JP2005113801A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine Download PDF

Info

Publication number
JP2005113801A
JP2005113801A JP2003349739A JP2003349739A JP2005113801A JP 2005113801 A JP2005113801 A JP 2005113801A JP 2003349739 A JP2003349739 A JP 2003349739A JP 2003349739 A JP2003349739 A JP 2003349739A JP 2005113801 A JP2005113801 A JP 2005113801A
Authority
JP
Japan
Prior art keywords
exhaust gas
storage catalyst
air
catalyst
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003349739A
Other languages
Japanese (ja)
Other versions
JP4039349B2 (en
Inventor
Koichiro Nakatani
好一郎 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003349739A priority Critical patent/JP4039349B2/en
Publication of JP2005113801A publication Critical patent/JP2005113801A/en
Application granted granted Critical
Publication of JP4039349B2 publication Critical patent/JP4039349B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To properly set regeneration time for an NOx storage catalyst in relation to an exhaust emission control device for an internal combustion engine. <P>SOLUTION: A reforming catalyst 13 is disposed in an engine exhaust passage, and downstream of the reforming catalyst 13, the NOx storage catalyst 15 is disposed to store NOx when an air-fuel ratio is lean, and emit stored NOx when the air-fuel ratio is rich. Relation between necessary regeneration time for regenerating the NOx storage catalyst 15 and exhaust gas quantity is preliminarily determined. An SOx emission process from the NOx storage catalyst 15 is executed through a regeneration period determined based on the relation. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は内燃機関の排気浄化装置に関する。   The present invention relates to an exhaust emission control device for an internal combustion engine.

流入する排気ガスの空燃比がリーンのときには排気ガス中に含まれるNOxを吸蔵し流入する排気ガスの空燃比が理論空燃比又はリッチになると吸蔵したNOxを放出するNOxトラップ触媒を機関排気通路内に配置し、NOxトラップ触媒上流の排気通路から排気ガスを取込んでこの排気ガス中に燃料を供給することにより燃料を改質するようにした改質装置を具備し、NOxトラップ触媒にトラップされているNOx量を推定し、NOxトラップ触媒にトラップされているNOxを還元すべきときにはNOxトラップ触媒にトラップされていると推定されるNOxを還元するのに必要な量の改質燃料をNOxトラップ触媒に送り込むようにした内燃機関が公知である(特許文献1を参照)。
特開2002−161735号公報
NO x trap catalyst an engine air-fuel ratio of the exhaust gas when the lean of releasing NO x air-fuel ratio of the exhaust gas which is occluded becomes the stoichiometric air-fuel ratio or rich for occluding NO x contained in the exhaust gas flowing into the inflowing was disposed in the exhaust passage, comprising a reformer which is adapted to reform the fuel by supplying the fuel from the NO x trap catalyst upstream of the exhaust passage to the exhaust gas by captures and exhaust gas, NO x estimating the amount of NO x trapped in the trapping catalyst, for the reduction of NO x which is the time to reduce the NO x trapped in the NO x trap catalyst is estimated to have been trapped in the NO x trap catalyst An internal combustion engine in which a required amount of reformed fuel is fed into a NO x trap catalyst is known (see Patent Document 1).
JP 2002-161735 A

ところで機関排気通路内に炭化水素を改質することのできる改質触媒を配置し、流入する排気ガスの空燃比がリーンのときには排気ガス中に含まれるNOxを吸蔵し流入する排気ガスの空燃比が理論空燃比又はリッチになると吸蔵したNOxを放出するNOx吸蔵触媒を改質触媒下流の機関排気通路内に配置し、NOx吸蔵触媒に吸蔵されたSOxを放出すべきときには排気ガスの空燃比がリッチにされ、このとき排気ガス中に含まれる炭化水素が改質触媒により改質されるようにした場合には、機関の運転状態に応じて炭化水素の改質の程度が異なるために上述の公知の内燃機関におけるNOxの還元と同様な方法でもってSOxをNOx吸蔵触媒から放出させることはできない。 Meanwhile arranged reforming catalyst capable of reforming the hydrocarbon into the engine exhaust passage, empty the exhaust gas air-fuel ratio of the inflowing exhaust gas when the lean to occlude the NO x contained in the exhaust gas inflow ratio is arranged to the stoichiometric air-fuel ratio or the NO x storage catalyst and a reforming catalyst downstream of the engine exhaust passage that releases becomes rich the occluded NO x, exhaust the time to release the SO x occluded in the NO x storage catalyst When the air-fuel ratio of the gas is made rich, and the hydrocarbons contained in the exhaust gas are reformed by the reforming catalyst at this time, the degree of reforming of the hydrocarbons depends on the operating state of the engine. Due to the difference, SO x cannot be released from the NO x storage catalyst by the same method as the reduction of NO x in the known internal combustion engine.

即ち、改質触媒における炭化水素の改質率が高いほどNOx吸蔵触媒からのSOxの放出量が増大し、SOxの放出に要する時間、即ちNOx吸蔵触媒の再生期間が短かくなる。ところで、排気ガス量が少なくなるほど炭化水素と改質触媒との接触時間が長くなるため炭化水素の改質率が高くなり、従ってこの点からみるとNOx吸蔵触媒の再生期間は排気ガス量が少なくなるにつれて短かくなる。 That is, the higher the hydrocarbon reforming rate in the reforming catalyst, the more the amount of SO x released from the NO x storage catalyst increases, and the shorter the time required for SO x release, that is, the regeneration period of the NO x storage catalyst. . By the way, the smaller the exhaust gas amount, the longer the contact time between the hydrocarbon and the reforming catalyst, and the higher the reforming rate of the hydrocarbon. Therefore, from this point of view, the exhaust gas amount is increased during the regeneration period of the NO x storage catalyst. It becomes shorter as it decreases.

一方、単位時間当りにNOx吸蔵触媒に送り込まれる炭化水素の量が少なくなるほどNOx吸蔵触媒からのSOx放出量は減少し、NOx吸蔵触媒の再生期間が長くなる。この場合、排気ガス量が少なくなるほどNOx吸蔵触媒に送り込まれる炭化水素の量が少なくなり、この点からみるとNOx吸蔵触媒の再生期間は排気ガス量が少なくなるにつれて長くなる。このようにSOxの再生期間は排気ガス量に依存しており、従ってNOx吸蔵触媒からSOxを放出させるに当っては排気ガス量を考慮しなければならないことになる。 On the other hand, as the amount of hydrocarbons fed into the NO x storage catalyst per unit time decreases, the SO x release amount from the NO x storage catalyst decreases, and the regeneration period of the NO x storage catalyst becomes longer. In this case, the smaller the amount of exhaust gas, the smaller the amount of hydrocarbons sent to the NO x storage catalyst. From this point of view, the regeneration period of the NO x storage catalyst becomes longer as the amount of exhaust gas decreases. Thus, the regeneration period of SO x depends on the amount of exhaust gas, and therefore, the amount of exhaust gas must be taken into account when releasing SO x from the NO x storage catalyst.

