JP2005123245A - Niobium powder for electrolytic capacitor and its manufacturing method - Google Patents

Niobium powder for electrolytic capacitor and its manufacturing method Download PDF

Info

Publication number
JP2005123245A
JP2005123245A JP2003353635A JP2003353635A JP2005123245A JP 2005123245 A JP2005123245 A JP 2005123245A JP 2003353635 A JP2003353635 A JP 2003353635A JP 2003353635 A JP2003353635 A JP 2003353635A JP 2005123245 A JP2005123245 A JP 2005123245A
Authority
JP
Japan
Prior art keywords
niobium
powder
reducing agent
hydrogen
niobium powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003353635A
Other languages
Japanese (ja)
Inventor
Toshiyuki Osako
敏行 大迫
Tetsushi Komukai
哲史 小向
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2003353635A priority Critical patent/JP2005123245A/en
Publication of JP2005123245A publication Critical patent/JP2005123245A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide niobium powder which is suitable for making an electrolytic capacitor small in size and high in capacity, contains primary particles which are very small in diameter, and is low in oxygen content; and to provide its manufacturing method. <P>SOLUTION: Material powder is heated up while separated from a reducing agent, the reducing agent is turned into vapor, the reducing agent vapor is brought into contact with the material powder so as to restrain heat generated by a reducing reaction, the material powder is reduced until the material powder is turned to NbO<SB>x</SB>(wherein, x=0.06 to 0.35), an intermediate product is obtained, the oxide of the reducing agent is removed, then an alkali/alkaline earth metal melt is prepared so as to be 1.0 to 1.5 mol equivalent to the residual oxygen content of the intermediate product, and the melt and the intermediate product are brought into direct contact with each other to cause a reducing reaction for obtaining niobium powder, The niobium powder is introduced into a hydrochloric acid solution of a normal solution to generate hydrogen gas, and the niobium powder is made to occlude hydrogen. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、高容量の電解コンデンサ陽極材料として好適なニオブ粉末およびその製造方法に関し、特に、電解コンデンサの小型化および高容量化に好適なニオブ粉末およびその製造方法に関する。   The present invention relates to a niobium powder suitable as a high-capacity electrolytic capacitor anode material and a method for producing the same, and more particularly to a niobium powder suitable for reducing the size and increasing the capacity of an electrolytic capacitor and a method for producing the same.

小型大容量で高性能の電解コンデンサとして、タンタルコンデンサが広く使用されているが、近年、タンタル価格の暴騰などから、陽極材料としてタンタル粉末に代替するものとして、ニオブ粉末を使用したニオブコンデンサが注目を集めている。   Tantalum capacitors are widely used as small, large-capacity, high-performance electrolytic capacitors. Recently, niobium capacitors using niobium powder have attracted attention as an alternative to tantalum powder as an anode material due to the rapid rise in tantalum prices. Collecting.

電解コンデンサ用のニオブ粉末に求められる特性は、ほぼタンタル粉末と同様であり、コンデンサ容量(CV)は、粉末の表面積に比例し、漏れ電流(LC)は、粉末の不純物量に大きく依存する。よって、電解コンデンサに対する小型化および高容量化を満たすためには、粉末の粒径をサブミクロンレベルまで小さくして表面積を増大させることと、不純物(金属、酸素等)を減少させて漏れ電流を減少させることが必要となる。   The characteristics required for the niobium powder for electrolytic capacitors are almost the same as those of tantalum powder, the capacitor capacity (CV) is proportional to the surface area of the powder, and the leakage current (LC) greatly depends on the amount of impurities in the powder. Therefore, in order to satisfy the miniaturization and high capacity of the electrolytic capacitor, the particle size of the powder is reduced to the submicron level to increase the surface area, and the leakage current is reduced by reducing impurities (metal, oxygen, etc.). It is necessary to reduce it.

サブミクロンの一次粒子径を持つ電解コンデンサ用のニオブ粉末製造方法における一般的な方法の1つに、ニオブ酸化物をアルカリ/アルカリ土類金属で還元する方法がある。しかし、アルカリ金属やアルカリ土類金属によるニオブ酸化物の還元反応は発熱的に進行し、その制御が困難なため、微細な1次粒子を持つニオブ粉末を得ることは難しい。   One common method for producing niobium powder for electrolytic capacitors having a primary particle size of submicron is a method of reducing niobium oxide with an alkali / alkaline earth metal. However, since the reduction reaction of niobium oxide with an alkali metal or alkaline earth metal proceeds exothermically and is difficult to control, it is difficult to obtain niobium powder having fine primary particles.

ニオブ酸化物を還元して微細なニオブ粉末を得る別の方法としては、特開2000−119710号公報に記載されるように、発熱を抑制するために、還元を2段階で行い、第1段階の反応で、NbOx (式中、x=0.5〜1.5)で表される低級酸化物を得て、この還元生成物である低級酸化物から還元剤酸化物を除去して、第2段階の還元を行う方法がある。しかし、この方法では、第2段階の還元反応の制御が困難であり、また、低級酸化物の局所的な発熱等により、一部粒子が粗大化する可能性があるなど、微細なニオブ粉末を得ることは困難であった。 As another method for reducing niobium oxide to obtain fine niobium powder, as described in JP-A No. 2000-119710, reduction is performed in two stages in order to suppress heat generation. In this reaction, a lower oxide represented by NbO x (wherein x = 0.5 to 1.5) is obtained, and the reducing agent oxide is removed from the lower oxide as the reduction product, There is a method of performing the second stage reduction. However, in this method, it is difficult to control the reduction reaction in the second stage, and there is a possibility that some particles are coarsened due to local heat generation of the lower oxide. It was difficult to get.

また、国際公開WO00/67936号公報に記載されるように、ニオブ酸化物を、溶融状態のアルカリ土類金属還元剤と直接接触させることなく、アルカリ土類金属蒸気で還元する方法がある。しかし、この方法ではサブミクロンの微細な1次粒子が得られるものの、還元に十分な蒸気圧を得るために、温度を上げる必要があり、このため粒成長が起こるため、得られるニオブ粉末の一次粒子径には自ずと限界がある。   In addition, as described in International Publication No. WO 00/67936, there is a method of reducing niobium oxide with alkaline earth metal vapor without directly contacting the molten alkaline earth metal reducing agent. However, although submicron primary particles can be obtained by this method, it is necessary to raise the temperature in order to obtain a vapor pressure sufficient for reduction, and thus grain growth occurs. The particle size is naturally limited.

