JP2005120781A - Structure of composite wall - Google Patents

Structure of composite wall Download PDF

Info

Publication number
JP2005120781A
JP2005120781A JP2003359100A JP2003359100A JP2005120781A JP 2005120781 A JP2005120781 A JP 2005120781A JP 2003359100 A JP2003359100 A JP 2003359100A JP 2003359100 A JP2003359100 A JP 2003359100A JP 2005120781 A JP2005120781 A JP 2005120781A
Authority
JP
Japan
Prior art keywords
wall
core material
foundation
retaining wall
reinforced concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003359100A
Other languages
Japanese (ja)
Other versions
JP4253795B2 (en
Inventor
Kazuhiko Isoda
和彦 磯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2003359100A priority Critical patent/JP4253795B2/en
Publication of JP2005120781A publication Critical patent/JP2005120781A/en
Application granted granted Critical
Publication of JP4253795B2 publication Critical patent/JP4253795B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Bulkheads Adapted To Foundation Construction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rational composite wall whose earth retaining wall and reinforced concrete wall are united together. <P>SOLUTION: A reinforced concrete wall 3 is integrally formed through a shear key in the upper front face side of the earth retaining wall 1 having a steel framed core material 2 to make a permanent synthetic wall 5. A foundation like a batholith 7 or the like is rigidly connected to a leg of the reinforced concrete wall in the synthetic wall. A frictional force acting on an embedment 1a deeper than the foundation of the earth retaining wall against a tensile force N brought in the core material of the earth retaining wall is estimated, a part of a bending moment brought in the synthetic wall and an axial force is burdened to the core material in the setting part. A soil mixing wall using a steel frame as the core material for the earth retaining wall is adopted and a consolidation of foundation 1b by richer mixed soil cement than other parts is formed in the lower end. A shear key 4 to be fixed in the foot protection part is installed in the lower end of the core member. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、山留壁と鉄筋コンクリート壁とを一体化した本設の地下壁としての合成壁の構造に関する。   The present invention relates to a structure of a synthetic wall as a basement underground wall in which a mountain retaining wall and a reinforced concrete wall are integrated.

近年、ソイルミキシングウォールやH鋼横矢板等の仮設の山留壁と、その上部前面側に設けられる本来の地下壁である鉄筋コンクリート壁とを構造的に一体化して合成壁とし、その合成壁を本設の地下壁とすることが行われている。このような合成壁によれば、従来においては仮設として扱われてきた山留壁を本設構造の一部として活用することで、本来の地下壁の厚さを小さくでき、地下階の有効空間を拡大でき、コストダウンも図ることができることから、極めて有効であると考えられ、広く普及する気運にある。   In recent years, temporary mountain retaining walls such as soil mixing walls and H-steel sheet piles and reinforced concrete walls, which are the original underground walls provided on the upper front side, are structurally integrated into a composite wall. It is going to be a permanent underground wall. According to such a composite wall, the thickness of the original underground wall can be reduced by utilizing the mountain retaining wall, which has been treated as a temporary structure in the past, as part of the main structure, and the effective space of the underground floor Can be expanded and the cost can be reduced. Therefore, it is considered to be extremely effective, and is in the mood for widespread use.

図5はそのような合成壁の一従来例を示すものである。符号1は柱列として形成された山留壁(図示例はソイルミキシングウォール)、2はその芯材としての鉄骨(図示例はH形鋼)、3は山留壁1の前面側に設けられた本来の地下壁としての鉄筋コンクリート壁であり、それら山留壁1と鉄筋コンクリート壁3とを、芯材2に植設した多数のスタッド等のシヤキー4により構造的に一体化して合成壁5としている。そして、図示例のものでは、基礎杭6により支持して設けた基礎としての底盤7(あるいは基礎梁)を合成壁5における鉄筋コンクリート壁3の下端部に剛接合するという構造を採用している。
特開2002−371545号公報
FIG. 5 shows a conventional example of such a composite wall. Reference numeral 1 is a mountain retaining wall formed as a column (soil mixing wall in the illustrated example), 2 is a steel frame (H-shaped steel in the illustrated example) as its core, and 3 is provided on the front side of the retaining wall 1. It is a reinforced concrete wall as an original underground wall, and the mountain retaining wall 1 and the reinforced concrete wall 3 are structurally integrated by a plurality of shear keys 4 such as studs planted in the core material 2 to form a composite wall 5. . And in the example of illustration, the structure of having rigidly joined the bottom board 7 (or foundation beam) as a foundation supported by the foundation pile 6 to the lower end part of the reinforced concrete wall 3 in the composite wall 5 is employ | adopted.
JP 2002-371545 A

このような合成壁5は山留壁1の芯材2の軸力により合成壁5の曲げ応力を負担させようとするものであり、その設計手法としては建築学会の各種の「合成構造設計指針」や、トンネル協会の「H形鋼を芯材とする土留壁本体利用の手引き」等が参照されている。   Such a composite wall 5 is intended to bear the bending stress of the composite wall 5 by the axial force of the core member 2 of the mountain retaining wall 1. ", And" Guide for using the retaining wall body with H-shaped steel as a core "from the Tunnel Association.

