JP2005127547A - Temperature stratified heat storage material dispersion liquid - Google Patents

Temperature stratified heat storage material dispersion liquid Download PDF

Info

Publication number
JP2005127547A
JP2005127547A JP2003361095A JP2003361095A JP2005127547A JP 2005127547 A JP2005127547 A JP 2005127547A JP 2003361095 A JP2003361095 A JP 2003361095A JP 2003361095 A JP2003361095 A JP 2003361095A JP 2005127547 A JP2005127547 A JP 2005127547A
Authority
JP
Japan
Prior art keywords
heat storage
storage material
dispersion
temperature
dispersion liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003361095A
Other languages
Japanese (ja)
Inventor
Mamoru Ishiguro
守 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2003361095A priority Critical patent/JP2005127547A/en
Publication of JP2005127547A publication Critical patent/JP2005127547A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Central Heating Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat storage material dispersion liquid suitable for a temperature stratified heat storage tank for hardly causing a difference in flow rate between water entry and water delivery in a heat storage material filled in the temperature stratified heat storage tank and for hardly causing the disturbance of temperature stratification even when vibration is applied thereto. <P>SOLUTION: The used dispersion liquid of heat storage material particles is composed of the heat storage material whose density during coagulation is set to be 1.05-1.30 times the density during fusion. The dispersion liquid of the heat storage material particles is desirably microcapsule dispersion liquid. More desirably, the heat storage material consists of two types or more of compound components and theses compounds have continuous carbon numbers. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は縦型若しくは横型の温度成層型蓄熱槽に充填される蓄熱材分散液に関するものであり、更に詳しくは、本発明の蓄熱材分散液を用いた蓄熱システムは水を用いた同容量の蓄熱槽と比較して2倍以上の蓄熱能力を有し、深夜電力や自然界の未利用エネルギーを有効に利用した高密度の蓄熱が可能となる。   The present invention relates to a heat storage material dispersion filled in a vertical or horizontal temperature stratified heat storage tank. More specifically, the heat storage system using the heat storage material dispersion of the present invention has the same capacity using water. Compared to a heat storage tank, it has a heat storage capacity that is twice or more, and high-density heat storage that effectively uses late-night power and natural unused energy becomes possible.

従来より深夜電力や海水、河川水、地熱などの自然界における未利用エネルギーを有効利用した蓄熱法として水蓄熱システムがある。水蓄熱システムは蓄熱材である水自身が安価であること、建屋の構造上必要となる二重スラブを利用できるという経済的な面、及び蓄熱材としての水の安定性、取り扱い易さなどから空調用として最も普及したシステムである。更に水は比熱が高いことと、そのまま熱搬送流体として使用できることも普及の大きな理由として挙げられる。   Conventionally, there is a water heat storage system as a heat storage method that effectively uses unused energy in the natural world such as late-night power, seawater, river water, and geothermal heat. The water heat storage system is cheap because the water itself, which is a heat storage material, is inexpensive, the economical aspect of being able to use the double slab required for the structure of the building, and the stability and ease of handling of water as a heat storage material This is the most popular system for air conditioning. Furthermore, water has a high specific heat and can be used as a heat transfer fluid as it is.

上記水蓄熱システムに対し、氷や無機系、有機系蓄熱材を利用した潜熱蓄熱システムの開発が盛んである。潜熱蓄熱システムは蓄熱密度か大きく蓄熱槽が小型化できるため蓄熱槽の設置面積が少なくて済み、新たな工事が不必要であり建屋の屋上等にそのまま設置できる等の利点を有するため普及が著しい。   Development of a latent heat storage system using ice, inorganic or organic heat storage materials has been actively developed for the water storage system. The latent heat storage system is very popular because it has the advantage that the heat storage density is large and the heat storage tank can be miniaturized, so the installation area of the heat storage tank is small, no new construction is required, and it can be installed directly on the rooftop of the building. .

本発明者は、蓄熱材マイクロカプセルを用いた蓄熱法及び熱搬送法を提案した。(例えば、特許文献1、2参照)これらのシステムはマイクロカプセル内の蓄熱材に多量の潜熱を蓄え、尚かつその潜熱をそのまま搬送できるため前記水蓄熱と潜熱蓄熱の両者の利点を兼ねそろえたシステムである。更に本発明者は蓄熱材粒子分散液の粘性をある一定の範囲内に設定することにより安定な温度成層が得られる提案を行った。(例えば、特許文献3参照)
特開平5−163486号公報 特開平5−117642号公報 特開2002−053850号公報
The inventor has proposed a heat storage method and a heat transfer method using a heat storage material microcapsule. (For example, see Patent Documents 1 and 2) Since these systems store a large amount of latent heat in the heat storage material in the microcapsule and can transport the latent heat as it is, they have the advantages of both the water heat storage and the latent heat storage. System. Furthermore, the present inventor has proposed that a stable temperature stratification can be obtained by setting the viscosity of the heat storage material particle dispersion within a certain range. (For example, see Patent Document 3)
JP-A-5-163486 Japanese Patent Laid-Open No. 5-117642 JP 2002-053850 A

本発明の課題は温度成層型蓄熱槽に充填する蓄熱材において入水と出水の流速差が生じたり振動などが加わっても温度成層の乱れが生じにくく、しかも温度成層を境にその両側で温度差を大きく設定できることにより蓄熱効率の高い温度成層型蓄熱材分散液を提供することにある。   The problem of the present invention is that the thermal storage material filled in the thermal stratification type thermal storage tank is less likely to cause turbulence of the thermal stratification even if a flow rate difference between incoming and outgoing water occurs or vibrations are applied, and the temperature difference between both sides of the thermal stratification is the boundary. Is to provide a temperature-stratified thermal storage material dispersion with high thermal storage efficiency.

本発明の課題は、蓄熱材を内包するマイクロカプセルの分散液において、蓄熱材の密度比率をある一定の範囲に設定することにより達成され、具体的には蓄熱材の凝固時と融解時の密度比率が1.05〜1.30倍の範囲に設定することにより本発明の課題が達成される。   The object of the present invention is achieved by setting the density ratio of the heat storage material within a certain range in the dispersion of the microcapsules enclosing the heat storage material, specifically, the density of the heat storage material during solidification and melting. The object of the present invention is achieved by setting the ratio in the range of 1.05 to 1.30 times.

本発明の温度成層型蓄熱用分散液は蓄熱材の凝固時と融解時の密度比率を大きく設定することにより極めて安定且つ温度差の大きな明確な温度成層が得られるために成層蓄熱に極めて適するものとなる。また、水に比べ2倍以上の蓄熱容量を有するため蓄熱槽の小型化が可能であるにもかかわらず、多量の冷熱、温熱を蓄えることが可能で熱の取り出し効率も極めて高いものであった。   The thermal stratification type heat storage dispersion of the present invention is extremely suitable for stratified heat storage because a clear temperature stratification with a very stable and large temperature difference can be obtained by setting a large density ratio during solidification and melting of the heat storage material. It becomes. In addition, since it has a heat storage capacity more than twice that of water, the heat storage tank can be downsized, but a large amount of cold and hot heat can be stored and the heat extraction efficiency is extremely high. .

以下に、本発明の温度成層型蓄熱用分散液について詳細に説明する。本発明の蓄熱材分散液とは、実質的に水に不溶性の液体または個体の蓄熱材を水溶液中に微小滴状に分散させた乳化液または分散液を意味するが、蓄熱材を内包したマイクロカプセル分散液であることが好ましい。マイクロカプセル化処理を施していない分散液でも本発明の課題は達成されるが、長時間の蓄熱と放熱を繰り返すうちに粒子同士が凝集、合一してきて、甚だ分散安定性に劣る場合には水と蓄熱材が完全に分離してしまうことがある。   Hereinafter, the temperature-stratified thermal storage dispersion of the present invention will be described in detail. The heat storage material dispersion of the present invention refers to an emulsion or dispersion in which a substantially water-insoluble liquid or a solid heat storage material is dispersed in an aqueous solution in the form of fine droplets. A capsule dispersion is preferred. Even if the dispersion liquid is not subjected to microencapsulation treatment, the object of the present invention can be achieved, but when the particles are aggregated and united while repeating long-term heat storage and heat dissipation, the dispersion stability is inferior. Water and heat storage material may be completely separated.

本発明者は、安定な温度成層型蓄熱材分散液を得るためには蓄熱材粒子の凝固時と融解時の密度比を大きく設定すれば良いことに着目し、種々の蓄熱材の種類や純度について検討した結果、ある範囲の密度比率の範囲に設定することにより本発明の課題が達成されることを見出した。本発明で述べる密度比率とは、蓄熱材分散液を構成する粒子、しかもその中に含まれる蓄熱材成分単独の凝固時の密度を融解時の密度で除した値を示す。本発明の課題を達成するために好ましい密度比率は1.05〜1.30の範囲に設定することが好ましいことが判明した。蓄熱材の密度をこの範囲に設定するためには蓄熱材の種類と純度が重要な因子であり、好ましくは蓄熱材として高純度のものを使用することが好ましい。   The inventor of the present invention pays attention to the fact that in order to obtain a stable temperature-stratified heat storage material dispersion, the density ratio between the solidification and melting of the heat storage material particles should be set large, and the types and purity of various heat storage materials As a result, the present inventors have found that the object of the present invention can be achieved by setting the density ratio within a certain range. The density ratio described in the present invention refers to a value obtained by dividing the solidification density of the particles constituting the heat storage material dispersion and the heat storage material component alone contained therein by the density at the time of melting. In order to achieve the object of the present invention, it has been found that the preferred density ratio is preferably set in the range of 1.05-1.30. In order to set the density of the heat storage material within this range, the type and purity of the heat storage material are important factors, and it is preferable to use a high-purity heat storage material.

本発明で用いられる脂肪族炭化水素以外の蓄熱材としては、ラウリン酸、ステアリン酸等の高級脂肪酸類、ラウリルアルコール、ステアリルアルコール等の高級アルコール類、ミリスチン酸メチル、パルミチン酸メチル、ステアリン酸メチル、ステアリン酸ステアリル、フタル酸ジステアリル等のエステル化合物、及び無機塩類などの融解熱量が約80kJ/kg以上の化合物が使用可能である。特に本発明の蓄熱材分散液は成層温度型蓄熱材として冷房用の冷熱を蓄えるための蓄熱材として用いられることが好ましく、蓄熱材の融点は0〜15℃の範囲に設定されることが好ましい態様である。   Examples of heat storage materials other than aliphatic hydrocarbons used in the present invention include higher fatty acids such as lauric acid and stearic acid, higher alcohols such as lauryl alcohol and stearyl alcohol, methyl myristate, methyl palmitate, methyl stearate, Ester compounds such as stearyl stearate and distearyl phthalate, and compounds having a heat of fusion of about 80 kJ / kg or more, such as inorganic salts, can be used. In particular, the heat storage material dispersion of the present invention is preferably used as a stratified temperature type heat storage material as a heat storage material for storing cooling heat, and the melting point of the heat storage material is preferably set in the range of 0 to 15 ° C. It is an aspect.

本発明で用いられる上記蓄熱材において2種以上の化合物を組み合わせて用いる場合には、各々の化合物が有する炭素数が連続であることが好ましい。この場合、組み合わされる化合物は同種の化合物同士であることが好ましいが、例えば脂肪族炭化水素化合物とエステル化合物同士であっても総炭素数が連続であれば同様の効果が達成されることを見出した。   When using in combination with 2 or more types of compounds in the said heat storage material used by this invention, it is preferable that the carbon number which each compound has is continuous. In this case, it is preferable that the compound to be combined is the same type of compound, but for example, even if it is an aliphatic hydrocarbon compound and an ester compound, the same effect is achieved if the total carbon number is continuous. It was.