これらに対し、本発明者らは、微細なニオブ粉末を得る手段として、以下のような方法を見出した。まず、原料粉末を還元剤と分離して加熱保持し、還元剤を蒸気として接触させる、あるいは還元剤を逐次投入することにより、還元反応による発熱を抑制しながら、第1段階で、原料粉末がNbOx (式中、x=0.06〜0.35)となるまで、すなわちほぼメタルに近い状態まで還元して中間生成物を得て、還元剤酸化物を除去し、次いで、第2段階で、アルカリ/アルカリ土類金属融液と前記中間生成物を直接接触させて還元を行い、微細なニオブ粉末を得る方法である。この方法では、第1段階で、ほぼメタルに近い状態まで還元しているため、第2段階還元時に発熱が起こらず、また、第2段階還元時に、アルカリ/アルカリ土類金属を直接接触させることにより、低温度で十分な脱酸素効果が得られる。それ以前に得られなかった、微細で比表面積が大きく、比表面積あたりの酸素量が低い粉末が、この方法により得られるようになった。 On the other hand, the present inventors have found the following method as means for obtaining fine niobium powder. First, the raw material powder is separated from the reducing agent and heated and held, and the reducing agent is brought into contact with the vapor, or by sequentially introducing the reducing agent, while suppressing the heat generation due to the reduction reaction, Reduction to NbO x (where x = 0.06 to 0.35), that is, almost to the metal state, to obtain an intermediate product, to remove the reducing agent oxide, and then to the second stage In this method, the alkali / alkaline earth metal melt and the intermediate product are directly brought into contact with each other for reduction to obtain a fine niobium powder. In this method, since the metal is reduced to a state close to metal in the first stage, no heat is generated during the second stage reduction, and the alkali / alkaline earth metal is brought into direct contact during the second stage reduction. Thus, a sufficient deoxygenation effect can be obtained at a low temperature. Fine powder with a large specific surface area and a low amount of oxygen per specific surface area, which was not obtained before, can be obtained by this method.

しかし、この方法では、第2段階還元の反応生成物からアルカリ/アルカリ土類金属酸化物を塩酸等の酸で溶解および除去する後工程で、残留しているアルカリ/アルカリ土類金属と酸の反応により水素が発生し、ニオブ粉末がこの水素を吸蔵して水素含有量が、たとえば10000ppm程度、上昇してしまうという現象が生じた。   However, in this method, the alkali / alkaline earth metal oxide and the remaining alkali / alkaline earth metal and acid are removed in the subsequent step of dissolving and removing the alkali / alkaline earth metal oxide from the reaction product of the second stage reduction with an acid such as hydrochloric acid. Hydrogen was generated by the reaction, and the phenomenon that the niobium powder occluded this hydrogen and the hydrogen content increased, for example, by about 10,000 ppm occurred.

一般に、ニオブは水素により脆化すると言われ、かつ、漏れ電流、容量などの電気的特性を低下させると言われている。   In general, niobium is said to be embrittled by hydrogen and to reduce electrical characteristics such as leakage current and capacity.

本発明者等は、得られたニオブ粉末に真空中で熱処理を施して、低温で脱水素を行うことを検討したが、脱水素と同時に粒子表面の酸素が内部拡散し、大気に取り出したときに表面の再酸化が起こって、脱水素前に比べ酸素量が20〜50%程度上昇してしまった。また、真空中熱処理後の粉末は表面が活性なため、取り出し時に発火する危険性もあり、急激な空気との接触を避けるために時間をかけて取り出す必要があり、生産性が悪いという課題があった。
特開2000−119710号公報 国際公開WO00/67936号公報
The inventors of the present invention have examined heat treatment of the obtained niobium powder in vacuum and performing dehydrogenation at a low temperature. At the same time as dehydrogenation, oxygen on the particle surface diffuses internally and is taken out to the atmosphere. Reoxidation of the surface occurred, and the amount of oxygen increased by about 20 to 50% compared to before dehydrogenation. In addition, since the surface of the powder after heat treatment in vacuum is active, there is a risk of ignition when taking out, and it is necessary to take time to avoid sudden contact with air, and there is a problem that productivity is poor. there were.
JP 2000-119710 A International Publication WO00 / 67936

本発明は、電解コンデンサの小型化および高容量化に好適で、一次粒子径が微細で、低酸素のニオブ粉末を得ることを目的とし、また、酸素含有量増加と生産性悪化の要因となる脱水素処理工程を行うことなく、電解コンデンサの小型化および高容量化に好適で、生産性良く得ることが可能なニオブ粉末の製造方法を提供することを目的とする。   The present invention is suitable for reducing the size and increasing the capacity of an electrolytic capacitor, and aims at obtaining a niobium powder having a fine primary particle diameter and low oxygen, and causes an increase in oxygen content and a deterioration in productivity. An object of the present invention is to provide a method for producing niobium powder that is suitable for downsizing and increasing the capacity of an electrolytic capacitor and can be obtained with high productivity without performing a dehydrogenation process.

本発明による電解コンデンサ用ニオブ粉末は、1次粒子径が0.1〜1.0μmであり、酸素含有量と、m2/gで表したBET比表面積との比が、3000質量ppm/(m2/g)以下であり、水素含有量として500〜6000質量ppmに相当するニオブ水素化物が含有されていることを特徴とする。 The niobium powder for electrolytic capacitors according to the present invention has a primary particle size of 0.1 to 1.0 μm, and the ratio of oxygen content to BET specific surface area expressed in m 2 / g is 3000 mass ppm / ( m 2 / g) or less, and a niobium hydride equivalent to 500 to 6000 ppm by mass of hydrogen is contained.

なお、水素含有量は500〜4000質量ppmであることが好ましい。   In addition, it is preferable that hydrogen content is 500-4000 mass ppm.

また、このような電解コンデンサ用ニオブ粉末を製造する本発明の方法は、原料粉末を還元剤と分離して加熱保持し、還元剤を蒸気として接触させる、あるいは還元剤を逐次投入することにより、還元反応による発熱を抑制しながら、第1段階で、原料粉末がNbOx (式中、x=0.06〜0.35)となるまで、すなわちほぼメタルに近い状態まで還元して中間生成物を得て、還元剤酸化物を除去し、次いで、第2段階で、還元剤として、アルカリ/アルカリ土類金属量を前記中間生成物の残留酸素量に対して1.0〜1.5mol当量となるようにアルカリ/アルカリ土類金属融液を調整し、該アルカリ/アルカリ土類金属融液と前記中間生成物を直接接触させて還元を行ってニオブ粉末を得て、さらに、該ニオブ粉末を、濃度1mol/l、pHを1に制御した塩酸溶液中に投入し、水素ガスを発生させ、該ニオブ粉末に水素を吸蔵させることを特徴とする。 Further, the method of the present invention for producing such a niobium powder for an electrolytic capacitor separates the raw material powder from the reducing agent and holds it by heating, bringing the reducing agent into contact with vapor, or by sequentially introducing the reducing agent, While suppressing heat generation due to the reduction reaction, in the first stage, the raw material powder is reduced to NbO x (wherein x = 0.06 to 0.35), that is, reduced to an almost metal-like state, and the intermediate product In the second stage, the amount of alkali / alkaline earth metal is reduced to 1.0 to 1.5 mol equivalent to the amount of residual oxygen of the intermediate product. And adjusting the alkali / alkaline earth metal melt so as to obtain a niobium powder by directly contacting the alkali / alkaline earth metal melt and the intermediate product to obtain a niobium powder. Concentration of 1mo / L, was added to hydrochloric acid solution was controlled to pH 1, to generate hydrogen gas, and wherein the occluding hydrogen into the niobium powder.

