JP2005117093A - Temperature control circuit and high stability crystal oscillator employing the same - Google Patents

Temperature control circuit and high stability crystal oscillator employing the same Download PDF

Info

Publication number
JP2005117093A
JP2005117093A JP2003344738A JP2003344738A JP2005117093A JP 2005117093 A JP2005117093 A JP 2005117093A JP 2003344738 A JP2003344738 A JP 2003344738A JP 2003344738 A JP2003344738 A JP 2003344738A JP 2005117093 A JP2005117093 A JP 2005117093A
Authority
JP
Japan
Prior art keywords
temperature control
thermistor
control circuit
voltage
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003344738A
Other languages
Japanese (ja)
Inventor
Tomio Sato
富雄 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP2003344738A priority Critical patent/JP2005117093A/en
Publication of JP2005117093A publication Critical patent/JP2005117093A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a means for improving the sensitivity of a temperature sensor in a temperature control circuit for a high stability crystal oscillator to thereby highly accurately set the storage temperature of a crystal vibrator. <P>SOLUTION: The temperature control circuit for the highly stable crystal oscillator comprising thermisters; a differential operational amplifier; a constant-voltage element;a power transistor;and a heater, controls a heater circuit, by applying a voltage resulting from dividing a constant voltage produced by the constant-voltage element by a resistor and the first thermister to a noninverting input of the differential operational amplifier and applying a voltage resulting from dividing the constant voltage by the second thermister and a variable resistor to an inverting input of the differential operational amplifier. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、高安定水晶発振器の温度制御回路に関し、特に温度センサ部の感度を改良した温度制御回路に関するものである。   The present invention relates to a temperature control circuit for a highly stable crystal oscillator, and more particularly to a temperature control circuit with improved sensitivity of a temperature sensor unit.

高安定水晶発振器は優れた周波数精度、周波数温度特性、周波数エージング特性等を有することから、移動体無線基地局から高精度の測定器まで多くの用途に用いられている。高安定水晶発振器の構造は、周囲温度が変動しても発振周波数が変化しないように、水晶振動子及び発振回路の近傍の温度を一定に保つような構造となっている。より高精度を要する高安定水晶発振器には、2回回転カットのSCカット水晶振動子等が用いられており、ATカット水晶振動子を用いた場合に比べて、応力感度特性や熱衝撃特性等に優れた水晶発振器が得られることが知られている。 Highly stable crystal oscillators have excellent frequency accuracy, frequency temperature characteristics, frequency aging characteristics, and the like, and are therefore used in many applications from mobile radio base stations to high-precision measuring instruments. The structure of the highly stable crystal oscillator is such that the temperature in the vicinity of the crystal resonator and the oscillation circuit is kept constant so that the oscillation frequency does not change even if the ambient temperature changes. High-stability crystal oscillators that require higher accuracy use SC-cut crystal resonators that are cut twice, etc. Compared to the AT-cut crystal resonator, stress sensitivity characteristics, thermal shock characteristics, etc. It is known that an excellent crystal oscillator can be obtained.

従来の高安定水晶発振器は、アルミニウムブロックに穴空け加工し、該穴に水晶振動子と感温素子のサーミスタとを収容すると共に、アルミニウムブロックの周囲にニクロム線を巻いた恒温槽を用いたタイプの高安定水晶発振器が一般的であった。しかし、その周波数安定度は優れているものの、アルミニウムのブロックが小型化、低消費電力化の妨げになっていた。そこで、これを改善すべく、特開平11−214929号報にアルミニウムブロックを省略し、水晶振動子の金属カンを直接加熱して温度制御するたタイプの高安定水晶発振器が開示されている。
また、特開平11−317622号報には感温素子のサーミスタを複数直列接続して、センサ感度を改善した温度制御回路も開示されている。
A conventional high-stable crystal oscillator is a type that uses a thermostatic chamber in which an aluminum block is perforated, a quartz crystal unit and a thermistor of a thermosensitive element are accommodated in the hole, and a nichrome wire is wound around the aluminum block. Highly stable crystal oscillators were common. However, although its frequency stability is excellent, the aluminum block has hindered miniaturization and low power consumption. In order to solve this problem, Japanese Patent Application Laid-Open No. 11-214929 discloses a highly stable crystal oscillator of the type in which the aluminum block is omitted and the metal can of the crystal unit is directly heated to control the temperature.
Japanese Patent Laid-Open No. 11-317622 also discloses a temperature control circuit in which a plurality of thermistors of temperature sensing elements are connected in series to improve the sensor sensitivity.

図6は高安定水晶発振器の内部の主要部の構造を示す側面断面図であって、プリント基板31の一方の面に表面実装型の小型ヒータ32を、間隔を隔して複数個配置すると共に、該ヒータ32と接するように水晶振動子33を載置する。水晶振動子33の底部絶縁部を貫通して伸びるリード端子34を曲げてプリント基板31に半田付けした上で、リード端子34に接するように表面実装型の小型ヒータ35がプリント基板31上に配置されている。さらに、小型ヒータ35と接触するように感温素子のサーミスタ36を配置すると共に、プリント基板31の他方の面に発振回路37と温度制御回路38とを半田付けする。なお、水晶振動子33は水晶基板39の両面に金属の薄膜電極40を蒸着等の手段で付着し、リード端子にて保持された状態で金属カンの中に真空密封したものである。   FIG. 6 is a side cross-sectional view showing the structure of the main part inside the highly stable crystal oscillator. A plurality of surface-mounted small heaters 32 are arranged on one surface of the printed circuit board 31 at intervals. Then, the crystal resonator 33 is placed so as to be in contact with the heater 32. A lead terminal 34 extending through the bottom insulating portion of the crystal unit 33 is bent and soldered to the printed circuit board 31, and a small surface mount type heater 35 is disposed on the printed circuit board 31 so as to contact the lead terminal 34. Has been. Further, a thermistor 36 of a temperature sensitive element is disposed so as to contact the small heater 35, and an oscillation circuit 37 and a temperature control circuit 38 are soldered to the other surface of the printed board 31. The quartz crystal resonator 33 is formed by attaching a metal thin film electrode 40 to both surfaces of a quartz substrate 39 by means of vapor deposition or the like, and vacuum-sealing it in a metal can while being held by lead terminals.

図7は、水晶振動子の温度を一定に保持するための温度制御回路の構成を示す図である。温度制御回路の構成は、温度センサであるサーミスタTH1と抵抗R1とを直列接続し、その中点を抵抗R4を介して差動オペアンプOPのマイナス側入力と接続する。そして、抵抗R2とR3とを直列接続し、その中点を差動オペアンプOPのプラス側入力と接続する。また、抵抗R2とサーミスタTH1の他方の端子は定電圧素子Reg(定電圧IC)を介して電源Vccに接続すると共に、抵抗R1、R3の他方の端子は接地する。差動オペアンプOPの出力とマイナス入力との間には帰還抵抗R5を接続する。さらに、差動オペアンプOPの出力は抵抗R6を介してパワートランジスタTR1のベースに接続し、エミッタを接地すると共に、電源Vccとコレクタとの間に小型ヒータ素子H1、H2、H3を並列接続する。なお、抵抗R7はベースバイアス抵抗、容量C1、C2、C3はバイパス容量である。   FIG. 7 is a diagram showing a configuration of a temperature control circuit for keeping the temperature of the crystal resonator constant. The configuration of the temperature control circuit is such that the thermistor TH1, which is a temperature sensor, and a resistor R1 are connected in series, and the midpoint thereof is connected to the negative side input of the differential operational amplifier OP via a resistor R4. The resistors R2 and R3 are connected in series, and the midpoint thereof is connected to the positive side input of the differential operational amplifier OP. The other terminals of the resistor R2 and the thermistor TH1 are connected to the power source Vcc via the constant voltage element Reg (constant voltage IC), and the other terminals of the resistors R1 and R3 are grounded. A feedback resistor R5 is connected between the output of the differential operational amplifier OP and the negative input. Further, the output of the differential operational amplifier OP is connected to the base of the power transistor TR1 through the resistor R6, the emitter is grounded, and the small heater elements H1, H2, and H3 are connected in parallel between the power source Vcc and the collector. The resistor R7 is a base bias resistor, and the capacitors C1, C2, and C3 are bypass capacitors.

図7に示す温度制御回路について簡単に説明すると、差動オペアンプOPはプラス側入力とマイナス側入力との電圧差に応じた電圧を出力するように動作する。差動オペアンプOPのプラス側入力には、定電圧素子Regで制御された定電圧が抵抗R2、R3で分圧されて印加されている。サーミスタTH1の近傍が低温であるとサーミスタTH1の抵抗が大きくなり、マイナス側入力の電圧が高くなるので、出力電圧は高くなる。差動オペアンプOPの出力電圧が高いとパワートランジスタTR1のベース電圧が高くなるので、ヒータH1、H2、H3に供給されるコレクタ電流も大きくなり、温度も上昇する。設定された温度、即ちサーミスタTH1の抵抗が低下し、マイナス側入力の電圧と、プラス側入力の電圧(抵抗R2、R3で分圧された一定の電圧)とがほぼ等しくなると、所定の一定の温度を保持するように動作する。
特開平11−214929号公報 特開平11−317622号公報
The temperature control circuit shown in FIG. 7 will be briefly described. The differential operational amplifier OP operates to output a voltage corresponding to the voltage difference between the plus side input and the minus side input. A constant voltage controlled by the constant voltage element Reg is divided by resistors R2 and R3 and applied to the positive side input of the differential operational amplifier OP. If the temperature of the thermistor TH1 is low, the resistance of the thermistor TH1 increases and the negative input voltage increases, so the output voltage increases. When the output voltage of the differential operational amplifier OP is high, the base voltage of the power transistor TR1 increases, so that the collector current supplied to the heaters H1, H2, and H3 also increases and the temperature also increases. When the set temperature, that is, the resistance of the thermistor TH1 decreases, the negative input voltage and the positive input voltage (a constant voltage divided by the resistors R2 and R3) become substantially equal to each other. Operates to maintain temperature.
JP-A-11-214929 JP 11-317622 A

解決しようとする問題点は、従来の高安定水晶発振器の温度制御回路においては、感温素子であるサーミスタTH1の温度感度特性(B定数)が温度制御回路の精度を決定することになるが、汎用のサーミスタ素子では十分に温度感度が得られないため、水晶振動子の近傍の温度を精度よく保持することは難しかった。 The problem to be solved is that, in the temperature control circuit of the conventional highly stable crystal oscillator, the temperature sensitivity characteristic (B constant) of the thermistor TH1, which is a temperature sensing element, determines the accuracy of the temperature control circuit. Since a general-purpose thermistor element cannot obtain sufficient temperature sensitivity, it has been difficult to accurately maintain the temperature in the vicinity of the crystal resonator.

本発明は、サーミスタと差動オペアンプと定電圧素子とパワートランジスタとヒータと含む高安定水晶発振器用温度制御回路において、前記定電圧素子で生成する定電圧を抵抗と第1のサーミスタとで分圧した電圧を前記差動オペアンプのプラス側入力に加え、前記定電圧を第2のサーミスタと可変抵抗とで分圧した電圧をマイナス側入力に加えてヒータ回路を制御するため、温度センサ感度を大きくできるので水晶振動子の温度を精度よく保持することを特徴とする。   The present invention relates to a temperature control circuit for a highly stable crystal oscillator including a thermistor, a differential operational amplifier, a constant voltage element, a power transistor, and a heater, and the constant voltage generated by the constant voltage element is divided by the resistor and the first thermistor. The temperature sensor sensitivity is increased by adding the voltage to the plus input of the differential operational amplifier and controlling the heater circuit by adding the voltage obtained by dividing the constant voltage by the second thermistor and the variable resistor to the minus input. Therefore, the temperature of the crystal unit can be accurately maintained.

本発明の高安定水晶発振器用の温度制御回路は、差動オペアンプのプラス側、マイナス側のそれぞれの入力に感温素子のサーミスタを用いて、センサ感度を高めたので、ヒータと感温素子、ヒータと水晶振動子とのタイムラグを少なくし、水晶振動子の温度を精度よく制御できるという利点がある。   The temperature control circuit for the high stability crystal oscillator of the present invention uses a thermistor of a temperature sensing element for each of the positive side and the minus side input of the differential operational amplifier, and increases the sensor sensitivity. There is an advantage that the time lag between the heater and the crystal unit is reduced, and the temperature of the crystal unit can be controlled with high accuracy.

図1は本発明に係る高安定水晶発振器の構造を示す側面断面図であって、プリント基板1の一方の面に表面実装型の小型ヒータ2を、間隔を隔して配置すると共に、該ヒータ2と接するように水晶振動子3を載置する。ヒータ2の間にサーミスタ4を配置すると共に、水晶振動子3の金属カンに密着固定する。そして、水晶振動子3の底部と発振回路用のプリント基板5との間にサーミスタ6を挟むように、水晶振動子3の底部を絶縁貫通するリード端子7をプリント基板6に半田付けすると共に、該プリント基板6の他方の面には発振回路用の電子部品8を半田付けする。
一方、プリント基板1の他方の面に温度制御用の電子部品9を半田付けすると共に、プリント基板1と5をL字型金具10等を用いて固定する。そして、ベース11に絶縁貫通する端子12とプリント基板1とを導通固定した上で、金属ケース13をベース11に被せて高安定水晶発振器を構成する。
なお、水晶振動子3は水晶基板14の両面に金属の薄膜電極15を蒸着等の手段で付着し、リード端子7で保持した状態で金属カンの中に真空密封したものである。
FIG. 1 is a side sectional view showing the structure of a highly stable crystal oscillator according to the present invention. A surface mount type small heater 2 is arranged on one surface of a printed circuit board 1 at an interval, and the heater The crystal unit 3 is placed so as to be in contact with 2. The thermistor 4 is disposed between the heaters 2 and is closely fixed to the metal can of the crystal unit 3. Then, the lead terminal 7 that insulates and penetrates the bottom of the crystal unit 3 is soldered to the printed circuit board 6 so that the thermistor 6 is sandwiched between the bottom of the crystal unit 3 and the printed circuit board 5 for the oscillation circuit. An electronic component 8 for an oscillation circuit is soldered to the other surface of the printed board 6.
On the other hand, the electronic component 9 for temperature control is soldered to the other surface of the printed circuit board 1, and the printed circuit boards 1 and 5 are fixed using an L-shaped metal fitting 10 or the like. Then, the terminal 12 that is insulated and penetrated through the base 11 and the printed board 1 are conductively fixed, and the metal case 13 is placed on the base 11 to constitute a highly stable crystal oscillator.
The quartz crystal resonator 3 is formed by attaching a metal thin film electrode 15 to both surfaces of a quartz substrate 14 by means of vapor deposition or the like and holding the lead terminal 7 in a vacuum sealed in a metal can.

図2は本発明に係る高安定水晶発振器用の温度制御回路の実施例を示す図であって、抵抗R1とサーミスタTH1とを直列接続して分圧回路を構成すると共に、その中点を差動オペアンプ(CMOSタイプ)OPのプラス側入力と接続し、サーミスタTH1の他方の端子を接地する。そして、サーミスタTH2と可変抵抗R2とを直列接続して分圧回路を構成し、その中点を差動オペアンプOPのマイナス側入力と接続すると共に、可変抵抗R2の他の端子を可変抵抗R3と直列接続し、可変抵抗R3の他方の端子を接地する。さらに、抵抗R1とサーミスタTH2の一方の端子は定電圧素子Reg(定電圧IC)を介して電源Vccに接続する。差動オペアンプOPの出力とマイナス入力との間には帰還抵抗R4を接続する。そして、差動オペアンプOPの出力は抵抗R5を介してMOS EFTのパワートランジスタTR1のゲートに接続し、電源Vccとドレインとの間に小型ヒータ素子H1を、ソースとを接地との間にヒータH2を接続する。なお、容量C1、C2、C3はバイパス容量である。
MOS EFTのパワートランジスタは電圧制御であるため、小型のC−MOS差動オペアンプを用いることが可能となる。
FIG. 2 is a diagram showing an embodiment of a temperature control circuit for a highly stable crystal oscillator according to the present invention, in which a resistor R1 and a thermistor TH1 are connected in series to form a voltage dividing circuit, and the midpoint is different. Connected to the positive input of the dynamic operational amplifier (CMOS type) OP, and the other terminal of the thermistor TH1 is grounded. The thermistor TH2 and the variable resistor R2 are connected in series to form a voltage dividing circuit, the midpoint thereof is connected to the negative input of the differential operational amplifier OP, and the other terminal of the variable resistor R2 is connected to the variable resistor R3. Connect in series and ground the other terminal of the variable resistor R3. Further, one terminal of the resistor R1 and the thermistor TH2 is connected to the power supply Vcc via a constant voltage element Reg (constant voltage IC). A feedback resistor R4 is connected between the output of the differential operational amplifier OP and the negative input. The output of the differential operational amplifier OP is connected to the gate of the power transistor TR1 of the MOS EFT through the resistor R5, and the small heater element H1 is connected between the power supply Vcc and the drain, and the heater H2 is connected between the source and the ground. Connect. Note that the capacitors C1, C2, and C3 are bypass capacitors.
Since the MOS EFT power transistor is voltage controlled, a small C-MOS differential operational amplifier can be used.

図2に示す温度制御回路について簡単に説明すると、温度が設定温度より低いときにはサーミスタTH1、TH2の抵抗が高くので、プラス側入力電圧Vは高くなり、マイナス側の入力電圧Vは低くなる。そして、CMOS型差動オペアンプOPの出力はオープン利得をAとして、電圧A(V−V)が出力され、該電圧がMOS−EFTトランジスタのゲートに印加されるので、ソース、ドレイン間には出力電圧A(V−V)に応じた電流が供給され、ヒータH1、H2が加熱される。加熱されて水晶振動子の近傍の温度が高くなると、サーミスタTH1、TH2の抵抗値が低下するので、プラス側入力電圧Vは下がり、マイナス側の入力電圧Vは上昇して、電圧差(V−V)が小さくなる。その結果、出力電圧A(V−V)は小さくなり、ソース、ドレイン間に供給される電流も小さくなる。やがて、入力電圧差(V−V)が零となるとMOS−EFTトランジスタがOFFとなるので電流の供給は停止し、設定された温度を保持することになる。
なお、温度制御用抵抗R2、R3を可変することにより、水晶振動子3の設定温度を変えることができる。
Briefly the temperature control circuit shown in FIG. 2, when the temperature is lower than the set temperature than high resistance of the thermistor TH1, TH2, the positive input voltage V + becomes higher, the input voltage V minus side - the lower the . The output of the CMOS-type differential operational amplifier OP is an open gain A, and a voltage A (V + −V ) is output. This voltage is applied to the gate of the MOS-EFT transistor, so Is supplied with a current corresponding to the output voltage A (V + −V ), and the heaters H1 and H2 are heated. When the temperature in the vicinity of the heated by quartz oscillator is high, the resistance value of the thermistor TH1, TH2 is reduced, the positive input voltage V + drops, the input voltage of the negative V - is rising, the voltage difference ( V + -V -) is reduced. As a result, the output voltage A (V + −V ) decreases, and the current supplied between the source and drain also decreases. Eventually, when the input voltage difference (V + −V ) becomes zero, the MOS-EFT transistor is turned off, so that the current supply is stopped and the set temperature is maintained.
The set temperature of the crystal unit 3 can be changed by changing the temperature control resistors R2 and R3.

温度t℃におけるサーミスタの抵抗R(t)は、周知のように次式で表すことができる
R(t)=RexpB(1/(t+273)−1/(t+273)) (1)
ここで、tは常温(25℃)、Rは常温での抵抗値、Bは所謂B定数である。
図2に示すようにプラス側入力電圧Vと、マイナス側の入力電圧Vと、定電圧素子Regの出力Vrefとを用いて、差動オペアンプOPの出力電圧Vout=A(V−V)を求め、差動オペアンプOPの利得Aを∞として、シミュレーションにより出力電圧Voutの一例を求めたものが図3に示す直線Aである。横軸を温度、縦軸を出力電圧Voutとし、温度制御回路の定数は、Vref=3.3V、R1=20kΩ、(R2+R3)=20kΩ、R4=200kΩ、サーミスタTH1、TH2のそれぞれのB定数をB=4400、それぞれ常温抵抗RをR=200kΩと設定した。直線Bは従来の温度制御回路、つまりサーミスタを1個用いた場合であり、図2においてサーミスタTH1を固定抵抗20kΩで置き換えることにより、出力電圧を求めものである。
本発明に係る温度制御回路の特性である直線Aの傾斜、即ちセンサ感度は、−1.2V/℃である。つまり、1℃の温度変化に対し、1.2Vの電圧低下を示すことになる。これに対し、従来の回路の直線Bのセンサ感度は−0.62V/℃であり、本発明に係る温度制御回路のセンサ感度は約2倍の感度を有すことになる。
As is well known, the resistance R (t) of the thermistor at a temperature t ° C. can be expressed by the following formula: R (t) = R 0 expB (1 / (t + 273) −1 / (t 0 +273)) (1 )
Here, t 0 is normal temperature (25 ° C.), R 0 is a resistance value at normal temperature, and B is a so-called B constant.
As shown in FIG. 2, the output voltage Vout = A (V + −V of the differential operational amplifier OP is obtained by using the positive side input voltage V + , the negative side input voltage V −, and the output Vref of the constant voltage element Reg. -) is obtained, the gain a of the differential operational amplifier OP as ∞, ones determined an example of an output voltage Vout by simulation is a straight line a shown in FIG. The horizontal axis is the temperature, the vertical axis is the output voltage Vout, and the constants of the temperature control circuit are: Vref = 3.3V, R1 = 20 kΩ, (R2 + R3) = 20 kΩ, R4 = 200 kΩ, and the B constants of the thermistors TH1 and TH2. B = 4400, room temperature resistance R 0 was set to R 0 = 200 kΩ, respectively. The straight line B is a case where a conventional temperature control circuit, that is, one thermistor is used, and the output voltage is obtained by replacing the thermistor TH1 with a fixed resistor 20 kΩ in FIG.
The slope of the straight line A that is the characteristic of the temperature control circuit according to the present invention, that is, the sensor sensitivity is -1.2 V / ° C. That is, a voltage drop of 1.2 V is shown for a temperature change of 1 ° C. On the other hand, the sensor sensitivity of the straight line B of the conventional circuit is −0.62 V / ° C., and the sensor sensitivity of the temperature control circuit according to the present invention has about twice the sensitivity.

図2に示すサーミスタTH2は、図1に示した2つのヒータ2の間に配置して、熱源との熱結合を強くし、サーミスタTH1は図1に示した水晶振動子3の底部に配置する。サーミスタTH2とヒータ2(図2のH1、H2)との熱結合が強い場合には、ヒータ2(H1、H2)から発生する熱と感知するサーミスタTH2とのタイムラグが小さく、所謂ハンチング現象が発生しにくく、安定な温度制御が可能となる。
また、水晶振動子3の温度に最も大きな影響を及ぼすのは、水晶基板14に付着した電極15と直結するリード端子7であるが、図1に示すようにヒータ2からの離れており、ヒータ2とサーミスタTH1との感知温度とにタイムラグが発生するおそれがあったが、本発明の温度制御回路を用いることにより、センサ感度を大きく設定することが可能となったのでこのおそれも解消した。
The thermistor TH2 shown in FIG. 2 is arranged between the two heaters 2 shown in FIG. 1 to strengthen the thermal coupling with the heat source, and the thermistor TH1 is arranged at the bottom of the crystal unit 3 shown in FIG. . When the thermal coupling between the thermistor TH2 and the heater 2 (H1, H2 in FIG. 2) is strong, the time lag between the heat generated from the heater 2 (H1, H2) and the thermistor TH2 that senses is small, so-called hunting phenomenon occurs. Therefore, stable temperature control is possible.
In addition, the lead terminal 7 directly connected to the electrode 15 attached to the quartz substrate 14 has the greatest influence on the temperature of the quartz crystal resonator 3, but is separated from the heater 2 as shown in FIG. 2 and the thermistor TH1 may have a time lag, but the use of the temperature control circuit of the present invention makes it possible to set the sensor sensitivity to a large value, which has also been solved.

図4は本発明に係る第2の実施例の温度制御回路の構成を示す図であって、図2と異なるところは、図1に示すサーミスタTH1に可変抵抗R6を並列接続したことと、サーミスタTH2に可変抵抗R7を並列接続したことである。
即ち、発振器の構造に応じてサーミスタTH1、TH2のB定数を可変するのでなく、並列抵抗R6、R7を可変することにより、それぞれのサーミスタのB定数を可変するに等しい効果を得ることができる。
FIG. 4 is a diagram showing the configuration of the temperature control circuit of the second embodiment according to the present invention. The difference from FIG. 2 is that the thermistor TH1 shown in FIG. That is, the variable resistor R7 is connected in parallel to TH2.
That is, it is possible to obtain an effect equivalent to changing the B constant of each thermistor by changing the parallel resistances R6 and R7, instead of changing the B constant of the thermistors TH1 and TH2 in accordance with the structure of the oscillator.

図5は本発明に係る第3の実施例の温度制御回路の構成を示す図であって、図2と異なるところは、図1に示すサーミスタTH1にサーミスタTH3を並列接続したことと、サーミスタTH2にサーミスタTH4を並列接続したことである。
即ち、図2に示す回路はサーミスタ2個を用いて温度制御を行うようにしたものであるが、より高精度の高安定水晶発振器を実現するには、複数のサーミスタを分散配置して温度制御を行う方が適している。図4は複数のサーミスタを分散配置した1例として4個のサーミスタを用いる場合の温度制御回路の構成を示す。
FIG. 5 is a diagram showing the configuration of the temperature control circuit of the third embodiment according to the present invention. The difference from FIG. 2 is that the thermistor TH3 is connected in parallel to the thermistor TH1 shown in FIG. Thermistor TH4 is connected in parallel.
That is, the circuit shown in FIG. 2 uses two thermistors for temperature control, but in order to realize a highly accurate and stable crystal oscillator, a plurality of thermistors are arranged in a distributed manner. It is better to do. FIG. 4 shows a configuration of a temperature control circuit in the case of using four thermistors as an example in which a plurality of thermistors are dispersedly arranged.

本発明に係る高安定水晶発振器の構造を示した概略側面断面図である。1 is a schematic side sectional view showing a structure of a highly stable crystal oscillator according to the present invention. 本発明に係る第1の実施例の温度制御用回路の構成を示す図である。It is a figure which shows the structure of the circuit for temperature control of 1st Example which concerns on this invention. 温度と出力電圧との関係を示す図である。It is a figure which shows the relationship between temperature and an output voltage. 本発明に係る第2の実施例の温度制御用回路の構成を示す図である。It is a figure which shows the structure of the circuit for temperature control of the 2nd Example which concerns on this invention. 本発明に係る第3の実施例の温度制御用回路の構成を示す図である。It is a figure which shows the structure of the circuit for temperature control of the 3rd Example based on this invention. 従来の小型の高安定水晶発振器の構造を示した概略側面断面図である。It is a schematic side sectional view showing the structure of a conventional small high stability crystal oscillator. 従来の温度制御用回路の構成を示す図である。It is a figure which shows the structure of the circuit for conventional temperature control.

符号の説明Explanation of symbols

1、5 プリント基板
2 ヒータ
3 水晶振動子
4、6 サーミスタ
7 リード端子
電子部品
10 L型金具
11 ベース
12 端子
13 ケース
14 水晶基板
15 電極
R1、R4、R5 抵抗
R2、R3、R6、R7 可変抵抗
TH1、TH2、TH3、TH4 サーミスタ
C1、C2、C3 容量
OP CMOS型差動オペアンプ
TR1 MOS型EFT
H1、H2 ヒータ
1, 5 Printed circuit board 2 Heater 3 Crystal oscillator 4, 6 Thermistor 7 Lead terminal electronic component 10 L-shaped bracket 11 Base 12 Terminal 13 Case 14 Crystal board 15 Electrode R1, R4, R5 Resistance R2, R3, R6, R7 Variable resistance TH1, TH2, TH3, TH4 thermistors
C1, C2, C3 Capacitance OP CMOS type differential operational amplifier TR1 MOS type EFT
H1, H2 heater

Claims (5)

ヒータを所定の温度に制御するための温度制御回路であって、
定電圧を出力する定電圧素子と、該定電圧素子の出力を分圧する第1サーミスタと抵抗とを有する第1の分圧回路と、前記定電圧素子の出力を分圧する第2のサーミスタと可変抵抗とを有する第2の分圧回路と、前記第1の分圧回路にて分圧した電圧をプラス側入力端に前記第2の分圧回路にて分圧した電圧をマイナス側入力端にそれぞれ入力した差動アンプの出力を以て温度を制御することを特徴とする温度制御回路。
A temperature control circuit for controlling the heater to a predetermined temperature,
A first voltage dividing circuit having a constant voltage element that outputs a constant voltage, a first thermistor that divides the output of the constant voltage element, and a resistor, a second thermistor that divides the output of the constant voltage element, and a variable A second voltage dividing circuit having a resistor, and a voltage divided by the first voltage dividing circuit and a voltage divided by the second voltage dividing circuit at a negative input terminal. A temperature control circuit characterized in that the temperature is controlled by the output of each input differential amplifier.
前記可変抵抗が2つの可変抵抗を直列接続して構成したものであることを特徴とする請求項1に記載の温度制御回路。 The temperature control circuit according to claim 1, wherein the variable resistor is configured by connecting two variable resistors in series. 前記第1のサーミスタに抵抗を並列接続し、前記第2のサーミスタに抵抗を並列接続したことを特徴とする請求項1あるいは2に記載の温度制御回路。 3. The temperature control circuit according to claim 1, wherein a resistor is connected in parallel to the first thermistor, and a resistor is connected in parallel to the second thermistor. 前記第1のサーミスタに第3のサーミスタを並列接続し、前記第2のサーミスタに第4のサーミスタを並列接続したことを特徴とする請求項1あるいは2に記載の温度制御回路。 The temperature control circuit according to claim 1, wherein a third thermistor is connected in parallel to the first thermistor, and a fourth thermistor is connected in parallel to the second thermistor. 水晶発振器にヒータを内蔵すると共に請求項1乃至4のいずれかに記載の温度制御回路にてヒータの温度を制御したことを特徴とする高安定水晶発振器。










5. A high-stable crystal oscillator characterized in that a heater is built in the crystal oscillator and the temperature of the heater is controlled by the temperature control circuit according to any one of claims 1 to 4.










JP2003344738A 2003-10-02 2003-10-02 Temperature control circuit and high stability crystal oscillator employing the same Pending JP2005117093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003344738A JP2005117093A (en) 2003-10-02 2003-10-02 Temperature control circuit and high stability crystal oscillator employing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003344738A JP2005117093A (en) 2003-10-02 2003-10-02 Temperature control circuit and high stability crystal oscillator employing the same

Publications (1)

Publication Number Publication Date
JP2005117093A true JP2005117093A (en) 2005-04-28

Family

ID=34538273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003344738A Pending JP2005117093A (en) 2003-10-02 2003-10-02 Temperature control circuit and high stability crystal oscillator employing the same

Country Status (1)

Country Link
JP (1) JP2005117093A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007110698A (en) * 2005-09-15 2007-04-26 Nippon Dempa Kogyo Co Ltd Constant temperature type crystal oscillator for high stability
JP2010103610A (en) * 2008-10-21 2010-05-06 Daishinku Corp Piezoelectric oscillator
JP2011198209A (en) * 2010-03-23 2011-10-06 Seiko Epson Corp Temperature control circuit, and constant-temperature piezoelectric oscillator
CN103546148A (en) * 2012-07-09 2014-01-29 日本电波工业株式会社 Oven controlled crystal oscillator
US8981260B2 (en) 2011-07-08 2015-03-17 Nihon Dempa Kogyo Co., Ltd. Temperature control circuit of oven-controlled crystal oscillator
JP2015173313A (en) * 2014-03-11 2015-10-01 日本電波工業株式会社 Temperature control circuit of quartz oscillator having thermostatic chamber
CN107134995A (en) * 2016-02-29 2017-09-05 日本电波工业株式会社 The crystal oscillator of attached thermostat
TWI626723B (en) * 2017-03-06 2018-06-11 力成科技股份有限公司 Package structure
CN110868213A (en) * 2019-11-14 2020-03-06 中国科学院武汉物理与数学研究所 Rubidium clock microwave cavity and crystal oscillator combined temperature control circuit
US20210196348A1 (en) * 2019-12-31 2021-07-01 Novocure Gmbh Arrays for Delivering Tumor Treating Fields (TTFields) with Individually Accessible Electrode Elements and Temperature Sensors

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007110698A (en) * 2005-09-15 2007-04-26 Nippon Dempa Kogyo Co Ltd Constant temperature type crystal oscillator for high stability
JP2010103610A (en) * 2008-10-21 2010-05-06 Daishinku Corp Piezoelectric oscillator
JP2011198209A (en) * 2010-03-23 2011-10-06 Seiko Epson Corp Temperature control circuit, and constant-temperature piezoelectric oscillator
US8981260B2 (en) 2011-07-08 2015-03-17 Nihon Dempa Kogyo Co., Ltd. Temperature control circuit of oven-controlled crystal oscillator
CN103546148B (en) * 2012-07-09 2017-10-10 日本电波工业株式会社 The crystal oscillator of attached thermostat
CN103546148A (en) * 2012-07-09 2014-01-29 日本电波工业株式会社 Oven controlled crystal oscillator
JP2015173313A (en) * 2014-03-11 2015-10-01 日本電波工業株式会社 Temperature control circuit of quartz oscillator having thermostatic chamber
CN107134995A (en) * 2016-02-29 2017-09-05 日本电波工业株式会社 The crystal oscillator of attached thermostat
JP2017157953A (en) * 2016-02-29 2017-09-07 日本電波工業株式会社 Crystal oscillator with thermostat
CN107134995B (en) * 2016-02-29 2021-11-02 日本电波工业株式会社 Crystal oscillator with thermostatic bath
TWI626723B (en) * 2017-03-06 2018-06-11 力成科技股份有限公司 Package structure
CN110868213A (en) * 2019-11-14 2020-03-06 中国科学院武汉物理与数学研究所 Rubidium clock microwave cavity and crystal oscillator combined temperature control circuit
CN110868213B (en) * 2019-11-14 2023-04-28 中国科学院武汉物理与数学研究所 Combined temperature control circuit of rubidium clock microwave cavity and crystal oscillator
US20210196348A1 (en) * 2019-12-31 2021-07-01 Novocure Gmbh Arrays for Delivering Tumor Treating Fields (TTFields) with Individually Accessible Electrode Elements and Temperature Sensors
US11878163B2 (en) * 2019-12-31 2024-01-23 Novocure Gmbh Arrays for delivering tumor treating fields (TTFields) with individually accessible electrode elements and temperature sensors

Similar Documents

Publication Publication Date Title
EP2062361B1 (en) Apparatus and method for temperature compensation of crystal oscillators
EP1302832B1 (en) Semiconductor device with temperature compensation circuit
US8026460B2 (en) Control circuit for thermostatic oven in oven controlled crystal oscillator
US8981260B2 (en) Temperature control circuit of oven-controlled crystal oscillator
US8653420B2 (en) Temperature control circuit of oven controlled crystal oscillator
US9013244B2 (en) Oscillating device, oscillating element and electronic apparatus
JP5218372B2 (en) Piezoelectric oscillator and frequency control method of piezoelectric oscillator
JP2005117093A (en) Temperature control circuit and high stability crystal oscillator employing the same
JP5764922B2 (en) Temperature control circuit, thermostatic chamber type piezoelectric oscillator, electronic device, and temperature control method
JP3272633B2 (en) Thermostat type piezoelectric oscillator
JP5040798B2 (en) Piezoelectric oscillator
JP2002223122A (en) Crystal oscillator
TWI604688B (en) Temperature controlling circuit and oven controlled crystal oscillator
JP4259174B2 (en) Temperature compensated piezoelectric oscillator
JP5640418B2 (en) Temperature control circuit and constant temperature type piezoelectric oscillator
JP2002135051A (en) Piezoelectric oscillator
JPH1141032A (en) Temperature controller for crystal oscillator
JP2004266820A (en) Piezoelectric oscillation circuit
JP5671939B2 (en) Piezoelectric oscillation circuit, constant temperature type piezoelectric oscillator
JPH033506A (en) Temperature compensation oscillator
JPH10284936A (en) Temperature compensation piezoelectric oscillator
JPH03126303A (en) Temperature compensation crystal oscillator
JPS61217751A (en) Moisture detector
JP2004186754A (en) Temperature compensating piezoelectric oscillator
JP2018014661A (en) Oscillator