JP2005108988A - 半導体製造装置 - Google Patents

半導体製造装置 Download PDF

Info

Publication number
JP2005108988A
JP2005108988A JP2003337742A JP2003337742A JP2005108988A JP 2005108988 A JP2005108988 A JP 2005108988A JP 2003337742 A JP2003337742 A JP 2003337742A JP 2003337742 A JP2003337742 A JP 2003337742A JP 2005108988 A JP2005108988 A JP 2005108988A
Authority
JP
Japan
Prior art keywords
reaction tube
gas
semiconductor wafer
reaction
diffusion device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003337742A
Other languages
English (en)
Inventor
Yoshiyuki Matsuo
佳幸 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2003337742A priority Critical patent/JP2005108988A/ja
Publication of JP2005108988A publication Critical patent/JP2005108988A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract


【課題】 薄膜の原料を含むガスを半導体ウエハに均一に吹き付け、半導体ウエハ上に均一な薄膜を形成することができる半導体製造装置を提供することである。
【解決手段】 複数枚の半導体ウエハ21を支持部材24により、一定の間隔に離間して支持する。半導体ウエハ21を支持した支持部材24を反応管25内に収納する。反応管25内にある半導体ウエハ21を反応管25を外囲して配置された加熱手段によって加熱しながら、ガスをガス供給手段によって反応管25内に供給する。その際、半導体ウエハ21間の間隔に対する反応管25の内壁と半導体ウエハ21の外周部との隙間の比率が所定の比率となるように構成する。
【選択図】 図1

Description

本発明は、不純物拡散および薄膜形成などを行う際、半導体ウエハ上にガスを均一に吹き付けて薄膜を形成する半導体製造装置に関する。
半導体集積回路および個別半導体素子などの半導体デバイスを製造する過程において、洗浄工程、熱処理工程、不純物拡散工程、薄膜形成工程、リソグラフィ工程、平坦化工程などが行われる。その中で不純物拡散工程とは、半導体ウエハ内にph接合などを形成するために、III価あるいはV価の不純物元素を半導体ウエハ中に導入する工程であり、熱拡散法またはイオン打込み法などの方法を用いている。熱拡散法による不純物拡散工程とは、次のような工程である。アクセプタとなるIII価の不純物もしくはドナーとなるV価の不純物を多く含んだガスを半導体ウエハ上に半導体ウエハを加熱しながら吹き付ける。そのことにより、不純物が半導体ウエハ上に付着され、不純物もしくは、その酸化物の被膜が半導体ウエハ上に形成させながら、半導体ウエハに加えた熱によって、薄膜を形成した不純物が半導体ウエハ内に拡散され、導入される。
不純物拡散工程に用いられる従来の半導体製造装置は、図19および図20に示すような不純物拡散装置である。
図19は、従来の縦型拡散装置101の構成を簡略化して示す概略断面図である。図19(a)は、縦型拡散装置101の構成を上面から見た概略断面図である。図19(b)は、縦型拡散装置101の構成を側面から見た概略断面図である。軸線がほぼ垂直方向となるように立たせた状態で設置される円筒状の加熱手段104内には、石英製の円筒状の反応管102が設置される。反応管102内には、複数の半導体ウエハ103が、ほぼ水平な姿勢で、間隔をあけてウエハ支持具105と支持基台106とからなる支持部材107によって支持される。支持部材107で支持される半導体ウエハ103は、反応管102の底部から昇降部材113により、出し入れできる。反応管102内部には、噴出口111を複数有するノズル管110が設けられ、不純物を多く含むガスを矢符112に示すように半導体ウエハ103間に吹き付ける。半導体ウエハ103は、反応管102を外囲して設置される加熱手段104によって加熱される。その際、加熱された半導体ウエハ103は、支持部材107とともに回転させる。反応管102の底面部に、排気口109が設けられ、反応管102内に導入されたガスの排気を行う。反応管102の内径は、直径6インチの半導体ウエハ用の拡散装置で、190〜220mm程度である。
図20は、従来の横型拡散装置201の構成を簡略化して示す概略断面図である。図20(a)は、横型拡散装置201の構成を前面から見た概略断面図である。図20(b)は、横型拡散装置201の構成を側面から見た概略断面図である。反応管202は、軸線がほぼ水平になるような状態で使用する。複数の半導体ウエハ203は、ウエハ支持具205と支持基台206とからなる支持部材207によって、ほぼ垂直に、一定の間隔をあけるような状態で支持される。支持部材207で支持される半導体ウエハ203は、図示しない自動搬送装置により反応管202内に移動させる。反応管202の軸線方向の一端側には、ガス導入口208が設けられ、不純物を多く含むガスを反応管202内に導入することができる。反応管202の周囲には、ヒータ204が設けられ、反応管202内に収容した半導体ウエハ203を加熱することができる。反応管202のガス導入口208と反対側に排気口209が設けられる。反応管202の内径は、直径6インチの半導体ウエハ用の拡散装置で200〜240mm程度である。
一方、薄膜形成工程に用いる縦型減圧CVD(Chemical Vapor Deposition)膜製造装置は、1種または2種以上のガスを気相中もしくは半導体ウエハ上で化学反応させ、その生成物を半導体ウエハ上に付着させることで薄膜を形成させる装置である。つまり、CVD膜製造装置は、不純物拡散装置と同様に半導体ウエハに、ガスを吹き付け、半導体ウエハ上に薄膜を形成させる装置である。
そこで、縦型減圧CVD装置において、インナーチューブ(反応管)にウェーハ支持部溝を有することで、インナーチューブと半導体ウェーハとの間隔を最小限に保つことができる。そのことによって、膜厚が均一なCVD膜を半導体ウェーハに形成できることが開示されている(たとえば、特許文献1参照)。
また、縦型減圧CVD装置において、ウエハの支持部材の上下端の圧力差を、ウエハと反応管の内管との隙間とガスの流量とを調整することによって生じさせ、ウエハの中心から周辺に向う方向に圧力勾配または濃度勾配を有するようにできる。そのことによって、膜厚が均一なCVD膜を形成できることが開示されている(たとえば、特許文献2参照)。
実開平4−114560号公報 特開2001−68421号公報
半導体ウエハに均一な薄膜を形成させるためには、薄膜の原料を含むガスを半導体ウエハに均一に吹き付けなければ、半導体ウエハ上に形成される薄膜は不均一になってしまう。
図19に示す縦型拡散装置101では、ガスを噴出口111から矢符112に示す一方向に吹き付けているので、半導体ウエハ103に吹き付けられるガスの量は、噴出口111に近い部分では多く、噴出口111から遠い部分では、少なくなってしまう。そこで、半導体ウエハ103に吹き付けられるガスの量を均一にするために、半導体ウエハ103を支持部材107とともに回転させているが、吹き付けられるガスの量が、半導体ウエハ103の周辺部で多く、半導体ウエハ103の中心部で少なくなってしまう。また、ガスが充分に加熱されないうちに、噴出口111より半導体ウエハ103に吹き付けられる。このため、噴出口111に近い部分のガスは、温度が低く、遠い部分のガスは高くなるという温度分布を生じてしまう。均一性を高めるため、半導体ウエハ103を回転させているが、上記温度分布により、半導体ウエハ103の中心部でガスの温度が高く、不純物が多く導入され、半導体ウエハ103の周辺部では、ガスの温度が低く不純物があまり導入されないので、半導体ウエハ103の不純物濃度はばらついてしまう。
また、図20に示す横型拡散装置201では、一般に反応管202の内壁と半導体ウエハ203の外周部との間の隙間が大きいため、半導体ウエハ203間にガスが流れ込みにくく、ガスの濃度が、半導体ウエハ203の周辺部では濃く、中心部では薄くなってしまい、均一性が悪くなってしまう。前記の状態を改善するために半導体ウエハ203の間隔を広げて処理をし、均一性をあげることもできるが、間隔を広げることにより1バッチあたりの処理枚数が減ってしまい、半導体ウエハの製造効率が悪くなる。
特許文献1に開示されている縦型減圧CVD膜製造装置によると、インナーチューブにウェーハ支持部溝を有することで、インナーチューブと半導体ウェーハとの間隔を最小限に保つことが可能となり、反応ガスが半導体ウェーハの間に入ってくるようになり、半導体ウェーハ上に形成するCVD膜の膜厚の均一化を高めることができる。しかし、半導体ウェーハとインナーチューブとの間隔を最小限に保つのみでは、反応ガスが、半導体ウェーハ間を流れるとは限らず、充分に均一な膜厚をもつCVD膜を形成することができない。
また、特許文献2に開示されている半導体製造装置によると、ウエハの支持部材の上下端の圧力差を、ウエハと反応管の内管との隙間またはガスの流量を調整することにより生じさせ、ウエハの中心から周辺に向う方向に圧力勾配または濃度勾配を生じさせることが可能である。つまりウエハ間にガスの流れが生じる。そのことによって、膜厚が均一なCDV膜を形成することが可能である。しかし、ウエハの支持部材の上下端の圧力差を生じさせるために、ウエハと反応管の内管との隙間またはガスの流量を調整するだけでは、不充分である。
本発明の目的は、薄膜の原料を含むガスを半導体ウエハに均一に吹き付け、半導体ウエハ上に均一な薄膜を形成させることができる半導体製造装置を提供することである。
本発明は、複数枚の半導体ウエハを一定の間隔で支持する支持部材と、
支持部材を収納する反応管と、
ガスを反応管内に供給するガス供給手段と、
反応管を外囲して配置され、半導体ウエハを加熱する加熱手段とを含み、
半導体ウエハ間の間隔に対する反応管の内壁と半導体ウエハの外周部との隙間の比率が所定の比率になるように構成されることを特徴とする半導体製造装置。
また本発明は、所定の比率とは、反応管の内壁と半導体ウエハの外周部との隙間が半導体ウエハ間の間隔に対して、同等もしくはそれ以下となるような比率であることを特徴とする。
また本発明は、所定の比率は、0.3以上1.5以下であることを特徴とする。
また本発明は、前記反応管は、前記支持部材を収納する内側反応管とそれを外囲して配置される外側反応管との二重管構造であり、
ガスが外側反応管と内側反応管とで囲まれた空間を通過した後、内側反応管内を通過するように構成されることを特徴とする。
また本発明は、前記ガス供給手段は、ガスを反応管内に供給するためのガス供給管を有しており、
そのガス供給管を前記加熱手段によって加熱される位置に配置することを特徴とする。
また本発明は、反応管内に供給される前のガスを加熱するためのガス加熱手段をさらに含むことを特徴とする。
本発明によれば、複数枚の半導体ウエハを、支持部材により、一定の間隔に離間して支持する。半導体ウエハを支持した支持部材を反応管内に収納する。反応管内にある半導体ウエハを反応管を外囲して配置された加熱手段によって加熱しながら、ガスをガス供給手段によって反応管内に供給する。その際、半導体ウエハ間の間隔に対する反応管の内壁と半導体ウエハの外周部との隙間の比率が所定の比率となるように構成する。好ましくは、所定の比率とは、反応管の内壁と半導体ウエハの外周部との隙間が半導体ウエハ間の間隔に対して同等もしくはそれ以下となるような比率である。より好ましくは、所定の比率は0.3以上1.5以下である。このことにより反応管内に供給されたガスは、反応管の内壁と半導体ウエハの外周部との隙間に流れにくく、半導体ウエハ間に流れやすくなる。したがって、ガスを半導体ウエハに均一に吹き付けることが可能となり、半導体ウエハ上に均一な薄膜を形成することができる。さらに、半導体装置が拡散装置の場合、半導体ウエハ上に形成される不純物の薄膜が均一であるため、半導体ウエハに不純物を均一に導入することができる。
また本発明によれば、反応管は、半導体ウエハを支持した支持部材を収納する内側反応管とそれを外囲して配置される外側反応管との二重管構造である。そして、はじめにガスを外側反応管と内側反応管とで囲まれた空間に供給し、通過させる。その後、ガスは、半導体ウエハのある内側反応管内を通過する。このことにより、ガスが外側反応管と内側反応管とで囲まれた空間を通過する間に、反応管を外囲して配置された加熱手段によって、ガスは充分に加熱される。したがって、充分に加熱されたガスを半導体ウエハのある内側反応管に供給することが可能である。
また本発明によれば、ガス供給手段は、ガスを反応管内に供給するためのガス供給管を有している。そして、そのガス供給管は、半導体ウエハを加熱するための加熱手段によって加熱される位置に配置する。たとえば、ガス供給管は、反応管とそれに外囲して配置されている加熱手段とに囲まれた空間に設置する。このことにより、ガスは、充分に加熱された後に、反応管内に供給することが可能である。
また本発明によれば、反応管内に供給される前のガスを加熱するためのガス加熱手段を含む。たとえば、ガス加熱手段は、ガスを反応管内に供給する直前のガス供給管を加熱することができるような位置に設置する。このことにより、ガスを充分に加熱した後に、反応管内に供給することが可能である。
半導体ウエハ上にガスを均一に吹き付けて薄膜を形成する半導体製造装置には、不純物拡散装置とCVD膜製造装置とがある。不純物拡散装置では、半導体ウエハ上に不純物の薄膜を形成させながら、半導体ウエハに加えた熱によって、薄膜として形成した不純物を半導体ウエハ内に拡散させる。CVD膜製造装置では、半導体ウエハ上に単金属または金属酸化物などの薄膜を形成させる。CVD膜製造装置で形成した単金属または金属酸化物などの薄膜に対してフォトリソグラフィーなどを施すことで配線パターンまたは絶縁膜などを形成する。以下では、不純物拡散装置について説明する。
図1は、本発明の実施の一形態である縦型拡散装置1の構成を簡略化して示す概略断面図である。図1(a)は、縦型拡散装置1の構成を上面から見た概略断面図である。図1(b)は、縦型拡散装置1の構成を側面から見た概略断面図である。縦型拡散装置1は、半導体ウエハ21を支持する支持部材24と、支持部材24を収納する反応管25と、反応ガスを反応管25内に供給するガス供給手段と、反応管25を外囲して配置され、反応管25を加熱することによって半導体ウエハ21および反応管25内を半導体ウエハ21の不純物拡散工程に適した温度に保つ加熱手段26とを含む。半導体ウエハ21は、ドナーまたはアクセプタとなる不純物が導入される半導体ウエハであり、薄い円板状の形状を有する。本実施の形態では、半導体ウエハにたとえば、直径が150mmのシリコンウエハを用いる。支持部材24は、ウエハ支持具22と、支持基台23とを含む。ウエハ支持具22は、支持基台23上に設けられる。半導体ウエハ21は、ほぼ水平な姿勢で一定の間隔をあけてウエハ支持具22で保持される。支持基台23の下部は、プレート部27が設けられる。また、支持部材24を矢符28a,28bの示す方向に昇降移動する昇降部材29が設けられる。反応管25は、円筒形状を有しており、その軸線がほぼ鉛直方向となるように立たせた状態で設置される。反応管25の材質は、たとえば石英ガラスなどを用いる。反応管25内には、半導体ウエハ21、半導体ウエハ21を支持する支持部材24が収納され、反応ガスが流動する。反応管25は、半導体ウエハ21を保持した支持部材24を収納する際に、支持部材24のウエハ支持具22を嵌挿することができるウエハ支持具溝30を有する。ウエハ支持具溝30は、反応管25の内壁に凹状にへこませた縦方向の溝である。反応管25の下部には、開口部の周囲にフランジ部35が設けられる。フランジ部35は、支持部材24が昇降部材29によって上昇された状態で、支持基台23の下部に設けられたプレート部27と密接し、反応管25内を封止する。反応ガスは、不純物などの薄膜の原料を気化させた原料ガスと、原料ガスを送り出すためのキャリアガスの混合ガスである。原料ガスは、たとえば、N型拡散層形成時には、オキシ塩化リン(POCl)などを用い、P型拡散層形成時には、三臭化ホウ素(BBr)などを用いる。ガス供給手段は、不純物などの薄膜の原料を気化させて原料ガスにする手段と、原料ガスとキャリアガスとを混合させて反応ガスにする手段と、反応ガスを導入口31まで供給する手段とを有する。反応管25の上部には、反応ガスをガス反応管25内に導入する導入口31が形成され、反応管25の下部付近には、反応管25内を流動した反応ガスが反応管25の外に排気される排気口32が形成される。つまり、反応ガスは、反応管25上部の導入口32から導入され、反応管25内では矢符33a方向に流動し、反応管25下部付近の排気口32から排気される。加熱手段26は、たとえば、カーボランダムなどからなるヒータであり、図示しない電源から電力が供給されて発熱し、反応管25を加熱する。このことによって、半導体ウエハ21および反応管25内が半導体ウエハ21の不純物拡散工程に適した温度まで昇温され、その温度に保たれる。
なお、CVD膜製造装置の場合、以下のことが不純物拡散装置の場合と異なる。半導体ウエハ21は、表面に単金属であるアルミニウムまたは金属酸化物である二酸化ケイ素などの薄膜が形成される半導体ウエハであり、薄い円板状の形状を有する。原料ガスは、たとえば、単金属薄膜形成時には、三塩化アルミニウム(AlCl)などを用い、金属酸化物薄膜形成時には、四塩化ケイ素(SiCl)などを用いる。加熱手段26は、薄膜形成工程に適した温度まで昇温され、その温度に保つ。
図2は、図1に示す縦型拡散装置1の部分拡大図である。図に示すように、半導体ウエハ21とその直上または直下の半導体ウエハ21との間隔を間隔Aとし、反応管25の内壁と半導体ウエハ21の外周部との隙間を隙間Bとする。縦型拡散装置1は、隙間Bの間隔Aに対する比率が所定の比率となるように構成されている。所定の比率が、隙間Bが間隔Aに対して同等もしくはそれ以下となるような比率であることが好ましい。さらに、所定の比率が0.3以上1.5以下であることが好ましい。たとえば、間隔Aが4.76mm、隙間Bが4.00mmとなるように構成される。つまり、比率が0.84倍となるように構成される。間隔Aに対する隙間Bの比率が0.3倍より小さいと、反応管25、ウエハ支持具22および半導体ウエハ21の寸法精度によっては、反応管25にウエハ支持具22または半導体ウエハ21などを収納する際に、反応管25の内壁などにウエハ支持具22または半導体ウエハ21などが接触する危険性がでてくる。また、間隔Aに対する隙間Bの比率が1.5倍より大きいと、後述する理由により、反応ガスが半導体ウエハ21間に流れ込みにくくなり、均一性が低下する。
図3は、反応管25内の反応ガスの流れを示す模式図である。図3(a)は、隙間Bの間隔Aに対する比率が所定の比率より大きい縦型拡散装置1において、反応管25内の反応ガスの流れを示す模式図である。間隔Aに対する隙間Bの比率が所定の比率より大きいと、矢符36に示すような反応管25に沿って流れる反応ガスの流れは、半導体ウエハ21の存在によって、あまり阻害されない。だから、矢符37に示すような半導体ウエハ21間を流れる反応ガスの流れは生じにくい。したがって、不純物を含む反応ガスを半導体ウエハ21に均一に吹き付けることができない。図3(b)は、隙間Bの間隔Aに対する比率が所定の比率である縦型拡散装置1において、反応管25内の反応ガスの流れを示す模式図である。間隔Aに対する隙間Bの比率が所定の比率であると、矢符36に示すような反応管25に沿って流れる反応ガスの流れは、半導体ウエハ21の存在により阻害される。そのため、矢符37に示すような半導体ウエハ21間を流れる反応ガスの流れが生じやすい。したがって、不純物を含む反応ガスを半導体ウエハ21に均一に吹き付けることができ、半導体ウエハ21上に均一な不純物の薄膜を形成することができる。
図4は、本発明の実施の一形態である縦型拡散装置2の構成を簡略化して示す概略断面図である。図4(a)は、縦型拡散装置2の構成を上面から見た概略断面図である。図4(b)は、縦型拡散装置2の構成を側面から見た概略断面図である。縦型拡散装置2は、反応管25の下部付近に、反応ガスを反応管25内に導入する導入口31が形成され、反応管25の上部に、反応ガスを排気する排気口32が形成されること以外は、図1に記載した縦型拡散装置1と同様である。つまり、反応管25内での反応ガスが、矢符33bに示すように反応管25下部付近から反応管25上部へ流動する。このような反応ガスの流れであっても、間隔Aに対する隙間Bの比率が所定の比率であれば、反応ガスは、半導体ウエハ21に均一に吹き付けることができ、半導体ウエハ21上にある均一な不純物の薄膜を形成することができる。
図5は、本発明の実施の一形態である横型拡散装置3の構成を簡略化して示す概略断面図である。図5(a)は、横型拡散装置3の構成を前面から見た概略断面図である。図5(b)は、横型拡散装置3の構成を側面から見た概略断面図である。横型拡散装置3は、反応管25の軸線がほぼ水平方向となるように寝かせた状態で設置される以外は、図1に記載した縦型拡散装置1と同様である。矢符33cのように反応ガスの流れが横方向であっても、間隔Aに対する隙間Bの比率が所定の比率であれば、反応ガスは、半導体ウエハ21に均一に吹き付けることができ、半導体ウエハ21上に均一な不純物の薄膜を形成することができる。
図6は、本発明の実施の一形態である横型拡散装置4の構成を簡略化して示す概略断面図である。図6(a)は、横型拡散装置4の構成を前面から見た概略断面図である。図6(b)は、横型拡散装置4の構成を側面から見た概略断面図である。横型拡散装置4は、反応管25の軸線がほぼ水平方向になるように寝かせた状態で設置される以外は、図4に記載した縦型拡散装置2と同様である。矢符33dのように、反応ガスの流れが横方向であっても、間隔Aに対する隙間Bの比率が所定の比率であれば、反応ガスは、半導体ウエハ21に均一に吹き付けることができ、半導体ウエハ21に均一な不純物の薄膜を形成することができる。
図7は、本発明の実施の一形態である縦型拡散装置5の構成を簡略化して示す概略断面図である。図7(a)は、縦型拡散装置5の構成を上面から見た概略断面図である。図7(b)は、縦型拡散装置5の構成を側面から見た概略断面図である。
縦型拡散装置5は、反応管40の構成以外は、図1に記載した縦型拡散装置1と同様である。反応管40は、円筒形状を有しており、内側反応管38と外側反応管39との二重管構造である。反応管40の軸線は、ほぼ鉛直方向となるように立たせた状態で設置される。反応管40の材質は、たとえば、石英ガラスなどを用いる。内側反応管38は、図1の反応管25と同様にウエハ支持具溝31を有する。外側反応管39の下部付近には、反応ガスを反応管40内に導入する導入口31が形成され、内側反応管38の下部付近には、反応管40内を流動した反応ガスが反応管40の外に排気される排気口32が形成される。反応ガスは、内側反応管38と外側反応管39とに囲まれた空間を矢符34a方向に流動する。その間に、反応ガスは、加熱手段26によって充分に加熱される。加熱された反応ガスは、内側反応管38内を矢符33a方向に流動し、排気口32から排気される。したがって、反応ガスは、内側反応管38と外側反応管39とに囲まれた空間を通過する間に加熱手段26によって加熱されるので、充分に加熱された反応ガスを半導体ウエハ21に均一に吹き付けることができ、半導体ウエハ21上に均一な不純物の薄膜を形成することができる。
図8は、本発明の実施の一形態である縦型拡散装置6の構成を簡略化して示す概略断面図である。図8(a)は、縦型拡散装置6の構成を上面から見た概略断面図である。図8(b)は、縦型拡散装置6の構成を側面から見た概略断面図である。縦型拡散装置6は、外側反応管39の上部に、反応ガスを反応管40内に導入する導入口31が形成され、内側反応管38の上部に、反応ガスを排気する排気口32が形成されること以外は、図7に記載した縦型拡散装置5と同様である。矢符33b,34bに示すように反応ガスの流れが縦型拡散装置5の場合と異なっていても、内側反応管38と外側反応管39とに囲まれた空間を流動した後、内側反応管38内を流動することにより充分に加熱された反応ガスを半導体ウエハ21に均一に吹き付けることができ、半導体ウエハに均一な不純物の薄膜を形成できる。
図9は、本発明の実施の一形態である横型拡散装置7の構成を簡略化して示す概略断面図である。図9(a)は、横型拡散装置7の構成を前面から見た概略断面図である。図9(b)は、横型拡散装置7の構成を側面から見た概略断面図である。横型拡散装置7は、反応管40の軸線がほぼ水平方向となるように寝かせた状態で設置される以外は、図7に記載した縦型拡散装置5と同様である。反応管40内の反応ガスの流れが矢符33c,34cのように横方向であっても、内側反応管38と外側反応管39とに囲まれた空間を流動した後、内側反応管38内を流動することにより、充分に加熱された反応ガスを半導体ウエハ21に均一に吹き付けることができ、半導体ウエハ上に均一な不純物の薄膜を形成することができる。
図10は、本発明の実施の一形態である横型拡散装置8の構成を簡略化して示す概略断面図である。図10(a)は、横型拡散装置8の構成を前面から見た概略断面図である。図10(b)は、横型拡散装置8の構成を側面から見た概略断面図である。横型拡散装置8は、反応管40の軸線がほぼ水平方向になるように寝かせた状態で設置される以外は、図8に記載した縦型拡散装置6と同様である。反応管40内の反応ガスの流れが矢符33d,34dのように横方向であっても、内側反応管38と外側反応管39とに囲まれた空間を流動した後、内側反応管38内を流動することにより、充分に加熱された反応ガスを半導体ウエハ21に均一に吹き付けることができ、半導体ウエハ21上に均一な不純物の薄膜を形成することができる。
図11は、本発明の実施の一形態である縦型拡散装置9の構成を簡略化して示す概略断面図である。図11(a)は、縦型拡散装置9の構成を上面から見た概略断面図である。図11(b)は、縦型拡散装置9の構成を側面から見た概略断面図である。縦型拡散装置9は、ガス供給手段にガス供給管41を有しており、ガス供給手段41を加熱手段26によって加熱される位置に設置する以外は、図1に記載の縦型拡散装置1と同様である。ガス供給管41は、反応管25と加熱手段26とに囲まれた空間に設置する。反応ガスをガス供給管41に通過させる間に加熱手段26によって、充分に加熱される。したがって、充分に加熱された反応ガスを半導体ウエハ21に均一に吹き付けることができ、半導体ウエハ21上に均一な不純物の薄膜を形成することができる。
図12は、本発明の実施の一形態である縦型拡散装置10の構成を簡略化して示す概略断面図である。図12(a)は、縦型拡散装置10の構成を上面から見た概略断面図である。図12(b)は、縦型拡散装置10の構成を側面から見た概略断面図である。縦型拡散装置10は、ガス供給手段にガス供給管41を有しており、ガス供給手段41を加熱手段26によって加熱される位置に設置する以外は、図4に記載の縦型拡散装置2と同様である。ガス供給管41は、反応管25と加熱手段26とに囲まれた空間に設置する。反応ガスをガス供給管41に通過させる間に加熱手段26によって充分に加熱される。したがって、充分に加熱された反応ガスを半導体ウエハ21に均一に吹き付けることができ、半導体ウエハ21に均一な不純物の薄膜を形成することができる。
図13は、本発明の実施の一形態である横型拡散装置11の構成を簡略化して示す概略断面図である。図13(a)は、横型拡散装置11の構成を上面から見た概略断面図である。図13(b)は、縦型拡散装置11の構成を側面から見た概略断面図である。横型拡散装置11は、反応管25の軸線がほぼ水平方向になるように寝かせた状態で設置される以外は、図11に記載した縦型拡散装置9と同様である。反応管25内の反応ガスの流れが矢符33cのように横方向であっても、反応ガスが反応管25と加熱手段26とに囲まれた空間に設置した反応ガス供給管41を通過することにより、充分に加熱された反応ガスを半導体ウエハ21に均一に吹き付けることができ、半導体ウエハ21に均一な不純物の薄膜を形成することができる。
図14は、本発明の実施の一形態である横型拡散装置12の構成を簡略化して示す概略断面図である。図14(a)は、横型拡散装置12の構成を上面から見た概略断面図である。図14(b)は、横型拡散装置12の構成を側面から見た概略断面図である。横型拡散装置12は、反応管25の軸線がほぼ水平方向になるように寝かせた状態で設置される以外は、図12に記載した縦型拡散装置10と同様である。反応管25内の反応ガスの流れが矢符33dのように横方向であっても、反応ガスが反応管25と加熱手段26とに囲まれた空間に設置した反応ガス供給管41を通過することにより、充分に加熱された反応ガスを半導体ウエハ21に均一に吹き付けることができ、半導体ウエハ21に均一な不純物の薄膜を形成することができる。
図15は、本発明の実施の一形態である縦型拡散装置13の構成を簡略化して示す概略断面図である。図15(a)は、縦型拡散装置13の構成を上面から見た概略断面図である。図15(b)は、横型拡散装置13の構成を側面から見た概略断面図である。縦型拡散装置13は、反応管25に供給する前の反応ガスを加熱するためのガス加熱手段42を設ける以外は、図1に記載した縦型拡散装置1と同様である。ガス加熱手段42は、たとえば、カーボランダムなどからなるヒータであり、図示しない電源から電力が供給されて発熱する。このことによって反応ガスを反応管25内に供給される前に充分に加熱することができる。反応ガスをガス加熱手段42によって加熱することにより、充分に加熱された反応ガスを半導体ウエハ21に均一に吹き付けることができ、半導体ウエハ21に、均一な不純物の薄膜を形成することができる。
図16は、本発明の実施の一形態である縦型拡散装置14の構成を簡略化して示す概略断面図である。図16(a)は、縦型拡散装置14の構成を上面から見た概略断面図である。図16(b)は、縦型拡散装置14の構成を側面から見た概略断面図である。縦型拡散装置14は、反応ガスを反応管25内に導入する前にガス加熱手段42によって加熱する以外は、図4に記載した縦型拡散装置2と同様である。反応ガスをガス加熱手段42によって、反応管25内に供給する前に、充分に加熱することができる。そうすることで、充分に加熱された反応ガスを半導体ウエハ21に均一に吹き付けることができ、半導体ウエハ21に均一に不純物の薄膜を形成することができる。
図17は、本発明の実施の一形態である横型拡散装置15の構成を簡略化して示す概略断面図である。図17(a)は、横型拡散装置15の構成を前面から見た概略断面図である。図17(b)は、横型拡散装置15の構成を側面から見た概略断面図である。横型拡散装置15は、反応管25の軸線がほぼ水平方向となるように寝かせた状態で設置される以外は、図15に記載した縦型拡散装置13と同様である。反応管25内の反応ガスの流れが矢符33cのように横方向であっても、反応ガスを反応管25内に供給する前にガス加熱手段42により充分に加熱することにより、充分に加熱された反応ガスを半導体ウエハ21に均一に吹き付けることができ、半導体ウエハ21に均一な不純物の薄膜を形成することができる。
図18は、本発明の実施の一形態である横型拡散装置16の構成を簡略化して示す概略断面図である。図18(a)は、横型拡散装置16の構成を前面から見た概略断面図である。図18(b)は、横型拡散装置16の構成を側面から見た概略断面図である。横型拡散装置16は、反応管25の軸線がほぼ水平方向となるように寝かせた状態で設置される以外は、図16に記載した縦型拡散装置14と同様である。反応管25内の反応ガスの流れが矢符33dのように横方向であっても、反応ガスを反応管25内に供給する前にガス加熱手段42により充分に加熱することにより、充分に加熱された反応ガスを半導体ウエハ21に均一に吹き付けることができ、半導体ウエハ21に均一な不純物の薄膜を形成することができる。
本発明の実施の一形態である縦型拡散装置1の構成を簡略化して示す概略断面図である。 図1に示す縦型拡散装置1の部分拡大図である。 反応管25内の反応ガスの流れを示す模式図である。 本発明の実施の一形態である縦型拡散装置2の構成を簡略化して示す概略断面図である。 本発明の実施の一形態である横型拡散装置3の構成を簡略化して示す概略断面図である。 本発明の実施の一形態である横型拡散装置4の構成を簡略化して示す概略断面図である。 本発明の実施の一形態である縦型拡散装置5の構成を簡略化して示す概略断面図である。 本発明の実施の一形態である縦型拡散装置6の構成を簡略化して示す概略断面図である。 本発明の実施の一形態である横型拡散装置7の構成を簡略化して示す概略断面図である。 本発明の実施の一形態である横型拡散装置8の構成を簡略化して示す概略断面図である。 本発明の実施の一形態である縦型拡散装置9の構成を簡略化して示す概略断面図である。 本発明の実施の一形態である縦型拡散装置10の構成を簡略化して示す概略断面図である。 本発明の実施の一形態である横型拡散装置11の構成を簡略化して示す概略断面図である。 本発明の実施の一形態である横型拡散装置12の構成を簡略化して示す概略断面図である。 本発明の実施の一形態である縦型拡散装置13の構成を簡略化して示す概略断面図である。 本発明の実施の一形態である縦型拡散装置14の構成を簡略化して示す概略断面図である。 本発明の実施の一形態である横型拡散装置15の構成を簡略化して示す概略断面図である。 本発明の実施の一形態である横型拡散装置16の構成を簡略化して示す概略断面図である。 従来の縦型拡散装置101の構成を簡略化して示す概略断面図である。 従来の横型拡散装置201の構成を簡略化して示す概略断面図である。
符号の説明
1,2,5,6,9,10,13,14,101 縦型拡散装置
3,4,7,8,11,12,15,16,201 横縦型拡散装置
21,103,203 半導体ウエハ
22,105,205 ウエハ支持具
23,106,206 支持基台
24,107,207 支持部材
25,40,102,202 反応管
26,104,204 加熱手段
27 プレート部
28,33,34,36,37,112,210 矢符
29 昇降部材
30 ウエハ支持具溝
31,108,208 導入口
32,109,209 排気口
35 フランジ部
38 内側反応管
39 外側反応管
41 ガス供給管
42 ガス加熱手段
110 ノズル管
111 噴出口

Claims (6)

  1. 複数枚の半導体ウエハを一定の間隔で支持する支持部材と、
    支持部材を収納する反応管と、
    ガスを反応管内に供給するガス供給手段と、
    反応管を外囲して配置され、半導体ウエハを加熱する加熱手段とを含み、
    半導体ウエハ間の間隔に対する反応管の内壁と半導体ウエハの外周部との隙間の比率が所定の比率になるように構成されることを特徴とする半導体製造装置。
  2. 所定の比率とは、反応管の内壁と半導体ウエハの外周部との隙間が半導体ウエハ間の間隔に対して、同等もしくはそれ以下となるような比率であることを特徴とする請求項1記載の半導体製造装置。
  3. 所定の比率は、0.3以上1.5以下であることを特徴とする請求項1または2記載の半導体製造装置。
  4. 前記反応管は、前記支持部材を収納する内側反応管とそれを外囲して配置される外側反応管との二重管構造であり、
    ガスが外側反応管と内側反応管とで囲まれた空間を通過した後、内側反応管内を通過するように構成されることを特徴とする請求項1〜3のうちのいずれかに記載の半導体製造装置。
  5. 前記ガス供給手段は、ガスを反応管内に供給するためのガス供給管を有しており、
    そのガス供給管を前記加熱手段によって加熱される位置に配置することを特徴とする請求項1〜3のうちのいずれかに記載の半導体製造装置。
  6. 反応管内に供給される前のガスを加熱するためのガス加熱手段をさらに含むことを特徴とする請求項1〜3のうちのいずれかに記載の半導体製造装置。
JP2003337742A 2003-09-29 2003-09-29 半導体製造装置 Pending JP2005108988A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003337742A JP2005108988A (ja) 2003-09-29 2003-09-29 半導体製造装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003337742A JP2005108988A (ja) 2003-09-29 2003-09-29 半導体製造装置

Publications (1)

Publication Number Publication Date
JP2005108988A true JP2005108988A (ja) 2005-04-21

Family

ID=34533481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003337742A Pending JP2005108988A (ja) 2003-09-29 2003-09-29 半導体製造装置

Country Status (1)

Country Link
JP (1) JP2005108988A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11898247B2 (en) 2018-09-20 2024-02-13 Kokusai Electric Corporation Substrate processing apparatus, method of manufacturing semiconductor device and non-transitory computer-readable recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11898247B2 (en) 2018-09-20 2024-02-13 Kokusai Electric Corporation Substrate processing apparatus, method of manufacturing semiconductor device and non-transitory computer-readable recording medium

Similar Documents

Publication Publication Date Title
KR102360082B1 (ko) 고 선택비 산화물 제거 및 고온 오염물 제거가 통합된 에피택시 시스템
TWI687966B (zh) 處理基板的方法及真空處理系統與設備
US5370709A (en) Semiconductor wafer processing apparatus having a Bernoulli chuck
US6902622B2 (en) Systems and methods for epitaxially depositing films on a semiconductor substrate
CN101916740B (zh) 用于前段工艺制造的原地干洗腔
US20080092812A1 (en) Methods and Apparatuses for Depositing Uniform Layers
JP5619164B2 (ja) Cvd方法およびcvd反応炉
WO2001004376A1 (en) A method of forming a silicon nitride layer on a semiconductor wafer
KR20080033965A (ko) 균일한 배치식 막 증착법 및 그 방법에 의해 제조된 막
JPH03287770A (ja) 枚葉式常圧cvd装置
EP1535314A2 (en) High rate deposition at low pressures in a small batch reactor
JPH09129562A (ja) 成膜装置及びその方法
JP2004533722A (ja) 抵抗加熱された単一ウエハチャンバ内のドープ処理済みシリコン堆積処理
US6007633A (en) Single-substrate-processing apparatus in semiconductor processing system
TW201913739A (zh) 整合式磊晶與預清洗系統
US8257499B2 (en) Vapor phase deposition apparatus and vapor phase deposition method
TW201303973A (zh) 汽相沉積系統用之處理氣體擴散器組件
JP2641351B2 (ja) 可変分配率ガス流反応室
JP2014099427A (ja) 基板処理装置、及び、基板の製造方法
CN114622181B (zh) 气相生长装置及气相生长方法
JP2005108988A (ja) 半導体製造装置
CN107641796B (zh) 制程设备及化学气相沉积制程
JP2008218877A (ja) 基板処理装置および半導体装置の製造方法
JP2002141290A (ja) 半導体製造装置
JP2006210950A (ja) 半導体装置の製造方法および半導体製造装置