JP2005116466A - Membrane-electrode junction and manufacturing method of the same - Google Patents

Membrane-electrode junction and manufacturing method of the same Download PDF

Info

Publication number
JP2005116466A
JP2005116466A JP2003352202A JP2003352202A JP2005116466A JP 2005116466 A JP2005116466 A JP 2005116466A JP 2003352202 A JP2003352202 A JP 2003352202A JP 2003352202 A JP2003352202 A JP 2003352202A JP 2005116466 A JP2005116466 A JP 2005116466A
Authority
JP
Japan
Prior art keywords
membrane
electrode
ion exchange
thermoplastic
electrode assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003352202A
Other languages
Japanese (ja)
Other versions
JP4870328B2 (en
Inventor
Sudan Shaha Madou
スーダン シャハ マドゥー
Yoshinori Nishiki
善則 錦
Tsuneto Furuta
常人 古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
De Nora Permelec Ltd
Original Assignee
Permelec Electrode Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permelec Electrode Ltd filed Critical Permelec Electrode Ltd
Priority to JP2003352202A priority Critical patent/JP4870328B2/en
Publication of JP2005116466A publication Critical patent/JP2005116466A/en
Application granted granted Critical
Publication of JP4870328B2 publication Critical patent/JP4870328B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a membrane-electrode junction having higher strength than before, which can be used for a fuel cell or a variety of industrial electrolyses, and to provide a manufacturing method of the same. <P>SOLUTION: The membrane-electrode junction 6 comprises a thermoplastic ion exchange film 1 and a positive electrode 2 and a negative electrode 4 jointed on either surface of the ion exchange film, where thermoplastic thin films 3, 5 exist either between the ion exchange film of the membrane-electrode junction 6 and the positive electrode or between that and the negative electrode. The thermoplastic thin films enhance affinity between the thermoplastic ion-exchange film and the respective electrodes, and improve mechanical binding force by its own deformation. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、接合強度の高い膜−電極接合体及びその製造方法に関し、より詳細には熱可塑性のイオン交換膜と、その表面に熱可塑性アイオノマー等を塗布し熱可塑性薄膜を形成した電極を接合した膜−電極接合体とその製造方法に関する。   TECHNICAL FIELD The present invention relates to a membrane-electrode assembly having high bonding strength and a method for producing the same, and more specifically, joining a thermoplastic ion exchange membrane and an electrode formed by applying a thermoplastic ionomer on the surface thereof to form a thermoplastic thin film. The present invention relates to a membrane-electrode assembly and a manufacturing method thereof.

燃料電池は、燃料の酸化反応で生じる自由エネルギー変化を電気エネルギーに変換させる電気化学的電池であり、PEM(Polymer Electrolyte Membrane)型燃料電池等がある。このPEM型燃料電池は、いわゆる膜−電極接合体(membrane-electrode-assembly、MEA)を含み、この膜−電極接合体は薄い固体高分子膜電解質とその両面の1対の電極(つまり陽極と陰極)を有している。固体状の膜がPEM燃料電池の電解質として使用されるため、水性電解質燃料電池と比較して、電解質と触媒間の接触サイトが限定される。従って電極中の反応面積が小さくなる。その結果、白金等の触媒利用率が10%程度まで減少してしまい、従って触媒の担持量を4mg/cm2程度まで高くすることが要求される。触媒担持量の減少は被覆の際のキーポイントであり、そのために電解質−触媒−気相の間に効果的な3相境界を形成して触媒利用率を向上させることが提案されている。 A fuel cell is an electrochemical cell that converts a free energy change caused by an oxidation reaction of fuel into electric energy, such as a PEM (Polymer Electrolyte Membrane) type fuel cell. This PEM type fuel cell includes a so-called membrane-electrode assembly (MEA), which is a thin solid polymer membrane electrolyte and a pair of electrodes on both sides (that is, an anode and an anode). Cathode). Since the solid membrane is used as the electrolyte of the PEM fuel cell, the contact site between the electrolyte and the catalyst is limited as compared with the aqueous electrolyte fuel cell. Accordingly, the reaction area in the electrode is reduced. As a result, the utilization rate of the catalyst such as platinum is reduced to about 10%, and therefore, it is required to increase the supported amount of the catalyst to about 4 mg / cm 2 . Decreasing the amount of catalyst supported is a key point in coating, and therefore it has been proposed to improve the catalyst utilization by forming an effective three-phase boundary between the electrolyte-catalyst-gas phase.

熱可塑性のアイオノマーは、表面の粗度に応じてホットプレスで変形させることができ、これを膜−電極接合体で使用すると、触媒層中の触媒を前記アイオノマーと容易に接触させることができる。これにより膜と電極間の界面に効果的な3相境界が得られる。
しかし市販のパーフルオロスルホン酸アイオノマーは、側鎖の絡み合いや官能基間のイオン性相互作用のため、溶融加工ができない。この問題点を解決するために、特許文献1は、1対の電極と、加水分解で遊離のイオン交換基に変換できる官能基を有する熱可塑性樹脂膜から成る膜−電極接合体の製造方法を開示している。溶解した前駆体の代わりにナフィオン(デュポン社の登録商標)溶液を使用することの不都合は、溶融加工ができないことであり、生成する膜−電極接合体の膜と電極間の結合及びコンパクトさは不十分である。
The thermoplastic ionomer can be deformed by hot pressing according to the roughness of the surface, and when this is used in a membrane-electrode assembly, the catalyst in the catalyst layer can be easily brought into contact with the ionomer. This provides an effective three-phase boundary at the interface between the membrane and the electrode.
However, commercially available perfluorosulfonic acid ionomers cannot be melt processed due to entanglement of side chains and ionic interactions between functional groups. In order to solve this problem, Patent Document 1 discloses a method for producing a membrane-electrode assembly comprising a pair of electrodes and a thermoplastic resin film having a functional group that can be converted into a free ion exchange group by hydrolysis. Disclosure. The disadvantage of using Nafion (DuPont®) solution instead of the dissolved precursor is that it cannot be melt processed, and the membrane-to-electrode bond and compactness of the resulting membrane-electrode assembly is It is insufficient.

非特許文献1でムーアらはテトラブチルアンモニウム(TBA+)イオンのようなサイズの大きい疎水性カウンターイオンを含ませることによりパーフルオロスルホン酸アイオノマー膜を溶融加工で調製する方法を記載している。
特開2002−231267号公報 米国特許明細書第5211984号 米国特許明細書第5882810号 Journal of Membrane Science 76(1992)7−14
In Non-Patent Document 1, Moore et al. Describe a method of preparing a perfluorosulfonic acid ionomer membrane by melt processing by including a large size hydrophobic counter ion such as tetrabutylammonium (TBA + ) ion.
JP 2002-231267 A US Patent Specification No. 5211984 U.S. Pat. No. 5,882,810 Journal of Membrane Science 76 (1992) 7-14

TBA+型膜は適度に溶融加工することができ、更に満足できる温度及び圧力で成型又は押出しすることができ、膜−電極接合体を製造するために好都合である。
特許文献2には、TBA+型のアイオノマー溶液を膜に転写により塗布し又は直接塗布し更に触媒を担持することが記載されている。特許文献3には、TBA+型のアイオノマー溶液と担持触媒を使用して触媒担持膜を調製する多くの手法が開示されている。これらの改良は触媒利用率を向上させるが、このような膜の問題点はこの膜を使用して得られる接合体が十分な強度を有していないことである。
つまり低重合度の原料又は高イオン交換容量の原料から製造される膜は抵抗が低く、従って電圧損失が小さいため、例えば燃料電池の電極用隔膜として使用すると、高い効率で電流を取り出すことができる。又同じ原料を使用する場合は、膜厚を薄くするほど抵抗が低くなり高い効率で電流を取り出すことができる。
TBA + type membranes can be moderately melt processed and can be molded or extruded at satisfactory temperatures and pressures, which is advantageous for producing membrane-electrode assemblies.
Patent Document 2 describes that a TBA + type ionomer solution is applied to a film by transfer or directly applied, and further supports a catalyst. Patent Document 3 discloses a number of techniques for preparing a catalyst-supporting membrane using a TBA + type ionomer solution and a supported catalyst. Although these improvements increase catalyst utilization, the problem with such membranes is that the joints obtained using these membranes do not have sufficient strength.
In other words, a membrane manufactured from a raw material with a low degree of polymerization or a raw material with a high ion exchange capacity has low resistance, and thus has a low voltage loss. . When the same raw material is used, the thinner the film thickness, the lower the resistance and the higher current can be taken out.