ところで、上記のような合成壁5を設計するための従来一般の設計手法では、山留壁1の全体を合成壁5の一部として評価するのではなく、あくまで鉄筋コンクリート壁3と一体化している上部の範囲のみを合成壁5として構造的に有効なであると評価し、それよりも下部の範囲については山留壁1の単なる根入れ部1aとして評価しているに過ぎない。そして、そのような設計手法によって図5に示したような合成壁5とした場合には、合成壁5の脚部に生じる応力の全てを底盤7の端部において処理する必要があった。   By the way, in the conventional general design method for designing the composite wall 5 as described above, the entire retaining wall 1 is not evaluated as a part of the composite wall 5 but is integrated with the reinforced concrete wall 3 to the last. Only the upper range is evaluated as structurally effective as the composite wall 5, and the lower range is merely evaluated as the simple root portion 1 a of the mountain wall 1. When the composite wall 5 as shown in FIG. 5 is formed by such a design method, it is necessary to process all of the stress generated in the legs of the composite wall 5 at the end of the bottom board 7.

すなわち、図5に示したような合成壁5は土水圧を受けて内側に倒れ込むような曲げ変形(正曲げ)を受け、合成壁5およびそれに剛接合されている底盤7には図6(a)に示すような曲げモーメントが生じ、それらの曲げモーメントはそれらの接合部において最大かつ等しくなる(M=M’)。また、正曲げにより芯材には軸力(引張力)が生じ、図6(b)に示すようにその軸力も底盤7との接合部において最大(Nmax)となる。したがってそのような大きな曲げモーメントM’および軸力Nmaxを処理するために底盤7の所要厚が大きなものとならざるを得ないし、その厚さの範囲内に多数のシヤキー4を集約して設ける必要があり、そのため芯材2や底盤7の設計および施工が煩雑になりコスト高となる要因となっていた。   That is, the composite wall 5 as shown in FIG. 5 is subjected to bending deformation (positive bending) that falls inward due to soil water pressure, and the composite wall 5 and the bottom plate 7 rigidly joined thereto are shown in FIG. ) Are produced, and these bending moments are maximal and equal at their joints (M = M ′). Further, the axial force (tensile force) is generated in the core material by the positive bending, and the axial force becomes the maximum (Nmax) at the joint portion with the bottom plate 7 as shown in FIG. Accordingly, in order to process such a large bending moment M ′ and axial force Nmax, the required thickness of the bottom board 7 must be large, and a large number of shear keys 4 must be provided in an integrated manner within the thickness range. For this reason, the design and construction of the core material 2 and the bottom board 7 become complicated, which is a factor of increasing the cost.

上記事情に鑑み、本発明は、基礎以深の山留壁根入れ部を有効に評価することで、山留壁と鉄筋コンクリート壁とを一体化した合成壁の合理的な構造を提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide a rational structure of a composite wall in which a mountain retaining wall and a reinforced concrete wall are integrated by effectively evaluating a mountain retaining wall deeper than a foundation. And

上述したように従来においては山留壁の根入れ部は合成壁としての機能には何等関与しないものであったが、本発明は根入れ部にも合成壁としての機能の一部を負担させるようにしたものである。   As described above, in the past, the base portion of the mountain retaining wall has nothing to do with the function as the synthetic wall, but the present invention also bears a part of the function as the synthetic wall in the base portion. It is what I did.

すなわち、請求項1の発明は、鉄骨を芯材とする山留壁の上部前面側に鉄筋コンクリート壁を一体に設けて本設の合成壁とし、その合成壁における鉄筋コンクリート壁の脚部に基礎を剛接合した構造において、山留壁の芯材に生じる引張力に対してその山留壁の基礎以深の根入れ部に作用する抵抗力を見込み、かつ合成壁に生じる曲げモーメントおよび軸力の一部を山留壁の根入れ部における芯材に負担せしめたことを特徴とするものである。   That is, in the invention of claim 1, a reinforced concrete wall is integrally provided on the upper front side of the retaining wall having a steel frame as a core to form a permanent composite wall, and the foundation is rigidly attached to the legs of the reinforced concrete wall in the composite wall. In the joined structure, it is possible to expect a resistance force acting on the deeper than the foundation of the retaining wall against the tensile force generated in the core of the retaining wall, and a part of the bending moment and axial force generated in the composite wall Owing to the core material in the base portion of the Yamato wall.

請求項2の発明は、請求項1の発明において、山留壁として鉄骨を芯材とするソイルミキシングウォールを採用し、その下端部に他の部分よりも富調合のソイルセメントによる根固め部を形成するとともに、芯材の下端部には根固め部に定着するためのシヤキーを設けたことを特徴とするものである。   The invention of claim 2 is the invention of claim 1, wherein a soil mixing wall having a steel frame as a core wall is adopted as a retaining wall, and a root-solidified portion made of a well-mixed soil cement is provided at the lower end of the wall. In addition to the formation, a shear key for fixing to the rooting portion is provided at the lower end portion of the core material.

請求項1の発明によれば、基礎よりも上部に設けられた合成壁脚部に生じる応力の一部が山留壁根入れ部の芯材に負担されることにより、従来のようにその応力の全てを芯材と基礎との接合部において伝達する場合に較べて基礎を簡略化することが可能であり、それにより基礎成の削減、基礎配筋量の削減、芯材と基礎とを剛接合して一体化するためのシヤキーの軽減が可能となり、その結果、合成壁および基礎の施工の簡略化と工費削減を実現することができる。さらに、基礎成を低減することで、掘削底面を浅くでき、掘削土量の低減、山留め工事の軽減、切梁段数の削減を図ることができ、短工期とローコスト化を図ることができる。   According to the first aspect of the present invention, a part of the stress generated in the composite wall leg provided above the foundation is borne by the core material of the mountain retaining wall root portion, so that the stress is applied as in the conventional case. It is possible to simplify the foundation compared with the case where all of the above is transmitted at the joint between the core and the foundation, thereby reducing the foundation formation, reducing the amount of bar arrangement, and making the core and the foundation rigid. It is possible to reduce the shear key for joining and integrating, and as a result, it is possible to simplify the construction of the composite wall and the foundation and reduce the construction cost. Furthermore, by reducing the foundation formation, the bottom of the excavation can be made shallower, the amount of excavated soil can be reduced, the construction work for mountain retaining can be reduced, and the number of beam stages can be reduced, resulting in a shorter construction period and lower costs.

請求項2の発明によれば、芯材の下端部における地盤への定着性能を向上させることができ、それにより芯材に生じる引張力に対する抵抗力を充分にかつ確実に見込むことができ、芯材の軸力および曲げに対する耐力と剛性を充分に活用することができる。   According to the invention of claim 2, the fixing performance to the ground at the lower end portion of the core material can be improved, and thereby the resistance force against the tensile force generated in the core material can be expected sufficiently and reliably, and the core The strength and rigidity against bending and axial force of the material can be fully utilized.

本発明の実施形態を図1〜図4を参照して説明する。図1は本発明の一実施形態である合成壁の構造を示すものであり、これは基本的には図5に示した従来のものと同様に、鉄骨を芯材2とする山留壁1としてのソイルミキシングウォールの上部前面側に、シヤキー4を介して鉄筋コンクリート壁3を一体に設けて本設の合成壁5とし、その合成壁5における鉄筋コンクリート壁3の下端部に基礎としての底盤7を剛接合し、かつその底盤7を支持する基礎杭6を設けたものである。そして、従来においては山留壁1の根入れ部1aは合成壁5としての機能には何等関与しないものであったのに対し、本実施形態では山留壁1の根入れ部1aにも合成壁5としての機能を一部負担させており、その点で本実施形態の合成壁5は従来一般のものとは大きく相異している。   An embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows a structure of a synthetic wall according to an embodiment of the present invention. This is basically a mountain retaining wall 1 having a steel frame as a core material 2 in the same manner as the conventional one shown in FIG. A reinforced concrete wall 3 is integrally provided on the upper front side of the soil mixing wall as a synthetic wall 5 by means of a shear key 4, and a bottom base 7 as a foundation is provided at the lower end of the reinforced concrete wall 3 in the composite wall 5. A foundation pile 6 that is rigidly connected and supports the bottom plate 7 is provided. Conventionally, the base 1a of the retaining wall 1 has nothing to do with the function as the composite wall 5, but in this embodiment, the base 1a is also synthesized with the base 1a of the retaining wall 1. The function as the wall 5 is partially borne, and the composite wall 5 of the present embodiment is greatly different from the conventional one in that respect.

具体的には、本実施形態の合成壁5も従来と同様に土水圧を受けて内側に倒れ込むような曲げ変形(正曲げ)を受け、それによりこの合成壁5には図2(a)に示すように下端部で最大(M)となる曲げモーメントが生じる。また、そのような正曲げにより山留壁1の芯材2には図2(c)に示すような軸力が生じる。その軸力は図1に示すように芯材2に引張力Nとして生じ、その反力として内側の鉄筋コンクリート壁3には圧縮力−Nが生じ、その圧縮力−Nは底盤7を介して基礎杭6に圧縮力として伝達される。なお、その際には、図2(b)に示すように芯材2と鉄筋コンクリート壁3との間では芯材2が上向きにずれるような応力が生じ、芯材2と底盤7との間では逆向きの応力が生じるので、シヤキー4はそのようなずれに抗し得るように設ける必要がある。また、上記のように鉄筋コンクリート壁3に生じる圧縮力−Nは底盤7を介して基礎杭6に圧縮力として伝達されることから、基礎杭6の支持力にはその圧縮力−N分を予め見込んでおく必要がある。   Specifically, the composite wall 5 of the present embodiment is also subjected to bending deformation (positive bending) such that the composite wall 5 falls into the inner side due to the soil pressure as in the conventional case, whereby the composite wall 5 is subjected to FIG. 2A. As shown, a maximum (M) bending moment occurs at the lower end. Moreover, the axial force as shown in FIG.2 (c) arises in the core material 2 of the retaining wall 1 by such a normal bending. As shown in FIG. 1, the axial force is generated as a tensile force N in the core material 2, and as a reaction force, a compressive force −N is generated in the inner reinforced concrete wall 3, and the compressive force −N is generated through the bottom plate 7. It is transmitted to the pile 6 as a compressive force. In this case, as shown in FIG. 2B, stress is generated between the core material 2 and the reinforced concrete wall 3 so that the core material 2 is shifted upward. Since a reverse stress is generated, it is necessary to provide the shear key 4 so as to resist such displacement. Further, since the compressive force −N generated in the reinforced concrete wall 3 as described above is transmitted as the compressive force to the foundation pile 6 through the bottom board 7, the compressive force −N component is previously included in the supporting force of the foundation pile 6. It is necessary to anticipate.

芯材2に生じる上記の引張力Nに対しては、従来においてはシヤキー4を介して鉄筋コンクリート壁3および底盤7により抵抗していたのであるが、本実施形態ではその引張力Nに対して山留壁1の底盤7よりも以深の根入れ部1aによっても抵抗するものとしている。すなわち、山留壁1はそれ自体が自ずとかなりの重量を有するものであり、またその根入れ部1aと地盤との間には自ずとかなりの摩擦抵抗が生じるので、それら自重と摩擦力を芯材2に生じる引張力に対する抵抗力として見込むことができるのである。そして、本実施形態ではそのような抵抗力を充分かつ確実に確保するために山留壁1としてソイルミキシングウォールを採用し、図2(b)に示すように芯材2に生じる引張力Nを芯材2からソイルセメントに伝達し、さらにソイルセメントから摩擦力によって地盤に伝達するようにし、しかもそのソイルミキシングウォールの下端部に他の部分よりも富調合のソイルセメントによる高強度の根固め部1bを形成し、かつ芯材2の下端部にもシヤキー4としてのスタッドを設けて根固め部1bに確実に定着するようにしている。   Conventionally, the tensile force N generated in the core material 2 is resisted by the reinforced concrete wall 3 and the bottom board 7 via the shear key 4. Resistance is also caused by a deepening portion 1a deeper than the bottom 7 of the retaining wall 1. That is, the mountain retaining wall 1 itself has a considerable weight, and a considerable friction resistance is naturally generated between the root portion 1a and the ground. 2 can be estimated as a resistance force against the tensile force generated in the second. In the present embodiment, a soil mixing wall is employed as the mountain retaining wall 1 in order to ensure such resistance sufficiently and reliably, and the tensile force N generated in the core member 2 as shown in FIG. It is transmitted from the core material 2 to the soil cement, and further transmitted from the soil cement to the ground by frictional force. In addition, the soil mixing wall has a high-strength solidified portion with a well-mixed soil cement at the lower end of the soil mixing wall. 1b is formed, and a stud as a shear key 4 is also provided at the lower end portion of the core material 2 so as to be firmly fixed to the rooting portion 1b.

本実施形態では、上記のように山留壁1の根入れ部1aでの抵抗力を見込むことにより、底盤7の端部に生じる曲げモーメントを軽減することができる。すなわち、図2(a)に示すように合成壁5の下端部(底盤7との接合部)には従来と同様に大きな曲げモーメントMが生じるのであるが、上記のように芯材2に引張力Nが生じるとともに基礎杭6にはその反力としての圧縮力−Nが生じるので、合成壁5と底盤7とを剛接合としている接合部(図2(a)に剛域として示す)にはその曲げモーメントMとは逆向きの曲げモーメントN・L(Lは剛域の長さ:芯材2と基礎杭6との芯々間の距離)が生じ、そのような曲げモーメントN・Lが生じる分だけ底盤7の端部に生じる曲げモーメントM’は合成壁5に生じる曲げモーメントの最大値Mよりも小さくなる。つまり、従来においては図6(a)に示したように底盤7の端部に生じる曲げモーメントM’は合成壁5に生じる曲げモーメントの最大値Mと等しくなるのに対し、本実施形態ではM=M’+N・Lの関係から、M’=M−N・Lとなり、基礎底盤に生じる曲げモーメントM’を従来よりも小さくできるのである。以上の結果として、そこに設けるシヤキー4を軽減できるばかりでなく、底盤7の所要厚を従来よりも薄くすることが可能であり、底盤7における所要配筋量を削減することも可能であり、それにより施工の簡略化とコストダウンを図ることができる。   In the present embodiment, the bending moment generated at the end portion of the bottom plate 7 can be reduced by considering the resistance force at the base portion 1a of the mountain retaining wall 1 as described above. That is, as shown in FIG. 2 (a), a large bending moment M is generated at the lower end portion of the composite wall 5 (joint portion with the bottom plate 7) as in the conventional case, but the core material 2 is pulled as described above. Since the force N is generated and the compressive force −N as the reaction force is generated in the foundation pile 6, the joint portion (shown as a rigid region in FIG. 2 (a)) is a rigid connection between the composite wall 5 and the bottom plate 7. Produces a bending moment N · L opposite to the bending moment M (where L is the length of the rigid zone: the distance between the cores of the core material 2 and the foundation pile 6). The bending moment M ′ generated at the end portion of the base 7 is smaller than the maximum value M of the bending moment generated in the composite wall 5 by the amount generated. That is, in the prior art, as shown in FIG. 6A, the bending moment M ′ generated at the end portion of the bottom plate 7 is equal to the maximum value M of the bending moment generated in the composite wall 5, whereas in the present embodiment, M From the relationship of = M '+ N · L, M' = MN · L, and the bending moment M 'generated in the foundation bottom can be made smaller than before. As a result of the above, not only can the shear key 4 provided there be reduced, but also the required thickness of the bottom board 7 can be made thinner than before, and the required amount of bar arrangement in the bottom board 7 can also be reduced. Thereby, the construction can be simplified and the cost can be reduced.

また、従来においては、芯材2に生じる大きな軸力(引張力)を底盤7との接合部のみで処理せざるを得ないのであるが、本実施形態では山留壁1の根入れ部1aにおける芯材2に生じる軸力(引張力)を見込むことができるので、合成壁5に生じる軸力の一部を根入れ部1aにおける芯材2に負担させることができることになり、その分、底盤7で処理すべき軸力を従来の場合よりも軽減することができる。すなわち、図2(c)に示すように、根入れ部1aにおいて軸力Nが生じるとすれば、底盤7では接合部における軸力の最大値Nmaxと根入れ部1aでの軸力Nとの差分ΔNのみを処理すれば足り、それによっても芯材2と底盤7との間のシヤキー4を軽減することができる。一例を挙げると、従来の設計例では合成壁5と底盤7との接合部にシヤキーとして16mmφのスタッドが150mmピッチで20本程度必要であり、そのために底盤7の所要厚が1500mmでは不足するような場合でも、上記のように山留壁1の根入れ部1aの芯材2による抵抗力を考慮することで、スタッドの本数を10本程度にまで削減することができ、底盤7の所要厚も1500mmあれば充分となる。   Conventionally, a large axial force (tensile force) generated in the core member 2 must be processed only at the joint portion with the bottom board 7, but in this embodiment, the root portion 1a of the mountain wall 1 is provided. Since the axial force (tensile force) generated in the core material 2 can be expected, a part of the axial force generated in the composite wall 5 can be borne by the core material 2 in the rooting portion 1a. The axial force to be processed by the bottom board 7 can be reduced as compared with the conventional case. That is, as shown in FIG. 2C, if an axial force N is generated in the root insertion portion 1a, the maximum value Nmax of the axial force in the joint portion and the axial force N in the root insertion portion 1a in the bottom plate 7 It is sufficient to process only the difference ΔN, and the shear key 4 between the core material 2 and the bottom board 7 can be reduced by that as well. For example, in the conventional design example, about 20 16mmφ studs as a shear key are required at the joint portion between the composite wall 5 and the bottom plate 7 at a pitch of 150mm, so that the required thickness of the bottom plate 7 is insufficient at 1500mm. Even in this case, the number of studs can be reduced to about 10 by considering the resistance force of the core material 2 of the base portion 1a of the retaining wall 1 as described above, and the required thickness of the bottom board 7 can be reduced. 1,500 mm is sufficient.

さらに、本実施形態では、根入れ部1aにおける芯材2の曲げ剛性も評価して、合成壁5に生じる曲げモーメントの一部を根入れ部1aにおける芯材2に負担せしめることが可能である。すなわち、合成壁5が曲げ変形を受けた場合には根入れ部1aにおける芯材2にも図2(d)に示すような曲げモーメントが生じるので、底盤7との接合部において芯材2に生じる曲げモーメントをM”とすると、そこではM=M’+M”+N・Lの関係が成り立つから、底盤7の端部で処理すべきモーメントM”はM”=M−M’−N・Lとなって上記の場合よりもさらに小さなものとなる。   Further, in the present embodiment, it is possible to evaluate the bending rigidity of the core material 2 in the root insertion portion 1a and to cause the core material 2 in the root insertion portion 1a to bear a part of the bending moment generated in the composite wall 5. . That is, when the composite wall 5 is subjected to bending deformation, a bending moment as shown in FIG. 2D is also generated in the core material 2 in the root portion 1a. Assuming that the bending moment generated is M ″, the relationship M = M ′ + M ″ + N · L is established. Therefore, the moment M ″ to be processed at the end of the bottom board 7 is M ″ = M−M′−N · L. Becomes smaller than the above case.

図3は上記の合成壁5の性能確認のためのシミュレーション結果を示すものである。Aは比較例としての従来の合成壁(根入れ部の芯材を考慮せず)の場合であり、BおよびCは根入れ部の芯材を考慮した本発明の合成壁である。また、Bは底盤7内へのスタッドを一部省略したもの、Cは省略せずに全数のスタッドを配置したものである。シミュレーションは、模式図に示すように、A(従来例)の場合は底盤7の端部と中間部を支持し、BおよびC(本発明)の場合には芯材2の下端と底盤7の中間部を支持し、その状態で合成壁5の頂部に水平荷重Pxを与えて荷重Pxと変位量δxとの関係を調べたものである(図中のA,B,Cは境界条件としてピン支持位置を示す)。その結果としては、A(従来例)の場合には400kN程度の荷重で底盤7が降伏してしまい、その時点での合成壁5の変位も10cmを越えたが、B,C(本発明)の場合にはいずれも800kN程度までは底盤7が降伏せず、その時点での合成壁5の変位も5cm程度に留まり、従来に較べて遙かに高耐力で高靱性の合成壁とできることが実証された。   FIG. 3 shows a simulation result for confirming the performance of the synthetic wall 5. A is a case of a conventional synthetic wall (not considering the core material of the root portion) as a comparative example, and B and C are the synthetic walls of the present invention considering the core material of the root portion. Further, B is a part in which the studs into the bottom plate 7 are partially omitted, and C is a part in which all the studs are arranged without being omitted. As shown in the schematic diagram, the simulation supports the end portion and the intermediate portion of the bottom plate 7 in the case of A (conventional example), and the lower end of the core 2 and the bottom plate 7 in the case of B and C (invention). In this state, the horizontal load Px is applied to the top of the composite wall 5 and the relationship between the load Px and the displacement amount δx is investigated (A, B, and C in the figure are pin conditions as boundary conditions). Indicates support position). As a result, in the case of A (conventional example), the bottom plate 7 yielded with a load of about 400 kN, and the displacement of the composite wall 5 at that time exceeded 10 cm, but B, C (present invention) In both cases, the bottom plate 7 does not yield up to about 800 kN, and the displacement of the composite wall 5 at that time remains only about 5 cm, which makes it possible to make a composite wall with much higher strength and toughness than before. Proven.

なお、上記実施形態では杭基礎への適用例であるが、本発明においては基礎杭6は必ずしも必要ではなく、図4に示すように基礎杭6を省略した直接基礎の場合にも同様に適用可能であり、その場合も、芯材2に生じる引張力Nの反力が地盤の圧縮力−N(接地圧の合計)に代わるだけで上記と全く同様に機能する。また、上記実施形態では基礎として底盤(マット)7を採用したが、基礎梁とすることでも良く、いずれにしても上記実施形態において図示しているようにその端部(合成壁5との剛接合部)にハンチ7aを設けることも可能である。また、上記実施形態では山留壁1としてソイルミキシングウォールを採用したが、本発明は芯材2を有するものであればたとえばH鋼横矢板による山留壁等の他の構造の山留壁も同様に適用可能である。さらに本発明は建物のみならずたとえばカルバート等の各種の地中構造物にも同様に適用可能である。   In addition, in the said embodiment, although it is an example applied to a pile foundation, in this invention, the foundation pile 6 is not necessarily required, and it applies similarly also in the case of the direct foundation which abbreviate | omitted the foundation pile 6 as shown in FIG. In this case, the reaction force of the tensile force N generated in the core member 2 functions in exactly the same manner as described above only by substituting the compressive force −N (total of ground pressure) of the ground. Further, in the above embodiment, the bottom board (mat) 7 is adopted as a foundation, but a foundation beam may be used. In any case, as shown in the above embodiment, the end portion (rigidity with the composite wall 5) is used. It is also possible to provide the haunch 7a at the junction). Moreover, in the said embodiment, although the soil mixing wall was employ | adopted as the mountain retaining wall 1, if this invention has the core material 2, for example, the mountain retaining wall of other structures, such as a mountain retaining wall by a H-steel sheet pile, is also used. The same applies. Furthermore, the present invention can be similarly applied not only to buildings but also to various underground structures such as culverts.

本発明の合成壁の一実施形態を示す概略構成図である。It is a schematic block diagram which shows one Embodiment of the synthetic | combination wall of this invention. 同、その構造特性を説明するための図である。It is a figure for demonstrating the structure characteristic similarly. 同、シミュレーション結果を示す図である。It is a figure which shows a simulation result similarly. 同、他の実施形態を示す概略構成図である。It is a schematic block diagram which shows other embodiment same as the above. 従来の合成壁を示す図である。It is a figure which shows the conventional synthetic | combination wall. 同、その構造特性を説明するための図である。It is a figure for demonstrating the structure characteristic similarly.

符号の説明Explanation of symbols

1 山留壁(ソイルミキシングウォール)
1a 根入れ部
1b 根固め部
2 芯材(鉄骨)
3 鉄筋コンクリート壁
4 シヤキー(スタッド)
5 合成壁
6 基礎杭
7 底盤(基礎)
7a ハンチ
1 Yamadome wall (soil mixing wall)
1a Root insertion part 1b Root consolidation part 2 Core material (steel frame)
3 Reinforced concrete wall 4 Shear key (Stud)
5 Composite wall 6 Foundation pile 7 Bottom plate (foundation)
7a Haunch

Claims (2)

鉄骨を芯材とする山留壁の上部前面側に鉄筋コンクリート壁を一体に設けて本設の合成壁とし、その合成壁における鉄筋コンクリート壁の脚部に基礎を剛接合した構造において、山留壁の芯材に生じる引張力に対してその山留壁の基礎以深の根入れ部に作用する抵抗力を見込み、かつ合成壁に生じる曲げモーメントおよび軸力の一部を根入れ部における芯材に負担せしめたことを特徴とする合成壁の構造。   In a structure in which a reinforced concrete wall is integrally formed on the upper front side of the mountain retaining wall with a steel frame as the main composite wall, and the foundation is rigidly joined to the legs of the reinforced concrete wall in the composite wall, Anticipating the resistance force acting on the deeper than the foundation of the retaining wall against the tensile force generated in the core material, the bending material and axial force generated in the composite wall are partly burdened on the core material Synthetic wall structure characterized by damaging. 山留壁として鉄骨を芯材とするソイルミキシングウォールを採用し、その下端部に他の部分よりも富調合のソイルセメントによる根固め部を形成するとともに、芯材の下端部には根固め部に定着するためのシヤキーを設けたことを特徴とする請求1記載の合成壁の構造。   A soil mixing wall with a steel frame as the core wall is adopted as the mountain retaining wall, and a root-solidified part is formed at the lower end of the soil with a well-mixed soil cement than the other parts. 2. A synthetic wall structure according to claim 1, further comprising a shear key for fixing to the wall.
JP2003359100A 2003-10-20 2003-10-20 Synthetic wall structure Expired - Lifetime JP4253795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003359100A JP4253795B2 (en) 2003-10-20 2003-10-20 Synthetic wall structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003359100A JP4253795B2 (en) 2003-10-20 2003-10-20 Synthetic wall structure

Publications (2)

Publication Number Publication Date
JP2005120781A true JP2005120781A (en) 2005-05-12
JP4253795B2 JP4253795B2 (en) 2009-04-15

Family

ID=34615432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003359100A Expired - Lifetime JP4253795B2 (en) 2003-10-20 2003-10-20 Synthetic wall structure

Country Status (1)

Country Link
JP (1) JP4253795B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006342636A (en) * 2005-06-10 2006-12-21 Taisei Corp Building structure and its construction method
JP2007277831A (en) * 2006-04-03 2007-10-25 Ohbayashi Corp Soil cement wall and foundation structure
JP2007277830A (en) * 2006-04-03 2007-10-25 Ohbayashi Corp Core material, continuous underground wall, soil cement wall, continuous underground wall pile, soil cement wall pile, cast-in-place concrete pile, underground structure, and foundation structure of building
JP2008031628A (en) * 2006-06-26 2008-02-14 Ohbayashi Corp Construction method for underground structure, soil cement wall, soil cement wall pile, underground structure, foundation structure of building, and ground excavating equipment
CN101906779A (en) * 2010-08-11 2010-12-08 余闯 Supporting process of portal frame type anchor pipe soil nail spraying net and modified reinforcing cement mortar employed by same
JP2013036272A (en) * 2011-08-10 2013-02-21 Kumagai Gumi Co Ltd Method of evaluating bending moment borne by coupling means which couples earth retaining wall and foundation slab
JP2017119968A (en) * 2015-12-28 2017-07-06 株式会社大林組 Evaluation method of pile composed of soil cement column row wall
CN111305231A (en) * 2020-04-01 2020-06-19 天津二建建筑工程有限公司 Composite steel plate wall semi-rigid cantilever foundation pit supporting system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006342636A (en) * 2005-06-10 2006-12-21 Taisei Corp Building structure and its construction method
JP4621546B2 (en) * 2005-06-10 2011-01-26 大成建設株式会社 Building structure and construction method thereof
JP2007277831A (en) * 2006-04-03 2007-10-25 Ohbayashi Corp Soil cement wall and foundation structure
JP2007277830A (en) * 2006-04-03 2007-10-25 Ohbayashi Corp Core material, continuous underground wall, soil cement wall, continuous underground wall pile, soil cement wall pile, cast-in-place concrete pile, underground structure, and foundation structure of building
JP2008031628A (en) * 2006-06-26 2008-02-14 Ohbayashi Corp Construction method for underground structure, soil cement wall, soil cement wall pile, underground structure, foundation structure of building, and ground excavating equipment
CN101906779A (en) * 2010-08-11 2010-12-08 余闯 Supporting process of portal frame type anchor pipe soil nail spraying net and modified reinforcing cement mortar employed by same
JP2013036272A (en) * 2011-08-10 2013-02-21 Kumagai Gumi Co Ltd Method of evaluating bending moment borne by coupling means which couples earth retaining wall and foundation slab
JP2017119968A (en) * 2015-12-28 2017-07-06 株式会社大林組 Evaluation method of pile composed of soil cement column row wall
CN111305231A (en) * 2020-04-01 2020-06-19 天津二建建筑工程有限公司 Composite steel plate wall semi-rigid cantilever foundation pit supporting system

Also Published As

Publication number Publication date
JP4253795B2 (en) 2009-04-15

Similar Documents

Publication Publication Date Title
JP6166560B2 (en) Extension structure of seismic isolation building
JP5046742B2 (en) Retaining wall and its supporting method
JP2006291575A (en) Retaining wall and method of constructing the same
KR101001107B1 (en) Double pipe connection type enlarged steel pipe pile head reinforcement
JP4253795B2 (en) Synthetic wall structure
JP2016199861A (en) Pile foundation structure
JP4914062B2 (en) Two-tiered retaining wall and its construction method
KR20140013497A (en) Method for constructing block type reinforced retaining wall in cut site
KR101426066B1 (en) End supporting multi micro pile and method for reinforcing structure base using this
KR20200029080A (en) Construction method for earth self-retaining wall using reinforcing member and PHC pile
JP2006316495A (en) Foundation structure of bridge pier and its construction method
JP2005105531A (en) Foundation structure of building and its construction method
JP2000352296A (en) Method o constructing passage just under underground structure
JP2007308876A (en) Retaining wall and its construction method
JP5777435B2 (en) Reinforcement method for foundations for small buildings
JP5633524B2 (en) Steel sheet pile underground wall structure
JP4296545B2 (en) Center-pillar structure of eyeglass tunnel
JP2006002428A (en) Reinforcing method of existing floor and base isolation method of existing building
JP2010209547A (en) Wall pile and method for creating the same
JP2020066875A (en) Foundation pile, foundation structure, structural body, and installation method of foundation pile
JP3767347B2 (en) Reverse strike method
JP2005248428A (en) Foundation structure for construction
JP5972709B2 (en) Pile head semi-rigid joint structure of new building and its construction method
CN110185477B (en) Tunnel supporting structure and tunnel supporting construction method
JP5994583B2 (en) Tunnel support reinforcement structure and tunnel construction method using tunnel support reinforcement structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4253795

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150206

Year of fee payment: 6

EXPY Cancellation because of completion of term