(M2)に結合させ、磁気吸引力(M4)により磁性体粒子(M1)を、磁性体粒子(M1)等を分散した液体容器(M22)の壁面に吸着することにより、磁性体粒子(M1)と結合した生体構成物質(M3)を捕捉し分離・精製する装置において、
生体構成物質(M3)を含む原料タンク(M37)に細胞膜を溶かすBuffer(緩衝液)を予め混合した後、混合液をパイプ(M38)内の一定位置にある液溜(M44)に送り、次に液溜(M44)に磁性体粒子(M1、M12)を含む液体を送り、液溜(M44)にある生体構成物質(M3)と磁性体粒子(M1、M12)等を含む液体に、下記のいずれかの手段(M45)即ち、
(A)漸増・漸減する直流磁界、交番磁界又は回転磁界を印加して磁性体粒子(M1,M12)を捕捉した後、消磁する手段、、
(B)漸増・漸減する回転磁界を印加して磁性体粒子(M1、M12)等を攪拌する手段、
(C)低周波の機械的振動を与える手段、
の内、少なくとも(A),(B)の内一つを含む手段を用いて磁性体粒子(M1、M12)等を液体中に分散させて、生体構成物質(M3)と磁性体粒子(M1、M12)を結合させ、
次に液溜(M44)の外壁面に磁気吸引力(M4)を作用させ、液体容器(M22)としての液溜(M44)の内壁面に生体構成物質(M3)と結合した磁性体粒子(M1、M12)を吸着することにより、磁性体粒子(M1、M12)と結合した生体構成物質(M3)を捕捉し、捕捉した状態で液溜(M44)内の残りの液体を排出し、次に洗浄液を液溜(M44)内に流して磁性体粒子(M1、M12)と結合した生体構成物質(M3)以外の夾雑物を少なくとも一回以上洗い流した後、液溜(M44)内に磁性体粒子(M1、M12)と生体構成物質(M3)の結合を外す液体(M31)を送り、磁気吸引力(M4)をゼロにして、液溜(M44)内にある生体構成物質(M3)と磁性体粒子(M1、M12)等を含む液体に、下記のいずれかの手段(M45)即ち、
(A)漸増・漸減する直流磁界、交番磁界又は回転磁界を印加して磁性体粒子(M1,M12)を捕捉した後、消磁する手段、、
(B)漸増・漸減する回転磁界を印加して磁性体粒子(M1、M12)等を攪拌する手段、
(C)低周波の機械的振動を与える手段、
の内、少なくとも(A),(B)の内一つを含む手段を用いて磁性体粒子(M1、M12)等を液体(M31)中に再分散させて磁性体粒子(M1、M12)と生体構成物質(M3)の結合を外した後、液溜(M44)の外壁面に再び磁気吸引力(M4)を作用させ、液溜(M44)の内壁面に磁性体粒子(M1、M12)のみを吸着し、液溜(M44)内の液体を排出することにより、排出された液体中に分散している生体構成物質(M3)を獲得することを特徴とする、生体構成物質の分離・精製装置。
The surface of the magnetic particles (M1) is coated with the substance (M2), and the biological constituent (M3) is bound to the substance (M2) that covers the surfaces of the magnetic particles (M1), and the magnetic attractive force (M4) ) Captures the biological material (M3) bound to the magnetic particles (M1) by adsorbing the magnetic particles (M1) to the wall of the liquid container (M22) in which the magnetic particles (M1) are dispersed. In the equipment for separation and purification,
After mixing the buffer (buffer solution) that dissolves the cell membrane in the raw material tank (M37) containing the biological constituent (M3) in advance, the mixed solution is sent to the liquid reservoir (M44) at a fixed position in the pipe (M38). The liquid containing the magnetic particles (M1, M12) is sent to the liquid reservoir (M44), and the liquid containing the biological constituent (M3) and magnetic particles (M1, M12) in the liquid reservoir (M44) Any means (M45) of
(A) Means to demagnetize after capturing magnetic particles (M1, M12) by applying a gradually increasing / decreasing DC magnetic field, alternating magnetic field or rotating magnetic field,
(B) Means for stirring magnetic particles (M1, M12), etc. by applying a gradually increasing / decreasing rotating magnetic field,
(C) means for applying low frequency mechanical vibration,
Among them, the magnetic particles (M1, M12) and the like are dispersed in a liquid using a means including at least one of (A) and (B), so that the biological constituent (M3) and the magnetic particles (M1 , M12)
Next, a magnetic attractive force (M4) is applied to the outer wall surface of the liquid reservoir (M44), and the magnetic particles (M3) bound to the biological constituent (M3) on the inner wall surface of the liquid reservoir (M44) as the liquid container (M22) ( M1 and M12) are adsorbed to capture the biological component (M3) bound to the magnetic particles (M1 and M12), and the remaining liquid in the reservoir (M44) is discharged in the captured state. The washing liquid is poured into the liquid reservoir (M44), and at least one contaminant other than the biological material (M3) bound to the magnetic particles (M1, M12) is washed away at least once, and then magnetized in the liquid reservoir (M44). The liquid (M31) that removes the bond between the body particles (M1, M12) and the biological constituent (M3) is sent, the magnetic attractive force (M4) is zeroed, and the biological constituent (M3) in the liquid reservoir (M44) And a liquid containing magnetic particles (M1, M12) etc., any of the following means (M45):
(A) Means to demagnetize after capturing magnetic particles (M1, M12) by applying a gradually increasing / decreasing DC magnetic field, alternating magnetic field or rotating magnetic field,
(B) Means for stirring magnetic particles (M1, M12), etc. by applying a gradually increasing / decreasing rotating magnetic field,
(C) means for applying low frequency mechanical vibration,
Among them, the magnetic particles (M1, M12) are re-dispersed in the liquid (M31) by using means including at least one of (A), (B) and the magnetic particles (M1, M12). After the binding of the biological component (M3) is removed, the magnetic attractive force (M4) is applied again to the outer wall surface of the liquid reservoir (M44), and the magnetic particles (M1, M12) are applied to the inner wall surface of the liquid reservoir (M44). The bio-constituent material is separated and absorbed by adsorbing only the liquid and discharging the liquid in the liquid reservoir (M44) to obtain the bio-constituent substance (M3) dispersed in the discharged liquid. Purification equipment.
請求項1から請求項4において、回転する磁石(M32)を複数個モータ軸(M35)に取り付け、一対の磁石はその磁極(M33)が一定距離を隔てて対向するように設置し、モータ(M34)を回転させ、前記一対の磁石(M32)の間に液体容器(M36)を挿入し、その後次第に液体容器(M36)を引き離し、液体容器(M36)内の磁性体粒子に減衰する回転磁界・交番磁界を作用させて磁性体粒子を消磁し、消磁に止まらず、回転磁界により攪拌して液中に分散することを特徴とする生体構成物質の分離・精製装置。 In Claims 1 to 4, a plurality of rotating magnets (M32) are attached to a motor shaft (M35), and a pair of magnets are installed so that their magnetic poles (M33) face each other at a predetermined distance. M34) is rotated, the liquid container (M36) is inserted between the pair of magnets (M32), and then the liquid container (M36) is gradually pulled away to attenuate the magnetic particles in the liquid container (M36). An apparatus for separating and purifying biological constituents characterized in that an alternating magnetic field is applied to demagnetize magnetic particles, and the magnetic particles are not degaussed but stirred in a rotating magnetic field and dispersed in a liquid. 請求項1から請求項24に示す生体構成物質の分離・精製装置において、漸増・漸減する磁気吸引力(M4)を用いて磁性体粒子を吸着・捕捉する事と、漸増・漸減する交番磁界又は回転磁界を用いて磁性体粒子を消磁して液中に再分散させることを特徴とし、かつ磁性体粒子を含む液体の吸引・吐出を繰り返して強制的に再分散させることを回避したことを特徴とする生体構成物質の分離・精製装置。 25. The apparatus for separating and purifying biological constituents according to claim 1 to claim 24, wherein magnetic particles are attracted and captured using a magnetic attraction force (M4) that gradually increases and decreases, and an alternating magnetic field that increases and decreases gradually. It is characterized by demagnetizing magnetic particles using a rotating magnetic field and redispersing them in the liquid, and avoiding forced redispersion by repeatedly sucking and discharging the liquid containing magnetic particles. An apparatus for separating and purifying biological constituents. 請求項1から請求項25に示す生体構成物質の分離・精製装置の内、少なくとも一つの装置を用いて生体構成物質の分離・精製を行うことを特徴とする生体構成物質の分離・精製方法。 A separation / purification method for a biological constituent, wherein the biological constituent is separated / purified using at least one of the biological constituent separation / purification devices shown in claims 1 to 25. 請求項1から請求項25に示す生体構成物質の分離・精製装置の内、少なくとも一つの装置を用いて生体構成物質の分離・精製を行った結果得られたことを特徴とする、請求項16に示す生体構成物質(M3)。
The biological component separating / purifying apparatus according to any one of claims 1 to 25, wherein the biological component separating / purifying process is performed using at least one apparatus. Biological constituent (M3) shown in
JP2003367637A 2003-08-01 2003-10-28 Separating/purifying device and separating/purifying method for biological constituent substance, and separated/purified substance Pending JP2005140501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003367637A JP2005140501A (en) 2003-08-01 2003-10-28 Separating/purifying device and separating/purifying method for biological constituent substance, and separated/purified substance

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003205268 2003-08-01
JP2003355717 2003-10-15
JP2003367637A JP2005140501A (en) 2003-08-01 2003-10-28 Separating/purifying device and separating/purifying method for biological constituent substance, and separated/purified substance

Publications (1)

Publication Number Publication Date
JP2005140501A true JP2005140501A (en) 2005-06-02

Family

ID=34704837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003367637A Pending JP2005140501A (en) 2003-08-01 2003-10-28 Separating/purifying device and separating/purifying method for biological constituent substance, and separated/purified substance

Country Status (1)

Country Link
JP (1) JP2005140501A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010530956A (en) * 2007-02-23 2010-09-16 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Sensor device and method for sensing magnetic particles
JP2010227907A (en) * 2009-03-30 2010-10-14 National Institute Of Advanced Industrial Science & Technology Affinity magnetic bead
JP5658666B2 (en) * 2009-07-29 2015-01-28 株式会社東芝 Oil adsorbent
JP2015024407A (en) * 2014-09-12 2015-02-05 株式会社東芝 Oil adsorbent and method for manufacturing oil adsorbent
JP2021025930A (en) * 2019-08-07 2021-02-22 国立研究開発法人産業技術総合研究所 Target substance detection device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010530956A (en) * 2007-02-23 2010-09-16 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Sensor device and method for sensing magnetic particles
JP2010227907A (en) * 2009-03-30 2010-10-14 National Institute Of Advanced Industrial Science & Technology Affinity magnetic bead
JP5658666B2 (en) * 2009-07-29 2015-01-28 株式会社東芝 Oil adsorbent
JP2015024407A (en) * 2014-09-12 2015-02-05 株式会社東芝 Oil adsorbent and method for manufacturing oil adsorbent
JP2021025930A (en) * 2019-08-07 2021-02-22 国立研究開発法人産業技術総合研究所 Target substance detection device
JP7246085B2 (en) 2019-08-07 2023-03-27 国立研究開発法人産業技術総合研究所 Target substance detector

Similar Documents

Publication Publication Date Title
Ma et al. Superparamagnetic silica nanoparticles with immobilized metal affinity ligands for protein adsorption
US8142892B2 (en) Tailored magnetic particles comprising a non-magnetic component and a magnetic core-shell component, and method to produce same
Zhang et al. Fabrication of magnetic cryptomelane-type manganese oxide nanowires for water treatment
CA3106672C (en) Magnetic particles
WO2011059076A1 (en) Magnetic reagent, magnetic reagent kit, method for treating magnetic carriers and treatment device therefor
US7938969B2 (en) Magnetic purification of a sample
US8297444B2 (en) Separation of carbon nanotubes using magnetic particles
Stephens et al. Analytical methods for separating and isolating magnetic nanoparticles
CA2429296C (en) Method for separating a dispersed or dissolved substance and magnet separator
Bakhteeva et al. Magnetic sedimentation and aggregation of Fe3O4@ SiO2 nanoparticles in water medium
CN104923395B (en) For separating and shifting the electromagnetism electromotion integrated apparatus of magnetic-particle
Lindner et al. Parameters influencing magnetically enhanced centrifugation for protein separation
JP2016510872A (en) Separation and analysis method based on magnetic particles
JP2005140501A (en) Separating/purifying device and separating/purifying method for biological constituent substance, and separated/purified substance
US20140353218A1 (en) Separation of luminescent nanomaterials
JP4926813B2 (en) Apparatus for separating and removing fine magnetic particles
Peuker et al. Bioseparation, magnetic particle adsorbents
JP2013139365A (en) Magnetic zeolite particle and method for producing the same
Franzreb et al. Product recovery by high-gradient magnetic fishing
Takeda et al. Development of a colloid chemical process for magnetic seeding to organic dye
JP2004097159A (en) Magnetic carrier for nucleic acid bonding and method for producing the same
Ma et al. Extraction of Pb2+ from dilute solution by paramagnetic Fe3O4@ SiO2@ Clpr-silica@ dithizone solid-phase nanoextractant
Dowling et al. Enhancing the capture of magnetic nanoparticles inside of ferromagnetic nanostructures using external magnetic fields
Zulquarnain Scale-up of affinity separation based on magnetic support particles
RU2777899C1 (en) Magnetic particles