本発明によれば、微細なニオブ粉末に、ある特定の範囲で水素を含有させることにより、酸素含有量が低下し、焼結性が向上し、高容量で低漏れ電流(=小型で高信頼性)のコンデンサに適した粉末を得ることができる。また、酸素含有量増加と生産性悪化の要因となる脱水素処理工程を行うことなく、コンデンサの小型化および高容量化に好適なニオブ粉末を生産性良く得ることができる。   According to the present invention, by adding hydrogen in a specific range to fine niobium powder, the oxygen content is reduced, the sinterability is improved, and the high capacity and low leakage current (= small and highly reliable). The powder suitable for the capacitor can be obtained. Further, niobium powder suitable for reducing the size and increasing the capacity of the capacitor can be obtained with high productivity without performing a dehydrogenation process that causes an increase in oxygen content and a deterioration in productivity.

本発明者らは、水素含有量の異なる種々のニオブ粉末の粉末特性を調査した結果、(1)ニオブ粉末中の酸素含有量と水素含有量には逆相関の関係があり、水素含有量が上昇するに伴い、酸素量が従来にないレベルまで低下する、(2)水素の存在は、従来、コンデンサ特性に悪影響を及ぼすとされてきたが、ニオブ水素化物の存在によりコンデンサ陽極を成型し真空中焼結する時の焼結性が向上する領域があることを見出した。特に、500〜6000質量ppm範囲の水素含有量では、水素を含まない粉末に比べて良好な漏れ電流特性が得られることを見出し、本発明を完成するに至った。   As a result of investigating the powder characteristics of various niobium powders having different hydrogen contents, the present inventors have found that (1) there is an inverse correlation between the oxygen content and the hydrogen content in the niobium powder. As the temperature rises, the amount of oxygen decreases to an unprecedented level. (2) The presence of hydrogen has hitherto been considered to have an adverse effect on capacitor characteristics, but the presence of niobium hydride forms a capacitor anode and creates a vacuum. It has been found that there is a region where the sinterability is improved when performing the intermediate sintering. In particular, when the hydrogen content is in the range of 500 to 6000 mass ppm, it has been found that better leakage current characteristics can be obtained as compared with a powder containing no hydrogen, and the present invention has been completed.

ニオブ−水素系の状態図を見ると、室温(25℃)におけるニオブへの水素の固溶限は約500質量ppmである。ニオブ金属が固溶限を超える水素を含有すると、水素化物(β相)が析出し、水素化物(β相)とメタル(α相)の混合相となる。8000質量ppm以上の水素を含有するようになるとα相は消え、ほぼβ相単相となる。なお、ニオブ中に水素を含有させることは、液中あるいは空気中で、ニオブ粉末を水素ガスと接触させて水素を吸蔵させることにより、容易に行うことができる。   Looking at the phase diagram of the niobium-hydrogen system, the solid solubility limit of hydrogen in niobium at room temperature (25 ° C.) is about 500 ppm by mass. When the niobium metal contains hydrogen exceeding the solid solubility limit, hydride (β phase) is precipitated, and a mixed phase of hydride (β phase) and metal (α phase) is formed. When it contains 8000 mass ppm or more of hydrogen, the α phase disappears and becomes almost a β phase single phase. Niobium can be easily contained in the liquid or air by bringing the niobium powder into contact with hydrogen gas to occlude hydrogen.

第1段階の還元反応は、たとえば、図1に示すような縦型電気炉(1)内に、円筒形のニオブ製反応容器(2)を配置し、該反応容器(2)の底部に還元剤金属用にニオブ製バケット(4)を置き、その上方に原料を置くニオブ製トレイ(6)を置く。そして、該ニオブ製トレイ(6)に原料として五酸化ニオブ粉末(5)を装入し、ニオブ製バケット(4)には還元剤(3)を配置する。このニオブ製反応容器(2)に蓋(2a)をして、該蓋(2a)に設けたガス供給孔からアルゴンガスを供給しつつ、電気炉(1)の発熱体(1a)により反応容器(2)内を加熱保持する。   In the first stage reduction reaction, for example, a cylindrical niobium reaction vessel (2) is arranged in a vertical electric furnace (1) as shown in FIG. 1, and reduction is performed at the bottom of the reaction vessel (2). A niobium bucket (4) is placed for the agent metal, and a niobium tray (6) for placing the raw material is placed thereon. The niobium pentoxide powder (5) is charged as a raw material into the niobium tray (6), and a reducing agent (3) is placed in the niobium bucket (4). The niobium reaction vessel (2) is covered with a lid (2a), and while the argon gas is supplied from the gas supply hole provided in the lid (2a), the reaction vessel is heated by the heating element (1a) of the electric furnace (1). (2) The inside is heated and held.

使用する原料としては、五酸化ニオブ粉末、一酸化ニオブ及び二酸化ニオブを用いることができる。原料粉末は、平均粒径が0.1〜200μmであることが好ましい。原料粉末の平均粒径が上記範囲を外れると還元が不完全になったり、あるいは、コンデンサ容量(CV)、漏れ電流(LC)等のコンデンサの基本特性を悪化させる場合があり好ましくない。また、ニオブコンデンサの漏れ電流(LC)特性に影響するニオブ粉末の純度は、原料粉末の純度により左右される部分が大きいので、できるだけ高純度の五酸化ニオブ粉末を出発原料とすることが好ましい。   As raw materials to be used, niobium pentoxide powder, niobium monoxide and niobium dioxide can be used. The raw material powder preferably has an average particle size of 0.1 to 200 μm. If the average particle size of the raw material powder is out of the above range, reduction may be incomplete, or basic characteristics of the capacitor such as capacitor capacity (CV) and leakage current (LC) may be deteriorated. In addition, the purity of the niobium powder that affects the leakage current (LC) characteristics of the niobium capacitor largely depends on the purity of the raw material powder. Therefore, it is preferable to use niobium pentoxide powder having the highest purity as possible.

還元剤には、アルカリ/アルカリ土類金属量、すなわち、マグネシウム、カルシウム、ナトリウム、カリウムなどを用いることができる。還元剤の形状は、第1段階では、蒸気として、あるいは逐次投入することにより還元剤を供給するため、特に限定されない。しかし、第2段階の還元では、被還元粉末と均一に混合および反応させる必要があるため、1〜5mm程度の粒状あるいは塊状であることが好ましい。   As the reducing agent, an alkali / alkaline earth metal amount, that is, magnesium, calcium, sodium, potassium, or the like can be used. The shape of the reducing agent is not particularly limited because the reducing agent is supplied in the first stage as steam or by sequentially charging. However, in the second stage reduction, since it is necessary to uniformly mix and react with the powder to be reduced, it is preferably in the form of a granule or lump of about 1 to 5 mm.

還元反応は、アルゴンガス等の不活性ガスを導入して行われる。還元を行うためには、目的とするニオブ粒子の大きさにもよるが、600〜1400℃に電気炉を加熱し、1〜8時間保持することで行われる。このとき、五酸化ニオブ粉末と還元剤を分離し、還元剤を蒸気として、あるいは逐次投入することにより、五酸化ニオブ粉末に供給することで、還元反応による発熱を抑制しながら、酸化ニオブNbOx (式中、x=0.06〜0.35)まで、すなわちほぼメタルに近い状態まで還元する。 The reduction reaction is performed by introducing an inert gas such as argon gas. In order to perform the reduction, although depending on the size of the target niobium particles, the electric furnace is heated to 600 to 1400 ° C. and held for 1 to 8 hours. At this time, the niobium pentoxide powder and the reducing agent are separated, and the reducing agent is supplied to the niobium pentoxide powder as a vapor or sequentially, so that the niobium oxide NbO x is suppressed while suppressing heat generation due to the reduction reaction. Reduction is performed up to (where x = 0.06 to 0.35), that is, a state almost similar to metal.

この後、還元後の反応生成物を冷却し、反応生成物を取り出し、これを塩酸中に投入し、還元剤の酸化物を溶解除去し、さらに水洗および乾燥を行い、中間生成物として粉末を得る。   Thereafter, the reaction product after the reduction is cooled, the reaction product is taken out, put into hydrochloric acid, the oxide of the reducing agent is dissolved and removed, washed with water and dried, and the powder is obtained as an intermediate product. obtain.

次に、第2段階として、前記中間生成物の粉末を、ニオブ製反応容器(2)のニオブ製トレイ(6)に配置し、アルカリ/アルカリ土類金属、すなわちマグネシウム、カルシウム、ナトリウム、カリウムなどの還元剤を、前記粉末の残留酸素量に対し1.0〜1.5mol当量となるように調整して、前記中間生成物の粉末に直接添加混合する。調整は、還元剤融液を均一に浸透させて還元を十分に行うことで、酸素量を低くすると同時に、ニオブ粉末中に残留するアルカリ/アルカリ土類金属の量を少なくするという考え方に基づいている。その後、ニオブ製反応容器(2)に蓋(2a)をして、該蓋(2a)に設けたガス供給孔からアルゴンガス等の不活性ガスを供給しつつ、電気炉(1)の発熱体(1a)により反応容器(2)内を、400〜1200℃で加熱保持して1〜4時間反応させる。   Next, as a second step, the intermediate product powder is placed in the niobium tray (6) of the niobium reaction vessel (2) and alkali / alkaline earth metal, ie, magnesium, calcium, sodium, potassium, etc. The reducing agent is adjusted so as to be 1.0 to 1.5 mol equivalent to the residual oxygen amount of the powder, and directly added to and mixed with the powder of the intermediate product. The adjustment is based on the idea of reducing the amount of alkali / alkaline earth metal remaining in the niobium powder at the same time by reducing the amount of oxygen sufficiently by uniformly infiltrating the reducing agent melt. Yes. Then, the niobium reaction vessel (2) is covered with a lid (2a), and an inert gas such as argon gas is supplied from a gas supply hole provided in the lid (2a), while the heating element of the electric furnace (1) In (1a), the inside of the reaction vessel (2) is heated and held at 400 to 1200 ° C. and reacted for 1 to 4 hours.

炉冷却後、反応生成物を取り出し、積極的に水素ガスを発生させ、ニオブ粉末に水素を吸蔵させた微細なニオブ粉末を得るために、酸として塩酸を選び、酸の濃度を1mol/lとし、pHを1として、塩酸中に投入し、還元剤酸化物を溶解除去し、さらに水洗および真空乾燥を行って目的のニオブ粉末を得る。   After cooling the furnace, the reaction product is taken out, hydrogen gas is actively generated, and in order to obtain fine niobium powder in which hydrogen is occluded, hydrochloric acid is selected as the acid and the acid concentration is set to 1 mol / l. Then, the pH is set to 1 and the mixture is poured into hydrochloric acid to dissolve and remove the reducing agent oxide, followed by washing with water and vacuum drying to obtain the desired niobium powder.

本発明のニオブ粉末においては、1次粒子径が0.1〜1.0μmであることが必要である。0.1μmよりも微細のものは製造が難しい。また、1.0μmを超えると、表面積を増大させることができず、高容量化が達成できなくなってしまい好ましくない。   In the niobium powder of the present invention, the primary particle size must be 0.1 to 1.0 μm. It is difficult to manufacture a finer material than 0.1 μm. On the other hand, if it exceeds 1.0 μm, the surface area cannot be increased, and it becomes impossible to achieve high capacity, which is not preferable.

本発明においては、前述の方法によって粉末ニオブ中に水素を含有させることにより、比表面積当たりの酸素含有量が低下する。これは、ニオブ中に進入型に固溶した水素が酸素の固溶限を低下させるほか、水素化物が2次相を形成して、粒子表面に析出する表面自然酸化膜の生成により、酸素含有量の影響を低減する効果があるためであると考えられる。   In the present invention, the oxygen content per specific surface area is lowered by incorporating hydrogen into the powder niobium by the method described above. This is because hydrogen dissolved in niobium in an intrusive form lowers the solid solubility limit of oxygen, and the hydride forms a secondary phase and forms a surface natural oxide film that precipitates on the particle surface. This is considered to be due to the effect of reducing the influence of the amount.

本発明においては、酸素含有量とm2 /gで表したBET比表面積の比が3000質量ppm/(m2 /g)以下であることが必要である。3000質量ppm/(m2 /g)を超えて含まれていると、高容量で低漏れ電流のコンデンサ特性が得られなくなってしまう。 In the present invention, it is necessary that a ratio of BET specific surface area expressed in oxygen content and m 2 / g is 3000 mass ppm / (m 2 / g) or less. If it exceeds 3000 mass ppm / (m 2 / g), the capacitor characteristics with high capacity and low leakage current cannot be obtained.

また、この粒子表面に析出した水素化物相は、粉末の焼結性を向上させる。焼結は、通常、表面自然酸化膜が粒子内部に拡散し、表面がメタル化して進行していくが、表面に水素化物が存在すると、水素は酸素の内部拡散に比べ速やかに離脱して、表面がメタル化しやすくなるため、表面が一様に自然酸化膜に覆われているよりも、焼結性が向上すると考えられる。   Moreover, the hydride phase deposited on the particle surface improves the sinterability of the powder. Sintering usually proceeds as the surface natural oxide film diffuses inside the particle and the surface is metallized, but when hydride is present on the surface, hydrogen separates more quickly than oxygen internal diffusion, Since the surface is easily metallized, it is considered that the sinterability is improved as compared with the case where the surface is uniformly covered with a natural oxide film.

本発明においては、水素化物を水素含有量として、500〜6000質量ppmの範囲に制御することが必要である。一般に、ニオブは水素の存在により脆化し、コンデンサ特性に悪影響を与えると考えられているが、これは、金型成形によりコンデンサ陽極を作製する時に、脆化により1次粒子間の繋がりが切れ、すなわち、電気的な繋がりが失われ、漏れ電流(LC)特性を悪化させたり、コンデンサ容量(CV)を低下させるためであると考えられている。しかし、一部に水素化物を含む状態では、すなわち、水素含有量として500〜6000質量ppm、好ましくは500〜4000質量ppmの水素化物を含有している状態では、水素を含まない粉末に比して良好な漏れ電流(LC)特性が得られる。この水素含有量領域では、水素脆化による特性への影響がほとんど無く、水素の存在による酸素低減および水素化物による焼結性の向上の両効果が得られる。このため、漏れ電流(LC)特性が改善されると考えられる。   In the present invention, it is necessary to control the hydride in the range of 500 to 6000 mass ppm as the hydrogen content. In general, niobium is considered to be brittle due to the presence of hydrogen and adversely affect the capacitor characteristics. This is because when the capacitor anode is produced by molding, the connection between primary particles is broken due to embrittlement. That is, it is considered that the electrical connection is lost, the leakage current (LC) characteristic is deteriorated, and the capacitor capacity (CV) is reduced. However, in a state containing a hydride in part, that is, in a state containing a hydride of 500 to 6000 mass ppm, preferably 500 to 4000 mass ppm as a hydrogen content, compared to a powder not containing hydrogen. And good leakage current (LC) characteristics can be obtained. In this hydrogen content region, there is almost no influence on characteristics due to hydrogen embrittlement, and both effects of oxygen reduction due to the presence of hydrogen and improvement of sinterability due to hydride can be obtained. For this reason, it is considered that the leakage current (LC) characteristics are improved.

水素含有量が500質量ppmより少ない場合は、水素が存在することによる酸素の低減効果と焼結性の向上効果が十分得られず、漏れ電流(LC)特性の向上が見られない。一方、水素含有量が6000質量ppmを超えると、酸素含有量は低減し、焼結性は良くなるものの、容量および漏れ電流特性、すなわちコンデンサとしての特性が著しく悪化する。これは、水素化物単相となることで急激に脆化が進行し、金型成形時に1次粒子間のミクロ的な電気的繋がりが失われてしまうほか、ペレット本体自体にマクロな割れや欠けが多数発生し、電気的繋がりが急激に失われたためと考えられる。詳細なメカニズムは不明であるが、4000ppmを超える場合は、水素化物が50%以上を占めるようになり、水素脆化の影響が出始める可能性がある。   If the hydrogen content is less than 500 ppm by mass, the effect of reducing oxygen and the effect of improving sinterability due to the presence of hydrogen cannot be obtained sufficiently, and the improvement of leakage current (LC) characteristics is not observed. On the other hand, when the hydrogen content exceeds 6000 mass ppm, the oxygen content is reduced and the sinterability is improved, but the capacity and leakage current characteristics, that is, the characteristics as a capacitor are remarkably deteriorated. This is because the hydride single phase suddenly becomes brittle, and the microscopic electrical connection between the primary particles is lost during molding, and the pellet body itself has macro cracks and chips. This is thought to be due to the sudden loss of electrical connection. Although a detailed mechanism is unknown, when it exceeds 4000 ppm, a hydride will occupy 50% or more, and the influence of hydrogen embrittlement may start to appear.

従来、過剰に水素を含むニオブ粉末に関しては、必要に応じて真空中脱水素を行わなければならなかったが、上記の水素含有量が適切な範囲にあるニオブ粉末では、この工程が必要なくなり、特性のみならず生産性も向上する。   Conventionally, for niobium powder containing excessive hydrogen, it was necessary to perform dehydrogenation in a vacuum as necessary, but in the niobium powder having the above-mentioned hydrogen content in an appropriate range, this step is not necessary. Not only the characteristics but also the productivity is improved.

(実施例1)
図1は、本発明の実施例のために使用した縦型電気炉を示す断面図である。
(Example 1)
FIG. 1 is a sectional view showing a vertical electric furnace used for an embodiment of the present invention.

縦型電気炉(1)内に、円筒形のニオブ製反応容器(2)を配置し、該反応容器(2)の底部に還元剤金属用にニオブ製バケット(4)を置き、その上方に酸化ニオブ用にニオブ製トレイ(6)を置いた。ニオブ製トレイ(6)に原料として五酸化ニオブ粉末(平均粒径3.5μm、純度99.95%)(5)を500g装入し、ニオブ製バケット(4)に還元剤としてマグネシウム(宇部興産株式会社製、純度99.97%、塊状)(3)を五酸化ニオブ粉末(5)に対して1.1mol当量装入した。   A cylindrical niobium reaction vessel (2) is placed in the vertical electric furnace (1), and a niobium bucket (4) is placed on the bottom of the reaction vessel (2) for the reducing agent metal. A niobium tray (6) was placed for niobium oxide. 500 g of niobium pentoxide powder (average particle size 3.5 μm, purity 99.95%) (5) was charged as a raw material in a niobium tray (6), and magnesium (Ube Industries) as a reducing agent in a niobium bucket (4). 1.1 mol equivalent was charged with respect to niobium pentoxide powder (5).

ニオブ製反応容器(2)に蓋(2a)をして、該蓋(2a)に設けたガス供給孔からアルゴンガスを100ml/分の割合で供給しつつ、電気炉(1)の発熱体(1a)により反応容器(2)内を1050℃で保持して、4時間反応させた(第1段階還元)。   The niobium reaction vessel (2) is covered with a lid (2a), and argon gas is supplied at a rate of 100 ml / min from the gas supply hole provided in the lid (2a), while the heating element ( The reaction vessel (2) was kept at 1050 ° C. by 1a) and reacted for 4 hours (first stage reduction).

冷却後、反応生成物を取り出し、これを濃度1規定の塩酸中に投入し、MgOを溶解除去し、さらに、水洗および乾燥を行って粉末を得た。この粉末の組成はNbO0.1 で、350gであった。 After cooling, the reaction product was taken out, put into hydrochloric acid having a concentration of 1N, MgO was dissolved and removed, and further washed with water and dried to obtain a powder. The composition of this powder was NbO 0.1 and 350 g.

得られた粉末を、そのまま前記ニオブ製反応容器(2)のトレイ(6)に装入し、マグネシウム(三津和化学薬品製、純度99.95%、切削片状)を残留酸素量に対し1.0mol当量、添加混合し、ニオブ製反応容器(2)に蓋(2a)をして、該蓋(2a)に設けたガス供給孔からアルゴンガスを100ml/minの割合で供給しつつ、電気炉(1)の発熱体(1a)により反応容器(2)内を700℃で保持して2時間反応させた(第2段階還元)。   The obtained powder was directly charged into the tray (6) of the niobium reaction vessel (2), and magnesium (manufactured by Mitsuwa Chemicals, purity 99.95%, in the form of a cut piece) was 1 to the amount of residual oxygen. 0.0 mol equivalent, added and mixed, the reaction vessel (2) made of niobium was capped (2a), and argon gas was supplied at a rate of 100 ml / min from the gas supply hole provided in the lid (2a). The reaction vessel (2) was kept at 700 ° C. by the heating element (1a) of the furnace (1) and reacted for 2 hours (second stage reduction).

冷却後、反応生成物を取り出し、これを1規定の塩酸溶液中に投入し、pHを1に制御しつつ、MgOを溶解除去し、さらに水洗および乾燥を行ってニオブ粉末を得た。この間、塩酸溶液中には水素ガスが発生していた。   After cooling, the reaction product was taken out and poured into a 1N hydrochloric acid solution. While controlling the pH to 1, MgO was dissolved and removed, and further washed with water and dried to obtain niobium powder. During this time, hydrogen gas was generated in the hydrochloric acid solution.

得られた粉末の比表面積(m2 /g)、酸素含有量および水素含有量(質量ppm)を表1に示す。比表面積は2.82(m2 /g)、酸素含有量8000(質量ppm)、水素含有量は2500(質量ppm)であった。 Table 1 shows the specific surface area (m 2 / g), oxygen content, and hydrogen content (mass ppm) of the obtained powder. The specific surface area was 2.82 (m 2 / g), the oxygen content was 8000 (mass ppm), and the hydrogen content was 2500 (mass ppm).

得られた粉末を0.1g秤量し、直径0.2mmのニオブ製ワイヤと共に金型に装入し、ロードセル(島津製作所製)を用いて、密度3.0g/cm3 に圧粉成形してコンデンサ陽極素子を作製した。その後、6.7×10-3Paの真空中で1200℃,30minの焼結を行い、次いで0.6vol%燐酸水溶液中で20V、6時間の化成処理を施して、陽極素子ペレットを作製した。 0.1 g of the obtained powder was weighed, placed in a mold together with a niobium wire having a diameter of 0.2 mm, and compacted to a density of 3.0 g / cm 3 using a load cell (manufactured by Shimadzu Corporation). A capacitor anode element was produced. Thereafter, sintering was performed at 1200 ° C. for 30 minutes in a vacuum of 6.7 × 10 −3 Pa, and then a chemical conversion treatment was performed in a 0.6 vol% phosphoric acid aqueous solution at 20 V for 6 hours to prepare anode element pellets. .

得られた陽極素子ペレットを、純水で洗浄し、40vol%硫酸水溶液中でLCRメータ(Agilent社製4263B型)を用い、容量測定を行った。その後、エレクトロメータを用い、14Vの直流電圧を印加して、漏れ電流の測定を行った。得られた容量および漏れ電流の測定結果を、表1に示す。   The obtained anode element pellets were washed with pure water, and capacity measurement was performed using an LCR meter (Agilent 4263B type) in a 40 vol% sulfuric acid aqueous solution. Thereafter, the leakage current was measured by applying a DC voltage of 14 V using an electrometer. Table 1 shows the measurement results of the obtained capacity and leakage current.

(実施例2)
第2段階還元時のMgの添加量を残留酸素量に対し1.5mol当量とした以外は、実施例1と同様にして、ニオブ粉末を得た。
(Example 2)
Niobium powder was obtained in the same manner as in Example 1, except that the amount of Mg added during the second stage reduction was 1.5 mol equivalent to the amount of residual oxygen.

得られた粉末の比表面積(m2 /g)、酸素含有量および水素含有量(質量ppm)を表1に示す。比表面積は2.75(m2 /g)、酸素含有量7400(質量ppm)、水素含有量は4800(質量ppm)であった。 Table 1 shows the specific surface area (m 2 / g), oxygen content, and hydrogen content (mass ppm) of the obtained powder. The specific surface area was 2.75 (m 2 / g), the oxygen content was 7400 (mass ppm), and the hydrogen content was 4800 (mass ppm).

得られた粉末を使用して、実施例1と同様に陽極素子ペレットを作製し、容量および漏れ電流の測定を行った。得られた容量および漏れ電流の測定結果を、表1に示す。   Using the obtained powder, anode element pellets were produced in the same manner as in Example 1, and the capacity and leakage current were measured. Table 1 shows the measurement results of the obtained capacity and leakage current.

(実施例3)
第2段階還元時のMgの添加量を残留酸素量に対し1.0mol当量とした以外は、実施例1と同様にして、ニオブ粉末を得た。
(Example 3)
Niobium powder was obtained in the same manner as in Example 1 except that the amount of Mg added during the second stage reduction was 1.0 mol equivalent to the amount of residual oxygen.

得られた粉末の比表面積(m2 /g)、酸素含有量および水素含有量(質量ppm)を表1に示す。比表面積は2.78(m2 /g)、酸素含有量8100(質量ppm)、水素含有量は680(質量ppm)であった。 Table 1 shows the specific surface area (m 2 / g), oxygen content, and hydrogen content (mass ppm) of the obtained powder. The specific surface area was 2.78 (m 2 / g), the oxygen content was 8100 (mass ppm), and the hydrogen content was 680 (mass ppm).

得られた粉末を使用して、実施例1と同様に陽極素子ペレットを作製し、容量および漏れ電流の測定を行った。得られた容量および漏れ電流の測定結果を、表1に示す。   Using the obtained powder, anode element pellets were produced in the same manner as in Example 1, and the capacity and leakage current were measured. Table 1 shows the measurement results of the obtained capacity and leakage current.

(比較例1)
第2段階還元時のMgの添加量を残留酸素量に対し4.5mol当量とした以外は、実施例1と同様にして、ニオブ粉末を得た。
(Comparative Example 1)
Niobium powder was obtained in the same manner as in Example 1 except that the amount of Mg added during the second stage reduction was 4.5 mol equivalent to the amount of residual oxygen.

得られた粉末の比表面積(m2 /g)、酸素含有量および水素含有量(質量ppm)を表1に示す。比表面積は2.77(m2 /g)、酸素含有量5400(質量ppm)、水素含有量は9500(質量ppm)であった。 Table 1 shows the specific surface area (m 2 / g), oxygen content, and hydrogen content (mass ppm) of the obtained powder. The specific surface area was 2.77 (m 2 / g), the oxygen content was 5400 (mass ppm), and the hydrogen content was 9500 (mass ppm).