従って1番目の発明では、機関排気通路内に炭化水素を改質することのできる改質触媒を配置し、流入する排気ガスの空燃比がリーンのときには排気ガス中に含まれるNOxを吸蔵し流入する排気ガスの空燃比が理論空燃比又はリッチになると吸蔵したNOxを放出するNOx吸蔵触媒を改質触媒下流の機関排気通路内に配置し、NOx吸蔵触媒に吸蔵されたSOx量が予め定められた許容値を越えたときにNOx吸蔵触媒からSOxを放出させてNOx吸蔵触媒を再生させるのに必要な再生期間中、NOx吸蔵触媒の温度をSOx放出温度に維持すると共に排気ガスの空燃比をリッチに維持するようにした内燃機関の排気浄化装置において、排気ガス量を推定する排気ガス量推定手段と、排気ガス量と再生期間との関係を記憶している記憶手段とを具備し、この関係から求められた再生期間中、NOx吸蔵触媒の温度をSOx放出温度に維持すると共に排気ガスの空燃比をリッチに維持するようにしている。
2番目の発明では1番目の発明において、再生期間中に上述の関係に基づいて各排気ガス量におけるNOx吸蔵触媒の再生割合を求め、求められた再生割合を順次積算して再生割合の積算合計が1.0になったときに再生期間が完了したと判断される。
3番目の発明では1番目の発明において、排気ガス量を最小排気ガス量から増大させると、再生期間は減少して最小値に達した後に増大する。
4番目の発明では1番目の発明において、排気ガス温が高いほど再生期間は短かくなる。
5番目の発明では1番目の発明において、排気ガスの空燃比のリッチの度合が大きいほど再生期間は短かくなる。
Accordingly, in the first invention, a reforming catalyst capable of reforming hydrocarbons is disposed in the engine exhaust passage, and when the air-fuel ratio of the inflowing exhaust gas is lean, NO x contained in the exhaust gas is stored. air-fuel ratio of the inflowing exhaust gas is disposed in the stoichiometric air-fuel ratio or the NO x storage catalyst and a reforming catalyst downstream of the engine exhaust passage that releases becomes rich the occluded NO x, the NO x storage catalyst occluded SO x During the regeneration period required to regenerate the NO x storage catalyst by releasing SO x from the NO x storage catalyst when the amount exceeds a predetermined allowable value, the temperature of the NO x storage catalyst is changed to the SO x release temperature. The exhaust gas amount estimating means for estimating the exhaust gas amount and the relationship between the exhaust gas amount and the regeneration period are stored in the exhaust gas purification apparatus for an internal combustion engine that maintains the air-fuel ratio of the exhaust gas at a rich level. Storage means Provided, so as to maintain the air-fuel ratio of the exhaust gas rich while maintaining playing time obtained based on this relationship, the temperature of the NO x storage catalyst release SO x temperature.
In the second invention, in the first invention, during the regeneration period, the regeneration ratio of the NO x storage catalyst in each exhaust gas amount is obtained based on the above-mentioned relationship, and the obtained regeneration ratio is sequentially integrated to integrate the regeneration ratio. When the total reaches 1.0, it is determined that the playback period has been completed.
In the third invention, in the first invention, when the exhaust gas amount is increased from the minimum exhaust gas amount, the regeneration period decreases and increases after reaching the minimum value.
In the fourth invention, in the first invention, the regeneration period becomes shorter as the exhaust gas temperature becomes higher.
According to the fifth aspect, in the first aspect, the regeneration period becomes shorter as the degree of richness of the air-fuel ratio of the exhaust gas is larger.

NOx吸蔵触媒の再生期間を適切に定めることができる。 The regeneration period of the NO x storage catalyst can be determined appropriately.

図1は本発明を圧縮着火式内燃機関に適用した場合を示している。
図1を参照すると、1は機関本体、2は各気筒の燃焼室、3は各燃焼室2内に夫々燃料を噴射するための電子制御式燃料噴射弁、4は吸気マニホルド、5は排気マニホルドを夫々示す。吸気マニホルド4は吸気ダクト6を介して排気ターボチャージャ7のコンプレッサ7aの出口に連結され、コンプレッサ7aの入口は吸入空気量検出器8を介してエアクリーナ9に連結される。吸気ダクト6内にはステップモータにより駆動されるスロットル弁10が配置され、更に吸気ダクト6周りには吸気ダクト6内を流れる吸入空気を冷却するための冷却装置11が配置される。図1に示される実施例では機関冷却水が冷却装置11内に導かれ、機関冷却水によって吸入空気が冷却される。
FIG. 1 shows a case where the present invention is applied to a compression ignition type internal combustion engine.
Referring to FIG. 1, 1 is an engine body, 2 is a combustion chamber of each cylinder, 3 is an electronically controlled fuel injection valve for injecting fuel into each combustion chamber 2, 4 is an intake manifold, and 5 is an exhaust manifold. Respectively. The intake manifold 4 is connected to the outlet of the compressor 7 a of the exhaust turbocharger 7 via the intake duct 6, and the inlet of the compressor 7 a is connected to the air cleaner 9 via the intake air amount detector 8. A throttle valve 10 driven by a step motor is disposed in the intake duct 6, and a cooling device 11 for cooling intake air flowing through the intake duct 6 is disposed around the intake duct 6. In the embodiment shown in FIG. 1, the engine cooling water is guided into the cooling device 11, and the intake air is cooled by the engine cooling water.

一方、排気マニホルド5の集合部は排気通路12を介して排気ターボチャージャ7の排気タービン7bの入口に連結され、この排気通路12内に排気ガス中に含まれる炭化水素を軽質のHCや、COや、H2に改質することができる改質触媒13が配置される。この改質触媒13は例えば金属薄板からなる担体上に白金Ptのような貴金属触媒を担持した酸化触媒からなる。また、排気タービン7b下流の排気通路14内には改質触媒13よりも容量の大きい第2の触媒15が配置されている。 On the other hand, the collective portion of the exhaust manifold 5 is connected to the inlet of the exhaust turbine 7b of the exhaust turbocharger 7 through the exhaust passage 12, and the hydrocarbons contained in the exhaust gas in the exhaust passage 12 are converted into light HC and CO. Alternatively, a reforming catalyst 13 that can be reformed to H 2 is disposed. The reforming catalyst 13 is made of an oxidation catalyst in which a noble metal catalyst such as platinum Pt is supported on a carrier made of a thin metal plate, for example. A second catalyst 15 having a capacity larger than that of the reforming catalyst 13 is disposed in the exhaust passage 14 downstream of the exhaust turbine 7b.

排気マニホルド5と吸気マニホルド4とは排気ガス再循環(以下、EGRと称す)通路16を介して互いに連結され、EGR通路16内には電子制御式EGR制御弁17が配置される。また、EGR通路16周りにはEGR通路16内を流れるEGRガスを冷却するための冷却装置18が配置される。図1に示される実施例では機関冷却水が冷却装置18内に導びかれ、機関冷却水によってEGRガスが冷却される。一方、各燃料噴射弁3は燃料供給管19を介してコモンレール20に連結される。このコモンレール20内へは電子制御式の吐出量可変な燃料ポンプ21から燃料が供給され、コモンレール20内に供給された燃料は各燃料供給管19を介して燃料噴射弁3に供給される。   The exhaust manifold 5 and the intake manifold 4 are connected to each other via an exhaust gas recirculation (hereinafter referred to as EGR) passage 16, and an electronically controlled EGR control valve 17 is disposed in the EGR passage 16. Further, a cooling device 18 for cooling the EGR gas flowing in the EGR passage 16 is disposed around the EGR passage 16. In the embodiment shown in FIG. 1, the engine cooling water is guided into the cooling device 18, and the EGR gas is cooled by the engine cooling water. On the other hand, each fuel injection valve 3 is connected to a common rail 20 through a fuel supply pipe 19. Fuel is supplied into the common rail 20 from an electronically controlled fuel pump 21 having a variable discharge amount, and the fuel supplied into the common rail 20 is supplied to the fuel injection valve 3 via each fuel supply pipe 19.

電子制御ユニット30はデジタルコンピュータからなり、双方向性バス31によって互いに接続されたROM(リードオンリメモリ)32、RAM(ランダムアクセスメモリ)33、CPU(マイクロプロセッサ)34、入力ポート35および出力ポート36を具備する。吸入空気量検出器8は吸入空気量を表す出力信号を発生し、この出力信号が対応するAD変換器37を介して入力ポート35に入力される。改質触媒13には改質触媒13の温度を検出するための温度センサ22が取付けられ、この温度センサ22の出力信号は対応するAD変換器37を介して入力ポート35に入力される。また、アクセルペダル40にはアクセルペダル40の踏込み量Lに比例した出力電圧を発生する負荷センサ41が接続され、負荷センサ41の出力電圧は対応するAD変換器37を介して入力ポート35に入力される。更に入力ポート35にはクランクシャフトが例えば15°回転する毎に出力パルスを発生するクランク角センサ42が接続される。一方、出力ポート36は対応する駆動回路38を介して燃料噴射弁3、スロットル弁駆動用ステップモータ10、EGR制御弁17、および燃料ポンプ21に接続される。   The electronic control unit 30 is composed of a digital computer and includes a ROM (Read Only Memory) 32, a RAM (Random Access Memory) 33, a CPU (Microprocessor) 34, an input port 35 and an output port 36 connected to each other by a bidirectional bus 31. It comprises. The intake air amount detector 8 generates an output signal representing the intake air amount, and this output signal is input to the input port 35 via the corresponding AD converter 37. A temperature sensor 22 for detecting the temperature of the reforming catalyst 13 is attached to the reforming catalyst 13, and an output signal of the temperature sensor 22 is input to the input port 35 via the corresponding AD converter 37. A load sensor 41 that generates an output voltage proportional to the depression amount L of the accelerator pedal 40 is connected to the accelerator pedal 40, and the output voltage of the load sensor 41 is input to the input port 35 via the corresponding AD converter 37. Is done. Further, the input port 35 is connected to a crank angle sensor 42 that generates an output pulse every time the crankshaft rotates, for example, 15 °. On the other hand, the output port 36 is connected to the fuel injection valve 3, the throttle valve driving step motor 10, the EGR control valve 17, and the fuel pump 21 through corresponding drive circuits 38.

