JP2005123479A - Electromagnetic wave shield structure - Google Patents

Electromagnetic wave shield structure Download PDF

Info

Publication number
JP2005123479A
JP2005123479A JP2003358423A JP2003358423A JP2005123479A JP 2005123479 A JP2005123479 A JP 2005123479A JP 2003358423 A JP2003358423 A JP 2003358423A JP 2003358423 A JP2003358423 A JP 2003358423A JP 2005123479 A JP2005123479 A JP 2005123479A
Authority
JP
Japan
Prior art keywords
metal
resin
electromagnetic wave
fiber
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003358423A
Other languages
Japanese (ja)
Other versions
JP2005123479A5 (en
Inventor
Kazuo Kodera
和男 小寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIHON GLASSFIBER IND CO Ltd
NIHON GLASSFIBER INDUSTRIAL CO Ltd
Original Assignee
NIHON GLASSFIBER IND CO Ltd
NIHON GLASSFIBER INDUSTRIAL CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIHON GLASSFIBER IND CO Ltd, NIHON GLASSFIBER INDUSTRIAL CO Ltd filed Critical NIHON GLASSFIBER IND CO Ltd
Priority to JP2003358423A priority Critical patent/JP2005123479A/en
Publication of JP2005123479A publication Critical patent/JP2005123479A/en
Publication of JP2005123479A5 publication Critical patent/JP2005123479A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electromagnetic wave shield structure which is light-weighted, friendly to environments, and inexpensive. <P>SOLUTION: The electromagnetic wave shield structure is nonwoven cloth as a porous substance consisting of carbon fibers 2 with a fiber length of 25-100 mm and a resin 3 mainly consisting of a polyolefin-based resin or a water-soluble resin and containing carbon powder 7, and includes, on at least one of its surfaces, a surface material 4 preferably made of a metal deposited resin film made of metal or containing metal. The surface material 4 on the incident side of electromagnetic waves has numerous through holes or cuts dispersively. A conductive adhesive can be applied to at least part of the surface. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、電磁波を遮蔽することのできる電磁波シールド構造体に関するものである。   The present invention relates to an electromagnetic wave shielding structure capable of shielding electromagnetic waves.

電磁波シールド構造体としては、金属板、金属箔、金属メッシュ、無電解めっき、蒸着、金属溶射、導電性塗料の他、多数の種類がある。例えば、
・特許文献1には、導電性材料として繊維長10〜100mmの炭素繊維を平面面積当たり175〜460g/m含む電磁波シールド用成形品が記載されている。
・特許文献2には、炭素繊維に金属繊維又は金属被覆繊維を加えた導電性プラスチック複合品が記載されている。
・特許文献3には、湿式抄造で製造した金属繊維シートが記載されている。
・特許文献4には、無機質板状体の少なくとも一方に、導電性炭素粒状体(カーボンブラック)と樹脂バインダーとの混合物の硬化物層を備える電磁波遮蔽性無機板状体が記載されている。
・特許文献5には、切削金属繊維とバインダー繊維による電磁波吸収シートが記載されている。
・特許文献6には、硬質発泡樹脂にフェライトを混入した、面材を一体化した電磁波吸収発泡体が記載されている。
As an electromagnetic wave shield structure, there are many types other than metal plates, metal foils, metal meshes, electroless plating, vapor deposition, metal spraying, and conductive paints. For example,
Patent Document 1 describes an electromagnetic shielding molded article containing 175 to 460 g / m 2 of carbon fiber having a fiber length of 10 to 100 mm as a conductive material per plane area.
Patent Document 2 describes a conductive plastic composite product in which metal fibers or metal-coated fibers are added to carbon fibers.
Patent Document 3 describes a metal fiber sheet manufactured by wet papermaking.
Patent Document 4 describes an electromagnetic wave shielding inorganic plate having a cured product layer of a mixture of conductive carbon particles (carbon black) and a resin binder on at least one of the inorganic plates.
Patent Document 5 describes an electromagnetic wave absorbing sheet made of cutting metal fibers and binder fibers.
Patent Document 6 describes an electromagnetic wave absorbing foam in which hard foam resin is mixed with ferrite and in which face materials are integrated.