比表面積は、実施例1、2とほぼ同等であるが、酸素含有量は、実施例1、2に比べて著しく低い。これは、水素含有量が多く、表面自然酸化膜による酸素量の増加を低減する効果が大きいためと考えられる。   The specific surface area is almost the same as in Examples 1 and 2, but the oxygen content is significantly lower than in Examples 1 and 2. This is probably because the hydrogen content is large and the effect of reducing the increase in the amount of oxygen by the surface natural oxide film is great.

得られた粉末を使用して、実施例1と同様に陽極素子ペレットを作製し、容量および漏れ電流の測定を行った。得られた容量および漏れ電流の測定結果を、表1に示す。   Using the obtained powder, anode element pellets were produced in the same manner as in Example 1, and the capacity and leakage current were measured. Table 1 shows the measurement results of the obtained capacity and leakage current.

(比較例2)
実施例2で得られたニオブ粉末について、6.7×10-3Paの真空中で350℃,1時間の脱水素処理を施した。冷却後、空気との接触を数回に分けて行い、粉末を取り出した。
(Comparative Example 2)
The niobium powder obtained in Example 2 was dehydrogenated at 350 ° C. for 1 hour in a vacuum of 6.7 × 10 −3 Pa. After cooling, contact with air was performed in several times, and the powder was taken out.

得られた粉末の比表面積(m2 /g)、酸素含有量および水素含有量(質量ppm)を表1に示す。 Table 1 shows the specific surface area (m 2 / g), oxygen content, and hydrogen content (mass ppm) of the obtained powder.

比表面積は、2.73(m2 /g)で実施例2とほぼ同じであり、水素含有量は400(質量ppm)まで低減されているものの、酸素含有量は約50%上昇し、11000(質量ppm)であった。 The specific surface area was 2.73 (m 2 / g), which was almost the same as in Example 2, and the hydrogen content was reduced to 400 (mass ppm), but the oxygen content increased by about 50%. (Mass ppm).

得られた粉末を使用して、実施例1と同様に陽極素子ペレットを作成し、容量および漏れ電流の測定を行った。得られた容量および漏れ電流の測定結果を、表1に示す。   Using the obtained powder, anode element pellets were prepared in the same manner as in Example 1, and the capacity and leakage current were measured. Table 1 shows the measurement results of the obtained capacity and leakage current.

(比較例3)
実施例1の第1段階還元後に得られたNbO0.1 なる組成の粉末を、前記ニオブ製反応容器(2)のトレイ(6)に装入し、ニオブ製バケット(4)にマグネシウム(宇部興産株式会社製、純度99.97%、塊状)を残留酸素量に対して1.1mol当量装入した。ニオブ製反応容器(2)に蓋(2a)をして、該蓋(2a)に設けたガス供給孔からアルゴンガスを100ml/分の割合で供給しつつ、電気炉(1)の発熱体(1a)により反応容器(2)内を800℃で保持して2時間反応させた(第2段階還元)。
(Comparative Example 3)
The powder having the composition of NbO 0.1 obtained after the first stage reduction in Example 1 was charged into the tray (6) of the niobium reaction vessel (2), and magnesium (Ube Industries Ltd.) was put into the niobium bucket (4). 1.1 mol equivalent of the amount of residual oxygen was manufactured. The niobium reaction vessel (2) is covered with a lid (2a), and argon gas is supplied at a rate of 100 ml / min from the gas supply hole provided in the lid (2a), while the heating element ( According to 1a), the reaction vessel (2) was kept at 800 ° C. for 2 hours (second stage reduction).

冷却後、反応生成物を取り出し、これを1規定の塩酸中に投入し、MgOを溶解除去し、さらに水洗および乾燥を行ってニオブ粉末を得た。   After cooling, the reaction product was taken out and put into 1N hydrochloric acid to dissolve and remove MgO, followed by washing with water and drying to obtain niobium powder.

得られた粉末の比表面積(m2 /g)、酸素含有量および水素含有量(質量ppm)を表1に示す。 Table 1 shows the specific surface area (m 2 / g), oxygen content, and hydrogen content (mass ppm) of the obtained powder.

比表面積は2.70(m2 /g)、酸素含有量は10000(質量ppm)、水素含有量は360(質量ppm)であった。比表面積は、実施例1、2とほぼ同等であるが、比表面積当たりの酸素含有量が、実施例1、2に比べかなり大きい。これは、水素含有量が小さく、表面自然酸化膜による酸素含有量の増加を低減する効果が小さいためと考えられる。 The specific surface area was 2.70 (m 2 / g), the oxygen content was 10,000 (mass ppm), and the hydrogen content was 360 (mass ppm). The specific surface area is almost the same as in Examples 1 and 2, but the oxygen content per specific surface area is considerably larger than in Examples 1 and 2. This is presumably because the hydrogen content is small and the effect of reducing the increase in oxygen content by the surface natural oxide film is small.

得られた粉末を使用して、実施例1と同様に陽極素子ペレットを作成し、容量および漏れ電流の測定を行った。得られた容量および漏れ電流の測定結果を、表1に示す。

Figure 2005123245
Using the obtained powder, anode element pellets were prepared in the same manner as in Example 1, and the capacity and leakage current were measured. Table 1 shows the measurement results of the obtained capacity and leakage current.
Figure 2005123245

(評価)
実施例1、2の粉末は、いずれも100000(μFV/g)以上の容量を有し、漏れ電流も0.005(μA/μF)以下と小さい。とくに、実施例1では良好な漏れ電流特性が得られている。
(Evaluation)
The powders of Examples 1 and 2 each have a capacity of 100,000 (μFV / g) or more, and the leakage current is as small as 0.005 (μA / μF) or less. In particular, in Example 1, good leakage current characteristics are obtained.

これらに対し、比較例1の粉末は、実施例1、2とほぼ同等の比表面積を有するにもかかわらず、容量が小さい。また、実施例1、2に比べて酸素含有量が著しく低いにもかかわらず、漏れ電流が0.0155(μA/μF)と、実施例1、2の3倍以上である。これは、前述したように、過剰の水素がニオブを脆化させ、電解コンデンサの陽極製造時に、1次粒子間の電気的な繋がりが失われてしまったことが原因と考えられる。比較例2および比較例3の粉末は、容量が実施例1、2と同等であるが、漏れ電流が実施例1、2の2倍以上と大きい。これは、水素含有量が少なく、表面自然酸化膜の影響で酸素量が多いことに起因すると考えられる。   On the other hand, the powder of Comparative Example 1 has a small capacity despite having a specific surface area substantially equivalent to that of Examples 1 and 2. In addition, although the oxygen content is remarkably lower than those in Examples 1 and 2, the leakage current is 0.0155 (μA / μF), which is more than three times that in Examples 1 and 2. As described above, this is presumably because excess hydrogen embrittles niobium and the electrical connection between the primary particles is lost during the production of the electrolytic capacitor anode. The powders of Comparative Example 2 and Comparative Example 3 have the same capacity as that of Examples 1 and 2, but the leakage current is twice as large as that of Examples 1 and 2. This is considered to be caused by the fact that the hydrogen content is small and the amount of oxygen is large due to the effect of the surface natural oxide film.

なお、比較例2の粉末は、脱水素処理を施した後、約半日かけて大気と徐々に接触させる処理(徐酸化処理)を施している。徐酸化することなく粉末を大気中に取り出すと、急激な表面酸化で粉末は発熱し、最悪の場合には発火してしまう。   In addition, after performing the dehydrogenation process, the powder of the comparative example 2 has performed the process (gradual oxidation process) which makes it contact gradually with air | atmosphere over about half a day. If the powder is taken out into the atmosphere without slow oxidation, the powder will generate heat due to rapid surface oxidation, and in the worst case, it will ignite.

本発明の実施例で使用した縦型電気炉を示す断面図である。It is sectional drawing which shows the vertical electric furnace used in the Example of this invention.

符号の説明Explanation of symbols

1 縦型電気炉
1a 発熱体
2 ニオブ製反応容器
2a 蓋
3 還元剤
4 ニオブ製バケット
5 ニオブ粉末
6 ニオブ製トレイ
DESCRIPTION OF SYMBOLS 1 Vertical electric furnace 1a Heat generating body 2 Niobium reaction container 2a Lid 3 Reducing agent 4 Niobium bucket 5 Niobium powder 6 Niobium tray

Claims (3)

1次粒子径が0.1〜1.0μmであり、酸素含有量と、m2 /gで表したBET比表面積との比が、3000質量ppm/(m2 /g)以下であり、水素含有量として500〜6000質量ppmに相当するニオブ水素化物が含有されていることを特徴とする電解コンデンサ用ニオブ粉末。 The primary particle size is 0.1 to 1.0 μm, the ratio of oxygen content to BET specific surface area expressed in m 2 / g is 3000 mass ppm / (m 2 / g) or less, hydrogen A niobium powder for an electrolytic capacitor, which contains niobium hydride corresponding to a content of 500 to 6000 mass ppm. 水素含有量として500〜4000質量ppmに想到するニオブ水素化物が含有されている請求項1に記載の電解コンデンサ用ニオブ粉末。   The niobium powder for electrolytic capacitors according to claim 1, which contains a niobium hydride conceived as a hydrogen content of 500 to 4000 ppm by mass. 原料粉末を還元剤と分離して加熱保持し、還元剤を蒸気として接触させる、あるいは還元剤を逐次投入することにより、還元反応による発熱を抑制しながら、原料粉末がNbOx (式中、x=0.06〜0.35)となるまで還元して中間生成物を得て、還元剤酸化物を除去し、次いで、還元剤として、アルカリ/アルカリ土類金属量を前記中間生成物の残留酸素量に対して1.0〜1.5mol当量となるようにアルカリ/アルカリ土類金属融液を調整し、該アルカリ/アルカリ土類金属融液と前記中間生成物を直接接触させて還元を行ってニオブ粉末を得て、さらに、該ニオブ粉末を、濃度1mol/l、pHを1に制御した塩酸溶液中に投入し、水素ガスを発生させ、該ニオブ粉末に水素を吸蔵させることを特徴とする電解コンデンサ用ニオブ粉末の製造方法。 The raw material powder is separated from the reducing agent and heated and held, and the reducing agent is brought into contact with the vapor, or the reducing agent is sequentially added, so that the raw material powder is NbO x (wherein x = 0.06-0.35) to obtain an intermediate product, remove the reducing agent oxide, and then use the amount of alkali / alkaline earth metal as the reducing agent to leave the intermediate product. The alkali / alkaline earth metal melt is adjusted to 1.0 to 1.5 mol equivalent with respect to the oxygen amount, and the alkali / alkaline earth metal melt and the intermediate product are brought into direct contact with each other for reduction. To obtain a niobium powder, and the niobium powder is further charged into a hydrochloric acid solution having a concentration of 1 mol / l and a pH controlled to 1, generating hydrogen gas and storing the hydrogen in the niobium powder. Electrolytic capacitor Method for producing a niobium powder.
JP2003353635A 2003-10-14 2003-10-14 Niobium powder for electrolytic capacitor and its manufacturing method Pending JP2005123245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003353635A JP2005123245A (en) 2003-10-14 2003-10-14 Niobium powder for electrolytic capacitor and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003353635A JP2005123245A (en) 2003-10-14 2003-10-14 Niobium powder for electrolytic capacitor and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005123245A true JP2005123245A (en) 2005-05-12

Family

ID=34611864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003353635A Pending JP2005123245A (en) 2003-10-14 2003-10-14 Niobium powder for electrolytic capacitor and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005123245A (en)

Similar Documents

Publication Publication Date Title
RU2363660C2 (en) Niobium suboxide, method of its preparation and capacitor containing niobium suboxide as anode
EP2446986B1 (en) Process for preparing tantalum powder for capacitors
US6554884B1 (en) Tantalum and tantalum nitride powder mixtures for electrolytic capacitors substrates
US6876542B2 (en) Nitrogen containing metal powder, production process therefor, and porous sintered body and solid electrolytic capacitor using same
US20190157011A1 (en) Method for producing low-oxygen valve-metal sintered bodies having a large surface area
JP2002524379A (en) Method for partial reduction of certain metal oxides and metal oxides with reduced oxygen
CZ315994A3 (en) Process for producing tantallum powder of high quality and a high-capacitance electrode with low leads produced from this powder
CZ320298A3 (en) Method of controlled influencing of oxygen volume in metallic materials for components of electronic valves
TWI744397B (en) Tantalum powder, anode, and capacitor including same, and manufacturing methods thereof
AU2004203302A1 (en) Process for producing capacitors
US9607770B2 (en) Method for producing capacitor
JP2002030301A (en) Nitrogen-containing metal powder, its production method porous sintered body using the same and solid electrolytic capacitor
JPH02310301A (en) Tantalum powder and manufacture thereof
JP6242814B2 (en) Niobium capacitor anode chemical and method for producing the same
AU2005281918A1 (en) Deoxidisation of valve metal powders
JP2005123245A (en) Niobium powder for electrolytic capacitor and its manufacturing method
JP3633543B2 (en) Method for producing niobium and / or tantalum powder
JPWO2015053239A1 (en) Method for producing niobium granulated powder
JP2665928B2 (en) Tantalum powder and method for producing the same
JP2008045172A (en) Aluminum material for electrolytic capacitor electrode, method for producing electrode material for electrolytic capacitor, electrode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP2004360043A (en) Method for producing niobium and/or tantalum powder
JP6258222B2 (en) Niobium capacitor anode chemical and method for producing the same
JP2008095200A (en) Nitrogen-containing metal powder, its manufacturing method, and porous sintered compact and solid electrolytic capacitor using the metal powder
JP2009275289A (en) Method for producing nitrogen-containing metal powder
JP2009007675A (en) Nitrogen-containing metal powder, porous sintered compact and solid electrolytic capacitor using metal powder