しかしながらこのような低電気抵抗の原料で製造した膜はいずれも機械的強度が劣り成膜性が悪くなる。つまり一般的には、成膜性が良いと電気抵抗値が高く、電気抵抗値が低いと機械的強度が低下することになる。
又一般にスルホン酸基、ホスホン酸基やカルボン酸基等に変性しうる官能基を有する熱可塑性樹脂は、弾性が高く、機械的変形及び加工がしやすく伸縮性及び柔軟性が優れている一方、遊離のイオン交換基を有すると伸縮性が劣り変形しにくい。通常高分子固体電解質は膜状に成形された後、電解槽に装着されるが、電解質を膜状に成形するには、ある程度の重合度を有する原料が必要となり、このような原料として例えばナフィオンが知られている。
However, any film produced from such a low electrical resistance material has poor mechanical strength and poor film formability. That is, generally, when the film formability is good, the electric resistance value is high, and when the electric resistance value is low, the mechanical strength is lowered.
In general, a thermoplastic resin having a functional group that can be modified into a sulfonic acid group, a phosphonic acid group, a carboxylic acid group, etc. has high elasticity, is easy to mechanically deform and process, and has excellent elasticity and flexibility, When it has a free ion exchange group, it is inferior in elasticity and hardly deformed. Usually, a polymer solid electrolyte is formed into a film shape and then attached to an electrolytic cell. However, in order to form an electrolyte into a film shape, a raw material having a certain degree of polymerization is required. As such a raw material, for example, Nafion It has been known.

重合度が低い原料は伝導性は優れているが成形加工が困難で通常は利用されない。重合度が低い原料(高分子固体電解質)を電極−膜接合体中で安定に使用することは困難である。例えば特許文献1では、官能基を有する熱可塑性樹脂を前もって最終形態の膜状には加工せずに、前駆体である熱可塑性樹脂として多孔性電極に進入又は圧入して一体化して電極−膜接合体とした後に、加水分解して前記官能基を脱離して遊離のイオン交換基に変換する方法が開示されている。
しかしこの方法よりも更に高強度の膜−電極接合体があれば好都合であることは当然である。
従って本発明は、従来よりも更に強度の高い膜−電極接合体とその製造方法を提供することを目的とする。
Raw materials having a low degree of polymerization are excellent in conductivity, but are difficult to form and are not usually used. It is difficult to stably use a raw material (polymer solid electrolyte) having a low degree of polymerization in the electrode-membrane assembly. For example, in Patent Document 1, a thermoplastic resin having a functional group is not processed into a final film shape in advance, and enters or press-fits into a porous electrode as a precursor thermoplastic resin to be integrated into an electrode-film. A method is disclosed in which after forming a conjugate, it is hydrolyzed to remove the functional group and convert it to a free ion exchange group.
However, it is natural that a membrane-electrode assembly having a higher strength than this method is advantageous.
Accordingly, an object of the present invention is to provide a membrane-electrode assembly having higher strength than the conventional one and a method for producing the same.

本発明は、少なくともその表面が熱可塑性を有するイオン交換膜、及びその両面に接合された陽極及び陰極を含んで成る膜−電極接合体において、前記イオン交換膜と前記陽極及び陰極間の少なくとも一方に熱可塑性薄膜を有することを特徴とする膜−電極接合体であり、本発明方法は、陽極及び/又は陰極の少なくとも一方面に熱可塑性樹脂含有液を塗布して熱可塑性薄膜を有する陽極及び/又は陰極を形成し、該陽極及び/又は陰極の前記熱可塑性薄膜を有する面を、少なくともその表面が熱可塑性を有するイオン交換膜に接触させ、ホットプレスすることにより一体化することを特徴とする膜−電極接合体の製造方法である。   The present invention provides a membrane-electrode assembly comprising an ion exchange membrane having at least a thermoplastic surface and an anode and a cathode joined to both surfaces thereof, and at least one of the ion exchange membrane and the anode and cathode. A membrane-electrode assembly characterized in that the method of the present invention comprises an anode having a thermoplastic thin film by applying a thermoplastic resin-containing liquid to at least one surface of the anode and / or the cathode. Forming a cathode and integrating the surface of the anode and / or the cathode having the thermoplastic thin film at least by bringing the surface into contact with an ion exchange membrane having thermoplasticity and hot pressing. This is a method for producing a membrane-electrode assembly.

以下本発明を詳細に説明する。
本発明の膜−電極接合体は、水素負極(カソード)と酸素正極(アノード)からなる燃料電池、あるいはガス電極を用いる工業電解、酸素発生やオゾン発生用陽極、水素発生陰極等を用いるゼロギャップ型電解槽に使用すると特に有効である。
本発明は、比較的成膜性の劣る材料を使用して膜−電極接合体を製造する場合でも最終的な接合体が満足できるレベルの機械的強度を有する接合体を提供しようとするものである。
The present invention will be described in detail below.
The membrane-electrode assembly of the present invention is a fuel cell composed of a hydrogen negative electrode (cathode) and an oxygen positive electrode (anode), or an industrial electrolysis using a gas electrode, an oxygen generation or ozone generation anode, a zero gap using a hydrogen generation cathode, etc. It is particularly effective when used in a type electrolytic cell.
The present invention is intended to provide a joined body having a mechanical strength of a level that can be satisfied by a final joined body even when a membrane-electrode assembly is manufactured using a material having relatively poor film formability. is there.