特開平5−299880号公報JP-A-5-299880 特開平6−53688号公報JP-A-6-53688 特開2000−27797号公報JP 2000-27797 A 特開2001−24380号公報JP 2001-24380 A 特開2001−26778号公報JP 2001-26778 A 特開2002−348395号公報JP 2002-348395 A

ところが、金属板、金属箔又は金属溶射は、軽量化に不向きであり、複雑形状にも不向きである。金属メッシュ又は蒸着フィルムのみでは、十分なシールド効果が得られない。無電解めっき又は導電性塗料を施す方法は、脱落による経時変化に不安がある。また、
・特許文献1のように炭素繊維を用いるものは、目付175g/m以上ないと有効なシールド効果が得られない。
・特許文献2、3、5のように金属繊維を用いるものは、金属板等を用いるものと同じく、軽量化に不向きであり、複雑形状にも不向きである。樹脂繊維に無電解めっきを施し、織物にする方法もあるが、これは高価である。さらに、繊維体構造のみでは、電磁波シールド効果のばらつきが大きいという欠点がある。
・特許文献4のように、無機質板状体とカーボンブラックを用いるものは、高価である。
・特許文献6のように硬質発泡樹脂を用いるものは、火災時の有毒ガスや、焼却時のダイオキシンの発生不安がある。
However, metal plates, metal foils or metal sprays are not suitable for weight reduction and are not suitable for complex shapes. A sufficient shielding effect cannot be obtained only with a metal mesh or a deposited film. The method of applying electroless plating or conductive paint is uneasy about changes over time due to dropping off. Also,
-The thing using carbon fiber like patent document 1 cannot obtain an effective shielding effect, unless a fabric weight is 175 g / m < 2 > or more.
-The thing using a metal fiber like patent documents 2, 3, and 5 is unsuitable for weight reduction similarly to the thing using a metal plate etc., and is unsuitable also for a complicated shape. There is a method in which resin fibers are electrolessly plated to form a woven fabric, but this is expensive. Furthermore, the fiber structure alone has the disadvantage that the electromagnetic shielding effect varies greatly.
-Like patent document 4, what uses an inorganic plate-shaped body and carbon black is expensive.
-The thing using a hard foaming resin like patent document 6 has anxiety about generation | occurrence | production of the toxic gas at the time of fire, and the dioxin at the time of incineration.

そこで、本発明の目的は、軽量で、環境にやさしい、低価格の電磁波シールド構造体及びその製造方法を提供することである。   Accordingly, an object of the present invention is to provide a light-weight, environmentally friendly, low-cost electromagnetic shielding structure and a method for manufacturing the same.

上記目的を達成するために、本発明は、次の手段を採った。
(1)繊維長25〜100mmの炭素繊維と樹脂とからなる多孔質体であって、少なくとも1面に金属よりなる又は金属を含む面材を備えたことを特徴とする電磁波シールド構造体。
In order to achieve the above object, the present invention employs the following means.
(1) An electromagnetic wave shielding structure comprising a porous material composed of carbon fibers having a fiber length of 25 to 100 mm and a resin, and comprising a face material made of metal or containing metal on at least one surface.

ここで、電磁波入射側の面材が多数の貫通孔又は切れ目を分散状に備えたものであることが好ましい。炭素繊維は、特に限定されないが、30〜174g/m含まれること(目付量)が好ましい。樹脂は、特に限定されないが、主にポリオレフィン系樹脂からなる樹脂又は水溶性樹脂が好ましい。金属を含む面材としては、特に限定されないが、金属蒸着樹脂フィルムを例示でき、金属蒸着ポリオレフィン系樹脂フィルムが好ましい。特定周波数帯の電磁波シールド効果を高めるため、樹脂に導電性粉末を含めてもよい。表面の少なくとも一部に導電性粘着剤を含む構造体とすると、被着材に容易に貼付できる。 Here, it is preferable that the face material on the electromagnetic wave incident side is provided with a large number of through holes or cuts in a dispersed manner. Although carbon fiber is not specifically limited, It is preferable that 30-174 g / m < 2 > is contained (weight per unit area). The resin is not particularly limited, but a resin mainly composed of a polyolefin resin or a water-soluble resin is preferable. Although it does not specifically limit as a face material containing a metal, A metal vapor deposition resin film can be illustrated and a metal vapor deposition polyolefin resin film is preferable. In order to enhance the electromagnetic wave shielding effect in a specific frequency band, conductive resin may be included in the resin. If the structure includes a conductive adhesive on at least a part of the surface, the structure can be easily attached to an adherend.

(2)繊維長25〜100mmの炭素繊維と樹脂繊維とからなる混繊不織布の少なくとも1面に金属よりなる又は金属を含む面材を重ね、前記樹脂繊維の溶着により、前記混繊不織布と前記面材とを一体成形すると同時に接合する電磁波シールド構造体の製造方法。 (2) At least one surface of a mixed fiber nonwoven fabric composed of carbon fibers having a fiber length of 25 to 100 mm and resin fibers is overlaid with a face material made of metal or containing metal, and by welding the resin fibers, the mixed fiber nonwoven fabric and the above-mentioned A method for manufacturing an electromagnetic wave shield structure in which a face material is integrally formed and bonded simultaneously.