蓄熱材分散液の製法は界面活性剤を溶解した水溶液中に液状の蓄熱材を添加して機械的なシェアを加えて所望の粒子径まで乳化、分散が施される。本発明の蓄熱材粒子の平均粒子系は0.5〜30μm、好ましくは1〜20μmに設定することが好ましい。蓄熱材の粒子径の制御は、分散剤の種類と濃度、分散工程時の温度と時間、乳化比(水相と油相の体積比率)、乳化機、分散機等と称される微粒化装置の運転条件(攪拌回転数、時間等)等の因子で調節される。   In the method for producing a heat storage material dispersion, a liquid heat storage material is added to an aqueous solution in which a surfactant is dissolved, and a mechanical share is added to emulsify and disperse to a desired particle size. The average particle system of the heat storage material particles of the present invention is preferably set to 0.5 to 30 μm, preferably 1 to 20 μm. The particle size of the heat storage material is controlled by the type and concentration of the dispersant, the temperature and time during the dispersion process, the emulsification ratio (volume ratio of the water phase and the oil phase), the atomizer called emulsifier, disperser, etc. It is adjusted by factors such as the operating conditions (stirring speed, time, etc.).

蓄熱材をマイクロカプセル化する方法としては、複合エマルジョン法によるカプセル化法(特開昭62−1452号公報)、蓄熱材粒子の表面に熱可塑性樹脂を噴霧する方法(同62−45680号公報)、蓄熱材粒子の表面に液中で熱可塑性樹脂を形成する方法(同62−149334号公報)、蓄熱材粒子の表面でモノマーを重合させ被覆する方法(同62−225241号公報)、界面重縮合反応によるポリアミド皮膜マイクロカプセルの製法(特開平2−258052号公報)等の方法を用いることができる。   As a method for microencapsulating the heat storage material, an encapsulation method by a composite emulsion method (Japanese Patent Laid-Open No. 62-1452), a method of spraying a thermoplastic resin on the surface of the heat storage material particles (JP-A 62-45680) , A method of forming a thermoplastic resin in the liquid on the surface of the heat storage material particles (JP-A 62-149334), a method of polymerizing and coating the monomer on the surface of the heat storage material particles (JP-A 62-225241), interfacial weight A method such as a method for producing a polyamide-coated microcapsule by a condensation reaction (JP-A-2-258052) can be used.

マイクロカプセルの皮膜膜形成材としては、界面重合法、インサイチュー法等の手法で得られる、ポリスチレン、ポリアクリロニトリル、ポリアミド、ポリアクリルアミド、エチルセルロース、ポリウレタン、アミノプラスト樹脂、またゼラチンとカルボキシメチルセルロース若しくはアラビアゴムとのコアセルベーション法を利用した合成あるいは天然の樹脂が用いられるが、本発明の如き比較的高融点の蓄熱材を内包するマイクロカプセルの場合にはインサイチュー法によるメラミンホルマリン樹脂が特に好ましい。蓄熱材中には必要に応じ過冷却防止材、比重調節材、劣化防止剤等を添加することができる。   As a film forming material for microcapsules, polystyrene, polyacrylonitrile, polyamide, polyacrylamide, ethyl cellulose, polyurethane, aminoplast resin, gelatin and carboxymethyl cellulose or gum arabic obtained by methods such as interfacial polymerization and in situ method A synthetic or natural resin using a coacervation method is used, but in the case of a microcapsule containing a heat storage material having a relatively high melting point as in the present invention, a melamine formalin resin by an in situ method is particularly preferable. A supercooling prevention material, a specific gravity adjusting material, a deterioration prevention agent, and the like can be added to the heat storage material as necessary.

本発明の蓄熱材分散液の粘度は5〜500mPa・s、好ましくは5〜200mPa・sの範囲に設定することにより温度成層型蓄熱材として最も安定で且つ効率よく蓄熱と放熱が繰り返される。この粘度以下になると水の粘度に極めて近づき温度成層が乱れやすくなるが、5mPa・s以上であれば極めて安定な温度成層が得られることが分かった。また粘度が500mPa・s以上になると液流が乱流に成りにくく伝熱性能が極端に低下したり、ポンプ動力の負荷が大きくなり搬送に要するエネルギー消費量が増えてしまい好ましくない。尚、本発明における粘度の測定は、E型粘度計を用いた25℃における粘度を示す。   By setting the viscosity of the heat storage material dispersion of the present invention to a range of 5 to 500 mPa · s, preferably 5 to 200 mPa · s, heat storage and heat dissipation are repeated most stably and efficiently as a temperature-stratified heat storage material. When the viscosity is below this level, it becomes very close to the viscosity of water and the temperature stratification tends to be disturbed. On the other hand, when the viscosity is 500 mPa · s or more, the liquid flow is less likely to be turbulent and the heat transfer performance is extremely lowered, or the load of the pump power increases and the energy consumption required for conveyance increases, which is not preferable. In addition, the measurement of the viscosity in this invention shows the viscosity in 25 degreeC using an E-type viscosity meter.

蓄熱材分散液の粘度をこの範囲に設定するためには、特に分散液の固形分濃度、分散剤の種類の2種が大きく影響を及ぼす。固形分濃度は分散液の粘度のみならず、蓄熱材分散液の蓄熱容量にも大きく影響するため使用される蓄熱材の性能に応じて設定される。通常の水蓄熱システムでは顕熱温度幅が5〜7℃に設定されている場合が多く、本発明の蓄熱材分散液は水蓄熱システムの最低2倍以上蓄熱容量を可能とするものであるため、蓄熱材分散液の潜熱融解熱量が最低3kJ/kg以上になるように固形分濃度が設定される。   In order to set the viscosity of the heat storage material dispersion within this range, the solid content concentration of the dispersion and the type of the dispersant are particularly influential. The solid content concentration is set according to the performance of the heat storage material used because it greatly affects not only the viscosity of the dispersion but also the heat storage capacity of the heat storage material dispersion. In a normal water heat storage system, the sensible heat temperature range is often set to 5 to 7 ° C., and the heat storage material dispersion of the present invention enables a heat storage capacity at least twice that of the water heat storage system. The solid content concentration is set so that the latent heat melting heat amount of the heat storage material dispersion is at least 3 kJ / kg or more.

具体的な固形分濃度として10〜60%(w/w)の範囲が適当であり、好ましくは30〜50%(w/w)の範囲に設定される。本発明で使用される分散剤は水溶性、油溶性何れでも使用可能であるが好ましくは水溶性のアニオン性を示す界面活性剤、及び保護コロイド分散剤が使用され、具体的には次の分散剤が挙げられる。   The specific solid content concentration is suitably in the range of 10 to 60% (w / w), preferably in the range of 30 to 50% (w / w). The dispersant used in the present invention may be either water-soluble or oil-soluble, but preferably a water-soluble anionic surfactant and a protective colloid dispersant are used. Specifically, the following dispersion is used. Agents.

脂肪酸石鹸、金属石鹸、アルキル硫酸エステル塩、ポリオキシエチレンアルキルエーテル硫酸エステル塩、アルキルベンゼンスルフォン酸塩、ジアルキルスルフォコハク酸塩、ポリ(メタ)アクリル酸、スチレン無水マレイン酸共重合体加水分解物、α−アルキルスチレン無水マレイン酸共重合体加水分解物、メチルビニルエーテル無水マレイン酸共重合体加水分解物、ビニルトルエン無水マレイン酸共重合体加水分解物、スチレンベンジルメタクリレート無水マレイン酸共重合体加水分解物、エチレン無水マレイン酸共重合体加水分解物、イソブチレン無水マレイン酸共重合体加水分解物、酢酸ビニル無水マレイン酸共重合体加水分解物、酢酸ビニルクロトン酸共重合体、(メタ)アクリル酸(メタ)アクリル酸エステル共重合体、スチレン(メタ)アクリル酸(メタ)アクリル酸エステル共重合体、ポリスチレンスルフォン酸、カルボキシメチルセルロース、アルギン酸、ポリビニルアルコール、カルボキシ変性ポリビニルアルコール、スルフォン化変性ポリビニルアルコール、及びポリビニルリン酸等、及びそのアルカリ金属またはアンモニウム塩が挙げられる。   Fatty acid soap, metal soap, alkyl sulfate ester salt, polyoxyethylene alkyl ether sulfate ester salt, alkylbenzene sulfonate, dialkyl sulfosuccinate, poly (meth) acrylic acid, styrene maleic anhydride copolymer hydrolyzate, α-alkylstyrene maleic anhydride copolymer hydrolyzate, methyl vinyl ether maleic anhydride copolymer hydrolyzate, vinyltoluene maleic anhydride copolymer hydrolyzate, styrenebenzyl methacrylate maleic anhydride copolymer hydrolyzate , Ethylene maleic anhydride copolymer hydrolyzate, isobutylene maleic anhydride copolymer hydrolyzate, vinyl acetate maleic anhydride copolymer hydrolyzate, vinyl acetate crotonic acid copolymer, (meth) acrylic acid (meta ) Acrylic ester copolymer, Stille (Meth) acrylic acid (meth) acrylic acid ester copolymer, polystyrene sulfonic acid, carboxymethyl cellulose, alginic acid, polyvinyl alcohol, carboxy modified polyvinyl alcohol, sulfonated modified polyvinyl alcohol, polyvinyl phosphoric acid and the like, and alkali metals or ammonium thereof Salt.

