JP2004342645A - Method for manufacturing planar coil - Google Patents

Method for manufacturing planar coil Download PDF

Info

Publication number
JP2004342645A
JP2004342645A JP2003134085A JP2003134085A JP2004342645A JP 2004342645 A JP2004342645 A JP 2004342645A JP 2003134085 A JP2003134085 A JP 2003134085A JP 2003134085 A JP2003134085 A JP 2003134085A JP 2004342645 A JP2004342645 A JP 2004342645A
Authority
JP
Japan
Prior art keywords
conductor layer
coil
plating
planar coil
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003134085A
Other languages
Japanese (ja)
Inventor
Takashi Ida
隆 伊田
Toshio Sugawa
俊夫 須川
Yoshihisa Takase
喜久 高瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003134085A priority Critical patent/JP2004342645A/en
Publication of JP2004342645A publication Critical patent/JP2004342645A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a planar coil having a high space factor by manufacturing a coil conductor strand having a large aspect ratio and a sectional shape near a rectangular shape for the size reduction and the thickness reduction of the planar coil. <P>SOLUTION: The method for manufacturing the planar coil includes the steps of: forming a coil-like substrate conductor layer 2 on at least one surface of an insulating board 1; forming a plating conductor layer 6 by electric plating by using a plating liquid containing a copper sulfate, a sulfuric acid, and an ethylene glycol as main components on the substrate conductor layer 2; and forming the coil conductor strand made of the substrate conductor layer and the plating conductor layer. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、スピーカのボイスコイルや電気回路のインダクタ、トランス等に広く利用可能である高占積率の平面コイルの製造方法に関するものである。
【0002】
【従来の技術】
近年、電子機器の全般的な小型・薄型化に伴い、これらに用いられる平面コイルについても小型化、薄型化することが強く求められている。そのためには、線間が狭くデッドスペースの少ない、つまり高占積率の平面コイルを作製する必要がある。
【0003】
ここで、占積率について説明しておく。ここで言う占積率とは、平面コイルのコイル導体線条が延びる方向に垂直な断面において、コイル導体線条の配列ピッチを幅とし、コイル導体線条の厚さを高さとする矩形領域に対するコイル導体線条の断面積の比率を意味する。従って、高占積率の平面コイルとする為には、アスペクト比を大きく、かつコイル導体線条の断面形状を矩形にすれば良い。
【0004】
この平面コイルの作製のため、従来から、プリント配線技術を応用した製造方法が提案されている。その代表的な技術に、サブトラ法と電気めっきを組み合わせた方法が良く知られている。この方法は、絶縁基板上に予め形成した下地導体層の表面にコイルパターンのレジストを形成した後、レジスト形成部以外の下地導体層をエッチングによって除去し、さらに、レジストを除去した後、残ったコイル状の下地導体層を核にして電気めっきを行うことにより、下地導体層をめっき導体にて補強し、コイル導体線条を作製する。
【0005】
なお、この出願に関連する先行技術文献情報としては、例えば、特許文献1が知られている。
【0006】
【特許文献1】
特開平7−142254号公報
【0007】
【発明が解決しようとする課題】
このサブトラ法と電気めっきを組み合わせた方法は、高占積率の平面コイルを作製する為の有力な方法ではあるが、硫酸銅めっき液を用いた通常の電気めっきでは、下地導体層を核としてめっき導体層が等方的に成長し、コイル導体線条の断面形状は半円状になる。つまり、上述した方法ではアスペクト比の向上には限界があり、また、断面形状が半円状であるため上部にデッドスペースが生じ、占積率の向上という点では不十分なものであった。
【0008】
従って、下地導体層の上にめっき導体層を形成して高占積率の平面コイルを作製するためには、めっき導体層が横方向よりも高さ方向に速く成長しかつコイル導体線条の断面形状が矩形に近い形になるような異方性成長のめっき技術が必要とされている。
【0009】
めっき導体層を異方性成長させるには、限界電流に近い条件で電気めっきをすれば有効であるということが、これまでの研究により明らかになっている。
【0010】
ここで、限界電流について、図5を参照して説明する。図5は、下地導体層の近傍のCuイオンの濃度分布を示す図である。
【0011】
ファラデーの法則より、下地導体層にめっきされるCuの量Mは次の式(1)で求められる。ただし、電流効率を100%とする。
【0012】
=I/nF (1)
I;電流密度
n;Cuの原子価
F;ファラデー定数
下地導体層の表面では、式(1)で求められた量のCuイオンが消耗するので、図5のような濃度勾配が生じる。このような濃度勾配が生じると、Cuイオンは溶液内部から下地導体層の表面へ拡散によって移動することになる。この移動量Mは次のフィックの式(2)で計算できる。
【0013】
=D(C−C)/d (2)
D ;Cuイオンの拡散定数
;溶液内部のCuイオン濃度
C ;電極表面のCuイオン濃度
d ;拡散層の厚さ
定常状態では、MとMは等しくなり、式(1)と式(2)から次の式(3)が得られる。
【0014】
C=C−Id/nFD (3)
式(3)で、電流密度を高くすると、下地導体層のCuイオン濃度が低くなり、ついには0になる。これ以上の電流密度では下地導体層の表面に析出すべきCuイオンが無くなるので、電流効率が低下し、めっき不良が発生する。このCuイオン濃度が0になる電流を限界電流と呼んでいる。この様に、限界電流に近づけるには、印加する電流密度を高くすることが効果的である。しかし、電流密度を高くすると給電部に近い部分と離れた部分のめっき膜厚にバラツキが生じてしまう。
【0015】
他方、式(3)からもわかるように、電流密度を高くする以外にも、低い電流密度を限界電流に近づける方法として、溶液内部のCuイオン濃度Cを低く、めっき浴中のCuイオンの拡散定数Dを小さく、あるいは、拡散層の厚さdを大きくするという方法が考えられる。具体的なめっき条件に置き換えると、めっき浴の硫酸銅濃度を低く、めっき浴温度を低く、あるいはめっき浴の攪拌を緩やかにすることである。
【0016】
しかし、これらの施策によって低い電流密度で限界電流に近づけようとしても、限界電流に近づけることは困難で、異方性成長に対する効果が小さい。従って、アスペクト比が大きくかつ断面形状が矩形に近い形をしたコイル導体線条とすることは難しい。
【0017】
そこで、本発明は、めっき導体層が横方向よりも高さ方向に速く成長する異方性成長のめっき技術によって、アスペクト比が大きくかつ断面形状が矩形に近い形のコイル導体線条を作製し、高占積率の平面コイルの製造方法を提供することを目的とするものである。
【0018】
【課題を解決するための手段】
上記課題を解決するために、本発明は以下の構成を有する。
【0019】
本発明の請求項1に記載の発明は、絶縁基板の少なくとも一方の表面に形成したコイル状の下地導体層上に、めっき液の主成分が硫酸銅、硫酸、エチレングリコールであるめっき液を用いて電気めっきによるめっき導体層を形成し、前記下地導体層とめっき導体層からなるコイル導体線条を形成する平面コイルの製造方法である。この様に、めっき液の主成分が硫酸銅、硫酸、エチレングリコールである粘性の高いめっき液を用いているので、めっき浴中のCuイオンの拡散定数Dを小さくすることができ、その結果、低い電流密度でも限界電流に近づけることができ、アスペクト比が大きくかつ断面形状が矩形に近い形をした導体線条を作製することができる。
【0020】
請求項2に記載の発明は、請求項1記載の発明において、コイル状の下地導体の材質がCuである平面コイルの製造方法であって、コイル状の下地導体の材質をCuにしているため、表面に積層するめっき導体層との密着性が良くかつ導電性の良いコイル導体線条を作製することができる。
【0021】
請求項3に記載の発明は、請求項1に記載の発明において、めっき導体層の形成のために流す電流密度が1〜3A/dmである平面コイルの製造方法であって、電流密度を1〜3A/dmの範囲の低い電流密度にしているため、給電部からの距離に関係無く均一な膜厚のめっき導体層を作製することができる。
【0022】
請求項4に記載の発明は、請求項1に記載の発明において、めっき液中のエチレングリコール濃度が1〜20vol%である平面コイルの製造方法であって、めっき液中のエチレングリコール濃度を1〜20vol%にすることによって、異方性成長しかつ導電性の良いめっき導体層を作製することができる。つまり、エチレングリコール濃度が低いと、めっき浴中のCuイオンの拡散定数Dが小さくならないため、異方性成長の効果がない。一方、濃度が高すぎると異方性成長に効果があるが、めっき導体層の導電性が劣化してしまう。従って、1〜20vol%が最適である。
【0023】
請求項5に記載の発明は、請求項1に記載の発明において、めっき液中の硫酸銅濃度が60g/l〜120g/lの範囲にある平面コイルの製造方法であって、めっき液中の硫酸銅濃度を、通常のめっき液と同じ60g/l〜120g/lの範囲にしているので、導電性の良いめっき導体線条ができるだけでなく、液の管理が容易で経済的である。
【0024】
請求項6に記載の発明は、請求項1に記載の発明において、めっき液の温度が20〜30℃の範囲にある平面コイルの製造方法であって、めっき液の温度を、20〜30℃の範囲にしているので、蒸発等による液の濃度変化が少なく、液の管理が容易である。
【0025】
【発明の実施の形態】
以下、本発明の実施の形態における平面コイルの製造方法について、添付の図面に従って説明する。
【0026】
(実施の形態)
図1は、本発明の実施の形態の平面コイルの製造プロセスを説明する為の概略図である。
【0027】
まず、両面に35μmの下地導体層2を形成した厚さ2μmの絶縁基板1を用意した。下地導体層2と絶縁基板1の構成材料は、各々、Cuとポリイミドフィルムである〔図1(A)参照〕。次に、両面の下地導体層2および絶縁基板1を貫通するように、直径10μmのスルーホール3を設けた〔図1(B)参照〕。次に、両面の下地導体層2の表面にレジスト5でパターンニングした〔図1(C)参照〕。パターンニングには、8μmのドライフィルムを用い、レジスト幅30μm、レジスト間スペース50μmの渦巻き状のパターンを形成した。この際、パターンニングしたレジスト5がスルーホール3を被覆するようにしている。次に、レジスト5で被覆していない部分の下地導体層2を、塩化第2鉄水溶液を用いてエッチング除去した〔図1(D)参照〕。次に、レジスト5を剥離させた〔図1(E)参照〕。
【0028】
その後、主成分が硫酸銅、硫酸、エチレングリコールであるめっき液を25℃に保持し、電流密度2A/dmの正電流を90分間印加して30μmのめっき導体層6を形成し、コイル導体線条7を作成した〔図1(F)参照〕。
【0029】
このめっき液の組成を表1に示す。
【0030】
【表1】