(3)繊維長25〜100mmの炭素繊維と水溶性樹脂繊維とを含む混繊不織布に水を加えるとともに、金属よりなる又は金属を含む面材を重ね、前記水溶性樹脂繊維の溶着により、前記混繊不織布と前記面材とを一体成形すると同時に接合する電磁波シールド構造体の製造方法。 (3) While adding water to a mixed fiber nonwoven fabric containing carbon fibers having a fiber length of 25 to 100 mm and water-soluble resin fibers, layering a face material made of metal or containing metal, and by welding the water-soluble resin fibers, The manufacturing method of the electromagnetic wave shield structure which joins simultaneously at the same time forming a mixed-fiber nonwoven fabric and the said face material.

ここで、水が導電性粉末の分散水であることが好ましい。   Here, it is preferable that the water is a dispersion of conductive powder.

上記各構成要素のさらに詳細な態様を、以下に例示する。「炭素繊維」は、製法により、ピッチ系、PAN系等があるが、特に限定しない。低温処理による耐炎繊維は、電磁波シールド効果が少なく、望ましくない。「ポリオレフィン系樹脂」としては、ポリエチレン樹脂、ポリエチレン共重合体樹脂、ポリプロピレン樹脂、ポリエステル樹脂等を例示できる。繊維としては、芯鞘構造を有する低融点ポリエステル繊維やポリプロピレン繊維を例示できる。「水溶性樹脂」としては、カルボキシ酸メチルセルローズやポリビニルアルコール等を例示できる。繊維としては、水溶性ビニロン繊維を例示できる。   More detailed aspects of each of the above components will be exemplified below. “Carbon fiber” may be pitch-based or PAN-based depending on the production method, but is not particularly limited. A flame resistant fiber by low temperature treatment is not desirable because it has a low electromagnetic shielding effect. Examples of the “polyolefin resin” include polyethylene resin, polyethylene copolymer resin, polypropylene resin, and polyester resin. Examples of the fibers include low melting point polyester fibers and polypropylene fibers having a core-sheath structure. Examples of the “water-soluble resin” include methyl cellulose carboxylate and polyvinyl alcohol. Examples of the fibers include water-soluble vinylon fibers.

「金属よりなる面材」としては、例えばアルミニウム、ニッケル、錫、金、銀、銅、ステンレス鋼等の金属(それらの合金を含む)からなる面体を例示でき、「金属を含む面材」としては前記例示の金属又は合金からなる金属箔を樹脂フィルム等で貼付したものや前記例示の金属を蒸着した金属蒸着樹脂フィルムを例示できる。ポリオレフィン系樹脂フィルムに金属蒸着した面体は、軽量で低コストであり、環境面からも好ましい。1000MHz以上の高周波帯は、ニッケル又は銅を含む面材が望ましい。「導電性粉末」としては、前記例示の金属からなる粉末、炭素粉末、また、やや導体性に劣るがフェライト粉末、酸化インジウム粉末等を例示できる。   Examples of the “surface material made of metal” include, for example, a surface material made of metal (including alloys thereof) such as aluminum, nickel, tin, gold, silver, copper, and stainless steel. Can be exemplified by a metal foil made of the above-mentioned metal or alloy pasted with a resin film or the like, or a metal-deposited resin film on which the above-mentioned metal is vapor-deposited. A face body obtained by metal vapor deposition on a polyolefin resin film is light in weight and low in cost, and is preferable from the viewpoint of the environment. For the high frequency band of 1000 MHz or higher, a face material containing nickel or copper is desirable. Examples of the “conductive powder” include powders made of the above-mentioned metals, carbon powders, and ferrite powders, indium oxide powders, etc., which are slightly inferior in conductivity.

電磁波入射側の金属よりなる又は金属を含む面材に付加する貫通孔又は切れ目は、金属の有する電磁波を反射する性質を抑え、炭素繊維からなる多孔体による吸収性を高める効果がある。電磁波の透過側にムクの面材を付けると、面材間で干渉が起こり、電磁波シールド効果がより高まる。   The through-holes or cuts made of the metal on the electromagnetic wave incident side or added to the face material containing the metal have an effect of suppressing the property of reflecting the electromagnetic wave of the metal and increasing the absorbability by the porous body made of carbon fiber. If the surface material of Muku is attached to the transmission side of the electromagnetic wave, interference occurs between the surface materials, and the electromagnetic wave shielding effect is further enhanced.

ポリオレフィン系樹脂は、燃焼時に塩素ガスや塩化水素ガス等の有毒ガスが発生せず、環境ホルモンとの関連性もなく、約800℃以下で焼却してもダイオキシンが発生しない。また、ポリオレフィン系樹脂に、例えば金属水酸化物などのハロゲン元素を含まない防炎難燃化合物を加えることにより、防炎性および難燃性を向上することができる。   Polyolefin resins do not generate toxic gases such as chlorine gas or hydrogen chloride gas during combustion, are not related to environmental hormones, and do not generate dioxins even when incinerated at about 800 ° C. or less. Moreover, flameproofness and flame retardance can be improved by adding a flameproof flame retardant compound not containing a halogen element such as a metal hydroxide to the polyolefin resin.

金属よりなる又は金属を含む面材を積層することで、同時に一体成形が可能となる。接着は、炭素繊維と面体がドット方式で直接接触することが可能となり、樹脂層を介入しないため、ばらつきが低く安定した電磁波シールド効果が得られる。   By laminating face materials made of or containing metal, it is possible to perform integral molding at the same time. Adhesion enables the carbon fiber and the face to be in direct contact with each other by a dot method, and does not intervene the resin layer, so that a stable electromagnetic wave shielding effect with low variation can be obtained.

また、表面の少なくとも一部に導電性粘着剤を塗付できる。導電性粘着剤としては、金属箔テープに使われている導電性感圧型粘着剤を例示できる。粘着剤中に分散された金属粒子が導体として、被着間の導通を可能にする。このタイプは圧力を付加すると導電性が向上する。   Moreover, a conductive adhesive can be applied to at least a part of the surface. Examples of the conductive adhesive include conductive pressure-sensitive adhesives used in metal foil tapes. The metal particles dispersed in the pressure-sensitive adhesive serve as a conductor to allow conduction between the deposits. This type improves conductivity when pressure is applied.

以上詳述した通り、本発明によれば、軽量で、環境にやさしい、低価格の電磁波シールド構造体を提供することができるという優れた効果を奏する。   As described above in detail, according to the present invention, there is an excellent effect that it is possible to provide a light-weight, environmentally friendly and low-cost electromagnetic shielding structure.

繊維長25〜100mmの炭素繊維と主にポリオレフィン系樹脂又は水溶性樹脂からなり導電性粉末を含む樹脂とからなる多孔質体であって、少なくとも1面に金属よりなる又は金属を含む面材を備え、電磁波入射側の面材が多数の貫通孔又は切れ目を分散状に備えた電磁波シールド構造体である。   A porous material comprising a carbon fiber having a fiber length of 25 to 100 mm and a resin mainly comprising a polyolefin-based resin or a water-soluble resin and containing a conductive powder, and comprising a face material made of metal or containing metal on at least one surface And an electromagnetic wave shielding structure in which the face material on the electromagnetic wave incident side is provided with a large number of through holes or cuts in a dispersed manner.

以下、本発明を具体化した第一実施例について、図1及び図2を参照して説明する。本実施例の電磁波シールド構造体は、繊維長50mmの炭素繊維2と樹脂3とからなる多孔質体の一例(シート体)としての不織布1であって、その2面(両面)に金属よりなる又は金属を含む面材4を備えたものである。なお、実施例で記す材料、構成、数値は例示であって、適宜変更できる。   A first embodiment embodying the present invention will be described below with reference to FIGS. The electromagnetic wave shield structure of this example is a nonwoven fabric 1 as an example (sheet body) of a porous body composed of carbon fibers 2 having a fiber length of 50 mm and a resin 3, and the two surfaces (both surfaces) are made of metal. Or it is provided with the face material 4 containing a metal. Note that the materials, configurations, and numerical values described in the examples are examples and can be changed as appropriate.

そして、下記の表1に示すとおり、本実施例に属する試料No.6,7,8,11,12と、本実施例に対して面材の無い比較例としての試料No.1,2,3,4,5,9,10と、単なるアルミニウム蒸着樹脂フィルムである参考例1,2とを作成した。   And as shown in Table 1 below, the sample No. belonging to this example. Nos. 6, 7, 8, 11, and 12 and sample Nos. As comparative examples having no face material with respect to this example. 1, 2, 3, 4, 5, 9, and 10 and Reference Examples 1 and 2 which are simple aluminum vapor deposited resin films were prepared.

Figure 2005123479
Figure 2005123479

いずれの試料No.1〜12においても用いた炭素繊維2は、繊維長が50mm、平均繊維径が6μmのPAN系繊維である。炭素繊維2の目付量は表1に示したとおりである。樹脂3としては、次の2種類の繊維を選択的に用いた。   Any sample No. The carbon fibers 2 used in 1 to 12 are PAN fibers having a fiber length of 50 mm and an average fiber diameter of 6 μm. The basis weight of the carbon fiber 2 is as shown in Table 1. As the resin 3, the following two types of fibers were selectively used.

(1)試料No.1〜8,12では、樹脂繊維として、芯鞘構造の繊維長38mm、繊度2デニールの低融点ポリエステル繊維を用いた。鞘の融点は85℃、芯の融点は253℃である。これらの試料は、炭素繊維2と低融点ポリエステル繊維とをニードルパンチ加工にて乾式混繊して不織布1を作成した。低融点ポリエステルの混率は20%である。 (1) Sample No. In 1 to 8 and 12, low melting point polyester fibers having a core-sheath fiber length of 38 mm and a fineness of 2 denier were used as the resin fibers. The melting point of the sheath is 85 ° C., and the melting point of the core is 253 ° C. These samples were produced by dry-mixing carbon fibers 2 and low-melting polyester fibers by needle punching to produce a nonwoven fabric 1. The mixing ratio of the low melting point polyester is 20%.

(2)試料No.9〜11では、水溶性樹脂繊維として、株式会社クラレ製の水溶性ビニロン繊維K−IIを用いた。これらの試料は、炭素繊維2と水溶性ビニロン繊維とをニードルパンチ加工にて乾式混繊して不織布1を作成した。水溶性ビニロン繊維の混率は5%である。この水溶性ビニロン繊維を用いた試料は、前処理として基材に対し略同量の水をスプレーにて加水した。水としては、試料No.9では単なる水を用い、試料No.10,11では炭素粉末混入水としての横浜化成株式会社の水溶性インク(商品名:ユニラント33Tクロ、粒子径20μm以下)を水で適度(例えば2〜3倍)に薄めたものを用いた。 (2) Sample No. In 9 to 11, water-soluble vinylon fiber K-II manufactured by Kuraray Co., Ltd. was used as the water-soluble resin fiber. These samples were produced by dry blending carbon fiber 2 and water-soluble vinylon fiber by needle punching to produce nonwoven fabric 1. The mixing ratio of the water-soluble vinylon fiber is 5%. In the sample using the water-soluble vinylon fiber, approximately the same amount of water was added to the substrate by spraying as a pretreatment. As water, sample no. In No. 9, simple water was used. In Nos. 10 and 11, water-soluble ink (trade name: Unilant 33T black, particle size of 20 μm or less) of Yokohama Chemical Co., Ltd. as carbon powder-mixed water was moderately diluted (for example, 2 to 3 times) with water.

試料No.6,7,8,11,12で用いた面材4は、厚み10mm、目付重量17g/mのアルミニウム蒸着樹脂フィルムである。No.6,7では貫通孔も切れ目もない同フィルムを用い、No.8では電磁波入射側に貫通孔8のある同フィルム(反対側は貫通孔のない同フィルム)を用い、No.11,12では電磁波入射側に切れ目9のある同フィルム(反対側は切れ目のない同フィルム)を用いた。貫通孔8は、タテ、ヨコの孔間隔が5mm、孔径がφ2mmである。切れ目9の形状は、一直線の線分とし、刃物を用いて切れ目5の開口幅が略0mm(切れてはいるが目が略塞がっている状態)、切れ目長さが15mm、切れ目ピッチが30mmとなるように加工した。 Sample No. The face material 4 used in 6, 7, 8, 11, and 12 is an aluminum vapor-deposited resin film having a thickness of 10 mm and a weight per unit area of 17 g / m 2 . No. Nos. 6 and 7 use the same film with no through holes and no breaks. No. 8 uses the same film having the through hole 8 on the electromagnetic wave incident side (the same film having no through hole on the opposite side). 11 and 12, the same film having a cut 9 on the electromagnetic wave incident side (the same film having no cut on the opposite side) was used. The through-hole 8 has a vertical and horizontal hole interval of 5 mm and a hole diameter of 2 mm. The shape of the cut line 9 is a straight line segment, and the opening width of the cut line 5 is approximately 0 mm using a blade (a state where the cut is cut but the eyes are substantially closed), the cut length is 15 mm, and the cut pitch is 30 mm. It processed so that it might become.

いずれの試料No.1〜12も、成形には温度130℃で1分間の熱プレス機を用い、ノーゲージにて圧着した。試料No.6,7,8については、上記(1)で作成した混繊不織布1の片面(試料No.6)又は両面(試料No.7,8)に面材4を重ね、低融点ポリエステル繊維の溶着(熱溶)により、混繊不織布1と面材4とを一体成形すると同時に接合した。試料No.11,12については、上記(2)で作成した混繊不織布1の両面に面材4を重ね、水溶性ビニロン繊維の溶着(水溶)により、混繊不織布1と面材4とを一体成形すると同時に接合した。   Any sample No. Nos. 1 to 12 were pressure-bonded with no gauge using a hot press machine at a temperature of 130 ° C. for 1 minute. Sample No. 6, 7 and 8, the face material 4 is overlapped on one side (sample No. 6) or both sides (sample No. 7 and 8) of the mixed fiber nonwoven fabric 1 prepared in the above (1), and the low melting point polyester fiber is welded. The mixed nonwoven fabric 1 and the face material 4 were integrally formed and joined simultaneously by (thermal melting). Sample No. 11 and 12, when the mixed fiber nonwoven fabric 1 and the face material 4 are integrally formed by laminating the face material 4 on both surfaces of the mixed fiber nonwoven fabric 1 created in the above (2) and welding (water-soluble) water-soluble vinylon fibers. Bonded at the same time.

評価は、株式会社アドバンテスト製の電磁波シールド効果評価器TR17301AとスペクトラムアナライザーR3162とを用い、アドバンテスト法(近傍界用)に従って測定した。この測定法は、MIL−STD−285法における近接界測定のミニチュア版である。試料片のサイズは200mm角であり、各試料片の2面をそれぞれ被着材6としての厚さ2mmのプラスチック板に貼り付けた。同プラスチック板のみの電磁波シールド特性(dB)と、同プラスチック板に試料片を貼付した時の電磁波シールド特性(dB)とを測定し、その差を減衰量(dB)として算出した。上記の表1に各試料の500MHz、800MHz及び1000MHzでの電界減衰量の測定結果を示す。   The evaluation was performed according to the Advantest method (for the near field) using an electromagnetic wave shielding effect evaluator TR17301A manufactured by Advantest Co., Ltd. and a spectrum analyzer R3162. This measurement method is a miniature version of the near field measurement in the MIL-STD-285 method. The size of the sample piece was 200 mm square, and two surfaces of each sample piece were respectively attached to a plastic plate having a thickness of 2 mm as the adherend 6. The electromagnetic shielding characteristics (dB) of only the plastic plate and the electromagnetic shielding characteristics (dB) when a sample piece was attached to the plastic plate were measured, and the difference was calculated as the attenuation (dB). Table 1 above shows the measurement results of the electric field attenuation of each sample at 500 MHz, 800 MHz, and 1000 MHz.

同表1から明らかなように、本実施例に属する試料No.6,7,8,11,12は、炭素繊維の目付量が少なく、従って軽量かつ低価格に作成できるにも拘わらず、効果としての電界減衰量が大きく、例えば1000MHzでの電界減衰量はいずれも25dB以上であった。これに対し、試料No.1,2,3,9,10は、炭素繊維の目付量は少ないが、その分、電界減衰量も小さいことが分かる。また、試料No.4,5は炭素繊維の目付量が多いために、電界減衰量も大きい。また、本実施例は硬質発泡樹脂を用いないので、火災時の有毒ガスや、焼却時のダイオキシンの発生が無く、環境にやさしい。   As is clear from Table 1, the sample No. belonging to this example. 6, 7, 8, 11, and 12 have a small amount of carbon fiber, and thus can be produced at a light weight and at a low price, but have a large electric field attenuation as an effect. Was 25 dB or more. In contrast, sample no. 1, 2, 3, 9, and 10 show that the basis weight of the carbon fiber is small, but the amount of electric field attenuation is small accordingly. Sample No. Nos. 4 and 5 have a large amount of field attenuation because of the large amount of carbon fiber. Further, since this embodiment does not use a hard foamed resin, there is no generation of toxic gas at the time of fire and dioxin at the time of incineration, and it is environmentally friendly.

次に、図3に示す第二実施例の電磁波シールド構造体は、第一実施例の電磁波シールド構造体を建築用内装シート材に具体化したものであって、炭素繊維2と樹脂3とからなる不織布1の2面(両面)に面材4を備え、その各面材4の表面の少なくとも一部に導電性粘着剤5が塗付されている。そして、使用時には、両面の導電性粘着剤5によって2枚の被着材6としての壁材に貼り付けられ、両壁材に挟まれて使用される。   Next, the electromagnetic wave shield structure of the second embodiment shown in FIG. 3 is obtained by embodying the electromagnetic wave shield structure of the first embodiment into an interior sheet material for building, and includes carbon fiber 2 and resin 3. A surface material 4 is provided on two surfaces (both surfaces) of the nonwoven fabric 1, and a conductive adhesive 5 is applied to at least a part of the surface of each surface material 4. And in use, it is affixed on the wall material as the two adherends 6 by the conductive adhesive 5 on both sides, and is used by being sandwiched between both wall materials.

本発明による面体を備えた電磁波シールド構造体の第一実施例を示す説明図である。It is explanatory drawing which shows the 1st Example of the electromagnetic wave shield structure provided with the face body by this invention. (a)は面材に形成する多数の貫通孔の様態を示す概略図、(b)は面材に形成する切れ目の様態を示す概略図である。(A) is the schematic which shows the aspect of many through-holes formed in a face material, (b) is the schematic which shows the aspect of the cut | interruption formed in a face material. 本発明による面体を備えた電磁波シールド構造体を建築用内装シート材に具体化した第二実施例の部分断面図である。It is a fragmentary sectional view of the 2nd example which materialized the electromagnetic wave shield structure provided with the field object by the present invention to the interior sheet material for buildings.

符号の説明Explanation of symbols

1 多孔質体としての不織布
2 炭素繊維
3 樹脂
4 面材
5 導電性粘着剤
6 被着材
7 導電性粉末としての炭素粉末
8 貫通孔
9 切れ目
DESCRIPTION OF SYMBOLS 1 Nonwoven fabric as porous body 2 Carbon fiber 3 Resin 4 Face material 5 Conductive adhesive 6 Adhering material 7 Carbon powder as conductive powder 8 Through hole 9 Break

Claims (10)

繊維長25〜100mmの炭素繊維と樹脂とからなる多孔質体であって、少なくとも1面に金属よりなる又は金属を含む面材を備えたことを特徴とする電磁波シールド構造体。   An electromagnetic wave shielding structure comprising a porous body made of carbon fiber having a fiber length of 25 to 100 mm and a resin, and comprising a face material made of metal or containing metal on at least one surface. 電磁波入射側の面材が多数の貫通孔又は切れ目を分散状に備えた請求項1記載の電磁波シールド構造体。   The electromagnetic wave shielding structure according to claim 1, wherein the electromagnetic wave incident side face material has a large number of through holes or cuts dispersedly. 炭素繊維が30〜174g/m含まれる請求項1記載の電磁波シールド構造体。 The electromagnetic wave shielding structure according to claim 1, wherein the carbon fiber is contained in an amount of 30 to 174 g / m 2 . 樹脂が主にポリオレフィン系樹脂又は水溶性樹脂からなる請求項1記載の電磁波シールド構造体。   The electromagnetic shielding structure according to claim 1, wherein the resin is mainly composed of a polyolefin-based resin or a water-soluble resin. 金属を含む面材が金属蒸着樹脂フィルムである請求項1記載の電磁波シールド構造体。   The electromagnetic shielding structure according to claim 1, wherein the metal-containing face material is a metal-deposited resin film. 樹脂に導電性粉末を含む請求項1記載の電磁波シールド構造体。   The electromagnetic wave shielding structure according to claim 1, wherein the resin contains conductive powder. 表面の少なくとも一部に導電性粘着剤を含む請求項1記載の電磁波シールド構造体。   The electromagnetic wave shield structure according to claim 1, comprising a conductive adhesive on at least a part of the surface. 繊維長25〜100mmの炭素繊維と樹脂繊維とからなる混繊不織布の少なくとも1面に金属よりなる又は金属を含む面材を重ね、前記樹脂繊維の溶着により、前記混繊不織布と前記面材とを一体成形すると同時に接合する電磁波シールド構造体の製造方法。   A surface material made of metal or containing metal is stacked on at least one surface of a mixed fiber nonwoven fabric composed of carbon fibers having a fiber length of 25 to 100 mm and resin fibers, and the mixed fiber nonwoven fabric and the surface material are bonded by welding the resin fibers. Manufacturing method of electromagnetic wave shield structure which is simultaneously molded and bonded together. 繊維長25〜100mmの炭素繊維と水溶性樹脂繊維とを含む混繊不織布に水を加えるとともに、金属よりなる又は金属を含む面材を重ね、前記水溶性樹脂繊維の溶着により、前記混繊不織布と前記面材とを一体成形すると同時に接合する電磁波シールド構造体の製造方法。   Water is added to a mixed non-woven fabric including carbon fibers having a fiber length of 25 to 100 mm and a water-soluble resin fiber, and a surface material made of metal or a metal-containing surface material is stacked, and the water-soluble resin fiber is welded to thereby mix the mixed fiber non-woven fabric. And the face material are integrally molded and simultaneously bonded to produce an electromagnetic shielding structure. 水が導電性粉末の分散水である請求項9記載の電磁波シールド構造体の製造方法。   The method for producing an electromagnetic wave shielding structure according to claim 9, wherein the water is dispersed water of conductive powder.
JP2003358423A 2003-10-17 2003-10-17 Electromagnetic wave shield structure Pending JP2005123479A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003358423A JP2005123479A (en) 2003-10-17 2003-10-17 Electromagnetic wave shield structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003358423A JP2005123479A (en) 2003-10-17 2003-10-17 Electromagnetic wave shield structure

Publications (2)

Publication Number Publication Date
JP2005123479A true JP2005123479A (en) 2005-05-12
JP2005123479A5 JP2005123479A5 (en) 2006-05-25

Family

ID=34614989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003358423A Pending JP2005123479A (en) 2003-10-17 2003-10-17 Electromagnetic wave shield structure

Country Status (1)

Country Link
JP (1) JP2005123479A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007113148A (en) * 2005-10-21 2007-05-10 Nihon Glassfiber Industrial Co Ltd Conductive nonwoven fabric
KR100835658B1 (en) 2006-09-05 2008-06-09 최재철 Electro-magnetic wave absorber and it's construction method
JP2017069369A (en) * 2015-09-30 2017-04-06 日本グラスファイバー工業株式会社 Partition plate for ic tag erroneous recognition prevention, and manufacturing method thereof
CN114775330A (en) * 2022-06-06 2022-07-22 山东大学 Carbon fiber electromagnetic shielding paper and preparation method and application thereof
CN115538031A (en) * 2018-09-19 2022-12-30 三菱制纸株式会社 Nonwoven fabric for electromagnetic wave shielding material and electromagnetic wave shielding material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007113148A (en) * 2005-10-21 2007-05-10 Nihon Glassfiber Industrial Co Ltd Conductive nonwoven fabric
KR100835658B1 (en) 2006-09-05 2008-06-09 최재철 Electro-magnetic wave absorber and it's construction method
JP2017069369A (en) * 2015-09-30 2017-04-06 日本グラスファイバー工業株式会社 Partition plate for ic tag erroneous recognition prevention, and manufacturing method thereof
CN115538031A (en) * 2018-09-19 2022-12-30 三菱制纸株式会社 Nonwoven fabric for electromagnetic wave shielding material and electromagnetic wave shielding material
CN114775330A (en) * 2022-06-06 2022-07-22 山东大学 Carbon fiber electromagnetic shielding paper and preparation method and application thereof

Similar Documents

Publication Publication Date Title
KR101793278B1 (en) Hybrid sound absorbing sheet
JP4764134B2 (en) Conductive nonwoven fabric
US20110005990A1 (en) Filter
JP2019106542A (en) Noise-absorbing sheet
WO2011074609A1 (en) Noise absorbing fabric
WO2007083822A1 (en) Electroconductive gasket material
KR20040010131A (en) Electromagnetic wave absorber
JP5786011B2 (en) Conductive porous material assembly and manufacturing method thereof
WO2018181139A1 (en) Soundproof structure, sound absorption panel, and tuning panel
JP5092144B2 (en) Sound absorbing material and manufacturing method thereof
JP4176723B2 (en) Electromagnetic wave shielding gasket and manufacturing method thereof
JP2005123479A (en) Electromagnetic wave shield structure
KR101679336B1 (en) Conductive tape for EMI shielding and manufacturing the same
JP5151162B2 (en) Noise suppression sheet
WO2001087591A1 (en) Functional film
Shen et al. Design of microperforated nanofibrous membrane coated nonwoven structure for acoustic applications
JPH05206680A (en) Composite sheet for electromagnetic wave shielding
JP2006222197A (en) Electromagnetic wave suppressing paper and manufacturing method thereof
JPH11105196A (en) Sheet-formed stampable sheet, its manufacture, and stampable sheet molding
JP4357955B2 (en) Radio wave absorber
JP2606741B2 (en) Electromagnetic wave shielding material
JP2003133785A (en) Fiber structural composition having electromagnetic absorbability
JP5014529B2 (en) Conductive porous material having flame retardancy and method for producing the same
JP4904045B2 (en) Method for producing conductive adhesive rubber
JP2020023759A (en) Flame-retardant paper

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20060403

Free format text: JAPANESE INTERMEDIATE CODE: A523

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060403

A977 Report on retrieval

Effective date: 20090319

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20090331

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20090728

Free format text: JAPANESE INTERMEDIATE CODE: A02