以下に本発明の実施例を示す。実施例中の部数は固形重量部を表す。また、融点及び耐熱性の評価は示差熱熱量計(DSC)は米国パーキンエルマー社製、DSC−7型を、分散液の粘度は、(株)東京計器製、E型粘度計VISCONIC−ED型を用いて測定した値を示す。蓄熱材分散液中の蓄熱材単独の密度は、予め既知濃度の分散液の密度をJIS K 2249準拠のI型浮ひょう密度試験方法により求め、蓄熱材の濃度を変化させた分散液の密度も同様測定した後、計算で蓄熱材濃度を100%に挿外した値を用いた。   Examples of the present invention are shown below. The number of parts in the examples represents solid weight parts. In addition, evaluation of melting point and heat resistance was performed by using a differential calorimeter (DSC) manufactured by Perkin Elmer, Inc., DSC-7, and a viscosity of the dispersion was manufactured by Tokyo Keiki Co., Ltd., E-type viscometer VISCONIC-ED type. The value measured using is shown. As for the density of the heat storage material alone in the heat storage material dispersion, the density of the dispersion having a known concentration is obtained in advance by the I type float density test method in accordance with JIS K 2249, and the density of the dispersion obtained by changing the concentration of the heat storage material is also used. After the same measurement, the value obtained by extrapolating the heat storage material concentration to 100% was used.

メラミン粉末7部に37%ホルムアルデヒド水溶液13.5部と水30部を加え、pHを8に調整した後、約70℃まで加熱してメラミンホルムアルデヒド初期縮合物水溶液を得た。pHを4.5に調整した10%スチレン無水マレイン酸共重合体のナトリウム塩水溶液100部中に、蓄熱材としてn-テトラデカン30部とn-ペンタデカン50部の混合液(融点7℃、融解熱量155kJ/kg)を激しく撹拌しながら添加し平均粒子径が5.0μmになるまで乳化を行なった。この乳化液に上記メラミン−ホルムアルデヒド初期縮合物水溶液全量を添加し70℃で2時間撹拌を施した後、固形分濃度40%、pHを9に調製して25℃における粘度120mPa・s、分散液の融解熱量54kJ/kgの温度成層型蓄熱材マイクロカプセル分散液を得た。   To 7 parts of melamine powder, 13.5 parts of 37% formaldehyde aqueous solution and 30 parts of water were added to adjust the pH to 8, followed by heating to about 70 ° C. to obtain a melamine formaldehyde initial condensate aqueous solution. A mixture of 30 parts of n-tetradecane and 50 parts of n-pentadecane as a heat storage material (melting point: 7 ° C., heat of fusion) in 100 parts of an aqueous sodium salt solution of 10% styrene maleic anhydride copolymer adjusted to pH 4.5. 155 kJ / kg) was added with vigorous stirring, and emulsification was carried out until the average particle size became 5.0 μm. After adding the total amount of the above melamine-formaldehyde initial condensate aqueous solution to this emulsion and stirring at 70 ° C. for 2 hours, the solid content concentration was adjusted to 40%, pH was adjusted to 9, and the viscosity at 25 ° C. was 120 mPa · s. A temperature-stratified heat storage material microcapsule dispersion having a heat of fusion of 54 kJ / kg was obtained.

この蓄熱材分散液中の蓄熱材単独の4℃における密度は約0.87g/cm3で、一方融解時の12℃における密度は約0.77g/cm3であり、その密度比は1.13に達した。一方、水のみの同温度差においては僅か1.02の比率しか得られず明らかに蓄熱材を用いた分散液の方が密度差が大きく安定な温度成層が得られることが確認できた。 The density at 4 ° C. of the heat storage material alone in this heat storage material dispersion is about 0.87 g / cm 3 , while the density at 12 ° C. during melting is about 0.77 g / cm 3 , and the density ratio is 1. 13 was reached. On the other hand, only a ratio of 1.02 was obtained at the same temperature difference with water alone, and it was clearly confirmed that the dispersion using the heat storage material has a larger density difference and a stable temperature stratification can be obtained.

pHを7.0、温度を60℃に調整した5%濃度のポリスチレンスルホン酸ナトリウム水溶液中100部中に、蓄熱材として融点47℃のパラフィンワックス(炭素数が約20〜30までの連続した脂肪族炭化水素化合物の混合物)60部を添加し平均粒径が1.0μmになるまで強撹拌を行ない、濃度40%、25℃における粘度12mPa・s、分散液の融解熱量59kJ/kgの温度成層型蓄熱材分散液を得た。この分散液中の蓄熱材単独の凝固時における密度は約0.92g/cm3で、一方融解時の密度は0.76g/cm3で、その密度比率は1.21であった。この分散液を直径60cm、高さ100cmの円筒型の200リットル容量のモデル蓄熱槽に充填し、蓄熱材の融点を挟む温度域で緩やかに温度勾配を掛けたところ、融点付近で明らかに温度差を有する安定な温度成層が観察された。この蓄熱槽に少々振動を加えても安定な蓄熱層を形成したままであった。 Paraffin wax having a melting point of 47 ° C. (continuous fat having a carbon number of about 20 to 30) as a heat storage material in 100 parts of 5% sodium polystyrene sulfonate aqueous solution adjusted to pH 7.0 and temperature 60 ° C. A mixture of aromatic hydrocarbon compounds) 60 parts is added and stirred vigorously until the average particle size reaches 1.0 μm. Temperature stratification with a concentration of 40%, a viscosity of 12 mPa · s at 25 ° C., and a heat of fusion of 59 kJ / kg of the dispersion A mold heat storage material dispersion was obtained. A density of about 0.92 g / cm 3 at the time of the heat storage material alone coagulation in the dispersion, whereas the density at the time of melting is 0.76 g / cm 3, the density ratio was 1.21. This dispersion was filled into a cylindrical 200 liter model heat storage tank with a diameter of 60 cm and a height of 100 cm, and a gentle temperature gradient was applied in the temperature range sandwiching the melting point of the heat storage material. A stable temperature stratification with a was observed. Even if a little vibration was applied to this heat storage tank, a stable heat storage layer was still formed.

(比較例)
実施例1において蓄熱材成分として、ドデカン(C12)、テトラデカン(C14)、ヘキサデカン(C16)、オクタデカン(C18)からなる4種の蓄熱材を等量ずつ混合し蓄熱材成分とした。この蓄熱材成分の融点は実施例1で示す成分に近い融点で相変化をもたらすが、凝固時と融解時の密度差が1.03と小さく、温度成層界面での温度差も小さく多少の振動に対してもすぐに温度成層が乱れてしまうものであった。
(Comparative example)
In Example 1, as the heat storage material component, four types of heat storage materials composed of dodecane (C12), tetradecane (C14), hexadecane (C16), and octadecane (C18) were mixed in equal amounts to obtain a heat storage material component. Although the melting point of this heat storage material component is a melting point close to that shown in Example 1, it causes a phase change, but the density difference between solidification and melting is as small as 1.03, the temperature difference at the temperature stratification interface is also small, and some vibrations. However, the temperature stratification was immediately disturbed.

本発明による蓄熱材粒子分散液は安定な温度成層が得られるために極めて効率の高い蓄熱が可能となる。また、蓄熱し得る温度域も冷房用途の低温から暖房領域の高温まで如何なる温度域、目的にも応用し得るものである。従来は水による成層蓄熱のみしか知られていなかったが、本発明の如く温度成層界面にて明確且つその両側において大きな温度差を有する温度成層が得られることは蓄熱槽内での温度汚染を防ぐために非常に有効である。   Since the thermal storage material particle dispersion according to the present invention provides a stable temperature stratification, extremely efficient heat storage is possible. Moreover, the temperature range in which heat can be stored can be applied to any temperature range and purpose from a low temperature for cooling use to a high temperature in the heating range. Conventionally, only stratified heat storage by water was known, but the fact that a temperature stratification having a clear temperature difference at both sides of the temperature stratification interface as in the present invention is obtained prevents temperature contamination in the heat storage tank. It is very effective for

Claims (3)

蓄熱材粒子の分散液において、蓄熱材の凝固時と融解時の密度比が、1.05〜1.30の範囲である温度成層型蓄熱材分散液。 A thermal stratification heat storage material dispersion in which the heat storage material particle dispersion has a density ratio between 1.05 and 1.30 when solidifying and melting the heat storage material. 蓄熱材分散液が、蓄熱材を内包するマイクロカプセル分散液である請求項1記載の温度成層型蓄熱材分散液。 The temperature-stratified heat storage material dispersion according to claim 1, wherein the heat storage material dispersion is a microcapsule dispersion containing the heat storage material. 蓄熱材化合物成分が2種以上から構成され、各々の炭素数が連続する化合物から成る請求項1記載の温度成層型蓄熱材分散液。 The temperature-stratified heat storage material dispersion liquid according to claim 1, wherein the heat storage material compound component is composed of two or more kinds of compounds, each of which has a continuous number of carbon atoms.
JP2003361095A 2003-10-21 2003-10-21 Temperature stratified heat storage material dispersion liquid Pending JP2005127547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003361095A JP2005127547A (en) 2003-10-21 2003-10-21 Temperature stratified heat storage material dispersion liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003361095A JP2005127547A (en) 2003-10-21 2003-10-21 Temperature stratified heat storage material dispersion liquid

Publications (1)

Publication Number Publication Date
JP2005127547A true JP2005127547A (en) 2005-05-19

Family

ID=34641198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003361095A Pending JP2005127547A (en) 2003-10-21 2003-10-21 Temperature stratified heat storage material dispersion liquid

Country Status (1)

Country Link
JP (1) JP2005127547A (en)

Similar Documents

Publication Publication Date Title
Al-Shannaq et al. Emulsion stability and cross-linking of PMMA microcapsules containing phase change materials
Chen et al. Characterization of thermal and hydrodynamic properties for microencapsulated phase change slurry (MPCS)
JP5537776B2 (en) Microcapsule powder
JP2006523744A (en) Use of microcapsule aqueous dispersion as heat transfer liquid
CN101678307A (en) Microcapsules, their use and processes for their manufacture
JP2006016573A (en) Microcapsule and heat transfer fluid
KR20090085649A (en) Microcapsules, their use and processes for their manufacture
CN102676124A (en) Inorganic hydrous salt phase change energy storage microcapsule and preparation method thereof
CN106753261A (en) A kind of microencapsulated phase change material and preparation method thereof
CN106957635A (en) The microcapsule phase-change particle and preparation method of composite Nano copper and nano-graphene piece
JP2009046638A (en) Heat storage material
JP4668541B2 (en) Thermal storage material, method for producing the same, heating or cooling system, thermal storage article, and copolymer
Yadav et al. A review on microencapsulation, thermal energy storage applications, thermal conductivity and modification of polymeric phase change material for thermal energy storage applications
JPH05117642A (en) Cold reserving material
Yeşilyurt et al. Encapsulated phase change material slurries as working fluid in novel photovoltaic thermal liquid systems: a comprehensive review
JP2005127547A (en) Temperature stratified heat storage material dispersion liquid
JP2002053850A (en) Dispersion for thermal stratification type heat storage tank
KR100263361B1 (en) Microcapsuled phase change material, manufacturing method thereof and heat storage and transfer with them
CN106978146A (en) The microcapsule phase-change particle and preparation method of composite Nano copper and graphene quantum dot
JPH08259932A (en) Heat-storing material microcapsule
JPH11152466A (en) Heat storage microcapsule
JP2004277646A (en) Heat-storage microcapsule
CN106978147A (en) The microcapsule phase-change particle and preparation method of composite Nano copper and high-melting-point phase-change material
JP2002241749A (en) Method for accumulating heat
JP3871349B2 (en) Method for producing microcapsule dispersion for heat transfer in a circuit for air conditioning