Figure 2004342645
【0031】
ここで、エチレングリコール濃度が0%の比較例1は従来のめっき液条件である。
【0032】
以上の様にして作成したコイル導体線条の代表例として、エチレングリコール濃度が0%である比較例1の断面を図2に、エチレングリコール濃度が16%である実施例4の断面を図3に示す。また、電気めっきによって成長しためっき導体層の異方性成長の度合いを断面から算出し、横軸にエチレングリコール濃度、縦軸に異方性成長の度合いをとり、図4に示した。
【0033】
ここで、図2を使って異方性成長の度合いについて説明する。異方性成長の度合いとは、めっき導体層の縦方向と横方向の成長速度の違いを表し、図2の電気めっきによって縦方向に成長した膜厚Hを横方向に成長した膜厚Wで割った値で示す。この値が大きいほど異方性成長しているということで、占積率の高い平面コイルを作製するのに有利である。
【0034】
この図2〜図4からも明らかなように、従来のめっき液に比べてエチレングリコールを添加した方が異方性成長を示し、めっき液中のエチレングリコール濃度が高くなるに従って、めっき導体層の異方性成長の度合いが大きくなる。しかし、12%付近で異方性成長の度合いは最大となって飽和し、24%を超えたところでめっき不良となる。
【0035】
ここでは、電流密度を2A/dmとしたが、電流密度を高くすると異方性成長が飽和する時点のエチレングリコール濃度が低くなり、電流密度を低くすると異方性成長が飽和する時点のエチレングリコールの濃度は高くなる。また、硫酸銅濃度を80g/lとしたが、硫酸銅濃度を高くすると異方性成長が飽和する時点のエチレングリコールの濃度は高くなり、硫酸銅濃度を低くすると異方性成長が飽和する時点のエチレングリコール濃度は低くなる。また、めっき液の温度を25℃としたが、めっき液の温度を高くすると異方性成長が飽和する時点のエチレングリコール濃度は高くなり、めっき液の温度を低くすると異方性成長が飽和する時点のエチレングリコール濃度は低くなる。
【0036】
いずれにしても、エチレングリコール濃度が1〜20vol%の範囲内で異方性成長が最大となるポイントがあり、他のめっき条件によってエチレングリコール濃度を決定することになる。
【0037】
このめっき技術によってアスペクト比が高くかつ断面形状が矩形に近い形をしたコイル導体線条を作製することが可能になり、占積率の高い平面コイルを得ることができる。
【0038】
なお、本実施の形態では、コイル状の下地導体層の形成をサブトラ法といわれる方法で行ったが、下地導体としての機能を付与できるならば、この方法に限定されるものではない。
【0039】
【発明の効果】
以上の様に本発明は、絶縁基板の少なくとも一方の表面に形成したコイル状の下地導体層上に、主成分が硫酸銅、硫酸、エチレングリコールであるめっき液を用いて電気めっきによるめっき導体層を形成するものであり、主成分が硫酸銅、硫酸、エチレングリコールである粘性の高いめっき液を用いているので、めっき浴中のCuイオンの拡散定数Dを小さくすることができ、その結果、低い電流密度でも限界電流に近づけることができ、アスペクト比が大きく、かつ断面形状が矩形に近い形をしたコイル導体線条を作製することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1の平面コイルの製造プロセスを示す概略図
【図2】比較例1のめっき液条件で作成した平面コイルの拡大断面図
【図3】本実施例4のめっき液条件で作成した平面コイルの拡大断面図
【図4】エチレングリコール濃度による異方性成長の度合いを示す特性図
【図5】下地導体近傍のCuイオンの濃度分布を示す説明図
【符号の説明】
1 絶縁基板
2 下地導体層
3 スルーホール
5 レジスト
6 めっき導体層
7 コイル導体線条[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a planar coil having a high space factor which can be widely used for a voice coil of a speaker, an inductor of an electric circuit, a transformer, and the like.
[0002]
[Prior art]
2. Description of the Related Art In recent years, as electronic devices have become generally smaller and thinner, there has been a strong demand for smaller and thinner planar coils used in these electronic devices. For that purpose, it is necessary to produce a planar coil having a narrow space and a small dead space, that is, a high space factor.
[0003]
Here, the space factor will be described. Here, the space factor refers to a rectangular area having a width equal to the arrangement pitch of the coil conductors and a height equal to the thickness of the coil conductors in a cross section perpendicular to the direction in which the coil conductors of the planar coil extend. It means the ratio of the sectional area of the coil conductor wire. Therefore, in order to obtain a planar coil having a high space factor, the aspect ratio should be large and the cross-sectional shape of the coil conductor should be rectangular.
[0004]
In order to manufacture the planar coil, a manufacturing method using a printed wiring technology has been conventionally proposed. As a typical technique, a method in which a subtra method and electroplating are combined is well known. In this method, after a resist of a coil pattern is formed on the surface of a base conductor layer formed in advance on an insulating substrate, the base conductor layer other than the resist formation part is removed by etching, and further, the resist is removed and left. Electroplating is performed using the coil-shaped base conductor layer as a nucleus, whereby the base conductor layer is reinforced with a plated conductor to produce a coil conductor wire.
[0005]
As prior art document information related to this application, for example, Patent Document 1 is known.
[0006]
[Patent Document 1]
JP-A-7-142254
[Problems to be solved by the invention]
The method of combining the subtra method and electroplating is a powerful method for producing a planar coil having a high space factor, but in ordinary electroplating using a copper sulfate plating solution, the underlying conductor layer is used as a core. The plated conductor layer grows isotropically, and the cross-sectional shape of the coil conductor becomes semicircular. That is, in the above-mentioned method, there is a limit to the improvement of the aspect ratio, and since the cross-sectional shape is a semicircle, a dead space is generated at the upper part, and it is insufficient in improving the space factor.
[0008]
Therefore, in order to form a plated conductor layer on the underlying conductor layer to produce a planar coil having a high space factor, the plated conductor layer grows faster in the height direction than in the lateral direction and the coil conductor filaments There is a need for a plating technique of anisotropic growth such that the cross-sectional shape becomes almost rectangular.
[0009]
Previous studies have shown that it is effective to perform electroplating under conditions close to the limiting current to grow the plated conductor layer anisotropically.
[0010]
Here, the limiting current will be described with reference to FIG. FIG. 5 is a diagram showing a concentration distribution of Cu ions in the vicinity of the underlying conductor layer.
[0011]
From Faraday's law, the amount M 1 of Cu plated on the base conductor layer is determined by the following equation (1). However, the current efficiency is assumed to be 100%.
[0012]
M 1 = I / nF (1)
I; current density n; valence of Cu F; Faraday constant On the surface of the underlying conductor layer, the amount of Cu ions determined by equation (1) is consumed, so that a concentration gradient as shown in FIG. 5 occurs. When such a concentration gradient occurs, Cu ions move from the inside of the solution to the surface of the underlying conductor layer by diffusion. The amount of movement M 2 can be calculated by the formula for a Fick (2).
[0013]
M 2 = D (C−C) / d (2)
D; Cu ion diffusion constant C 0 ; Cu ion concentration C in the solution; Cu ion concentration d on the electrode surface; D. In the steady state of the thickness of the diffusion layer, M 1 and M 2 are equal to each other. The following equation (3) is obtained from (2).
[0014]
C = C 0 −Id / nFD (3)
In the formula (3), when the current density is increased, the Cu ion concentration of the underlying conductor layer is decreased, and finally becomes zero. If the current density is higher than this, there is no Cu ion to be deposited on the surface of the underlying conductor layer, so that current efficiency is reduced and plating failure occurs. The current at which the Cu ion concentration becomes 0 is called a limiting current. As described above, in order to approach the limit current, it is effective to increase the applied current density. However, when the current density is increased, the plating film thickness varies between a portion near the power supply portion and a portion away from the power supply portion.
[0015]
On the other hand, as can be seen from the equation (3), besides increasing the current density, as a method of bringing the low current density close to the limit current, the Cu ion concentration C 0 in the solution is lowered and the Cu ion concentration in the plating bath is reduced. A method of reducing the diffusion constant D or increasing the thickness d of the diffusion layer can be considered. When the plating conditions are replaced with specific plating conditions, it is to lower the concentration of copper sulfate in the plating bath, lower the plating bath temperature, or moderate the stirring of the plating bath.
[0016]
However, even if an attempt is made to approach the limit current at a low current density by these measures, it is difficult to approach the limit current, and the effect on anisotropic growth is small. Therefore, it is difficult to form a coil conductor having a large aspect ratio and a cross-sectional shape close to a rectangle.
[0017]
Therefore, the present invention produces a coil conductor wire having a large aspect ratio and a cross-sectional shape close to a rectangle by an anisotropic growth plating technique in which a plated conductor layer grows faster in a height direction than in a lateral direction. It is an object of the present invention to provide a method for manufacturing a planar coil having a high space factor.
[0018]
[Means for Solving the Problems]
In order to solve the above problems, the present invention has the following configurations.
[0019]
The invention according to claim 1 of the present invention uses a plating solution in which the main components of the plating solution are copper sulfate, sulfuric acid, and ethylene glycol on the coil-shaped base conductor layer formed on at least one surface of the insulating substrate. And forming a plated conductor layer by electroplating to form a coil conductor line composed of the base conductor layer and the plated conductor layer. As described above, since a highly viscous plating solution in which the main components of the plating solution are copper sulfate, sulfuric acid, and ethylene glycol is used, the diffusion constant D of Cu ions in the plating bath can be reduced, and as a result, Even at a low current density, it is possible to approach the limit current, and it is possible to produce a conductor wire having a large aspect ratio and a cross-sectional shape close to a rectangle.
[0020]
The invention according to claim 2 is the method according to claim 1, wherein the method of manufacturing the planar coil is such that the material of the coil-shaped base conductor is Cu, and the material of the coil-shaped base conductor is Cu. In addition, it is possible to produce a coil conductor wire having good adhesion to the plated conductor layer laminated on the surface and good conductivity.
[0021]
According to a third aspect of the present invention, there is provided a method of manufacturing a planar coil according to the first aspect, wherein a current density flowing for forming the plated conductor layer is 1 to 3 A / dm 2. Since the current density is low in the range of 1 to 3 A / dm 2 , a plated conductor layer having a uniform film thickness can be manufactured regardless of the distance from the power supply unit.
[0022]
The invention according to claim 4 is the method according to claim 1, wherein the ethylene glycol concentration in the plating solution is 1 to 20 vol%, wherein the ethylene glycol concentration in the plating solution is 1%. By setting the content to 2020 vol%, a plated conductor layer that grows anisotropically and has good conductivity can be manufactured. That is, when the ethylene glycol concentration is low, the diffusion constant D of Cu ions in the plating bath does not become small, so that there is no effect of anisotropic growth. On the other hand, if the concentration is too high, it is effective for anisotropic growth, but the conductivity of the plated conductor layer is deteriorated. Therefore, 1 to 20 vol% is optimal.
[0023]
The invention according to claim 5 is the method according to claim 1, wherein the copper sulfate concentration in the plating solution is in a range of 60 g / l to 120 g / l, and Since the concentration of copper sulfate is set in the range of 60 g / l to 120 g / l, which is the same as that of a normal plating solution, not only can a plated conductive wire having good conductivity be formed, but also the solution can be easily managed and is economical.
[0024]
The invention according to claim 6 is the method according to claim 1, wherein the temperature of the plating solution is in a range of 20 to 30 ° C., wherein the temperature of the plating solution is 20 to 30 ° C. , The change in the concentration of the liquid due to evaporation or the like is small, and the management of the liquid is easy.
[0025]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a method of manufacturing a planar coil according to an embodiment of the present invention will be described with reference to the accompanying drawings.
[0026]
(Embodiment)
FIG. 1 is a schematic diagram for explaining a manufacturing process of a planar coil according to an embodiment of the present invention.
[0027]
First, a 2 μm thick insulating substrate 1 having a 35 μm underlying conductor layer 2 formed on both surfaces was prepared. The constituent materials of the base conductor layer 2 and the insulating substrate 1 are Cu and a polyimide film, respectively (see FIG. 1A). Next, a through-hole 3 having a diameter of 10 μm was provided so as to penetrate the underlying conductor layer 2 and the insulating substrate 1 on both surfaces (see FIG. 1B). Next, the surface of the underlying conductor layer 2 on both surfaces was patterned with a resist 5 (see FIG. 1C). For patterning, an 8 μm dry film was used to form a spiral pattern having a resist width of 30 μm and a space between resists of 50 μm. At this time, the patterned resist 5 covers the through hole 3. Next, the portion of the underlying conductor layer 2 not covered with the resist 5 was removed by etching using an aqueous ferric chloride solution (see FIG. 1D). Next, the resist 5 was peeled off (see FIG. 1E).
[0028]
Thereafter, a plating solution containing copper sulfate, sulfuric acid, and ethylene glycol as main components is maintained at 25 ° C., and a positive current having a current density of 2 A / dm 2 is applied for 90 minutes to form a plating conductor layer 6 of 30 μm. The filament 7 was created (see FIG. 1 (F)).
[0029]
Table 1 shows the composition of the plating solution.
[0030]
[Table 1]
Figure 2004342645
[0031]
Here, Comparative Example 1 in which the ethylene glycol concentration is 0% is a conventional plating solution condition.
[0032]
As a representative example of the coil conductor filaments prepared as described above, FIG. 2 shows a cross section of Comparative Example 1 in which the ethylene glycol concentration is 0%, and FIG. 3 shows a cross section of Example 4 in which the ethylene glycol concentration is 16%. Shown in Further, the degree of anisotropic growth of the plated conductor layer grown by electroplating was calculated from the cross section, and the abscissa indicates the ethylene glycol concentration and the ordinate indicates the degree of anisotropic growth, and the results are shown in FIG.
[0033]
Here, the degree of anisotropic growth will be described with reference to FIG. The degree of anisotropic growth indicates the difference between the growth rate of the plated conductor layer in the vertical direction and the horizontal direction, and the film thickness H grown in the vertical direction by electroplating in FIG. Indicated by the divided value. The larger this value, the more anisotropically growing, which is advantageous for producing a planar coil having a high space factor.
[0034]
As is clear from FIGS. 2 to 4, the addition of ethylene glycol shows anisotropic growth as compared with the conventional plating solution, and the higher the ethylene glycol concentration in the plating solution is, the more the plating conductor layer becomes. The degree of anisotropic growth increases. However, the degree of anisotropic growth reaches a maximum at about 12% and saturates, and when it exceeds 24%, poor plating occurs.
[0035]
Here, the current density was set to 2 A / dm 2. However, when the current density was increased, the ethylene glycol concentration at the time when the anisotropic growth was saturated was lowered, and when the current density was lowered, the ethylene glycol concentration at the time when the anisotropic growth was saturated was lowered. The concentration of glycol is higher. Although the concentration of copper sulfate was set to 80 g / l, when the concentration of copper sulfate was increased, the concentration of ethylene glycol at the time when the anisotropic growth was saturated was increased, and when the concentration of copper sulfate was reduced, the concentration at the time when the anisotropic growth was saturated was increased. Has a lower ethylene glycol concentration. Although the temperature of the plating solution was set to 25 ° C., when the temperature of the plating solution was increased, the ethylene glycol concentration at the time when the anisotropic growth was saturated was increased, and when the temperature of the plating solution was lowered, the anisotropic growth was saturated. The ethylene glycol concentration at the time becomes low.
[0036]
In any case, there is a point where the anisotropic growth is maximized when the ethylene glycol concentration is in the range of 1 to 20 vol%, and the ethylene glycol concentration is determined by other plating conditions.
[0037]
By this plating technique, it is possible to produce a coil conductor filament having a high aspect ratio and a cross-sectional shape close to a rectangle, and a planar coil having a high space factor can be obtained.
[0038]
In the present embodiment, the formation of the coil-shaped base conductor layer is performed by a method called a sub-method. However, the present invention is not limited to this method as long as the function as the base conductor can be provided.
[0039]
【The invention's effect】
As described above, the present invention provides a plating conductor layer formed by electroplating using a plating solution containing copper sulfate, sulfuric acid, and ethylene glycol on a coil-shaped base conductor layer formed on at least one surface of an insulating substrate. Since a highly viscous plating solution whose main components are copper sulfate, sulfuric acid and ethylene glycol is used, the diffusion constant D of Cu ions in the plating bath can be reduced, and as a result, Even at a low current density, it is possible to approach the limit current, and it is possible to produce a coil conductor wire having a large aspect ratio and a cross-sectional shape close to a rectangle.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a manufacturing process of a planar coil according to a first embodiment of the present invention. FIG. 2 is an enlarged cross-sectional view of a planar coil prepared under a plating solution condition of Comparative Example 1. FIG. FIG. 4 is an enlarged cross-sectional view of a planar coil prepared under a plating solution condition. FIG. 4 is a characteristic diagram showing a degree of anisotropic growth depending on ethylene glycol concentration. FIG. 5 is an explanatory diagram showing a Cu ion concentration distribution near a base conductor. Description】
DESCRIPTION OF SYMBOLS 1 Insulating substrate 2 Base conductor layer 3 Through hole 5 Resist 6 Plating conductor layer 7 Coil conductor wire

Claims (6)

絶縁基板の少なくとも一方の表面に形成したコイル状の下地導体層上に、主成分が硫酸銅、硫酸、エチレングリコールであるめっき液を用いて電気めっきによるめっき導体層を形成し、前記下地導体層とめっき導体層からなるコイル導体線条を形成する平面コイルの製造方法。Forming a plating conductor layer by electroplating using a plating solution whose main component is copper sulfate, sulfuric acid, or ethylene glycol on the coil-shaped base conductor layer formed on at least one surface of the insulating substrate; And a method for manufacturing a planar coil for forming a coil conductor strip comprising a plated conductor layer. コイル状の下地導体層の材質がCuである請求項1に記載の平面コイルの製造方法。2. The method for manufacturing a planar coil according to claim 1, wherein the material of the coil-shaped base conductor layer is Cu. めっき導体層の形成のために流す電流密度が1〜3A/dmである請求項1に記載の平面コイルの製造方法。Manufacturing method of a flat coil according to claim 1 current density flowing to the formation of the plating conductor layer is. 1-3A / dm 2. めっき液中のエチレングリコール濃度が1〜20vol%である請求項1に記載の平面コイルの製造方法。The method for producing a planar coil according to claim 1, wherein the ethylene glycol concentration in the plating solution is 1 to 20 vol%. めっき液中の硫酸銅濃度が60g/l〜120g/lの範囲にある請求項1に記載の平面コイルの製造方法。The method for producing a planar coil according to claim 1, wherein the concentration of copper sulfate in the plating solution is in a range of 60 g / l to 120 g / l. めっき液の温度が20℃〜30℃の範囲にある請求項1に記載の平面コイルの製造方法。The method for producing a planar coil according to claim 1, wherein the temperature of the plating solution is in a range of 20C to 30C.
JP2003134085A 2003-05-13 2003-05-13 Method for manufacturing planar coil Pending JP2004342645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003134085A JP2004342645A (en) 2003-05-13 2003-05-13 Method for manufacturing planar coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003134085A JP2004342645A (en) 2003-05-13 2003-05-13 Method for manufacturing planar coil

Publications (1)

Publication Number Publication Date
JP2004342645A true JP2004342645A (en) 2004-12-02

Family

ID=33524739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003134085A Pending JP2004342645A (en) 2003-05-13 2003-05-13 Method for manufacturing planar coil

Country Status (1)

Country Link
JP (1) JP2004342645A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2480008A1 (en) * 2009-09-15 2012-07-25 BSE Co., Ltd. Voice coil and smt micro speaker using same
JP2015032625A (en) * 2013-07-31 2015-02-16 新光電気工業株式会社 Coil substrate, method of manufacturing the same and inductor
CN104733154A (en) * 2013-12-18 2015-06-24 三星电机株式会社 Chip electronic component and manufacturing method thereof
JP2015130471A (en) * 2014-01-02 2015-07-16 サムソン エレクトロ−メカニックス カンパニーリミテッド. Manufacturing method of chip electronic component
CN104934187A (en) * 2014-03-18 2015-09-23 三星电机株式会社 Chip Electronic Component And Manufacturing Method Thereof
JP2015228479A (en) * 2014-06-02 2015-12-17 サムソン エレクトロ−メカニックス カンパニーリミテッド. Chip electronic component and board for mounting the same
JP2016009854A (en) * 2014-06-26 2016-01-18 住友電工プリントサーキット株式会社 Printed wiring board, electronic component, and method for manufacturing printed wiring board
CN106205972A (en) * 2014-09-18 2016-12-07 三星电机株式会社 Chip electronic assembly

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2480008A1 (en) * 2009-09-15 2012-07-25 BSE Co., Ltd. Voice coil and smt micro speaker using same
EP2480008A4 (en) * 2009-09-15 2013-04-03 Bse Co Ltd Voice coil and smt micro speaker using same
JP2015032625A (en) * 2013-07-31 2015-02-16 新光電気工業株式会社 Coil substrate, method of manufacturing the same and inductor
CN104733154A (en) * 2013-12-18 2015-06-24 三星电机株式会社 Chip electronic component and manufacturing method thereof
US9976224B2 (en) 2013-12-18 2018-05-22 Samsung Electro-Mechanics Co., Ltd. Chip electronic component and manufacturing method thereof
JP2015130471A (en) * 2014-01-02 2015-07-16 サムソン エレクトロ−メカニックス カンパニーリミテッド. Manufacturing method of chip electronic component
US9945042B2 (en) 2014-03-18 2018-04-17 Samsung Electro-Mechanics Co., Ltd. Chip electronic component and manufacturing method thereof
CN104934187A (en) * 2014-03-18 2015-09-23 三星电机株式会社 Chip Electronic Component And Manufacturing Method Thereof
CN108597731A (en) * 2014-03-18 2018-09-28 三星电机株式会社 Chip electronic component and its manufacturing method
US10801121B2 (en) 2014-03-18 2020-10-13 Samsung Electro-Mechanics Co., Ltd. Chip electronic component and manufacturing method thereof
JP2015228479A (en) * 2014-06-02 2015-12-17 サムソン エレクトロ−メカニックス カンパニーリミテッド. Chip electronic component and board for mounting the same
JP2016009854A (en) * 2014-06-26 2016-01-18 住友電工プリントサーキット株式会社 Printed wiring board, electronic component, and method for manufacturing printed wiring board
CN106205972A (en) * 2014-09-18 2016-12-07 三星电机株式会社 Chip electronic assembly
CN106205972B (en) * 2014-09-18 2019-02-12 三星电机株式会社 Chip electronic component
US10910145B2 (en) 2014-09-18 2021-02-02 Samsung Electro-Mechanics Co., Ltd. Chip electronic component

Similar Documents

Publication Publication Date Title
CN104766715B (en) The manufacture method of chip electronic component
CN105097187B (en) Chip electronic component and for installing the plate of the chip electronic component
JP4046827B2 (en) Planar coil and planar transformer
TWI653730B (en) Coil pattern and method of forming same, and wafer device having coil pattern
CN105408525A (en) Treated surface copper foil, copper foil with carrier, substrate, resin substrate, printed circuit board, copper clad laminate, and printed circuit board manufacturing method
JP2009117546A (en) Planar coil, and manufacturing method thereof
KR20140117147A (en) Power inductor and manufacturing method thereof
KR102638523B1 (en) Magnetic wiring circuit board and method of manufacturing the same
US20220304164A1 (en) Manufacturing sequences for high density interconnect printed circuit boards and a high density interconnect printed circuit board
JP2002054000A (en) Electroplating method for substrate
JP2004342645A (en) Method for manufacturing planar coil
KR20120097344A (en) Forming method for nanotwined copper material and nanotwined copper material formed by the method
JP2004319570A (en) Method of manufacturing planar coil
JPH1197391A (en) Method of electroplating semiconductor wafer wiring
JP2009252952A (en) Copper charge plating method and printed circuit board manufactured by the method
WO2016104530A1 (en) Coil conductor manufacturing method, and induction coil provided with coil conductor manufactured by such method
WO2021064542A1 (en) Nanomagnetic inductor cores, inductors and devices incorporating such cores, and associated manufacturing methods
JP2004253430A (en) Method for manufacturing planar coil
JP2005126777A (en) Electroplating bath
JP2526586B2 (en) Wiring board manufacturing method
JP2008308749A (en) Copper plating method
JPH11298141A (en) Manufacture for electronic device
JP4269374B2 (en) Tin-plated flat conductor manufacturing method and flat cable manufacturing method
JPH05251852A (en) Printed-circuit board and its manufacture
JPH11100690A (en) Fine structure and its production