本発明のイオン交換膜は少なくともその表面が熱可塑性であるイオン交換膜とし、遊離のスルホン酸を有する含フッ素イオン交換樹脂であるパーフルオロカーボン重合体又はその前駆体である官能基が保護されたパーフルオロカーボン重合体が好ましく使用できる。熱可塑性樹脂の望ましい例は、テトラフルオロエチレン(TFE)とスルホン酸基を有する含フッ素イオン交換樹脂の前駆体であるフルオロビニル化合物との共重合体である。重合体の成分中のTFEモノマーと前駆体を有するフルオロビニルモノマーとの比率及び各モノマーの種類により、変性後の膜の物性は顕著に異なり、1.2〜1.5mm当量/乾燥樹脂以上のイオン交換容量を有する膜は試験的には得られているが、機械的強度がないため単独膜としての成型が困難であり、使用に耐えない。このため、市販されている膜は1mm当量/乾燥樹脂以下であり、電気抵抗は容量の低下と共に増大するため好ましくない。又他の熱可塑性樹脂の望ましい例として、ホスホン酸基を有する含フッ素イオン交換樹脂の前駆体であるフルオロビニル化合物との共重合体がある。しかしながら本発明の接合体に使用されるイオン交換膜はこれらに限定されるものではない。   The ion exchange membrane of the present invention is a perfluorocarbon polymer which is a fluorine-containing ion exchange resin having a free sulfonic acid or a functional group which is a precursor thereof, which is at least a surface of which is thermoplastic. A fluorocarbon polymer can be preferably used. A desirable example of the thermoplastic resin is a copolymer of tetrafluoroethylene (TFE) and a fluorovinyl compound which is a precursor of a fluorinated ion exchange resin having a sulfonic acid group. Depending on the ratio of the TFE monomer in the polymer component to the fluorovinyl monomer having a precursor and the type of each monomer, the physical properties of the film after modification are markedly different, and the ion exchange capacity is 1.2 to 1.5 mm equivalent / dry resin or more. Although a film having the above has been obtained on a trial basis, since it does not have mechanical strength, it is difficult to mold as a single film and cannot be used. For this reason, the commercially available film is 1 mm equivalent / dry resin or less, and the electric resistance increases with a decrease in capacity, which is not preferable. A desirable example of another thermoplastic resin is a copolymer with a fluorovinyl compound which is a precursor of a fluorinated ion exchange resin having a phosphonic acid group. However, the ion exchange membrane used for the joined body of the present invention is not limited to these.

前述のイオン交換膜の熱可塑性が不十分な場合あるいは熱可塑性をより高めることが望ましい場合には、テトラブチルアンモニウム(TBA+)等の4級アンモニウム基を導入することができる。TBA+の導入はイオン交換膜を例えばTBAOH(水酸化テトラブチルアンモニウム)/メタノール溶液中に浸漬すれば良く、これによりイオン交換膜のスルホン酸基等がTBAOHと反応してTBA+の塩に変換され熱可塑性が向上して緩和な温度及び圧力条件で成型や押出し等の溶融加工することが可能になるが、膜強度は低下する。溶融加工が容易になるのは、大きな対イオンがアニオンサイトを覆い隠してポリマー側鎖間のイオンの相互作用を最小にするからであると推測できる。 When the above-described ion exchange membrane has insufficient thermoplasticity or when it is desired to further increase the thermoplasticity, a quaternary ammonium group such as tetrabutylammonium (TBA + ) can be introduced. TBA + can be introduced by immersing the ion exchange membrane in, for example, a TBAOH (tetrabutylammonium hydroxide) / methanol solution, whereby the sulfonic acid group of the ion exchange membrane reacts with TBAOH and is converted to a salt of TBA +. However, the thermoplasticity is improved, and melt processing such as molding and extrusion can be performed under moderate temperature and pressure conditions, but the film strength is lowered. It can be inferred that the melt processing is facilitated because large counter ions mask the anion sites and minimize ion interactions between polymer side chains.

前記熱可塑性イオン交換膜に接合される電極、つまり陽極及び陰極は用途に応じて選択でき、燃料電池用として使用する場合にはガス拡散電極を、工業電解用として使用する場合にはガス拡散電極や金属電極を選択できる。これらの電極は一般に、基本機能である電極反応を進行させるための白金等の触媒、反応の進行を補助する副成分(ガス輸送のための疎水性層、助触媒等)及び電子などの荷電粒子を担持し又は輸送する導電性電極基材等からなる。
続いて電極に担持する触媒に関して説明するが、本発明の場合には後述の通り、電極とイオン交換膜間に熱可塑性薄膜を形成するため、電極自体には触媒を担持させずに前記熱可塑性薄膜中に触媒を分散させても良い。
The electrodes to be joined to the thermoplastic ion exchange membrane, that is, the anode and the cathode can be selected according to the application, and when used for a fuel cell, a gas diffusion electrode is used. For an industrial electrolysis, a gas diffusion electrode. And metal electrodes can be selected. These electrodes are generally a catalyst such as platinum for proceeding with the electrode reaction, which is a basic function, subcomponents (hydrophobic layer for gas transport, cocatalyst, etc.) that assist the progress of the reaction, and charged particles such as electrons. It consists of a conductive electrode base material that carries or transports.
Subsequently, the catalyst supported on the electrode will be described. In the case of the present invention, as described later, a thermoplastic thin film is formed between the electrode and the ion exchange membrane. A catalyst may be dispersed in the thin film.

本発明に使用する電極は多孔性でも平板状でも良く、燃料電池用の場合は化学的安定性や製造コストの面から炭素繊維や炭素粉末等のカーボン製とすることが望ましい。これらのカーボンの三次元的ガス流通路でもある多孔性内壁には、白金や白金−ルテニウム合金等の貴金属又は貴金属酸化物等の電極物質を担持することが望ましい。カーボン粒子の場合には、電極物質を担持させフッ素樹脂等のバインダーと混合し120〜370℃で焼成することにより電極板が得られ、通常この電極板には10nm〜0.1mmの孔径の多孔部が形成され、原料ガスの供給と生成物の取出しが行われる。前記バインダーとして高分子固体電解質を使用すると接触面積が増大して性能向上が期待できる。両電極板の外側には好ましくは溝加工が施され空孔を有する給電体を設置し、該給電体から電流を供給し更にガスの供給及び排出を行う。電極板の強度が不足し、平滑性及び均一な接合が維持できない場合は、両電極板間に集電体又は補強材を挟んでも良いが電圧損失が最小になるように設置することが望ましい。両電極板とも剛体でありそれらの内面間全体にイオン交換膜や熱可塑性樹脂を均一に密着させることが困難である場合には、柔軟性を有する電極板を使用し、又は柔軟性を有する集電体と組み合わせて使用すれば良い。電極板間の距離が0.01mmの場合、0.005〜0.02mm程度の変形が可能な柔軟性があれば十分である。給電体や集電体としてチタンやステンレス等の耐食性金属又は合金が使用でき、溝加工を施す代わりにメッシュやルーバーを形成した空孔を有する材料を使用しても良い。   The electrode used in the present invention may be porous or flat, and in the case of a fuel cell, it is desirable that the electrode is made of carbon such as carbon fiber or carbon powder from the viewpoint of chemical stability and manufacturing cost. It is desirable to support an electrode material such as noble metal or noble metal oxide such as platinum or platinum-ruthenium alloy on the porous inner wall which is also a three-dimensional gas flow passage of these carbons. In the case of carbon particles, an electrode plate is obtained by supporting an electrode substance, mixing with a binder such as a fluororesin, and firing at 120 to 370 ° C., and usually a porous portion having a pore diameter of 10 nm to 0.1 mm. The raw material gas is supplied and the product is taken out. When a polymer solid electrolyte is used as the binder, the contact area increases and an improvement in performance can be expected. A power supply body that is preferably grooved and has holes is provided outside both electrode plates, and a current is supplied from the power supply body, and gas is supplied and discharged. If the strength of the electrode plate is insufficient, and smoothness and uniform bonding cannot be maintained, a current collector or a reinforcing material may be sandwiched between the two electrode plates, but it is desirable that the voltage loss be minimized. If both electrode plates are rigid and it is difficult to uniformly adhere an ion exchange membrane or thermoplastic resin to the entire inner surface, use a flexible electrode plate, or use a flexible collector plate. What is necessary is just to use it combining with an electric body. When the distance between the electrode plates is 0.01 mm, it is sufficient if there is flexibility that allows deformation of about 0.005 to 0.02 mm. Corrosion-resistant metals or alloys such as titanium and stainless steel can be used as the power supply or current collector, and a material having pores formed with meshes or louvers may be used instead of applying grooves.

通常の電解用として使用する場合の酸素発生用陽極の触媒としては、イリジウム、白金、ルテニウム、スズ、銀及びチタン等の金属又はそれらの酸化物を使用することが好ましい。オゾン発生用陽極の触媒としては、導電性ダイヤモンド、酸化鉛等が使用できる。この場合酸素供給量は理論量の約2倍とし、空気や酸素ボンベ内の酸素、あるいは別に設置した電解槽での水電解で得られる酸素を使用できる。
これらの触媒は、チタン、タンタル等の耐食性を有する金網、粉末焼結体、金属繊維焼結体上に、熱分解法、樹脂固着法、複合めっき法等により触媒量が1〜1000g/m2程度になるように担持する。電極板の厚さは0.1〜5mmが好ましい。この場合の陽極給電体はチタン等の金属、その合金や酸化物とする。該給電体には、反応ガス及び液供給、生成ガス及び生成物の除去を速やかに行うために疎水性や親水性の材料を分散担持することが望ましい。
As the catalyst for the oxygen generating anode when used for ordinary electrolysis, it is preferable to use metals such as iridium, platinum, ruthenium, tin, silver and titanium, or oxides thereof. As the catalyst for the anode for generating ozone, conductive diamond, lead oxide or the like can be used. In this case, the oxygen supply amount is about twice the theoretical amount, and oxygen obtained by air electrolysis in air or oxygen cylinders or water electrolysis in a separate electrolytic cell can be used.
These catalysts have a catalyst amount of 1-1000 g / m 2 on a wire mesh, powder sintered body, metal fiber sintered body having corrosion resistance such as titanium and tantalum by a thermal decomposition method, a resin fixing method, a composite plating method, or the like. Carry to the extent. The thickness of the electrode plate is preferably 0.1 to 5 mm. In this case, the anode feeder is a metal such as titanium, an alloy thereof, or an oxide. It is desirable to disperse and carry a hydrophobic or hydrophilic material on the power supply body in order to quickly supply the reaction gas and liquid, and remove the generated gas and product.

又水素発生用陰極の触媒は、白金、ルテニウム等の金属又はそれらの酸化物が好ましく、これらの触媒は、チタン、ニッケル、カーボン及びステンレス等の耐食性を有する金網、粉末焼結体、金属繊維焼結体上に、熱分解法、樹脂固着法、複合めっき法等により触媒濃度が1〜1000g/m2程度になるように担持する。電極板の厚さは0.1〜5mmが好ましい。この場合の陰極給電体はチタン、ステンレス等の金属、その合金や酸化物あるいはカーボンとする。該給電体には、反応ガス及び液供給、生成ガス及び生成物の除去を速やかに行うために疎水性や親水性の材料を分散担持することが望ましい。 Further, the catalyst for the cathode for generating hydrogen is preferably a metal such as platinum or ruthenium or an oxide thereof, and these catalysts include a wire mesh having a corrosion resistance such as titanium, nickel, carbon and stainless steel, a powder sintered body, and a metal fiber firing. On the compact, it is supported so that the catalyst concentration is about 1 to 1000 g / m 2 by a thermal decomposition method, a resin fixing method, a composite plating method or the like. The thickness of the electrode plate is preferably 0.1 to 5 mm. The cathode power supply in this case is a metal such as titanium or stainless steel, an alloy thereof, an oxide, or carbon. It is desirable to disperse and carry a hydrophobic or hydrophilic material on the power supply body in order to quickly supply the reaction gas and liquid, and remove the generated gas and product.

本発明方法に従って膜−電極接合体を製造する場合には、前述の陽極及び陰極の少なくとも一方のイオン交換膜に接触する面に熱可塑性樹脂含有液をスプレー等により塗布し乾燥して熱可塑性薄膜を形成する。この熱可塑性樹脂含有液は、低重合の熱可塑性アイオノマー、例えばTBA+型アイオノマーを溶媒に溶解又は懸濁させて、又は溶解したナフィオンのような遊離(プロトン型)のパーフルオロスルホン酸アイオノマー溶液にTBAOH/メタノール溶液を添加して調製できる。 When a membrane-electrode assembly is produced according to the method of the present invention, a thermoplastic thin film is applied by spraying a liquid containing a thermoplastic resin onto the surface that contacts at least one of the ion exchange membranes of the anode and the cathode and dried. Form. This thermoplastic resin-containing liquid is obtained by dissolving or suspending a low-polymerization thermoplastic ionomer, for example, TBA + type ionomer in a solvent, or dissolving it in a free (proton type) perfluorosulfonic acid ionomer solution such as Nafion. It can be prepared by adding a TBAOH / methanol solution.

前記熱可塑性イオン交換膜と熱可塑性薄膜を形成した電極の一体化は例えば次の例のようにして行えば良い。
好ましくは両者とも熱可塑性薄膜を形成した陽極及び陰極の間隙に、前もって薄いシート状に成形した熱可塑性イオン交換膜を挟み、例えば約2×10の5乗〜10の6乗Paの圧力及び140〜180℃の温度で3分間ホットプレスして均質膜を得る。
陽極及び陰極は通常10nmから0.1mmの孔径の多孔部を有し、一体化の工程における前記加熱あるいは加圧により前記熱可塑性薄膜が熱可塑性イオン交換膜に密着し、かつ加圧により両者が変形し、更に両者の有する熱可塑性が親和力となって強固な結合が生じる。
The integration of the thermoplastic ion exchange membrane and the electrode on which the thermoplastic thin film is formed may be performed as in the following example, for example.
Preferably, both of them sandwich a thermoplastic ion exchange membrane formed in the form of a thin sheet in advance between the anode and the cathode on which the thermoplastic thin film is formed, for example, a pressure of about 2 × 10 5 to 10 6 Pa and 140 Hot press at a temperature of ˜180 ° C. for 3 minutes to obtain a homogeneous film.
The anode and cathode usually have a porous portion with a pore diameter of 10 nm to 0.1 mm, and the thermoplastic thin film comes into close contact with the thermoplastic ion exchange membrane by the heating or pressurizing in the integration process, and both are deformed by the pressurizing. In addition, the thermoplasticity of the two has an affinity to produce a strong bond.

更に陽極及び/又は陰極が多孔性であると、イオン交換膜の一部が電極表面あるいは熱可塑性薄膜の多孔部内に押出され、三次元的界面が形成され、電極と熱可塑性イオン交換膜が更に密着して高強度の接合体が製造される。
この膜−電極接合体はイオン交換基が4級アンモニウム基等となっているため、遊離のイオン交換基を有する膜−電極接合体と比較すると強度は低くなっている。この膜−電極接合体を加水分解するとイオン交換基が遊離(プロトン型又は酸型)基となって膜−電極接合体の強度がより以上に向上する。
Further, when the anode and / or the cathode are porous, a part of the ion exchange membrane is extruded into the electrode surface or the porous portion of the thermoplastic thin film to form a three-dimensional interface, and the electrode and the thermoplastic ion exchange membrane further Adhering closely, a high-strength bonded body is manufactured.
In this membrane-electrode assembly, since the ion exchange group is a quaternary ammonium group or the like, the strength is lower than that of a membrane-electrode assembly having a free ion exchange group. When this membrane-electrode assembly is hydrolyzed, the ion exchange group becomes a free (proton type or acid type) group, and the strength of the membrane-electrode assembly is further improved.

この加水分解は、例えば塩酸水溶液又は硫酸水溶液に膜−電極接合体を浸漬することにより行うことができ、その後脱イオン水で洗浄して遊離(H+)のイオン交換基を有する膜−電極接合体が得られる。
このようにして得られた膜−電極接合体は従来の膜−電極接合体と同様にして燃料電池内や電解槽内に設置すれば良い。反応物と生成物の分離及び生成物の搬送を確実に行うために、電極−膜接合体の周囲にガスケットを配置でき、その厚さは0.01〜10mmが好ましい。材質は使用条件等に応じて選択すれば良く、例えば含フッ素樹脂やゴムが使用できる。
This hydrolysis can be performed, for example, by immersing the membrane-electrode assembly in an aqueous hydrochloric acid solution or an aqueous sulfuric acid solution, and then washed with deionized water to have a membrane-electrode assembly having a free (H + ) ion exchange group. The body is obtained.
The membrane-electrode assembly thus obtained may be installed in a fuel cell or an electrolytic cell in the same manner as a conventional membrane-electrode assembly. In order to reliably separate the reactant and the product and to convey the product, a gasket can be disposed around the electrode-membrane assembly, and the thickness is preferably 0.01 to 10 mm. The material may be selected according to the use conditions and the like. For example, a fluorine-containing resin or rubber can be used.

本発明の膜−電極接合体は、熱可塑性イオン交換膜と電極間の電極表面に熱可塑性薄膜を有するため、イオン交換膜と電極との親和力が増大して接合体全体の強度が増大する。
更に前記熱可塑性薄膜が膜及び電極による押圧により変形していると、前記熱可塑性薄膜と電極及びイオン交換膜との機械的な結合が強化される。
前記熱可塑性薄膜はテトラブチルアンモニウムのアイオノマーであることが望ましい。
Since the membrane-electrode assembly of the present invention has a thermoplastic thin film on the surface of the electrode between the thermoplastic ion exchange membrane and the electrode, the affinity between the ion exchange membrane and the electrode increases and the strength of the entire assembly increases.
Further, when the thermoplastic thin film is deformed by pressing with the film and the electrode, mechanical bonding between the thermoplastic thin film, the electrode and the ion exchange membrane is strengthened.
The thermoplastic thin film is preferably a tetrabutylammonium ionomer.

前記膜−電極接合体は、陽極及び/又は陰極の少なくとも一方面に熱可塑性樹脂含有液を塗布して熱可塑性薄膜を形成した陽極及び/又は陰極を作製し、該陽極及び/又は陰極の前記熱可塑性薄膜を有する面を、少なくともその表面が熱可塑性を有するイオン交換膜に接触させ、ホットプレスすることにより一体化して製造することもできる。
この方法では、ホットプレス前の熱可塑性イオン交換膜が4級アンモニウム基等の官能基を有し、一体化後に前記官能基を加水分解して遊離のイオン交換膜に変換するようにすると、溶融加工時のイオン交換膜が熱可塑性を有するため所望形状のイオン交換膜に成型でき、最終的には高強度の遊離のイオン交換膜に変換されるため、所望形状の高強度の膜−電極接合体が得られる。
The membrane-electrode assembly produces an anode and / or cathode in which a thermoplastic thin film is formed by applying a thermoplastic resin-containing liquid to at least one surface of the anode and / or cathode, and the anode and / or cathode The surface having the thermoplastic thin film can also be manufactured integrally by bringing the surface into contact with an ion exchange membrane having at least the surface of the thermoplastic thin film and hot pressing.
In this method, the thermoplastic ion exchange membrane before hot pressing has a functional group such as a quaternary ammonium group, and after integration, the functional group is hydrolyzed to be converted into a free ion exchange membrane. Since the ion exchange membrane at the time of processing has thermoplasticity, it can be formed into an ion exchange membrane of a desired shape, and finally converted into a high-strength free ion exchange membrane. The body is obtained.

次に本発明による膜−電極接合体の実施形態例を図1及び2に基づいて説明する。
図1は、組立て前の本発明による膜−電極接合体の一実施形態を示す縦断面図、図2は同じく組立て後の膜−電極接合体の一実施形態を示す縦断面図である。
Next, an embodiment of a membrane-electrode assembly according to the present invention will be described with reference to FIGS.
FIG. 1 is a longitudinal sectional view showing an embodiment of a membrane-electrode assembly according to the present invention before assembly, and FIG. 2 is a longitudinal sectional view showing an embodiment of the membrane-electrode assembly after assembly.

図1に示す組立て前の状態では、イオン交換膜1は少なくともその表面が熱可塑性とされている。この熱可塑性のため、前記イオン交換膜1は溶融加工が良好で容易に所望形状に成型できる。
ガス拡散陽極2の前記イオン交換膜1側には、TBA+型アイオノマー等の熱可塑性樹脂を溶解した熱可塑性樹脂含有液を塗布後乾燥して形成された熱可塑性薄膜3が被覆されている。前記ガス拡散陽極2とイオン交換膜1に対して反対側にはガス拡散陰極4が配置され、該ガス拡散陰極4の前記イオン交換膜1側には、同様にして熱可塑性薄膜5が被覆されている。電極触媒はガス拡散陽極2及びガス拡散陰極4に担持されていても熱可塑性薄膜3、5のいずれかに又は両者に担持されていても良い。
In the state before assembly shown in FIG. 1, at least the surface of the ion exchange membrane 1 is thermoplastic. Due to this thermoplasticity, the ion exchange membrane 1 can be easily molded into a desired shape with good melt processing.
The gas diffusion anode 2 is coated with a thermoplastic thin film 3 formed by applying and drying a thermoplastic resin-containing liquid in which a thermoplastic resin such as TBA + type ionomer is dissolved. A gas diffusion cathode 4 is disposed on the opposite side of the gas diffusion anode 2 and the ion exchange membrane 1, and the thermoplastic thin film 5 is similarly coated on the ion exchange membrane 1 side of the gas diffusion cathode 4. ing. The electrode catalyst may be carried on the gas diffusion anode 2 and the gas diffusion cathode 4, or may be carried on either or both of the thermoplastic thin films 3 and 5.

このイオン交換膜1の両面に前記ガス拡散陽極2及びガス拡散陰極4をそれぞれの熱可塑性薄膜3、5が接触するように配置させた後、加熱及び加圧してホットプレスを行うと、熱可塑性薄膜3、5が部分的に溶融し界面が変形して3相境界が形成されて前記熱可塑性イオン交換膜1と良好な親和力で結合して図2に示す膜−電極接合体6が得られる。
次に、塩酸や水酸化ナトリウム水溶液で加水分解を行って遊離のイオン交換基に変換する。遊離のイオン交換基を有する膜は高強度であり、全体として強度の高い膜−電極接合体6が得られる。
When the gas diffusion anode 2 and the gas diffusion cathode 4 are disposed on both surfaces of the ion exchange membrane 1 so that the thermoplastic thin films 3 and 5 are in contact with each other, and then hot pressing is performed by heating and pressurizing, the thermoplasticity The thin films 3 and 5 are partially melted and the interface is deformed to form a three-phase boundary, which is bonded to the thermoplastic ion exchange membrane 1 with a good affinity to obtain the membrane-electrode assembly 6 shown in FIG. .
Next, it hydrolyzes with hydrochloric acid or sodium hydroxide aqueous solution, and converts into a free ion exchange group. The membrane having free ion exchange groups has high strength, and the membrane-electrode assembly 6 having high strength as a whole is obtained.

次に本発明に係る膜−電極接合体の実施例を記載するが、本発明はこれらに限定されるものではない。   Next, although the Example of the membrane-electrode assembly which concerns on this invention is described, this invention is not limited to these.

遊離のイオン交換膜(デュポン社の商品名ナフィオン112)を、5%の過酸化水素を含有する脱イオン水中、70から80℃で約1時間加熱し、有機性不純物を除去した。続いて前記イオン交換膜を同様に脱イオン水中70から80℃で約1時間加熱して過酸化水素と痕跡量の有機性不純物を除去した。更にこのイオン交換膜を硫酸中で同様の条件で加熱処理を行って金属性不純物を除去し、次いで脱イオン水中で同様の条件で3回加熱処理を行って硫酸を除去した。   A free ion exchange membrane (trade name Nafion 112 from DuPont) was heated in deionized water containing 5% hydrogen peroxide at 70 to 80 ° C. for about 1 hour to remove organic impurities. Subsequently, the ion exchange membrane was similarly heated at 70 to 80 ° C. for about 1 hour in deionized water to remove hydrogen peroxide and trace organic impurities. Further, this ion exchange membrane was heat-treated in sulfuric acid under the same conditions to remove metallic impurities, and then heat-treated in deionized water under the same conditions three times to remove sulfuric acid.

この予備洗浄したイオン交換膜を、TBAOH/メタノール溶液中に攪拌下で8時間浸漬して溶融加工TBA+型膜を調製した。
溶解したプロトン型パーフルオロスルホン酸アイオノマーであるナフィオンの5%溶液に、TBAOH/メタノールを加えて、溶解した熱可塑性のTBA+型アイオノマーに変換した。
分散助剤であるグリセロールのナフィオン溶液(ほぼ1:1の重量比)を前記アイオノマーに加えた。得られた溶液を超音波で攪拌して均一に分散させスプレー用に適した粘度の熱可塑性樹脂含有液を形成した。
This pre-cleaned ion exchange membrane was immersed in a TBAOH / methanol solution with stirring for 8 hours to prepare a melt-processed TBA + type membrane.
TBAOH / methanol was added to a 5% solution of Nafion, a dissolved proton-type perfluorosulfonic acid ionomer, to convert it into a dissolved thermoplastic TBA + -type ionomer.
A dispersion aid, glycerol Nafion solution (approximately 1: 1 weight ratio) was added to the ionomer. The obtained solution was stirred with an ultrasonic wave and uniformly dispersed to form a thermoplastic resin-containing liquid having a viscosity suitable for spraying.

触媒である白金を担持したカーボン粉末(ファーネスブラック、 米国Vulcan XC-72)と触媒とし、これとPTFE樹脂とを混練してカーボンクロス(ゾルテック株式会社製)に塗工し、330 ℃で焼成した厚さ0.4 mmのシートをガス拡散陽極及び陰極とした。
前記熱可塑性樹脂含有液をこれらの陽極及び陰極にスプレーして被覆し、60〜90℃で20分乾燥し、表面にTBA+型薄膜を有する陽極及び陰極とした。
前記溶融加工TBA+型膜を前記陽極及び陰極間に位置させ、5×10の5乗Paの圧力下180℃でホットプレスした。これにより溶融加工TBA+型膜と前記陽極及び陰極表面のTBA+型アイオノマーが一体化して膜と電極間の界面に3相境界が形成されて接触性が向上した均一な膜−電極接合体を得た。
The catalyst was platinum-supported carbon powder (Furness Black, Vulcan XC-72, USA) and a catalyst, which was kneaded with PTFE resin, applied to carbon cloth (manufactured by Zoltec Corporation), and baked at 330 ° C. Sheets having a thickness of 0.4 mm were used as gas diffusion anodes and cathodes.
These thermoplastic resin-containing liquids were sprayed onto these anodes and cathodes, coated, and dried at 60 to 90 ° C. for 20 minutes to obtain anodes and cathodes having a TBA + type thin film on the surface.
The melt-processed TBA + mold film was positioned between the anode and the cathode and hot-pressed at 180 ° C. under a pressure of 5 × 10 5 Pa. As a result, the melt-processed TBA + type membrane and the TBA + type ionomer on the surface of the anode and cathode are integrated to form a three-phase boundary at the interface between the membrane and the electrode, thereby obtaining a uniform membrane-electrode assembly with improved contactability. Obtained.

このようにして得られた接合体を、20重量%の塩酸水溶液と有機溶媒である50重量%メタノールの混合溶液(60〜90℃)中に3時間浸漬して加水分解した。次いでこのように加水分解した接合体を、有機溶媒である50重量%メタノールと50重量%の脱イオン水の混合溶液に浸し、続いて脱イオン水中でリンスした。
この膜−電極接合体の断面の走査電子顕微鏡写真(倍率:650倍)を図3に示した。図3から、ガス拡散電極の触媒担持箇所が明白色になること及び3相境界が形成されていること、更に膜−電極接合体が高度の均一性を有し膜と電極間に良好な付着性が得られていることが分かる。
The joined body thus obtained was hydrolyzed by being immersed in a mixed solution (60 to 90 ° C.) of 20% by weight hydrochloric acid aqueous solution and 50% by weight methanol as an organic solvent for 3 hours. Subsequently, the thus hydrolyzed conjugate was immersed in a mixed solution of 50 wt% methanol and 50 wt% deionized water, which was an organic solvent, and subsequently rinsed in deionized water.
A scanning electron micrograph (magnification: 650 times) of a cross section of this membrane-electrode assembly is shown in FIG. From FIG. 3, the catalyst carrying portion of the gas diffusion electrode is clearly colored and a three-phase boundary is formed, and the membrane-electrode assembly has a high degree of uniformity and good adhesion between the membrane and the electrode. It can be seen that sex is obtained.

ニッケルフォームを各電極の膜と反対側に装着し給電体とした。この膜−電極接合体を3mmピッチでボルトとナットで電流供給体として機能する溝が形成されたチタン製電極室内に設置したところ、面圧が約105Paに達するセルが得られた。
90℃で水素及び酸素を10ml/分の割合で電極室に供給しながら電圧と電流の関係を測定した。その結果、電流20Aにおけるセル電圧は0.83Vであった。
Nickel foam was mounted on the side opposite to the film of each electrode to form a power feeder. When this membrane-electrode assembly was installed in a titanium electrode chamber in which a groove functioning as a current supply body was formed with bolts and nuts at a pitch of 3 mm, a cell having a surface pressure of about 10 5 Pa was obtained.
The relationship between voltage and current was measured while supplying hydrogen and oxygen to the electrode chamber at a rate of 10 ml / min at 90 ° C. As a result, the cell voltage at a current of 20 A was 0.83V.

比較例1Comparative Example 1

溶融加工TBA+型膜の代わりに遊離のイオン交換基を有するイオン交換膜(デュポン社の商品名ナフィオン112)を使用したこと以外は実施例1と同じ条件で膜−電極接合体を製造した。走査電子顕微鏡写真を撮影したところ、得られた膜−電極接合体の膜と触媒層間の付着性は弱かった。 電圧と電流の関係を測定したところ、電流20Aにおけるセル電圧は0.70Vであった。 A membrane-electrode assembly was produced under the same conditions as in Example 1 except that an ion exchange membrane having a free ion exchange group (trade name Nafion 112, manufactured by DuPont) was used instead of the melt-processed TBA + type membrane. When a scanning electron micrograph was taken, the adhesion between the membrane of the obtained membrane-electrode assembly and the catalyst layer was weak. When the relationship between voltage and current was measured, the cell voltage at a current of 20 A was 0.70V.

比較例2Comparative Example 2

実施例1で使用した熱可塑性樹脂含有液の代わりにナフィオン溶液を電極にスプレーしたこと以外は実施例1と同じ条件で膜−電極接合体を製造し、この膜−電極接合体を実施例1と同じ条件で加水分解した。走査電子顕微鏡写真を撮影したところ、得られた膜−電極接合体の膜は電極の触媒層に良好には付着していなかった。電圧と電流の関係を測定したところ、電流20Aにおけるセル電圧は0.72Vであった。   A membrane-electrode assembly was produced under the same conditions as in Example 1 except that a Nafion solution was sprayed on the electrode instead of the thermoplastic resin-containing liquid used in Example 1, and this membrane-electrode assembly was prepared as Example 1. Hydrolysis was performed under the same conditions. When a scanning electron micrograph was taken, the membrane-electrode assembly membrane obtained did not adhere well to the electrode catalyst layer. When the relationship between the voltage and the current was measured, the cell voltage at a current of 20 A was 0.72V.

Pt/C触媒(エルテック社製、カーボン上に20重量%の白金を担持)を追加したこと以外は実施例1と同じ条件で、熱可塑性樹脂含有液を調製した。白金触媒のナフィオン(乾燥)に対する重量比は3:1とした。分散助剤であるグリセロールのナフィオン溶液(ほぼ1:1の重量比)を前記アイオノマーに加えた。得られた溶液を超音波で攪拌して均一に分散させスプレー用に適した粘度の混合物とした。
前記溶融加工TBA+型膜を、前記触媒を含有する熱可塑性樹脂含有液を被覆した2枚の触媒を担持していない電極間に位置させ、実施例1と同じ条件で加水分解し、次いで燃料電池を組立てた。電圧と電流の関係を測定したところ、電流20Aにおけるセル電圧は0.85Vであった。
A thermoplastic resin-containing liquid was prepared under the same conditions as in Example 1 except that a Pt / C catalyst (manufactured by Eltec Co., Ltd., carrying 20% by weight of platinum on carbon) was added. The weight ratio of platinum catalyst to Nafion (dry) was 3: 1. A dispersion aid, glycerol Nafion solution (approximately 1: 1 weight ratio) was added to the ionomer. The obtained solution was stirred and dispersed uniformly with ultrasonic waves to obtain a mixture having a viscosity suitable for spraying.
The melt-processed TBA + type membrane is positioned between two non-supported electrodes coated with a thermoplastic resin-containing liquid containing the catalyst, hydrolyzed under the same conditions as in Example 1, and then fuel I assembled the battery. When the relationship between voltage and current was measured, the cell voltage at a current of 20 A was 0.85 V.

溶融加工TBA+型膜も熱可塑性樹脂含有液で被覆したこと以外は実施例1と同じ条件で、膜−電極接合体を製造した。つまりTBA+型アイオノマーを溶融加工TBA+型膜と電極の両者にスプレーし、その後一体化して膜と電極の界面に良好な接触を形成した。この膜−電極接合体を実施例1と同じ条件で加水分解し、燃料電池を組立てた。電圧と電流の関係を測定したところ、電流20Aにおけるセル電圧は0.8Vであった。 A membrane-electrode assembly was produced under the same conditions as in Example 1 except that the melt-processed TBA + type membrane was also coated with the thermoplastic resin-containing liquid. That is, the TBA + type ionomer was sprayed onto both the melt processed TBA + type membrane and the electrode and then integrated to form good contact at the membrane / electrode interface. This membrane-electrode assembly was hydrolyzed under the same conditions as in Example 1 to assemble a fuel cell. When the relationship between voltage and current was measured, the cell voltage at a current of 20 A was 0.8 V.

溶融加工TBA+型膜も熱可塑性樹脂含有液で被覆したこと以外は実施例2と同じ条件で、膜−電極接合体を製造した。それにより得られた膜−電極接合体を実施例1と同じ条件で加水分解し、燃料電池を組立てた。電圧と電流の関係を測定したところ、電流20Aにおけるセル電圧は0.82Vであった。 A membrane-electrode assembly was produced under the same conditions as in Example 2 except that the melt-processed TBA + type membrane was also coated with the thermoplastic resin-containing liquid. The membrane-electrode assembly thus obtained was hydrolyzed under the same conditions as in Example 1 to assemble a fuel cell. When the relationship between voltage and current was measured, the cell voltage at a current of 20 A was 0.82 V.

組立て前の本発明による膜−電極接合体の一実施形態を示す縦断面図。The longitudinal cross-sectional view which shows one Embodiment of the membrane-electrode assembly by this invention before an assembly. 同じく組立て後の一実施形態を示す縦断面図。Similarly, the longitudinal cross-sectional view which shows one Embodiment after an assembly. 実施例1で得られた膜−電極接合体の断面の走査電子顕微鏡写真(倍率:650倍)。The scanning electron micrograph of the cross section of the membrane-electrode assembly obtained in Example 1 (magnification: 650 times).

符号の説明Explanation of symbols

1 イオン交換膜
2 ガス拡散陽極
3、5 熱可塑性薄膜
4 ガス拡散陰極
6 膜−電極接合体
DESCRIPTION OF SYMBOLS 1 Ion exchange membrane 2 Gas diffusion anode 3, 5 Thermoplastic thin film 4 Gas diffusion cathode 6 Membrane-electrode assembly

Claims (5)

少なくともその表面が熱可塑性を有するイオン交換膜、及びその両面に接合された陽極及び陰極を含んで成る膜−電極接合体において、前記イオン交換膜と前記陽極及び陰極間の少なくとも一方に熱可塑性薄膜を有することを特徴とする膜−電極接合体。   A membrane-electrode assembly comprising an ion exchange membrane having at least a surface having thermoplasticity, and an anode and a cathode joined to both surfaces thereof, and a thermoplastic thin film between at least one of the ion exchange membrane and the anode and cathode A membrane-electrode assembly comprising: 熱可塑性薄膜が膜及び電極による押圧により変形している請求項1に記載の膜−電極接合体。   The membrane-electrode assembly according to claim 1, wherein the thermoplastic thin film is deformed by pressing with the membrane and the electrode. 熱可塑性薄膜がテトラブチルアンモニウム基を有する請求項1に記載の膜−電極接合体。   The membrane-electrode assembly according to claim 1, wherein the thermoplastic thin film has a tetrabutylammonium group. 陽極及び/又は陰極の少なくとも一方面に熱可塑性樹脂含有液を塗布して熱可塑性薄膜を有する陽極及び/又は陰極を形成し、該陽極及び/又は陰極の前記熱可塑性薄膜を有する面を、少なくともその表面が熱可塑性を有するイオン交換膜に接触させ、ホットプレスすることにより一体化することを特徴とする膜−電極接合体の製造方法。   A thermoplastic resin-containing liquid is applied to at least one surface of the anode and / or cathode to form an anode and / or cathode having a thermoplastic thin film, and the surface of the anode and / or cathode having the thermoplastic thin film is at least A method for producing a membrane-electrode assembly, wherein the surface is brought into contact with a thermoplastic ion exchange membrane and integrated by hot pressing. ホットプレス前のイオン交換膜が熱可塑性を付与する官能基を有し、ホットプレスによる一体化後に前記官能基を加水分解して遊離のイオン交換膜に変換するようにした請求項4記載の膜−電極接合体の製造方法。   5. The membrane according to claim 4, wherein the ion exchange membrane before hot pressing has a functional group imparting thermoplasticity, and the functional group is hydrolyzed and converted into a free ion exchange membrane after integration by hot pressing. -Manufacturing method of electrode assembly.
JP2003352202A 2003-10-10 2003-10-10 Method for manufacturing membrane-electrode assembly Expired - Fee Related JP4870328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003352202A JP4870328B2 (en) 2003-10-10 2003-10-10 Method for manufacturing membrane-electrode assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003352202A JP4870328B2 (en) 2003-10-10 2003-10-10 Method for manufacturing membrane-electrode assembly

Publications (2)

Publication Number Publication Date
JP2005116466A true JP2005116466A (en) 2005-04-28
JP4870328B2 JP4870328B2 (en) 2012-02-08

Family

ID=34543217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003352202A Expired - Fee Related JP4870328B2 (en) 2003-10-10 2003-10-10 Method for manufacturing membrane-electrode assembly

Country Status (1)

Country Link
JP (1) JP4870328B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007018911A (en) * 2005-07-08 2007-01-25 Toyota Motor Corp Electrolyte membrane and its manufacturing method
WO2007017976A1 (en) * 2005-08-10 2007-02-15 Central Japan Railway Company Method for producing ozone water and apparatus for producing ozone water
JP2008078091A (en) * 2006-09-25 2008-04-03 Toyota Motor Corp Method of manufacturing reinforced electrolyte membrane and reinforced electrolyte membrane manufactured by the same manufacturing method
EP1953753A1 (en) 2007-01-30 2008-08-06 Kabushiki Kaisha Toshiba Information storage medium, information recording method, and information reproducing method
JP2008243638A (en) * 2007-03-28 2008-10-09 Toyota Central R&D Labs Inc Composite electrolyte and solid polymer fuel cell
JP2012204049A (en) * 2011-03-24 2012-10-22 Toyota Motor Corp Method for manufacturing membrane electrode assembly

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6462489A (en) * 1987-08-19 1989-03-08 Dow Chemical Co Current collector bonded to solid polymer film
JPH06251792A (en) * 1993-02-24 1994-09-09 Tonen Corp Solid polymer electrolyte type fuel cell
JPH103929A (en) * 1996-03-23 1998-01-06 Degussa Ag Gas diffusing electrode for membrane fuel cell and its manufacture
JP2000195527A (en) * 1998-12-25 2000-07-14 Toshiba Corp Fuel cell
JP2001240755A (en) * 1995-10-06 2001-09-04 Dow Chem Co:The Membrane/electrode assembly for fuel cell
WO2002062878A1 (en) * 2001-02-07 2002-08-15 Asahi Kasei Kabushiki Kaisha Ion-exchange resin membrane and process for producing the same
JP2002231267A (en) * 2001-02-06 2002-08-16 Permelec Electrode Ltd Bonding laminate of electrode and membrane and its manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6462489A (en) * 1987-08-19 1989-03-08 Dow Chemical Co Current collector bonded to solid polymer film
JPH06251792A (en) * 1993-02-24 1994-09-09 Tonen Corp Solid polymer electrolyte type fuel cell
JP2001240755A (en) * 1995-10-06 2001-09-04 Dow Chem Co:The Membrane/electrode assembly for fuel cell
JPH103929A (en) * 1996-03-23 1998-01-06 Degussa Ag Gas diffusing electrode for membrane fuel cell and its manufacture
JP2000195527A (en) * 1998-12-25 2000-07-14 Toshiba Corp Fuel cell
JP2002231267A (en) * 2001-02-06 2002-08-16 Permelec Electrode Ltd Bonding laminate of electrode and membrane and its manufacturing method
WO2002062878A1 (en) * 2001-02-07 2002-08-15 Asahi Kasei Kabushiki Kaisha Ion-exchange resin membrane and process for producing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007018911A (en) * 2005-07-08 2007-01-25 Toyota Motor Corp Electrolyte membrane and its manufacturing method
US9208921B2 (en) 2005-07-08 2015-12-08 Toyota Jidosha Kabushiki Kaisha Electrolyte membrane and process for producing the same
WO2007017976A1 (en) * 2005-08-10 2007-02-15 Central Japan Railway Company Method for producing ozone water and apparatus for producing ozone water
US8431006B2 (en) 2005-08-10 2013-04-30 Central Japan Railway Company Method and apparatus for producing ozone-water
JP2008078091A (en) * 2006-09-25 2008-04-03 Toyota Motor Corp Method of manufacturing reinforced electrolyte membrane and reinforced electrolyte membrane manufactured by the same manufacturing method
EP1953753A1 (en) 2007-01-30 2008-08-06 Kabushiki Kaisha Toshiba Information storage medium, information recording method, and information reproducing method
JP2008243638A (en) * 2007-03-28 2008-10-09 Toyota Central R&D Labs Inc Composite electrolyte and solid polymer fuel cell
JP2012204049A (en) * 2011-03-24 2012-10-22 Toyota Motor Corp Method for manufacturing membrane electrode assembly

Also Published As

Publication number Publication date
JP4870328B2 (en) 2012-02-08

Similar Documents

Publication Publication Date Title
JP3901457B2 (en) Electrode-membrane assembly and manufacturing method thereof
US6344291B1 (en) Solid polymer electrolyte-catalyst composite electrode, electrode for fuel cell, and process for producing these electrodes
US6391487B1 (en) Gas diffusion electrode, method for manufacturing the same, and fuel cell with such electrode
WO2002003489A1 (en) Polyelectrolyte fuel cell
JP3892053B2 (en) Proton exchange membrane fuel cell
JP6328114B2 (en) Method for preparing a catalyst material
EP1299915B1 (en) Electrochemical structure
JP2006253136A (en) Membrane-electrode assembly, its manufacturing method and fuel cell system
KR20080020259A (en) Membrane-electrode assembly for fuel cell, method of preparing same and fuel cell system comprising same
KR20220057565A (en) membrane electrode assembly
TW201222960A (en) Assembly for reversible fuel cell
CN1853296A (en) Membrane-electrode unit for direct methanol fuel cells and method for the production thereof
JP2000100452A (en) Solid high polymer electrolyte fuel cell and manufacture therefor
EP1537613B1 (en) Manufacture of a gas diffusion electrode
JP2006012816A (en) Separator for fuel cell, its manufacturing method, and fuel cell comprising it
JP4870328B2 (en) Method for manufacturing membrane-electrode assembly
JP4576813B2 (en) Polymer electrolyte membrane and membrane electrode assembly
JP2007213988A (en) Electrode catalyst layer for polymer electrolyte fuel cell, its manufacturing method, and polymer electrolyte fuel cell
JP2006344525A (en) Gas diffuser, its manufacturing method and fuel cell
JP4400212B2 (en) Manufacturing method of membrane / electrode assembly for fuel cell
US20050266980A1 (en) Process of producing a novel MEA with enhanced electrode/electrolyte adhesion and performancese characteristics
JP2003059507A (en) Electrolyte film and electrode junction for fuel cell, its manufacturing method and polymer electrolyte fuel cell
JP4403634B2 (en) Composite catalyst for solid polymer electrolyte fuel cell.
JPH027399B2 (en)
KR20190040678A (en) Pressure pad with anti-corrosion coating layer using metal foam, electrochemical reaction chamber frame, and electrochemical cell and electrochemical stack having the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100409

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100708

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111004

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111117

R150 Certificate of patent or registration of utility model

Ref document number: 4870328

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees