JP2005126777A - Electroplating bath - Google Patents

Electroplating bath Download PDF

Info

Publication number
JP2005126777A
JP2005126777A JP2003364252A JP2003364252A JP2005126777A JP 2005126777 A JP2005126777 A JP 2005126777A JP 2003364252 A JP2003364252 A JP 2003364252A JP 2003364252 A JP2003364252 A JP 2003364252A JP 2005126777 A JP2005126777 A JP 2005126777A
Authority
JP
Japan
Prior art keywords
electroplating bath
electroplating
plating
plating solution
current density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003364252A
Other languages
Japanese (ja)
Inventor
Takashi Ida
隆 伊田
Masaaki Katsumata
雅昭 勝又
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003364252A priority Critical patent/JP2005126777A/en
Publication of JP2005126777A publication Critical patent/JP2005126777A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electroplating bath for producing a planar coil by applying a print wiring technique which exhibits anisotropic growth required for increase in the space factor of the coil even if electroplating is performed at a low current density. <P>SOLUTION: In the electroplating bath, a liquid viscosity coefficient control agent is added to a plating liquid, and the diffusion constant D of Cu in the plating liquid is made low to reduce limiting current. Thus, it has an effect of being grown in an anisotropic way even if electroplating is applied at a low current density, and is useful for the electroplating bath at the time when a planar coil having a high space factor is produced by applying a print wiring technique. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、高占積率の平面コイルを作製する際に用いる、異方性成長を目的とした電気めっき浴に関するものである。   The present invention relates to an electroplating bath for anisotropic growth, which is used when producing a flat coil having a high space factor.

尚、異方性成長とは、めっき導体層が横方向よりも高さ方向に速く成長することである。   The anisotropic growth means that the plated conductor layer grows faster in the height direction than in the lateral direction.

従来、平面コイルを作製するために、プリント配線技術を応用した製造方法が提案されている。   Conventionally, in order to manufacture a planar coil, a manufacturing method using a printed wiring technique has been proposed.

その代表的な技術に、サブトラ法と電気めっきを組合せた方法がよく知られている。   As a representative technique, a method in which the subtra method and electroplating are combined is well known.

この方法は、絶縁基板上に予め形成した下地導体層の表面にコイルパターンのレジストを形成した後、レジスト形成部以外の下地導体層をエッチングによって除去し、さらに、レジストを除去した後、残ったコイル状の下地導体層を核にし、通常の硫酸銅めっき液を用いて電気めっきを行うことにより、下地導体層をめっき導体にて補強し、コイル導体線条を作製する。   In this method, after a coil pattern resist is formed on the surface of a previously formed underlying conductor layer on an insulating substrate, the underlying conductor layer other than the resist forming portion is removed by etching, and further, the resist is removed and remains. Using the coiled base conductor layer as a core and performing electroplating using a normal copper sulfate plating solution, the base conductor layer is reinforced with a plated conductor to produce a coil conductor wire.

なお、この出願の発明に関する先行技術文献情報としては、例えば、特許文献1が知られている。
特開平7−142254号公報
As prior art document information relating to the invention of this application, for example, Patent Document 1 is known.
JP-A-7-142254

このサブトラ法と電気めっきを組み合わせた方法は、高占積率の平面コイルを作製する為の有力な方法ではあるが、通常の硫酸銅めっき液を用いた電気めっきでは、下地導体層を核としてめっき導体層が等方的に成長し、コイル導体線条の断面形状は半円状になる。つまり、上述した方法ではアスペクト比の向上には限界があり、また、断面形状が半円状であるため上部にデッドスペースが生じ、占積率の向上という点では不十分なものであった。   The combination of this subtra method and electroplating is a powerful method for producing a flat coil with a high space factor, but in electroplating using a normal copper sulfate plating solution, the underlying conductor layer is used as the core. The plated conductor layer grows isotropically and the coil conductor wire has a semicircular cross-sectional shape. In other words, the above-described method has a limit in improving the aspect ratio, and since the cross-sectional shape is semicircular, a dead space is generated in the upper portion, which is insufficient in terms of improving the space factor.

従って、下地導体層の上にめっき導体層を形成して高占積率の平面コイルを作製するためには、めっき導体層が横方向よりも高さ方向に速く成長しかつコイル導体線条の断面形状が矩形に近い形になるような異方性成長のめっき技術が必要とされている。   Therefore, in order to form a plated coil layer on the underlying conductor layer to produce a flat coil with a high space factor, the plated conductor layer grows faster in the height direction than in the lateral direction and the coil conductor wire There is a need for an anisotropic growth plating technique that has a cross-sectional shape close to a rectangle.

めっき導体層を異方性成長させるには、限界電流に近い条件で電気めっきをすれば有効であるということが、これまでの研究により明らかになっている。   Previous studies have shown that electroplating under conditions close to the limiting current is effective for anisotropic growth of plated conductor layers.

ここで、限界電流について、図5を参照して説明する。図5は、下地導体層の近傍のCuイオンの濃度分布を示す図である。   Here, the limit current will be described with reference to FIG. FIG. 5 is a diagram showing the concentration distribution of Cu ions in the vicinity of the underlying conductor layer.

ファラデーの法則より、下地導体層にめっきされるCuの量M1は次の(1)式で求められる。ただし、電流効率を100%とする。 From Faraday's law, the amount M 1 of Cu plated on the underlying conductor layer is determined by the following equation (1). However, the current efficiency is 100%.

1=I/nF (1)
I;電流密度
n;Cuの原子価
F;ファラデー定数
下地導体層の表面では、式(1)で求められた量のCuイオンが消耗するので、図5のような濃度勾配が生じる。
M 1 = I / nF (1)
I: Current density n: Cu valence F: Faraday constant On the surface of the underlying conductor layer, the amount of Cu ions obtained by the equation (1) is consumed, and thus a concentration gradient as shown in FIG. 5 occurs.

このような濃度勾配が生じると、Cuイオンは溶液内部から下地導体層の表面へ拡散によって移動することになる。   When such a concentration gradient occurs, Cu ions move from the inside of the solution to the surface of the underlying conductor layer by diffusion.

この移動量M2は次のフィックの(2)式で計算できる。 This movement amount M 2 can be calculated by the following Fick equation (2).

2=D(C0−C)/d (2)
D;Cuイオンの拡散定数
0;溶液内部のCuイオン濃度
C;電極表面のCuイオン濃度
d;拡散層の厚さ
定常状態では、M1とM2は等しくなり、式(1)と式(2)から次の(3)式が得られる。
M 2 = D (C 0 -C) / d (2)
D: Cu ion diffusion constant C 0 ; Cu ion concentration inside the solution C; Cu ion concentration on the electrode surface d; Diffusion layer thickness In a steady state, M 1 and M 2 are equal to each other. From (2), the following equation (3) is obtained.

C=C0−Id/nFD (3)
式(3)で、電流密度を高くすると、下地導体層のCuイオン濃度が低くなり、ついには0になる。
C = C 0 −Id / nFD (3)
In Formula (3), when the current density is increased, the Cu ion concentration of the underlying conductor layer is decreased and finally becomes zero.

これ以上の電流密度では下地導体層の表面に析出すべきCuイオンが無くなるので、電流効率が低下し、めっき不良が発生する。   If the current density is higher than this, Cu ions to be deposited on the surface of the underlying conductor layer disappear, so that the current efficiency is lowered and plating failure occurs.

このCuイオン濃度が0になる電流を限界電流と呼んでいる。   The current at which the Cu ion concentration becomes 0 is called the limiting current.

この様に、限界電流に近づけるには、印加する電流密度を高くすることが効果的である。   Thus, in order to approach the limit current, it is effective to increase the applied current density.

しかし、電流密度を高くすると給電部に近い部分と離れた部分のめっき膜厚にバラツキが生じてしまう。   However, when the current density is increased, the plating film thickness varies between a portion close to the power feeding portion and a portion away from the power feeding portion.

他方、式(3)からもわかるように、電流密度を高くする以外にも、低い電流密度を限界電流に近づける方法として、溶液内部のCuイオン濃度C0を低く、めっき浴中のCuイオンの拡散定数Dを小さく、あるいは、拡散層の厚さdを大きくするという方法が考えられる。 On the other hand, as can be seen from equation (3), in addition to increasing the current density, as a method of bringing the low current density closer to the limit current, the Cu ion concentration C 0 inside the solution is decreased, and the Cu ions in the plating bath are reduced. A method of decreasing the diffusion constant D or increasing the thickness d of the diffusion layer is conceivable.

具体的なめっき条件に置き換えると、めっき浴の硫酸銅濃度を低く、めっき浴温度を低く、あるいはめっき浴の攪拌を緩やかにすることである。   In terms of specific plating conditions, the copper sulfate concentration in the plating bath is low, the plating bath temperature is low, or the plating bath is gently stirred.

しかし、これらの施策によって低い電流密度で限界電流に近づけようとしても、通常のめっき液を用いた場合、限界電流に近づけることは困難で、異方性成長に対する効果が小さい。   However, even if an attempt is made to approach the limit current at a low current density by these measures, it is difficult to approach the limit current when a normal plating solution is used, and the effect on anisotropic growth is small.

従って、従来のめっき液では、アスペクト比が大きくかつ断面形状が矩形に近い形をしたコイル導体線条とすることは難しい。   Therefore, with the conventional plating solution, it is difficult to obtain a coil conductor wire having a large aspect ratio and a cross-sectional shape close to a rectangle.

そこで、本発明は、高占積率の平面コイルを作製するために必要な、めっき導体層が横方向よりも高さ方向に速く成長する異方性成長の電気めっき浴を提供することを目的とするものである。   Accordingly, the present invention has an object to provide an electroplating bath of anisotropic growth, which is necessary for producing a planar coil having a high space factor, in which a plating conductor layer grows faster in the height direction than in the lateral direction. It is what.

上記目的を達成するために、本発明は以下のようにしている。   In order to achieve the above object, the present invention is as follows.

本発明の請求項1に記載の発明は、めっき液に液体粘性率調整剤を添加した電気めっき浴であって、これにより、電気めっき浴中のCuイオンの拡散定数Dすなわち限界電流をコントロールすることができ、所望の電流密度で異方性成長させることができるという作用効果がある。   The invention according to claim 1 of the present invention is an electroplating bath in which a liquid viscosity adjusting agent is added to a plating solution, and thereby controls the diffusion constant D of Cu ions in the electroplating bath, that is, the limiting current. Therefore, there is an effect that anisotropic growth can be performed at a desired current density.

本発明の請求項2に記載の発明は、電気めっき浴の液体粘性率が1.0mPas〜1.6mPasの範囲にあって、限界電流を通常のめっき液よりも小さくすることができる。   According to the second aspect of the present invention, the liquid viscosity of the electroplating bath is in the range of 1.0 mPas to 1.6 mPas, and the limiting current can be made smaller than that of a normal plating solution.

その結果、給電部からの距離に関係なく均一なめっき膜が形成できる低電流密度で電気めっきを行っても、異方性成長させることができるという作用効果がある。   As a result, even if electroplating is performed at a low current density capable of forming a uniform plating film regardless of the distance from the power feeding portion, there is an effect that anisotropic growth can be performed.

本発明の請求項3に記載の発明は、硫酸銅めっき液、ピロリン酸銅めっき液、ホウフッ化銅めっき液、シアン化銅めっき液のいずれかひとつから選んでいるため、導電性に優れたCuの導体線条が得られるという作用効果がある。   Since the invention according to claim 3 of the present invention is selected from any one of a copper sulfate plating solution, a copper pyrophosphate plating solution, a copper borofluoride plating solution, and a copper cyanide plating solution, Cu having excellent conductivity There is an effect that a conductor wire is obtained.

本発明の請求項4に記載の発明は、特に、液体粘性率調整剤がエチレングリコール、グリセリン、ポリエチレングリコールのいずれかひとつから選ばれており、これにより、電気めっき浴の液体粘性率の調整が容易で、広い範囲で液体粘性率の調整が出来るという作用効果がある。   In the invention described in claim 4 of the present invention, in particular, the liquid viscosity adjusting agent is selected from any one of ethylene glycol, glycerin, and polyethylene glycol, thereby adjusting the liquid viscosity of the electroplating bath. It is easy and has the effect of adjusting the liquid viscosity in a wide range.

本発明の電気めっき浴は、めっき液に液体粘性率調整剤を添加して電気めっき浴の液体粘性率を調整しているので、電気めっき浴中のCuイオンの拡散定数Dすなわち限界電流をコントロールすることができ、所望の電流密度で異方性成長させることができる。   In the electroplating bath of the present invention, since the liquid viscosity of the electroplating bath is adjusted by adding a liquid viscosity modifier to the plating solution, the diffusion constant D of the Cu ions in the electroplating bath, that is, the limiting current is controlled. Can be anisotropically grown at a desired current density.

特に、限界電流を通常のめっき液よりも小さくすることができるので、給電部からの距離に関係なく均一なめっき膜が形成できる低電流密度で電気めっきを行っても、異方性成長させることが出来るという効果がある。   In particular, since the limiting current can be made smaller than that of a normal plating solution, anisotropic growth is possible even when electroplating is performed at a low current density that can form a uniform plating film regardless of the distance from the power supply part. There is an effect that can be.

(実施の形態)
めっき液としては硫酸銅めっき、ピロリン酸銅めっき、ホウフッ化銅、シアン化銅の4種類、液体粘性率調整剤としてはエチレングリコール、グリセリン、ポリエチレングリコールの3種類があり、これらの組合せにより、12通りの電気めっき浴が調合できるが、本実施の形態では、硫酸銅とエチレングリコールの組合せを代表例とした。
(Embodiment)
There are four types of plating solutions: copper sulfate plating, copper pyrophosphate plating, copper borofluoride, and copper cyanide, and three types of liquid viscosity modifiers: ethylene glycol, glycerin, and polyethylene glycol. A typical electroplating bath can be prepared, but in this embodiment, a combination of copper sulfate and ethylene glycol is used as a representative example.

以下、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

本発明の実施の形態では、まず、サブトラ法といわれるプリント配線技術を用いて、厚さ10μmの絶縁基板1の両面に、ライン幅20μm、高さ10μm、ラインスペース幅80μmのCuのコイルパターン2を渦巻き状に形成した。   In the embodiment of the present invention, first, a Cu coil pattern 2 having a line width of 20 μm, a height of 10 μm, and a line space width of 80 μm is formed on both surfaces of an insulating substrate 1 having a thickness of 10 μm by using a printed wiring technique called a sub-tra method. Was formed in a spiral shape.

この、コイルパターン2上に、主成分が硫酸銅、硫酸、エチレングリコールである電気めっき浴を30℃に保持し、電流密度が2〜6A/dm2のめっき条件で30μmのめっき導体層3を形成し、コイル導体線条4を形成した。 On this coil pattern 2, an electroplating bath whose main components are copper sulfate, sulfuric acid, and ethylene glycol is held at 30 ° C., and a plating conductor layer 3 of 30 μm is formed under a plating condition of a current density of 2 to 6 A / dm 2. The coil conductor wire 4 was formed.

この電気めっき浴の組成および液体粘性率を(表1)に、また、この電気めっき浴の液体粘性率と限界電流の関係を図1に示す。   The composition and liquid viscosity of this electroplating bath are shown in (Table 1), and the relationship between the liquid viscosity of this electroplating bath and the limiting current is shown in FIG.

Figure 2005126777
Figure 2005126777

ここで、エチレングリコール濃度が0%の比較例1は従来の電気めっき浴条件である。以上の様にして作製したコイル導体線条の代表例として、比較例1の電気めっき浴を用い、電流密度2A/dm2のめっき条件で形成したコイル導体線条の断面を図2に、実施例5の電気めっき浴を用い、電流密度2A/dm2のめっき条件で形成したコイル導体線条の断面を図3に示す。 Here, Comparative Example 1 having an ethylene glycol concentration of 0% is a conventional electroplating bath condition. As a representative example of the coil conductor wire produced as described above, the cross section of the coil conductor wire formed using the electroplating bath of Comparative Example 1 under the plating condition of current density 2 A / dm 2 is shown in FIG. FIG. 3 shows a cross section of a coil conductor wire formed using the electroplating bath of Example 5 and plating conditions with a current density of 2 A / dm 2 .

また、めっきによって成長しためっき導体層の異方性成長の度合いを断面から算出し、各電流密度(2〜6A/dm2)での、液体粘性率と異方性成長の度合いの関係を図4に示した。 Moreover, the degree of anisotropic growth of the plated conductor layer grown by plating is calculated from the cross section, and the relationship between the liquid viscosity and the degree of anisotropic growth at each current density ( 2 to 6 A / dm 2 ) is shown. This is shown in FIG.

ここで、図2を使って異方性成長の度合いについて説明する。異方性成長の度合いとは、めっき導体層の縦方向と横方向の成長速度の違いを表し、電気めっきによって縦方向に成長した膜厚Hを横方向に成長した膜厚Wで割った値で示す。   Here, the degree of anisotropic growth will be described with reference to FIG. The degree of anisotropic growth represents the difference between the growth rate in the vertical direction and the horizontal direction of the plated conductor layer, and is a value obtained by dividing the film thickness H grown in the vertical direction by electroplating by the film thickness W grown in the horizontal direction. It shows with.

この値が大きいほど異方性成長しているということで、占積率の高い平面コイルを作製するのに有利である。   The larger this value, the more anisotropic the growth, which is advantageous for producing a planar coil with a high space factor.

図1〜4からも明らかなように、液体粘性率と限界電流および異方性成長の度合いには密接な関係があり、液体粘性率が大きくなるに従って限界電流の値は小さくなり、その結果、低電流密度のめっき条件でも、異方性成長の度合いが大きくなる。   As is clear from FIGS. 1 to 4, there is a close relationship between the liquid viscosity and the limit current and the degree of anisotropic growth, and the value of the limit current decreases as the liquid viscosity increases. The degree of anisotropic growth increases even under low current density plating conditions.

言い換えれば、異方性成長の度合いが最大となる電流密度と液体粘性率の組合せが存在し、電気めっき浴の液体粘性率によって、印加する電流密度が決まる。   In other words, there is a combination of current density and liquid viscosity that maximizes the degree of anisotropic growth, and the applied current density is determined by the liquid viscosity of the electroplating bath.

この電気めっき浴によって、アスペクト比が高くかつ断面形状が矩形に近い形をしたコイル導体線条を作製することが可能になり、占積率の高い平面コイルを得ることができる。   This electroplating bath makes it possible to produce a coil conductor wire having a high aspect ratio and a cross-sectional shape close to a rectangle, and a flat coil having a high space factor can be obtained.

なお、本実施の形態では、コイル状の下地導体層の形成をサブトラ法といわれる方法で行ったが、下地導体としての機能を付与できるならば、この方法に限定されるものではない。   In this embodiment, the coiled base conductor layer is formed by a method called a sub-tra method. However, the present invention is not limited to this method as long as a function as a base conductor can be provided.

また、本実施の形態では、硫酸銅めっき液とエチレングリコールを組合せた電気めっき液を代表例として説明してきたが、この組合せに限定されるものではなく、液体粘性率の範囲が1.1〜1.6mPasに入るものであれば、硫酸銅めっき液の代わりにピロリン酸銅めっき、ホウフッ化銅、シアン化銅のうちいずれかひとつを、エチレングリコールの代わりにグリセリン、ポリエチレングリコールのうちいずれかひとつを用いても良い。   Moreover, in this Embodiment, although the electroplating liquid which combined the copper sulfate plating liquid and ethylene glycol has been demonstrated as a representative example, it is not limited to this combination, The range of liquid viscosity is 1.1- If it is within 1.6 mPas, use one of copper pyrophosphate plating, copper borofluoride and copper cyanide instead of copper sulfate plating solution, and one of glycerin and polyethylene glycol instead of ethylene glycol. May be used.

本発明にかかる電気めっき浴は、低電流密度で電気めっきを行っても異方性成長するという効果を有し、プリント配線技術を応用して高占積率の平面コイルを作製する際の電気めっき浴に有用である。   The electroplating bath according to the present invention has the effect of anisotropic growth even when electroplating is performed at a low current density, and the electric power for producing a planar coil with a high space factor by applying printed wiring technology. Useful for plating baths.

本発明の実施の形態の液体粘性率と限界電流の関係を示す特性図The characteristic view which shows the relationship between the liquid viscosity of embodiment of this invention, and a limiting current 比較例1のめっき液条件で作製した平面コイルの拡大断面図Enlarged cross-sectional view of a planar coil produced under the plating solution conditions of Comparative Example 1 本実施例5のめっき液条件で作製した平面コイルの拡大断面図Enlarged sectional view of a planar coil produced under the plating solution conditions of Example 5 液体粘性率と異方性成長の度合いの関係を示す特性図Characteristic diagram showing the relationship between liquid viscosity and degree of anisotropic growth 下地導体近傍のCuイオンの濃度分布を示す説明図Explanatory drawing showing the concentration distribution of Cu ions in the vicinity of the underlying conductor

符号の説明Explanation of symbols

1 絶縁基板
2 下地導体層
3 めっき導体層
4 コイル導体線条
DESCRIPTION OF SYMBOLS 1 Insulation board | substrate 2 Ground conductor layer 3 Plating conductor layer 4 Coil conductor wire

Claims (4)

めっき液に液体粘性率調整剤を添加した電気めっき浴。 An electroplating bath in which a liquid viscosity modifier is added to the plating solution. 液体粘性率が1.1mPas〜1.6mPasの範囲にある請求項1に記載の電気めっき浴。 The electroplating bath according to claim 1, wherein the liquid viscosity is in the range of 1.1 mPas to 1.6 mPas. めっき液が硫酸銅めっき液、ピロリン酸銅めっき液、ホウフッ化銅めっき液、シアン化銅めっき液のいずれかひとつから選ばれる請求項1に記載の電気めっき浴。 The electroplating bath according to claim 1, wherein the plating solution is selected from any one of a copper sulfate plating solution, a copper pyrophosphate plating solution, a copper borofluoride plating solution, and a copper cyanide plating solution. 液体粘性率調整剤がエチレングリコール、グリセリン、ポリエチレングリコールのいずれかひとつから選ばれる請求項1に記載の電気めっき浴。 The electroplating bath according to claim 1, wherein the liquid viscosity adjusting agent is selected from any one of ethylene glycol, glycerin, and polyethylene glycol.
JP2003364252A 2003-10-24 2003-10-24 Electroplating bath Pending JP2005126777A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003364252A JP2005126777A (en) 2003-10-24 2003-10-24 Electroplating bath

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003364252A JP2005126777A (en) 2003-10-24 2003-10-24 Electroplating bath

Publications (1)

Publication Number Publication Date
JP2005126777A true JP2005126777A (en) 2005-05-19

Family

ID=34643281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003364252A Pending JP2005126777A (en) 2003-10-24 2003-10-24 Electroplating bath

Country Status (1)

Country Link
JP (1) JP2005126777A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103695972A (en) * 2012-09-27 2014-04-02 Tdk株式会社 Method for anisotropic plating and thin-film coil
JP2014080674A (en) * 2012-09-27 2014-05-08 Tdk Corp Anisotropic plating method and thin film coil
WO2014162875A1 (en) * 2013-04-02 2014-10-09 株式会社Adeka Additive for copper electroplating bath, copper electroplating bath containing said additive, and copper electroplating method using said copper electroplating bath
CN104347262A (en) * 2013-08-02 2015-02-11 乾坤科技股份有限公司 Method for manufacturing multilayer coil and magnetic device
JP2018121047A (en) * 2017-01-23 2018-08-02 サムソン エレクトロ−メカニックス カンパニーリミテッド. Coil component and manufacturing method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103695972A (en) * 2012-09-27 2014-04-02 Tdk株式会社 Method for anisotropic plating and thin-film coil
JP2014080674A (en) * 2012-09-27 2014-05-08 Tdk Corp Anisotropic plating method and thin film coil
KR101506910B1 (en) * 2012-09-27 2015-03-30 티디케이가부시기가이샤 Method for anisotropic plating and thin- film coil
WO2014162875A1 (en) * 2013-04-02 2014-10-09 株式会社Adeka Additive for copper electroplating bath, copper electroplating bath containing said additive, and copper electroplating method using said copper electroplating bath
CN105102687A (en) * 2013-04-02 2015-11-25 株式会社Adeka Additive for copper electroplating bath, copper electroplating bath containing said additive, and copper electroplating method using said copper electroplating bath
JPWO2014162875A1 (en) * 2013-04-02 2017-02-16 株式会社Adeka Electrolytic copper plating bath additive, electrolytic copper plating bath containing the additive, and electrolytic copper plating method using the electrolytic copper plating bath
CN104347262A (en) * 2013-08-02 2015-02-11 乾坤科技股份有限公司 Method for manufacturing multilayer coil and magnetic device
CN106252037A (en) * 2013-08-02 2016-12-21 乾坤科技股份有限公司 Method for manufacturing multilayer coil and magnetic device
CN104347262B (en) * 2013-08-02 2017-04-12 乾坤科技股份有限公司 Method for manufacturing multilayer coil
CN106252037B (en) * 2013-08-02 2018-12-18 乾坤科技股份有限公司 Method for manufacturing multilayer coil and magnetic device
JP2018121047A (en) * 2017-01-23 2018-08-02 サムソン エレクトロ−メカニックス カンパニーリミテッド. Coil component and manufacturing method thereof

Similar Documents

Publication Publication Date Title
CN104766715B (en) The manufacture method of chip electronic component
JP5247252B2 (en) Embedded copper plating method for printed wiring board manufacture and printed wiring board obtained by using the embedded copper plating method
JP2001200386A (en) Via filling method
US6793795B1 (en) Method for galvanically forming conductor structures of high-purity copper in the production of integrated circuits
US20220304164A1 (en) Manufacturing sequences for high density interconnect printed circuit boards and a high density interconnect printed circuit board
JP2004244656A (en) Copper foil which can deal with high-frequency application and method for manufacturing the same
KR20140117147A (en) Power inductor and manufacturing method thereof
CN108505076A (en) Electrolytic solution, electrolytic copper foil and method for producing same
KR20120097344A (en) Forming method for nanotwined copper material and nanotwined copper material formed by the method
JP2005126777A (en) Electroplating bath
US20130270121A1 (en) Method for fabricating copper nanowire with high density twins
JP2005019577A (en) Method for manufacturing tape carrier for semiconductor device
JP2004342645A (en) Method for manufacturing planar coil
JP2013053362A (en) Copper foil for forming circuit superior in etching property, and copper-clad laminate plate using the same and printed wiring board
JP4862508B2 (en) Conductor pattern forming method
JPH1197391A (en) Method of electroplating semiconductor wafer wiring
JP2005256159A (en) Method for forming copper plating film, continuous copper plating equipment for resin film substrate for semiconductor package and flexible copper clad laminated plate
Leisner et al. Recent progress in pulse reversal plating of copper for electronics applications
WO2016104530A1 (en) Coil conductor manufacturing method, and induction coil provided with coil conductor manufactured by such method
JP2008308749A (en) Copper plating method
JP2014224304A (en) Copper plating solution composition for printed wiring board, and via hole filling method using the same
JP2011179053A (en) Roughened foil and method of producing the same
JP2004253430A (en) Method for manufacturing planar coil
JP2009167506A (en) Acid copper electroplating solution and method for producing fine wiring circuit using the same
JP4457843B2 (en) Circuit board manufacturing method