図1に示す実施例では第2の触媒15がNOx吸蔵触媒からなる。このNOx吸蔵触媒15は三次元網目構造のモノリス担体或いはペレット状担体上に担持されているか、又はハニカム構造をなすパティキュレートフィルタ上に担持されている。 In the embodiment shown in FIG. 1, the second catalyst 15 is composed of a NO x storage catalyst. The NO x storage catalyst 15 is supported on a monolith support or pellet support having a three-dimensional network structure, or is supported on a particulate filter having a honeycomb structure.

モノリス担体、ペレット状担体、或いはパティキュレートフィルタ上には例えばアルミナからなる触媒担体が担持されており、図2(A)および(B)はこの触媒担体45の表面部分の断面を図解的に示している。図2(A)および(B)に示されるように触媒担体45の表面上には貴金属触媒46が分散して担持されており、更に触媒担体45の表面上にはNOx吸収剤47の層が形成されている。 A catalyst carrier made of alumina, for example, is supported on a monolithic carrier, a pellet-like carrier, or a particulate filter. FIGS. 2A and 2B schematically show a cross-section of the surface portion of the catalyst carrier 45. ing. As shown in FIGS. 2A and 2B, a noble metal catalyst 46 is dispersedly supported on the surface of the catalyst carrier 45, and a layer of NO x absorbent 47 is further provided on the surface of the catalyst carrier 45. Is formed.

本発明による実施例では貴金属触媒46として白金Ptが用いられており、NOx吸収剤47を構成する成分としては例えばカリウムK、ナトリウムNa、セシウムCsのようなアルカリ金属、バリウムBa、カルシウムCaのようなアルカリ土類、ランタンLa、イットリウムYのような希土類から選ばれた少なくとも一つが用いられている。 In the embodiment according to the present invention, platinum Pt is used as the noble metal catalyst 46, and the constituents of the NO x absorbent 47 are, for example, alkali metals such as potassium K, sodium Na, cesium Cs, barium Ba, calcium Ca. At least one selected from alkaline earths such as these, lanthanum La, and rare earths such as yttrium Y is used.

機関吸気通路、燃焼室2およびNOx吸蔵触媒15上流の排気通路内に供給された空気および燃料(炭化水素)の比を排気ガスの空燃比と称するとNOx吸収剤47は排気ガスの空燃比がリーンのときにはNOxを吸収し、排気ガス中の酸素濃度が低下すると吸収したNOxを放出するNOxの吸放出作用を行う。なお、NOx吸蔵触媒15上流の排気通路内に燃料(炭化水素)或いは空気が供給されない場合には排気ガスの空燃比は燃焼室2内における空燃比に一致し、従ってこの場合にはNOx吸収剤47は燃焼室2内における空燃比がリーンのときにはNOxを吸収し、燃焼室2内における酸素濃度が低下すると吸収したNOxを放出することになる。 When the ratio of air and fuel (hydrocarbon) supplied into the engine intake passage, the combustion chamber 2 and the exhaust passage upstream of the NO x storage catalyst 15 is referred to as the air-fuel ratio of the exhaust gas, the NO x absorbent 47 is exhausted from the exhaust gas. ratio absorbs NO x when the lean, the oxygen concentration in the exhaust gas performs the absorbing and releasing action of the NO x that releases NO x absorbed to decrease. When fuel (hydrocarbon) or air is not supplied into the exhaust passage upstream of the NO x storage catalyst 15, the air-fuel ratio of the exhaust gas coincides with the air-fuel ratio in the combustion chamber 2. Therefore, in this case, the NO x absorbent 47 absorbs NO x when the air-fuel ratio is lean in the combustion chamber 2, the oxygen concentration in the combustion chamber 2 will release the NO x absorbed to decrease.

即ち、NOx吸収剤47を構成する成分としてバリウムBaを用いた場合を例にとって説明すると、排気ガスの空燃比がリーンのとき、即ち排気ガス中の酸素濃度が高いときには排気ガス中に含まれるNOは図2(A)に示されるように白金Pt46上において酸化されてNO2となり、次いでNOx吸収剤47内に吸収されて酸化バリウムBaOと結合しながら硝酸イオンNO3 -の形でNOx吸収剤47内に拡散する。このようにしてNOxがNOx吸収剤47内に吸収される。排気ガス中の酸素濃度が高い限り白金Pt46の表面でNO2が生成され、NOx吸収剤47のNOx吸収能力が飽和しない限りNO2がNOx吸収剤47内に吸収されて硝酸イオンNO3 -が生成される。 That is, the case where barium Ba is used as a component constituting the NO x absorbent 47 will be described as an example. When the air-fuel ratio of the exhaust gas is lean, that is, when the oxygen concentration in the exhaust gas is high, it is contained in the exhaust gas. As shown in FIG. 2 (A), NO is oxidized on platinum Pt 46 to become NO 2 , then absorbed into the NO x absorbent 47 and combined with barium oxide BaO in the form of nitrate ions NO 3 −. x Diffuses in the absorbent 47. In this way, NO x is absorbed in the NO x absorbent 47. Oxygen concentration in the exhaust gas, NO 2 is produced on the surface as long as the platinum Pt46 high, the NO x absorbent 47 of the NO x absorbing capability as long as NO 2 not to saturate been absorbed in the NO x absorbent 47 nitrate ions NO 3 - is generated.

これに対し、燃焼室2内における空燃比をリッチ或いは理論空燃比にすることによって、又は排気マニホルド5内に還元剤を供給することによって排気ガスの空燃比をリッチ或いは理論空燃比にすると排気ガス中の酸素濃度が低下するために反応が逆方向(NO3 -→NO2)に進み、斯くして図2(B)に示されるようにNOx吸収剤47内の硝酸イオンNO3 -がNO2の形でNOx吸収剤47から放出される。次いで放出されたNOxは排気ガス中に含まれる未燃HC,COによって還元される。 On the other hand, if the air-fuel ratio in the combustion chamber 2 is made rich or stoichiometric, or if the reducing agent is supplied into the exhaust manifold 5 to make the air-fuel ratio rich or stoichiometric, the exhaust gas The reaction proceeds in the reverse direction (NO 3 → NO 2 ) due to a decrease in the oxygen concentration therein, so that the nitrate ions NO 3 in the NO x absorbent 47 are formed as shown in FIG. 2 (B). It is released from the NO x absorbent 47 in the form of NO 2 . Next, the released NO x is reduced by unburned HC and CO contained in the exhaust gas.

このように排気ガスの空燃比がリーンであるとき、即ちリーン空燃比のもとで燃焼が行われているときには排気ガス中のNOxがNOx吸収剤47内に吸収される。しかしながらリーン空燃比のもとでの燃焼が継続して行われるとその間にNOx吸収剤47のNOx吸収能力が飽和してしまい、斯くしてNOx吸収剤47によりNOxを吸収できなくなってしまう。そこで本発明による実施例ではNOx吸収剤47の吸収能力が飽和する前に排気ガスの空燃比を一時的にリッチにし、それによってNOx吸収剤47からNOxを放出させるようにしている。 In this way, when the air-fuel ratio of the exhaust gas is lean, that is, when combustion is performed under the lean air-fuel ratio, NO x in the exhaust gas is absorbed into the NO x absorbent 47. However becomes saturated the absorption of NO x capacity of the NO x absorbent 47 during the combustion of the fuel under a lean air-fuel ratio is continued, no longer able to absorb NO x by the NO x absorbent 47 and thus End up. Therefore, in this embodiment of the present invention to temporarily make the air before the absorbing capability of the NO x absorbent 47 becomes saturated, thereby so that to release the NO x from the NO x absorbent 47.

一方、排気ガス中にはSO2も含まれており、このSO2は白金Pt46において酸化されてSO3となる。次いでこのSO3はNOx吸収剤47内に吸収されて酸化バリウムBaOと結合しながら、硫酸イオンSO4 2-の形でNOx吸収剤47内に拡散し、安定した硫酸塩BaSO4を生成する。しかしながらNOx吸収剤47が強い塩基性を有するためにこの硫酸塩BaSO4は安定していて分解しづらく、排気ガスの空燃比を単にリッチにしただけでは硫酸塩BaSO4は分解されずにそのまま残る。従ってNOx吸収剤47内には時間が経過するにつれて硫酸塩BaSO4が増大することになり、斯くして時間が経過するにつれてNOx吸収剤47が吸収しうるNOx量が低下することになる。 On the other hand, SO 2 is also contained in the exhaust gas, and this SO 2 is oxidized in platinum Pt 46 to become SO 3 . Next, this SO 3 is absorbed in the NO x absorbent 47 and bonded to the barium oxide BaO, while diffusing into the NO x absorbent 47 in the form of sulfate ions SO 4 2− to produce stable sulfate BaSO 4 . To do. However, since the NO x absorbent 47 has a strong basicity, this sulfate BaSO 4 is stable and difficult to decompose, and if the air-fuel ratio of the exhaust gas is simply made rich, the sulfate BaSO 4 is not decomposed and remains as it is. Remain. Thus will be sulfates BaSO 4 increases as NO x time to absorbent 47 has elapsed, that the amount of NO x the NO x absorbent 47 can absorb as thus to time has elapsed is reduced Become.

ところが、NOx吸蔵触媒15の温度をSOx放出温度まで上昇させた状態で排気ガスの空燃比をリッチにするとNOx吸収剤47からSOxが放出される。従って本発明による実施例ではNOx吸収剤47に吸収されているSOx量が増大したときにはNOx吸蔵触媒15の温度をSOx放出温度まで上昇させて排気ガスの空燃比をリッチにするようにしている。 However, if the air-fuel ratio of the exhaust gas is made rich while the temperature of the NO x storage catalyst 15 is raised to the SO x release temperature, SO x is released from the NO x absorbent 47. Therefore, in the embodiment according to the present invention, when the amount of SO x absorbed in the NO x absorbent 47 increases, the temperature of the NO x storage catalyst 15 is raised to the SO x release temperature to make the air-fuel ratio of the exhaust gas rich. I have to.

図3はNOxおよびSOxの放出制御のタイムチャートを示している。図3に示されるようにNOx吸収剤47に吸収されているNOx吸収量の積算値ΣNOXが許容値NXを越える毎にNOx吸蔵触媒15に流入する排気ガスの空燃比A/Fがリーンからリッチに一時的に切換えられる。このときNOxがNOx吸収剤47から放出され、還元される。 FIG. 3 shows a time chart of NO x and SO x release control. As shown in FIG. 3, the air-fuel ratio A / F of the exhaust gas flowing into the NO x storage catalyst 15 is calculated every time the integrated value ΣNOX of the NO x absorption amount absorbed by the NO x absorbent 47 exceeds the allowable value NX. Temporarily switched from lean to rich. At this time, NO x is released from the NO x absorbent 47 and reduced.

一方、NOx吸収剤47に吸収されているSOx量の積算値ΣSOXも算出されており、このSOx量の積算値ΣSOXが許容値SXを越えるとNOx吸収剤47からのSOx放出作用が行われる。即ち、まず初めにNOx吸蔵触媒15の温度TCがSOx放出温度TXに達するまで上昇せしめられる。このSOx放出温度TXは600℃以上である。 On the other hand, the integrated value ΣSOX of the SO x amount absorbed in the NO x absorbent 47 is also calculated. If the integrated value ΣSOX of the SO x amount exceeds the allowable value SX, the SO x release from the NO x absorbent 47 is performed. The action is performed. That is, first, the temperature TC of the NO x storage catalyst 15 is raised until it reaches the SO x release temperature TX. The SO x release temperature TX is 600 ° C. or higher.

NOx吸蔵触媒15の温度TCがSOx放出温度TXに達するとNOx吸蔵触媒15に流入する排気ガスの空燃比がリーンからリッチに切換えられ、NOx吸収剤47からのSOxの放出が開始される。SOxが放出されている間、NOx吸蔵触媒15の温度TCはSOx放出温度TXに保持され、排気ガスの空燃比はリッチに維持される。次いでSOx放出作用が完了するとNOx吸蔵触媒15の昇温作用は停止され、排気ガスの空燃比がリーンに戻される。 Air-fuel ratio of the exhaust gas temperature TC of the NO x storing catalyst 15 flows into the NO x storage catalyst 15 reaches the release of SO x temperature TX is switched from lean to rich, the release of the SO x from the NO x absorbent 47 Be started. While SO x is released, the temperature TC of the NO x storage catalyst 15 is maintained at the SO x release temperature TX, and the air-fuel ratio of the exhaust gas is maintained rich. Next, when the SO x releasing action is completed, the temperature raising action of the NO x storage catalyst 15 is stopped, and the air-fuel ratio of the exhaust gas is returned to lean.

上述したようにNOx吸蔵触媒15からSOxを放出すべきときにはNOx吸蔵触媒15の温度がSOx放出温度TXに達するまで上昇せしめられる。次にこのようにNOx吸蔵触媒15の温度TCを上昇させる方法について図4を参照しつつ説明する。 When as described above from the NO x storage catalyst 15 should be released SO x is the temperature of the NO x storing catalyst 15 is raised until it reaches the release of SO x temperature TX. Next, a method for increasing the temperature TC of the NO x storage catalyst 15 will be described with reference to FIG.

NOx吸蔵触媒15の温度TCを上昇させるのに有効な方法の一つは燃料噴射時期を圧縮上死点以後まで遅角させる方法である。即ち、通常主燃料Qmは図4において、(I)に示されるように圧縮上死点付近で噴射される。この場合、図4の(II)に示されるように主燃料Qmの噴射時期が遅角されると後燃え期間が長くなり、斯くして排気ガス温が上昇する。排気ガス温が高くなるとそれに伴ってNOx吸蔵触媒15の温度TCが上昇する。 One effective method for increasing the temperature TC of the NO x storage catalyst 15 is to retard the fuel injection timing until after the compression top dead center. That is, normally the main fuel Q m in FIG. 4, it is injected near compression top dead center as shown in (I). In this case, the main injection timing of fuel Q m is burning period becomes longer after the is retarded as shown in (II) of FIG. 4, the exhaust gas temperature rises in thus. As the exhaust gas temperature increases, the temperature TC of the NO x storage catalyst 15 increases accordingly.

また、NOx吸蔵触媒15の温度TCを上昇させるために図4の(III)に示されるように主燃料Qmに加え、吸気上死点付近において補助燃料Qvを噴射することもできる。このように補助燃料Qvを追加的に噴射すると補助燃料Qv分だけ燃焼せしめられる燃料が増えるために排気ガス温が上昇し、斯くしてNOx吸蔵触媒15の温度TCが上昇する。
一方、このように吸気上死点付近において補助燃料Qvを噴射すると圧縮行程中に圧縮熱によってこの補助燃料Qvからアルデヒド、ケトン、パーオキサイド、一酸化炭素等の中間生成物が生成され、これら中間生成物によって主燃料Qmの反応が加速される。従ってこの場合には図4の(III)に示されるように主燃料Qmの噴射時期を大巾に遅らせても失火を生ずることなく良好な燃焼が得られる。即ち、このように主燃料Qmの噴射時期を大巾に遅らせることができるので排気ガス温はかなり高くなり、斯くしてNOx吸蔵触媒15の温度TCをすみやかに上昇させることができる。
Further, in order to increase the temperature TC of the NO x storage catalyst 15, it is possible to inject the auxiliary fuel Q v in the vicinity of the intake top dead center in addition to the main fuel Q m as shown in FIG. Thus the auxiliary fuel Q v additionally inject auxiliary fuel Q v amount corresponding exhaust gas temperature for the fuel to be burned increases rises, the temperature TC of the NO x storing catalyst 15 rises and thus.
On the other hand, in this way the intake top dead center near the aldehyde from this auxiliary fuel Q v due to the heat of compression in the auxiliary fuel Q v compressed and injects stroke in, ketones, peroxides, intermediate products such as carbon monoxide is generated, these intermediate products cause the reaction of the main fuel Q m is accelerated. Therefore, in this case it is good combustion without causing a misfire even delaying the injection timing of the main fuel Q m to greatly as shown in (III) of FIG. 4 is obtained. That is, in this way be mainly because the fuel Q m injection timing of the can be delayed by a large margin the exhaust gas temperature is considerably high, it is possible to quickly raise the temperature TC of the NO x storing catalyst 15 and thus.

また、NOx吸蔵触媒15の温度TCを上昇させるために図4の(IV)に示されるように主燃料Qmに加え、膨張行程中又は排気行程中に補助燃料Qpを噴射することもできる。即ち、この場合、大部分の補助燃料Qpは燃焼することなく未燃HCの形で排気通路内に排出される。この未燃HCはNOx吸蔵触媒15上において過剰酸素により酸化され、このとき発生する酸化反応熱によってNOx吸蔵触媒15の温度TCが上昇せしめられる。 Further, in order to increase the temperature TC of the NO x storage catalyst 15, in addition to the main fuel Q m as shown in FIG. 4 (IV), the auxiliary fuel Q p may be injected during the expansion stroke or the exhaust stroke. it can. That is, in this case, most of the auxiliary fuel Q p is discharged into the exhaust passage in the form of unburned HC without burning. The unburned HC is oxidized on the NO x storage catalyst 15 by excess oxygen, and the temperature TC of the NO x storage catalyst 15 is raised by the oxidation reaction heat generated at this time.

図5は、NOx吸蔵触媒15からSOxを放出させてNOx吸蔵触媒15を再生させるのに必要な再生時期間Rtと空間速度SVとの関係を示している。なお、図5において太い実線は改質触媒13が基準温度である場合を示しており、細い実線は改質触媒13の温度が基準温度よりも高い場合を示している。また、図5において各破線R1,R2,R3,R4は改質触媒13における改質率が等しい等改質率曲線を表わしており、R1からR4に向けて改質率が次第に高くなる(R1<R2<R3<R4)。 Figure 5 shows the relationship between the NO x from storing catalyst 15 to release the SO x regeneration time period required to reproduce the NO x storage catalyst 15 R t and space velocity SV. In FIG. 5, a thick solid line indicates a case where the reforming catalyst 13 is at the reference temperature, and a thin solid line indicates a case where the temperature of the reforming catalyst 13 is higher than the reference temperature. In FIG. 5, each broken line R 1 , R 2 , R 3 , R 4 represents an equal reforming rate curve in which the reforming rate in the reforming catalyst 13 is equal, and the reforming rate from R 1 to R 4. Gradually increases (R 1 <R 2 <R 3 <R 4 ).

空間速度SVは(単位時間当りに触媒を流通する排気ガスの容積流量/触媒の容積)で表される。本発明による実施例ではいずれの触媒13,15における空間速度SVを用いても再生期間の変化パターンは同様の形状となるので図5の横軸としてはいずれの触媒13,15における空間速度SVを用いてもよい。なお、触媒13,15の容積は一定であるので空間速度SVは排気ガスの容積流量で代表することができ、従って図5は排気ガスの容積流量(以下、単に排気ガス量という)と再生期間Rtとの関係を示しているとも言える。なお、排気ガス量はほぼ吸入空気量に比例するので吸入空気量検出器8により検出された吸入空気量から排気ガス量を推定することができる。 The space velocity SV is expressed by (volumetric flow rate of exhaust gas flowing through the catalyst per unit time / volume of catalyst). In the embodiment according to the present invention, the change pattern of the regeneration period has the same shape regardless of the space velocity SV in any of the catalysts 13 and 15, so the horizontal axis in FIG. 5 shows the space velocity SV in any of the catalysts 13 and 15. It may be used. Since the volumes of the catalysts 13 and 15 are constant, the space velocity SV can be represented by the exhaust gas volume flow rate. Therefore, FIG. 5 shows the exhaust gas volume flow rate (hereinafter simply referred to as the exhaust gas amount) and the regeneration period. it can be said that shows the relationship between the R t. Since the exhaust gas amount is substantially proportional to the intake air amount, the exhaust gas amount can be estimated from the intake air amount detected by the intake air amount detector 8.

太い実線上の白丸は改質率R1,R2,R3,R4は表す各破線との交点を示している。従って各白丸に注目すると空間速度SVが低くなるほど、即ち排気ガス量が少なくなるほど改質率が高くなっていくことがわかる(R1→R2→R3→R4)。即ち、空間速度SVが低くなるほど、即ち排気ガス量が少なくなるほど排気ガス中に含まれる炭化水素と改質触媒13との接触時間が長くなり、従って空間速度SVが低くなるほど改質率が高くなる。 The white circles on the thick solid line indicate the intersections with the respective broken lines that represent the reforming rates R 1 , R 2 , R 3 , and R 4 . Accordingly, when attention is paid to each white circle, it can be seen that the lower the space velocity SV, that is, the smaller the exhaust gas amount, the higher the reforming rate (R 1 → R 2 → R 3 → R 4 ). That is, the lower the space velocity SV, that is, the smaller the amount of exhaust gas, the longer the contact time between the hydrocarbons contained in the exhaust gas and the reforming catalyst 13, and the lower the space velocity SV, the higher the reforming rate. .

このように空間速度SVが低くなると改質率が高くなるが図5の白丸からわかるように改質率が高くなっても必ずしも再生時間Rtは短かくはならない。これはNOx吸蔵触媒15に送り込まれる炭化水素の絶対量がSOxの放出量に大きな影響を与えるからである。即ち、NOx吸蔵触媒15に送り込まれる炭化水素の絶対量が多くなるほどSOxの放出量が多くなるからである。この場合、NOx吸蔵触媒15に送り込まれる炭化水素の量は空間速度SV、即ち排気ガス量に比例し、空間速度SVが高くなるほど、即ち排気ガス量が増大するほどSOxの放出量が多くなる。 Having thus the space velocity SV is the modification rate increases lower necessarily reproduction time R t be modified rate becomes high as can be seen from the white circle in FIG. 5 is not short. This is because the absolute amount of hydrocarbons sent to the NO x storage catalyst 15 greatly affects the amount of SO x released. That is, as the absolute amount of hydrocarbons sent to the NO x storage catalyst 15 increases, the amount of released SO x increases. In this case, the amount of hydrocarbons fed into the NO x storage catalyst 15 is proportional to the space velocity SV, that is, the exhaust gas amount, and the higher the space velocity SV, that is, the greater the exhaust gas amount, the greater the amount of SO x released. Become.

このように空間速度SVが高くなるほど、即ち排気ガス量が増大するほどSOxの放出量が増大するので再生時間Rtは短かくなるはずである。しかしながら空間速度SVが高くなると、即ち排気ガス量が増大すると改質率が低下するので図5に示されるように排気ガス量を最小排気ガス量から増大させると、再生期間Rtは減少して最小値に達した後に増大することになる。即ち、再生時間Rtの変化は下に凸の曲線で表されることになる。 Thus, the higher the space velocity SV, that is, the greater the amount of exhaust gas, the greater the amount of SO x released, so the regeneration time R t should be shorter. However, as the space velocity SV increases, that is, the amount of exhaust gas increases, the reforming rate decreases. Therefore, when the exhaust gas amount is increased from the minimum exhaust gas amount as shown in FIG. 5, the regeneration period R t decreases. It will increase after reaching the minimum value. That is, the change of the reproduction time R t will be expressed by the downward convex curve.

また、図5において細い実線で示されるように改質触媒13の温度が高い場合には再生時間Rtはあらゆる空間速度SVに対して短かくなる。なお、本発明による実施例では改質触媒15の種々の温度について再生時間Rtと排気ガス量との関係が予めROM32内に記憶されている。また、図5は排気ガスのリッチの度合が基準度合のとき、例えば排気ガスの空燃比が14.0のときの再生時間Rtを示している。排気ガスの空燃比をリッチにしたときにはリッチの度合が大きくなるほど、即ち空燃比A/Fが小さくなるほど再生時間Rtは短かくなり、実際の再生時間Rtは図5から求められた再生時間Rtに図6に示される補正係数Kを乗算した値となる。 Further, reproduction time R t in the case the temperature of the reforming catalyst 13 as indicated by the thin solid line in FIG. 5 is high short nucleating for any space velocity SV. In the embodiment according to the present invention, the relationship between the regeneration time R t and the exhaust gas amount is stored in advance in the ROM 32 for various temperatures of the reforming catalyst 15. FIG. 5 shows the regeneration time R t when the exhaust gas rich degree is the reference degree, for example, when the air-fuel ratio of the exhaust gas is 14.0. When the air-fuel ratio of the exhaust gas is made rich, the regeneration time R t becomes shorter as the degree of richness increases, that is, as the air-fuel ratio A / F decreases, and the actual regeneration time R t is the regeneration time obtained from FIG. to R t becomes a value obtained by multiplying the correction coefficient K shown in FIG.

図5および図6を用いて実際の再生時間Rtが求まると機関が定常運転をしているときであればこの再生時間RtだけNOx吸蔵触媒15の温度をSOx放出温度TXに保持しかつ排気ガスの空燃比をリッチに維持すればNOx吸蔵触媒15を再生することができる。しかしながら実際には再生中に機関の運転状態が変化し、排気ガス量や改質触媒13の温度が変化する。従って本発明による実施例では次のようにして再生が完了したか否かを判断するようにしている。 When the actual regeneration time R t is obtained using FIG. 5 and FIG. 6, the temperature of the NO x storage catalyst 15 is maintained at the SO x release temperature TX only during the regeneration time R t when the engine is in steady operation. In addition, if the air-fuel ratio of the exhaust gas is maintained rich, the NO x storage catalyst 15 can be regenerated. In practice, however, the operating state of the engine changes during regeneration, and the amount of exhaust gas and the temperature of the reforming catalyst 13 change. Therefore, in the embodiment according to the present invention, it is determined whether or not the reproduction is completed as follows.

即ち、今或る運転状態が継続していてこの運転状態のときの再生時間をRtとする。この運転状態がΔt時間継続すればこの間にΔt/Rtだけ再生が完了したことになる。従って順次行われる運転状態において夫々再生割合Δt/Rtを求め、この再生割合Δt/Rtを順次積算して再生割合Δt/Rtの積算合計を求め、この積算合計が1.0になると全てのSOxが放出されたことになる。従って再生割合Δt/Rtの積算合計が1.0になったときに再生期間が完了したと判断される。 That is, let R t be the regeneration time when a certain operating state is continuing and in this operating state. If this operating state continues for Δt time, regeneration is completed during this time by Δt / R t . Thus calculated respectively playback ratio Delta] t / R t in the operating state sequentially performed, the reproduction rate Delta] t / R t by sequentially integrating seeking a running total of the reproduction rate Delta] t / R t, this running total of 1.0 All SO x has been released. Accordingly, it is determined that the reproduction period is completed when the total sum of the reproduction ratios Δt / R t reaches 1.0.

図7にNOxおよびSOxの放出処理ルーチンを示す。
図7を参照するとまず初めにステップ50においてNOx吸蔵触媒15のNOx吸収剤47に単位時間当り吸収されるNOx吸収量Aが算出される。単位時間当りに機関から排出されるNOx量は要求トルクTQと機関回転数Nの関数であり、従って単位時間当りにNOx吸収剤47に吸収されるNOx吸収量Aは要求トルクTQと機関回転数Nの関数となる。本発明による実施例では要求トルクTQと機関回転数Nに応じた単位時間当りのNOx吸収量Aが予め実験により求められており、このNOx吸収量Aが要求トルクTQと機関回転数Nの関数として図8に示すようにマップの形で予めROM32内に記憶されている。
FIG. 7 shows the NO x and SO x release processing routine.
Absorption of NO x amount A to be absorbed per unit time in the NO x absorbent 47 of the NO x storing catalyst 15 is calculated first, at step 50 and reference to FIG. Amount of NO x discharged from the engine per unit time is a function of the required torque TQ and the engine rotational speed N, hence absorption of NO x amount A is absorbed in the NO x absorbent 47 per unit time and the required torque TQ It is a function of the engine speed N. In the embodiment according to the present invention, the NO x absorption amount A per unit time corresponding to the required torque TQ and the engine speed N is obtained in advance by experiment, and this NO x absorption amount A is obtained from the required torque TQ and the engine speed N. As shown in FIG. 8, it is stored in the ROM 32 in advance in the form of a map.

次いでステップ51ではNOx吸収量ΣNOXにAが加算される。次いでステップ52ではNOx吸収量ΣNOXが許容値NXを越えたか否かが判別される。ΣNOX>NXになるとステップ53に進み、排気ガスの空燃比を一時的にリッチにするリッチ処理が行われる。このときNOxがNOx吸蔵触媒15から放出される。次いでステップ54ではΣNOXがクリアされる。 Next, at step 51, A is added to the NO x absorption amount ΣNOX. Next, at step 52, it is judged if the NO x absorption amount ΣNOX has exceeded the allowable value NX. When ΣNOX> NX, the routine proceeds to step 53 where rich processing for temporarily enriching the air-fuel ratio of the exhaust gas is performed. At this time, NO x is released from the NO x storage catalyst 15. Next, at step 54, ΣNOX is cleared.

次いでステップ55では燃料噴射量Qに定数kKを乗算した値kK・QがΣSOXに加算される。燃料中には一定量のイオウが含まれており、従って単位時間当りにNOx吸蔵触媒15に吸蔵されるSOx量はkK・Qで表わすことができる。従ってkK・QにΣSOXを加算することによって得られるΣSOXはNOx吸蔵触媒15に吸蔵されたSOx量の積算値を表わしている。次いでステップ56ではSOx量の積算値ΣSOXが許容値SXを越えたか否かが判別される。ΣSOX≦SXのときには処理サイクルを完了し、ΣSOX>SXになるとステップ57に進んでSOx放出処理が行われる。このSOx放出処理を行うためのルーチンが図9に示されている。 Next, at step 55, a value kK · Q obtained by multiplying the fuel injection amount Q by a constant kK is added to ΣSOX. The fuel contains a certain amount of sulfur. Therefore, the amount of SO x stored in the NO x storage catalyst 15 per unit time can be expressed by kK · Q. Therefore, ΣSOX obtained by adding ΣSOX to kK · Q represents an integrated value of the amount of SO x stored in the NO x storage catalyst 15. Next, at step 56, it is judged if the integrated value ΣSOX of the SO x amount exceeds the allowable value SX. When ΣSOX ≦ SX, the processing cycle is completed, and when ΣSOX> SX, the routine proceeds to step 57 where SO x releasing processing is performed. A routine for performing this SO x releasing process is shown in FIG.

図9を参照するとまず初めにステップ60においてNOx吸蔵触媒15の昇温制御が行われる。次いでステップ61ではNOx吸蔵触媒15の温度TCがSOx放出温度TX以上であるか否かが判別される。TC<TXのときにはステップ60に戻る。一方、TC≧TXになると、即ちNOx吸蔵触媒15の温度TCがSOx放出温度TX以上になるとステップ62に進んでSOxの放出作用が開始される。 Referring to FIG. 9, first, in step 60, the temperature increase control of the NO x storage catalyst 15 is performed. Next, at step 61, it is judged if the temperature TC of the NO x storage catalyst 15 is equal to or higher than the SO x release temperature TX. When TC <TX, the process returns to step 60. On the other hand, when TC ≧ TX, that is, when the temperature TC of the NO x storage catalyst 15 becomes equal to or higher than the SO x release temperature TX, the routine proceeds to step 62 where the SO x release action is started.

即ち、ステップ62では排気ガスの空燃比をリッチにするリッチ処理が行われ、それによってSOxの放出作用が開始される。次いでステップ63では予め定められた一定時間Δtが経過したか否かが判別される。一定時間Δtが経過していないときにはステップ63に戻り、一定時間Δtが経過したときにはステップ64に進む。即ち、Δt時間が経過する毎にステップ64に進む。 That is, in step 62, a rich process for enriching the air-fuel ratio of the exhaust gas is performed, and thereby the SO x releasing action is started. Next, at step 63, it is judged if a predetermined time Δt has elapsed. When the fixed time Δt has not elapsed, the process returns to step 63, and when the fixed time Δt has elapsed, the process proceeds to step 64. That is, the process proceeds to step 64 every time Δt time elapses.

ステップ64では吸入空気量検出器8により検出された吸入空気量から空間速度SVが算出される。次いでステップ65ではこの空間速度SVと温度センサ22により検出された改質触媒13の温度とに基づいて図5に示す関係から排気ガス量に応じた再生期間Rtが算出される。次いでステップ66では図6から空燃比A/Fに応じた補正係数Kが求められ、この補正係数Kを再生期間Rtに乗算することによって最終的な再生時間Rtが算出される。 In step 64, the space velocity SV is calculated from the intake air amount detected by the intake air amount detector 8. Then the playback period R t corresponding to the amount of exhaust gas from the relationship shown in FIG. 5 on the basis of the temperature of the reforming catalyst 13 detected by the step 65 and the space velocity SV temperature sensor 22 is calculated. Then the correction coefficient K in accordance with the air-fuel ratio A / F is obtained from FIG. 6, step 66, the final reproduction time R t by multiplying the correction coefficient K in the reproduction period R t is calculated.

次いでステップ67では一定時間Δtを再生時間Rtで除した値、即ちΔt時間経過する間にNOx吸蔵触媒15を再生した割合(Δt/Rt)が算出され、この再生割合(Δt/Rt)がΣ(Δt/Rt)に加算される。従ってΣ(Δt/Rt)は再生割合(Δt/Rt)の積算合計を表している。次いでステップ68において再生割合の積算合計Σ(Δt/Rt)が1.0に達したか否かが判別される。Σ(Δt/Rt)<1.0のときにはステップ63に戻り、Σ(Δt/Rt)≧1.0となるとステップ69に進んでSOxの放出作用が停止される。即ち、ステップ69において昇温制御およびリッチ処理が停止され、次いでステップ70においてΣSOXおよびΣ(Δt/Rt)がクリアされる。 Next, at step 67, a value obtained by dividing the constant time Δt by the regeneration time R t , that is, a ratio (Δt / R t ) of regenerating the NO x storage catalyst 15 during the time Δt has elapsed, is calculated, and this regeneration ratio (Δt / R t ) is added to Σ (Δt / R t ). Therefore, Σ (Δt / R t ) represents the total sum of the reproduction ratios (Δt / R t ). Next, at step 68, it is judged if the total sum Σ (Δt / R t ) of the reproduction ratio has reached 1.0. When Σ (Δt / R t ) <1.0, the process returns to step 63. When Σ (Δt / R t ) ≧ 1.0, the routine proceeds to step 69 where the SO x releasing action is stopped. That is, the temperature increase control and the rich process are stopped in step 69, and then ΣSOX and Σ (Δt / R t ) are cleared in step 70.

圧縮着火式内燃機関の全体図である。1 is an overall view of a compression ignition type internal combustion engine. NOxの吸放出作用を説明するための図である。It is a diagram for explaining the absorbing and releasing action of NO x. NOx吸収量ΣNOX、SOx吸収量ΣSOX等を示すタイムチャートである。3 is a time chart showing NO x absorption amount ΣNOX, SO x absorption amount ΣSOX, and the like. 噴射制御を示す図である。It is a figure which shows injection control. 再生時間Rtと空間速度SVの関係を示す図である。It is a figure which shows the relationship between reproduction time Rt and space velocity SV. 補正係数Kを示す図である。It is a figure which shows the correction coefficient K. NOx、SOx放出処理を行うためのフローチャートである。It is a flowchart for performing NO x and SO x release processing. NOx吸収量のマップを示す図である。It is a diagram showing a map of the NO x absorption amount. SOx放出処理を行うためのフローチャートである。It is a flow chart for performing the release of SO x treatment.

符号の説明Explanation of symbols

5…排気マニホルド
13…改質触媒
15…NOx吸蔵触媒
5 ... exhaust manifold 13 ... reforming catalyst 15 ... NO x storage catalyst

Claims (5)

機関排気通路内に炭化水素を改質することのできる改質触媒を配置し、流入する排気ガスの空燃比がリーンのときには排気ガス中に含まれるNOxを吸蔵し流入する排気ガスの空燃比が理論空燃比又はリッチになると吸蔵したNOxを放出するNOx吸蔵触媒を該改質触媒下流の機関排気通路内に配置し、該NOx吸蔵触媒に吸蔵されたSOx量が予め定められた許容値を越えたときにNOx吸蔵触媒からSOxを放出させてNOx吸蔵触媒を再生させるのに必要な再生期間中、NOx吸蔵触媒の温度をSOx放出温度に維持すると共に排気ガスの空燃比をリッチに維持するようにした内燃機関の排気浄化装置において、排気ガス量を推定する排気ガス量推定手段と、排気ガス量と再生期間との関係を記憶している記憶手段とを具備し、該関係から求められた再生期間中、NOx吸蔵触媒の温度をSOx放出温度に維持すると共に排気ガスの空燃比をリッチに維持するようにした内燃機関の排気浄化装置。 A reforming catalyst capable of reforming hydrocarbons is disposed in the engine exhaust passage, and when the air-fuel ratio of the inflowing exhaust gas is lean, the air-fuel ratio of the inflowing exhaust gas is occluded by storing NO x contained in the exhaust gas. There is arranged the stoichiometric air-fuel ratio or the NO x storage catalyst and reforming catalyst downstream of the engine exhaust passage that releases becomes rich the occluded NO x, SO x amount occluded in the the NO x storage catalyst is predetermined During the regeneration period required to regenerate the NO x storage catalyst by releasing SO x from the NO x storage catalyst when the allowable value is exceeded, the temperature of the NO x storage catalyst is maintained at the SO x release temperature and exhausted. In an exhaust gas purification apparatus for an internal combustion engine configured to maintain a rich air-fuel ratio of gas, exhaust gas amount estimating means for estimating an exhaust gas amount, and storage means for storing a relationship between the exhaust gas amount and a regeneration period From the relationship During Because was play duration, exhaust gas purification apparatus for an internal combustion engine so as to maintain the air-fuel ratio of the exhaust gas rich while maintaining the temperature of the NO x storage catalyst release SO x temperature. 再生期間中に上記関係に基づいて各排気ガス量におけるNOx吸蔵触媒の再生割合を求め、求められた再生割合を順次積算して再生割合の積算合計が1.0になったときに再生期間が完了したと判断される請求項1に記載の内燃機関の排気浄化装置。 During the regeneration period, the regeneration ratio of the NO x storage catalyst in each exhaust gas amount is obtained based on the above relationship, and the regeneration period is obtained when the obtained regeneration ratio is sequentially integrated and the cumulative total of the regeneration ratio reaches 1.0. The exhaust emission control device for an internal combustion engine according to claim 1, wherein it is determined that is completed. 排気ガス量を最小排気ガス量から増大させると、上記再生期間は減少して最小値に達した後に増大する請求項1に記載の内燃機関の排気浄化装置。   2. The exhaust emission control device for an internal combustion engine according to claim 1, wherein when the exhaust gas amount is increased from the minimum exhaust gas amount, the regeneration period decreases and increases after reaching a minimum value. 排気ガス温が高いほど再生期間は短かくなる請求項1に記載の内燃機関の排気浄化装置。   The exhaust emission control device for an internal combustion engine according to claim 1, wherein the regeneration period becomes shorter as the exhaust gas temperature is higher. 排気ガスの空燃比のリッチの度合が大きいほど再生期間は短かくなる請求項1に記載の内燃機関の排気浄化装置。   The exhaust emission control device for an internal combustion engine according to claim 1, wherein the regeneration period becomes shorter as the richness of the air-fuel ratio of the exhaust gas becomes larger.
JP2003349739A 2003-10-08 2003-10-08 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP4039349B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003349739A JP4039349B2 (en) 2003-10-08 2003-10-08 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003349739A JP4039349B2 (en) 2003-10-08 2003-10-08 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2005113801A true JP2005113801A (en) 2005-04-28
JP4039349B2 JP4039349B2 (en) 2008-01-30

Family

ID=34541526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003349739A Expired - Fee Related JP4039349B2 (en) 2003-10-08 2003-10-08 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4039349B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011114499A1 (en) * 2010-03-15 2011-09-22 トヨタ自動車株式会社 Device for cleaning exhaust gas from internal combustion engine
WO2011118044A1 (en) * 2010-03-23 2011-09-29 トヨタ自動車株式会社 Exhaust purification device for an internal combustion engine
WO2012053117A1 (en) * 2010-10-18 2012-04-26 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
WO2012086094A1 (en) * 2010-12-24 2012-06-28 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
WO2012098688A1 (en) * 2011-01-17 2012-07-26 トヨタ自動車株式会社 Exhaust purification device for internal combustion engine
WO2012108059A1 (en) * 2011-02-07 2012-08-16 トヨタ自動車株式会社 Exhaust-gas purifying device for internal-combustion engine
WO2012108062A1 (en) * 2011-02-08 2012-08-16 トヨタ自動車株式会社 Internal combustion engine exhaust purification device
WO2012108063A1 (en) * 2011-02-10 2012-08-16 トヨタ自動車株式会社 Exhaust-gas purifying device for internal-combustion engine
WO2012111171A1 (en) * 2011-02-18 2012-08-23 トヨタ自動車株式会社 Exhaust-gas purifying device for internal-combustion engine
WO2012124173A1 (en) * 2011-03-17 2012-09-20 トヨタ自動車株式会社 Internal combustion engine exhaust gas purification device
WO2012140784A1 (en) * 2011-04-15 2012-10-18 トヨタ自動車株式会社 Exhaust cleaner for internal combustion engine
WO2013008342A1 (en) * 2011-07-14 2013-01-17 トヨタ自動車株式会社 Exhaust purification device of internal combustion engine
JP5131391B2 (en) * 2010-03-18 2013-01-30 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
WO2013027300A1 (en) * 2011-08-25 2013-02-28 トヨタ自動車株式会社 Exhaust gas purifier for internal combustion engine
WO2013031028A1 (en) * 2011-08-29 2013-03-07 トヨタ自動車株式会社 Exhaust gas purification system for internal combustion engine
WO2013031027A1 (en) * 2011-08-29 2013-03-07 トヨタ自動車株式会社 Exhaust gas purification system for internal combustion engine
CN102985648A (en) * 2010-05-20 2013-03-20 丰田自动车株式会社 Exhaust gas purification device for internal combustion engine
RU2489578C2 (en) * 2010-08-30 2013-08-10 Тойота Дзидося Кабусики Кайся Ice exhaust gas cleaning system
US8656706B2 (en) 2010-09-02 2014-02-25 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
US8707680B2 (en) 2011-08-01 2014-04-29 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
EP2325449A4 (en) * 2008-08-11 2015-10-07 Nissan Motor Exhaust gas purification system and exhaust gas purifying method using same

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2325449A4 (en) * 2008-08-11 2015-10-07 Nissan Motor Exhaust gas purification system and exhaust gas purifying method using same
US8671667B2 (en) 2010-03-15 2014-03-18 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
JP4893876B2 (en) * 2010-03-15 2012-03-07 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
US9623375B2 (en) 2010-03-15 2017-04-18 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
KR101383422B1 (en) 2010-03-15 2014-04-08 도요타지도샤가부시키가이샤 Exhaust purification system of internal combustion engine
WO2011114499A1 (en) * 2010-03-15 2011-09-22 トヨタ自動車株式会社 Device for cleaning exhaust gas from internal combustion engine
RU2479730C1 (en) * 2010-03-15 2013-04-20 Тойота Дзидося Кабусики Кайся Ice exhaust cleaning system
JP5131391B2 (en) * 2010-03-18 2013-01-30 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
WO2011118044A1 (en) * 2010-03-23 2011-09-29 トヨタ自動車株式会社 Exhaust purification device for an internal combustion engine
US8763370B2 (en) 2010-03-23 2014-07-01 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
KR101393221B1 (en) 2010-03-23 2014-05-08 도요타지도샤가부시키가이샤 Exhaust purification system of internal combustion engine
CN102834597A (en) * 2010-03-23 2012-12-19 丰田自动车株式会社 Exhaust purification device for an internal combustion engine
JP5182429B2 (en) * 2010-03-23 2013-04-17 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
CN102985648A (en) * 2010-05-20 2013-03-20 丰田自动车株式会社 Exhaust gas purification device for internal combustion engine
US8679410B2 (en) 2010-08-30 2014-03-25 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
RU2489578C2 (en) * 2010-08-30 2013-08-10 Тойота Дзидося Кабусики Кайся Ice exhaust gas cleaning system
US8656706B2 (en) 2010-09-02 2014-02-25 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
JP5131393B2 (en) * 2010-10-18 2013-01-30 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
WO2012053117A1 (en) * 2010-10-18 2012-04-26 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
CN103492683B (en) * 2010-12-24 2016-04-20 丰田自动车株式会社 The Exhaust gas purifying device of internal-combustion engine
WO2012086094A1 (en) * 2010-12-24 2012-06-28 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
CN103492683A (en) * 2010-12-24 2014-01-01 丰田自动车株式会社 Exhaust gas purification device for internal combustion engine
JP5131389B2 (en) * 2010-12-24 2013-01-30 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
WO2012098688A1 (en) * 2011-01-17 2012-07-26 トヨタ自動車株式会社 Exhaust purification device for internal combustion engine
CN103534449A (en) * 2011-01-17 2014-01-22 丰田自动车株式会社 Exhaust purification device for internal combustion engine
JP5152416B2 (en) * 2011-01-17 2013-02-27 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
US8707681B2 (en) 2011-01-17 2014-04-29 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
JP5131392B2 (en) * 2011-02-07 2013-01-30 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
CN102753794B (en) * 2011-02-07 2015-05-13 丰田自动车株式会社 Exhaust-gas purifying device for internal-combustion engine
CN102753794A (en) * 2011-02-07 2012-10-24 丰田自动车株式会社 Exhaust-gas purifying device for internal-combustion engine
WO2012108059A1 (en) * 2011-02-07 2012-08-16 トヨタ自動車株式会社 Exhaust-gas purifying device for internal-combustion engine
WO2012108062A1 (en) * 2011-02-08 2012-08-16 トヨタ自動車株式会社 Internal combustion engine exhaust purification device
JP5131390B2 (en) * 2011-02-08 2013-01-30 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP5131394B2 (en) * 2011-02-10 2013-01-30 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
CN103348102A (en) * 2011-02-10 2013-10-09 丰田自动车株式会社 Exhaust-gas purifying device for internal-combustion engine
WO2012108063A1 (en) * 2011-02-10 2012-08-16 トヨタ自動車株式会社 Exhaust-gas purifying device for internal-combustion engine
WO2012111171A1 (en) * 2011-02-18 2012-08-23 トヨタ自動車株式会社 Exhaust-gas purifying device for internal-combustion engine
CN103403313A (en) * 2011-02-18 2013-11-20 丰田自动车株式会社 Exhaust-gas purifying device for internal-combustion engine
JP5177302B2 (en) * 2011-02-18 2013-04-03 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP5152417B2 (en) * 2011-03-17 2013-02-27 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
WO2012124173A1 (en) * 2011-03-17 2012-09-20 トヨタ自動車株式会社 Internal combustion engine exhaust gas purification device
WO2012140784A1 (en) * 2011-04-15 2012-10-18 トヨタ自動車株式会社 Exhaust cleaner for internal combustion engine
JP5218672B2 (en) * 2011-04-15 2013-06-26 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
CN102834595A (en) * 2011-04-15 2012-12-19 丰田自动车株式会社 Exhaust cleaner for internal combustion engine
US8820054B2 (en) 2011-07-14 2014-09-02 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
CN103052772A (en) * 2011-07-14 2013-04-17 丰田自动车株式会社 Exhaust purification device of internal combustion engine
WO2013008342A1 (en) * 2011-07-14 2013-01-17 トヨタ自動車株式会社 Exhaust purification device of internal combustion engine
CN103052772B (en) * 2011-07-14 2017-02-08 丰田自动车株式会社 Exhaust purification device of internal combustion engine
JP5278594B2 (en) * 2011-07-14 2013-09-04 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
KR101418192B1 (en) 2011-07-14 2014-07-09 도요타지도샤가부시키가이샤 Exhaust emission control device of internal combustion engine
US8707680B2 (en) 2011-08-01 2014-04-29 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
JP5257551B1 (en) * 2011-08-25 2013-08-07 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
CN103097678A (en) * 2011-08-25 2013-05-08 丰田自动车株式会社 Exhaust gas purifier for internal combustion engine
US8707682B2 (en) 2011-08-25 2014-04-29 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
WO2013027300A1 (en) * 2011-08-25 2013-02-28 トヨタ自動車株式会社 Exhaust gas purifier for internal combustion engine
WO2013031027A1 (en) * 2011-08-29 2013-03-07 トヨタ自動車株式会社 Exhaust gas purification system for internal combustion engine
US8689546B2 (en) 2011-08-29 2014-04-08 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
JP5257549B1 (en) * 2011-08-29 2013-08-07 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
US9181889B2 (en) 2011-08-29 2015-11-10 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
JP5218698B1 (en) * 2011-08-29 2013-06-26 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
CN103097680A (en) * 2011-08-29 2013-05-08 丰田自动车株式会社 Exhaust purification system of internal combustion engine
WO2013031028A1 (en) * 2011-08-29 2013-03-07 トヨタ自動車株式会社 Exhaust gas purification system for internal combustion engine

Also Published As

Publication number Publication date
JP4039349B2 (en) 2008-01-30

Similar Documents

Publication Publication Date Title
JP4039349B2 (en) Exhaust gas purification device for internal combustion engine
KR100662313B1 (en) Exhaust emission purification apparatus of compression ignition internal combustion engine
JP4158697B2 (en) Exhaust gas purification device and exhaust gas purification method for internal combustion engine
WO2010116541A1 (en) Control device for internal combustion engine
JP2007297918A (en) Exhaust emission control device for internal combustion engine
JP4586911B2 (en) Exhaust gas purification device for internal combustion engine
JP5056725B2 (en) Control device for internal combustion engine
JP5748005B2 (en) Exhaust gas purification device for internal combustion engine
JP4935929B2 (en) Exhaust gas purification device for internal combustion engine
JP2007231918A (en) Exhaust emission control device for compression ignition type internal combustion engine
WO2014016965A1 (en) Exhaust purification device of internal combustion engine
JPH1193641A (en) Exhaust emission control device for internal combustion engine
JP2009156165A (en) Exhaust emission control device for internal combustion engine
JP4357917B2 (en) Exhaust gas purification device for internal combustion engine
JP2007231922A (en) Exhaust emission control device for compression ignition type internal combustion engine
JP2001003782A (en) Exhaust emission control device for internal combustion engine
JP2009209766A (en) Exhaust emission control device of internal combustion engine
JP4019891B2 (en) Exhaust gas purification device for internal combustion engine
JP3642159B2 (en) Exhaust gas purification device for internal combustion engine
JP5206597B2 (en) Exhaust gas purification device for internal combustion engine
JP2010106813A (en) Exhaust emission control device for internal combustion engine
JP4506544B2 (en) Exhaust gas purification device for compression ignition type internal combustion engine
JP4506545B2 (en) Exhaust gas purification device for compression ignition type internal combustion engine
JP4003730B2 (en) Exhaust gas purification device for internal combustion engine
JPWO2010089901A1 (en) Exhaust gas purification device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071029

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131116

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees