JP2005108521A - Thin film electrode, manufacturing method of the same, and lithium secondary battery using the thin film electrode - Google Patents

Thin film electrode, manufacturing method of the same, and lithium secondary battery using the thin film electrode Download PDF

Info

Publication number
JP2005108521A
JP2005108521A JP2003337893A JP2003337893A JP2005108521A JP 2005108521 A JP2005108521 A JP 2005108521A JP 2003337893 A JP2003337893 A JP 2003337893A JP 2003337893 A JP2003337893 A JP 2003337893A JP 2005108521 A JP2005108521 A JP 2005108521A
Authority
JP
Japan
Prior art keywords
thin film
current collector
film electrode
lithium
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003337893A
Other languages
Japanese (ja)
Inventor
Tokuji Ueda
上田  篤司
Shigeo Aoyama
青山  茂夫
Hiroshi Sugiyama
拓 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2003337893A priority Critical patent/JP2005108521A/en
Publication of JP2005108521A publication Critical patent/JP2005108521A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium secondary battery with a large capacity and a high cycle property of which the swelling of an electrode, the wrinkling of a current collector, and the generation of a crack inside an activator thin film are restrained by restraining the influence of the volume change of the activator thin film to the minimum. <P>SOLUTION: The thin film electrode is composed of the current collector 11 made of a metal not alloyed with lithium, and the thin film 12 formed on the current collector containing an element alloyed with lithium, wherein the thin film 12 has convex parts 14 with heights H1 of 2 μm or higher and 20 μm or lower, and a recess part 15. The manufacturing method of the thin film electrode comprises a process of forming the thin film 12 containing an element alloyed with lithium on the surface of the current collector 11 made of a metal not alloyed with lithium, and a process of forming irregularity on the surface of the thin film 12 by pressing the thin film 12 by a metal mesh 13 as an indentation forming member. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、薄膜電極とその製造方法およびその薄膜電極を用いたリチウム二次電池に関するものである。   The present invention relates to a thin film electrode, a manufacturing method thereof, and a lithium secondary battery using the thin film electrode.

近年、携帯電話、ノートパソコン、PDAなどの携帯端末機器の需要が急激に拡大しており、これらの機器の小型軽量化および高機能化に伴って、それらの電源として主として用いられるリチウム二次電池のさらなる高エネルギー密度化が要求されている。しかし、現在実用化されているリチウム二次電池に用いられる炭素系負極の電気容量は理論値に近い値にまで到達しており、より高容量なリチウム二次電池を実現するためには負極材料の新規開発が必須である。   In recent years, the demand for portable terminal devices such as mobile phones, notebook computers, PDAs and the like has increased rapidly. As these devices become smaller and lighter and have higher functionality, lithium secondary batteries mainly used as their power source Therefore, higher energy density is required. However, the electric capacity of the carbon-based negative electrode used in lithium secondary batteries currently in practical use has reached a value close to the theoretical value, and in order to realize a higher capacity lithium secondary battery, negative electrode material New development is essential.

このような中で最近では、高容量リチウム二次電池用の新たな負極材料として、Liと合金化しない材料からなる集電体上に、Liと合金化するSnまたはSn含有合金からなる薄膜を形成し、その薄膜を負極材料として用いる薄膜電極が注目されている(例えば、特許文献1、特許文献2参照。)。特許文献1は、集電体である銅板上に、電解めっき法によりSn薄膜を形成するものであり、特許文献2は、電解めっき法により、銅箔上にSn、Zn、Sb、またはそれらを含有する合金を素材とする薄膜を形成するものである。   Recently, as a new negative electrode material for a high capacity lithium secondary battery, a thin film made of Sn or an alloy containing Sn alloyed with Li is formed on a current collector made of a material not alloyed with Li. A thin film electrode that is formed and uses the thin film as a negative electrode material has attracted attention (see, for example, Patent Document 1 and Patent Document 2). Patent Document 1 is to form a Sn thin film on a copper plate, which is a current collector, by electrolytic plating, and Patent Document 2 is Sn, Zn, Sb, or them on a copper foil by electrolytic plating. A thin film is formed using the contained alloy as a raw material.

Liと合金化する金属の中でも、特にSnは従来の黒鉛系負極材料と比較して高いエネルギー密度(994mAh/g)を有するため、次世代の負極材料として注目されている。しかし、実際の薄膜電極にSnを用いた場合は、LixSnの組成式でx=4.4までLiを電気化学的に挿入すると、薄膜の体積が3〜4倍にまで膨張してしまう。かかる体積膨張はリチウム二次電池の充放電特性(サイクル特性)の低下を招くことになる。さらに、Snを単独で用いると、Sn自身が触媒能を持つために電解液を分解してしまうという問題もある。 Among metals that alloy with Li, Sn, in particular, has attracted attention as a next-generation negative electrode material because it has a higher energy density (994 mAh / g) than conventional graphite negative electrode materials. However, when Sn is used for an actual thin film electrode, when Li is electrochemically inserted up to x = 4.4 in the Li x Sn composition formula, the volume of the thin film expands to 3 to 4 times. . Such volume expansion causes a decrease in charge / discharge characteristics (cycle characteristics) of the lithium secondary battery. Further, when Sn is used alone, there is a problem that the electrolytic solution is decomposed because Sn itself has catalytic ability.

上記問題を解決するために、Sn系の合金薄膜が提案されている(例えば、非特許文献1参照。)。非特許文献1には、電解めっき法によりCu箔上に形成されたSn薄膜を、Snの融点付近で熱処理することで、Cu−Sn界面でCu原子とSn原子とが相互拡散した傾斜性構造の薄膜を得ることができると記載されている。即ち、Cu箔上にSnをめっきすることで形成した薄膜をSnの融点付近で長時間熱処理するとCu−Sn界面で原子の相互拡散が起こり、最終的にCu/Cu3Sn/Cu6Sn5/Snもしくはこの組成に近い結晶構造を有するCu−Sn合金が形成される。このとき形成されるCu6Sn5合金はLiを可逆的に吸蔵・脱離可能であり、体積変化もSnと比較して小さく、加えて触媒能を持たないため、前述のSn薄膜特有の問題を解決できる負極材料として期待されている。
特開2001−68094号公報 特開2001−256968号公報 Journal of Power Sources, 107(2002),p.48−55
In order to solve the above problem, an Sn-based alloy thin film has been proposed (for example, see Non-Patent Document 1). Non-Patent Document 1 discloses a graded structure in which Cu atoms and Sn atoms are interdiffused at the Cu-Sn interface by heat-treating a Sn thin film formed on a Cu foil by an electrolytic plating method in the vicinity of the melting point of Sn. It is described that a thin film can be obtained. That is, when a thin film formed by plating Sn on Cu foil is heat-treated for a long time in the vicinity of the melting point of Sn, mutual diffusion of atoms occurs at the Cu-Sn interface, and finally Cu / Cu 3 Sn / Cu 6 Sn 5 is formed. Cu-Sn alloy having a crystal structure close to / Sn or this composition is formed. The Cu 6 Sn 5 alloy formed at this time can absorb and desorb Li reversibly, and its volume change is smaller than that of Sn. In addition, it has no catalytic ability. It is expected as a negative electrode material that can solve this problem.
JP 2001-68094 A JP 2001-256968 A Journal of Power Sources, 107 (2002), p. 48-55

上記電解めっき法により薄膜電極を形成すると、集電箔(集電体)と活物質層とがより強固に一体化する。そのため、充放電に伴う活物質の微粉化などが発生しても集電箔から活物質が脱落しにくく、サイクル特性が向上するといった利点もある。   When the thin film electrode is formed by the electrolytic plating method, the current collector foil (current collector) and the active material layer are more firmly integrated. Therefore, even if the active material is pulverized due to charging / discharging, there is an advantage that the active material is not easily dropped from the current collector foil, and the cycle characteristics are improved.

しかし、集電箔と活物質との密着性が高くなると、Liの挿入・脱離に伴う活物質薄膜の体積変化の影響を電極自体が受けやすくなるため、電極の膨張、集電箔の皺寄れおよび活物質薄膜内部のクラックの発生が顕著に現れる。その結果、電極内の電子伝導性が低下するため、サイクル特性が低下することになる。   However, if the adhesion between the current collector foil and the active material is increased, the electrode itself is more susceptible to the volume change of the active material thin film due to the insertion / desorption of Li. The occurrence of cracks and cracks in the active material thin film appears remarkably. As a result, since the electron conductivity in the electrode is lowered, the cycle characteristics are lowered.

本発明は、リチウムと合金化しない金属から形成された集電体と、前記集電体の表面に形成され、リチウムと合金化する元素を含む薄膜とを備えた薄膜電極であって、前記薄膜が、凸部および凹部を備え、前記凸部の高さが、2μm以上20μm以下であることを特徴とする薄膜電極を提供する。   The present invention is a thin film electrode comprising a current collector formed of a metal that does not alloy with lithium, and a thin film formed on the surface of the current collector and containing an element that is alloyed with lithium, the thin film electrode However, the present invention provides a thin film electrode comprising a convex portion and a concave portion, wherein the height of the convex portion is 2 μm or more and 20 μm or less.

また、本発明は、リチウムと合金化しない金属からなる集電体の表面に、リチウムと合金化する元素を含む薄膜を形成する工程と、前記薄膜を凹凸形成部材で加圧することにより、前記薄膜の表面に凹凸を形成する工程とを含むことを特徴とする薄膜電極の製造方法を提供する。   The present invention also includes a step of forming a thin film containing an element alloying with lithium on the surface of a current collector made of a metal that does not alloy with lithium, and pressurizing the thin film with a concavo-convex forming member, whereby the thin film And a process for forming irregularities on the surface of the thin film electrode.

また、本発明は、上記薄膜電極を負極として用いたことを特徴とするリチウム二次電池を提供する。   The present invention also provides a lithium secondary battery using the thin film electrode as a negative electrode.

本発明の薄膜電極は、集電体の表面に形成された活物質薄膜に凹凸を形成することにより、Liの挿入・脱離に伴う活物質薄膜の体積変化によって発生した応力を多方向に分散させることができるため、応力の集中による電極の膨張、集電体の皺寄れおよび活物質薄膜内部のクラックの発生などを抑制することができる。さらに、上記凹凸によって生まれる空隙が活物質薄膜の体積変化を吸収できるため、Liの挿入・脱離に伴う薄膜電極の厚み変化をさらに緩和することができる。   The thin film electrode of the present invention disperses the stress generated by the volume change of the active material thin film accompanying the insertion / desorption of Li in multiple directions by forming irregularities on the active material thin film formed on the surface of the current collector. Therefore, it is possible to suppress the expansion of the electrode due to the concentration of stress, the stagnation of the current collector, the generation of cracks in the active material thin film, and the like. Furthermore, since the voids created by the irregularities can absorb the volume change of the active material thin film, the thickness change of the thin film electrode accompanying the insertion / desorption of Li can be further alleviated.

また、本発明の薄膜電極の製造方法は、上記薄膜電極を簡易かつ効率的に製造できる。   Moreover, the manufacturing method of the thin film electrode of this invention can manufacture the said thin film electrode simply and efficiently.

また、本発明のリチウム二次電池は、上記薄膜電極を負極に用いることにより、電池容量およびサイクル特性の向上を図ることができる。   Moreover, the lithium secondary battery of this invention can aim at the improvement of battery capacity and cycling characteristics by using the said thin film electrode for a negative electrode.

先ず、本発明の薄膜電極の実施の形態を説明する。本発明の薄膜電極の一例は、Liと合金化しない金属から形成された集電体と、上記集電体の表面に形成され、Liと合金化する元素を含む薄膜とを備えている。また、上記薄膜は凸部および凹部を備え、上記凸部の高さは2μm以上20μm以下であることを特徴とする。   First, an embodiment of the thin film electrode of the present invention will be described. An example of the thin film electrode of the present invention includes a current collector formed of a metal that is not alloyed with Li, and a thin film that is formed on the surface of the current collector and contains an element that is alloyed with Li. The thin film includes a convex portion and a concave portion, and the height of the convex portion is 2 μm or more and 20 μm or less.

上記薄膜の凸部の高さが20μmを超えると、充放電時の薄膜構造の維持が困難となり、充放電に伴い上記凸部が微粉化するおそれがある。一方、上記凸部の高さが2μmを下回ると、活物質薄膜の体積変化によって発生した応力を吸収できなくなる。   When the height of the convex portion of the thin film exceeds 20 μm, it is difficult to maintain the thin film structure during charge / discharge, and the convex portion may be pulverized with charge / discharge. On the other hand, when the height of the convex portion is less than 2 μm, it becomes impossible to absorb the stress generated by the volume change of the active material thin film.

上記集電体の材質としては、Liと合金化しない金属から形成されていることが必要であり、例えば、Ni、Cu、ステンレス鋼、Ni合金、Cu合金などが好ましい。Liと合金化する金属であると、電池に組み込んだ場合に活物質層より先にLiと反応してしまい、集電体として機能しなくなるからである。なお、NiおよびCuと合金化する元素としては、例えば、Si、Fe、Cu、Ni、Sn、Zn、In、Sb、Zrなどが挙げられ、集電体の特性を損なわない範囲で合金化することができる。   The material of the current collector needs to be formed from a metal that is not alloyed with Li, and is preferably Ni, Cu, stainless steel, Ni alloy, Cu alloy, or the like. This is because when the metal is alloyed with Li, it reacts with Li prior to the active material layer when incorporated in a battery and does not function as a current collector. Examples of elements that alloy with Ni and Cu include, for example, Si, Fe, Cu, Ni, Sn, Zn, In, Sb, and Zr. Alloying is performed within a range that does not impair the characteristics of the current collector. be able to.

上記Liと合金化する元素としては、Al、Si、Sn、Pb、Ge、Sbなどが使用でき、特にSiおよびSnから選ばれる少なくとも一つの元素であることが好ましい。これらは、Liの挿入・脱離における可逆性が高いからである。   As the element to be alloyed with Li, Al, Si, Sn, Pb, Ge, Sb and the like can be used, and at least one element selected from Si and Sn is particularly preferable. This is because reversibility in insertion / extraction of Li is high.

上記集電体の表面に垂直投影した上記凸部または上記凹部の投影部の形状は、円形、三角形、四角形、および六角形から選ばれる少なくとも一つの形状であることが好ましく、これらの形状を複数用いてもよい。これらの形状は、薄膜の表面方向の膨張を吸収しやすいからである。また、上記凸部および凹部は、薄膜の全面に形成することが好ましい。   Preferably, the shape of the projection or projection of the recess vertically projected onto the surface of the current collector is at least one shape selected from a circle, a triangle, a quadrangle, and a hexagon. It may be used. This is because these shapes easily absorb expansion in the surface direction of the thin film. Moreover, it is preferable that the said convex part and a recessed part are formed in the whole surface of a thin film.

上記集電体の表面に垂直投影した上記凸部の投影部の総面積は、上記薄膜が形成された上記集電体の総面積の40%以上80%以下であることが好ましい。この範囲内であれば、Liの挿入・脱離に伴う活物質薄膜の体積変化によって発生した応力をより多方向に分散させることができるからである。   It is preferable that the total area of the projected portion of the convex portion projected perpendicularly on the surface of the current collector is 40% to 80% of the total area of the current collector on which the thin film is formed. This is because the stress generated by the volume change of the active material thin film accompanying the insertion / desorption of Li can be dispersed in more directions within this range.

ここで、上記集電体の表面に垂直投影した上記凸部の投影部の総面積の、上記薄膜が形成された上記集電体の総面積に対する割合を、凸部の面積占有率x(%)とし、凹凸加工前の薄膜の厚みをt(μm)とすると、加工できる凸部の高さT(μm)は、t(100/x)以下となる。   Here, the ratio of the total area of the projections of the projection vertically projected onto the surface of the current collector to the total area of the current collector on which the thin film is formed is expressed as the area occupancy x (% ), And the thickness of the thin film before uneven processing is t (μm), the height T (μm) of the convex portion that can be processed is t (100 / x) or less.

上記集電体の厚みは、5μm以上30μm以下であることが好ましく、10μm以上20μm以下がより好ましい。この範囲内であれば、上記薄膜電極を作製する上で、集電体自体の強度と柔軟性をともに確保できるからである。   The thickness of the current collector is preferably 5 μm or more and 30 μm or less, and more preferably 10 μm or more and 20 μm or less. This is because within this range, both the strength and flexibility of the current collector itself can be secured in producing the thin film electrode.

また、上記薄膜の主成分としては、Cu6Sn5、Cu2Sb、Bを添加させたSi、Ni3Sn4、MnSb、Mn2Sb、CoSb、Co2Sb、Zn4Sb3などを採用できるが、Cu6Sn5、Bを添加させたSiおよびNi3Sn4から選ばれるいずれか一つであることが好ましい。これらは、Liを可逆的に吸蔵・脱離可能であり、体積変化もSn、Siの単体に比べて小さいからである。ここで、主成分とは、薄膜全体の重量に対して50重量%以上含まれていることをいう。 Further, as the main component of the thin film, Si, Ni 3 Sn 4 , MnSb, Mn 2 Sb, CoSb, Co 2 Sb, Zn 4 Sb 3 and the like to which Cu 6 Sn 5 , Cu 2 Sb, and B are added are adopted. Although it is possible, it is preferably any one selected from Cu 6 Sn 5 , Si to which B is added, and Ni 3 Sn 4 . This is because Li can be reversibly occluded / desorbed and the volume change is smaller than that of Sn and Si alone. Here, the main component means that it is contained by 50% by weight or more with respect to the weight of the entire thin film.

次に、本発明の薄膜電極の製造方法の実施形態を図面に基づき説明する。   Next, an embodiment of a method for producing a thin film electrode of the present invention will be described with reference to the drawings.

(実施形態1)
図1は、本発明の薄膜電極の製造方法の一例を示す工程図である。先ず、図1(a)に示すように、Liと合金化しない金属からなる集電体11の表面に、Liと合金化する元素を含む薄膜12を形成する。
(Embodiment 1)
FIG. 1 is a process diagram showing an example of a method for producing a thin film electrode of the present invention. First, as shown in FIG. 1A, a thin film 12 containing an element alloying with Li is formed on the surface of a current collector 11 made of a metal that does not alloy with Li.

薄膜12と集電体11とは密着して形成することが望ましく、その薄膜の形成方法としては、例えば、物理的気相成長法(PVD法)、化学的気相成長法(CVD法)、液相成長法などが挙げられる。物理的気相成長法としては真空蒸着法、スパッタリング法、イオンプレーティング法、分子線エピタクシー法(MBE法)、レーザーアブレーション法など、化学的気相成長法としては熱CVD法、有機金属CVD法(MOCVD法)、RFプラズマCVD法、電子サイクロン(ECR)プラズマCVD法、光CVD法、レーザーCVD法、原子層エピタクシー法(ALE法)など、液相成長法としてはめっき法(電解めっき法、無電解めっき法)、陽極酸化法、塗布法、ゾル−ゲル法などが挙げられる。これらの中でも、液相成長法は比較的簡易な設備で実施可能であるため望ましく、特に電解めっき法は集電体表面への密着性が良く、めっき薄膜表面の平滑性も高く、さらに大面積での成膜が容易かつ安価に行えるためより好ましい。なお、これらの薄膜形成方法は、単独で用いても複数を組み合わせて用いてもよい。   The thin film 12 and the current collector 11 are preferably formed in close contact with each other. Examples of the method for forming the thin film include physical vapor deposition (PVD), chemical vapor deposition (CVD), Examples include liquid phase growth. Physical vapor deposition methods include vacuum evaporation, sputtering, ion plating, molecular beam epitaxy (MBE), laser ablation, and other chemical vapor deposition methods include thermal CVD and organometallic CVD. As a liquid phase growth method, a plating method (electroplating) such as a method (MOCVD method), an RF plasma CVD method, an electron cyclone (ECR) plasma CVD method, a photo CVD method, a laser CVD method, an atomic layer epitaxy method (ALE method), etc. Method, electroless plating method), anodic oxidation method, coating method, sol-gel method and the like. Among these, the liquid phase growth method is desirable because it can be carried out with relatively simple equipment. In particular, the electrolytic plating method has good adhesion to the current collector surface, high smoothness of the plating thin film surface, and a large area. Is more preferable because it can be easily and inexpensively formed. Note that these thin film forming methods may be used alone or in combination.

次に、図1(b)に示すように、薄膜12の上部に凹凸形成部材として金属メッシュ13を配置した後、図1(c)に示すように、薄膜12を金属メッシュ13で加圧する。その後、図1(d)に示すように、金属メッシュ13を除去し、薄膜12の表面に凸部14と凹部15とを形成する。   Next, as shown in FIG. 1B, a metal mesh 13 is disposed as an unevenness forming member on the thin film 12, and then the thin film 12 is pressed with the metal mesh 13 as shown in FIG. Thereafter, as shown in FIG. 1 (d), the metal mesh 13 is removed, and convex portions 14 and concave portions 15 are formed on the surface of the thin film 12.

ここで、凹凸形成部材としては、例えば、図1(b)に示したような凸部14に対応した開口部13aを有する金属メッシュ13を使用できるが、金属メッシュ13の材質としては、薄膜12の材質よりも硬度が大きい金属材料を使用する必要がある。具体的には、例えば、薄膜12の主成分がSnの場合には、凹凸形成部材としてはステンレス鋼製のメッシュが適している。また、金属メッシュ13の開口部13aの形状、大きさを変更することにより、凸部14の形状、大きさ、前述の面積占有率xなどを容易に制御することができる。   Here, as the unevenness forming member, for example, a metal mesh 13 having an opening 13a corresponding to the convex portion 14 as shown in FIG. 1B can be used. It is necessary to use a metal material having a hardness higher than that of the material. Specifically, for example, when the main component of the thin film 12 is Sn, a stainless steel mesh is suitable as the unevenness forming member. Further, by changing the shape and size of the opening 13a of the metal mesh 13, the shape and size of the convex portion 14, the above-described area occupation ratio x, and the like can be easily controlled.

その後、図1(e)に示すように、薄膜12を形成した集電体11を、真空、不活性雰囲気、または還元性雰囲気の下で150〜230℃程度の温度で加熱する。これにより、薄膜12と集電体11は完全に密着し、本実施形態の薄膜電極16が完成する。   Thereafter, as shown in FIG. 1E, the current collector 11 on which the thin film 12 has been formed is heated at a temperature of about 150 to 230 ° C. in a vacuum, an inert atmosphere, or a reducing atmosphere. As a result, the thin film 12 and the current collector 11 are completely adhered to each other, and the thin film electrode 16 of the present embodiment is completed.

なお、凸部14の高さH1は、2〜20μmの範囲に設定されている。   In addition, height H1 of the convex part 14 is set to the range of 2-20 micrometers.

(実施形態2)
図2は、本発明の薄膜電極の製造方法の他の一例を示す工程図である。先ず、図2(a)に示すように、図1(a)と同様にしてLiと合金化しない金属からなる集電体21の表面に、Liと合金化する元素を含む薄膜22を形成する。
(Embodiment 2)
FIG. 2 is a process diagram showing another example of the method for manufacturing a thin film electrode of the present invention. First, as shown in FIG. 2 (a), a thin film 22 containing an element alloying with Li is formed on the surface of a current collector 21 made of a metal that does not alloy with Li, as in FIG. 1 (a). .

次に、図2(b)に示すように、薄膜22の上部に凹凸形成部材として、表面に突起23aを有する金属板23を配置した後、図2(c)に示すように、薄膜22を金属板23で加圧する。その後、図2(d)に示すように、金属板23を除去し、薄膜22の表面に凸部24と凹部25とを形成する。   Next, as shown in FIG. 2 (b), a metal plate 23 having protrusions 23a on the surface is disposed as an unevenness forming member on the thin film 22, and then the thin film 22 is formed as shown in FIG. 2 (c). The metal plate 23 is pressurized. Thereafter, as shown in FIG. 2 (d), the metal plate 23 is removed, and convex portions 24 and concave portions 25 are formed on the surface of the thin film 22.

ここで、金属板23の材質としては、薄膜22の材質よりも硬度が大きい金属材料を使用する必要がある。具体的には、例えば、薄膜22の主成分がSnの場合には、凹凸形成部材としてはステンレス鋼板が適している。また、金属板23の突起23aの形状、大きさを変更することにより、凸部24の形状、大きさ、前述の面積占有率xなどを容易に制御することができる。   Here, as the material of the metal plate 23, it is necessary to use a metal material having a hardness higher than that of the thin film 22. Specifically, for example, when the main component of the thin film 22 is Sn, a stainless steel plate is suitable as the unevenness forming member. Further, by changing the shape and size of the protrusion 23a of the metal plate 23, the shape and size of the convex portion 24, the above-described area occupation ratio x, and the like can be easily controlled.

その後、図2(e)に示すように、薄膜22を形成した集電体21を、真空、不活性雰囲気、および還元性雰囲気の下で150〜230℃程度の温度で加熱する。これにより、薄膜22と集電体21は完全に密着し、本実施形態の薄膜電極26が完成する。   Thereafter, as shown in FIG. 2E, the current collector 21 on which the thin film 22 is formed is heated at a temperature of about 150 to 230 ° C. under a vacuum, an inert atmosphere, and a reducing atmosphere. As a result, the thin film 22 and the current collector 21 are completely adhered to each other, and the thin film electrode 26 of the present embodiment is completed.

なお、凸部24の高さH2は、2〜20μmの範囲に設定されている。   In addition, height H2 of the convex part 24 is set to the range of 2-20 micrometers.

上記実施形態1および実施形態2ではともに、上記Liと合金化する元素としては、Al、Si、Sn、Pb、Ge、Sbなどが使用でき、特にSnが好ましい。Snは、Liの挿入・脱離における可逆性が高いからである。また、上記薄膜の主成分としては、Cu6Sn5およびNi3Sn4から選ばれるいずれか一つであることが好ましい。これらは、Liを可逆的に吸蔵・脱離可能であり、体積変化もSnの単体に比べて小さいからである。ここで、主成分とは、薄膜全体の重量に対して50重量%以上含まれていることをいう。 In both Embodiment 1 and Embodiment 2, Al, Si, Sn, Pb, Ge, Sb and the like can be used as the element alloyed with Li, and Sn is particularly preferable. This is because Sn has high reversibility in Li insertion / extraction. The main component of the thin film is preferably any one selected from Cu 6 Sn 5 and Ni 3 Sn 4 . This is because Li can be reversibly occluded / desorbed and the volume change is smaller than that of Sn alone. Here, the main component means that it is contained by 50% by weight or more with respect to the weight of the entire thin film.

特に、上記実施形態1、実施形態2で、集電体11、21としてCu箔を用い、その集電体11、21の表面に例えば厚み15μm以下のSn薄膜12、22を形成した場合、凸部14、24および凹部15、25を形成した後に、真空、不活性雰囲気、または還元性雰囲気の下で150〜230℃で加熱することにより、薄膜の主成分を、Liの可逆性に優れたCu6Sn5合金とすることができる。 In particular, in Embodiments 1 and 2, when Cu foil is used as the current collectors 11 and 21, and the Sn thin films 12 and 22 having a thickness of, for example, 15 μm or less are formed on the surfaces of the current collectors 11 and 21, After forming the portions 14 and 24 and the recesses 15 and 25, the main component of the thin film is excellent in Li reversibility by heating at 150 to 230 ° C. in a vacuum, an inert atmosphere, or a reducing atmosphere. A Cu 6 Sn 5 alloy can be used.

なお、上記Cu6Sn5合金を効率よく形成するためには、上記Cu箔上に例えば厚さ5μm以下のSn薄膜とCu薄膜とを交互に所定層数を形成した後に、上記凹凸処理および上記加熱処理を行うことが好ましい。 In order to efficiently form the Cu 6 Sn 5 alloy, after the predetermined number of layers are alternately formed on the Cu foil, for example, a Sn thin film having a thickness of 5 μm or less and a Cu thin film are alternately formed, It is preferable to perform heat treatment.

続いて、本発明のリチウム二次電池の実施形態を説明する。本発明のリチウム二次電池の一例は、上記で説明した薄膜電極を負極として用いたリチウム二次電池である。充放電に伴う電極の膨張、集電体の皺寄れおよび活物質薄膜内部のクラックの発生などを抑制した薄膜電極を用いることにより、高容量でサイクル特性の高いリチウム二次電池を提供できる。   Subsequently, an embodiment of the lithium secondary battery of the present invention will be described. An example of the lithium secondary battery of the present invention is a lithium secondary battery using the thin film electrode described above as a negative electrode. By using a thin film electrode that suppresses expansion of the electrode, charging of the current collector, creeping of the current collector, and generation of cracks inside the active material thin film, a lithium secondary battery with high capacity and high cycle characteristics can be provided.

本実施形態のリチウム二次電池に用いる正極としては、正極活物質に導電助剤およびポリフッ化ビニリデンなどの結着剤などを適宜添加した合剤を、アルミニウム箔などの集電体を芯材として成形体に仕上げたものが用いられる。正極活物質としては、例えば、LiCoO2などのリチウム・コバルト酸化物、LiMn24などのリチウム・マンガン酸化物、LiNiO2などのリチウム・ニッケル酸化物、LiNiO2のNiの一部をCoで置換したLiNixCo(1-x)2、さらに、MnとNiとを等量含んだLiNi(1-x)/2Mn(1-x)/2Cox2、オリビン型LiMPO4(M:Co、Ni、Mn、Fe)を用いることができる。 As a positive electrode used in the lithium secondary battery of the present embodiment, a mixture in which a conductive additive and a binder such as polyvinylidene fluoride are appropriately added to the positive electrode active material, and a current collector such as an aluminum foil as a core material A finished product is used. As the positive electrode active material, for example, lithium cobalt oxide such as LiCoO 2, lithium-manganese oxide such as LiMn 2 O 4, lithium nickel oxides such as LiNiO 2, a part of Ni of LiNiO 2 with Co Substituted LiNi x Co (1-x) O 2 , LiNi (1-x) / 2 Mn (1-x) / 2 Co x O 2 containing equal amounts of Mn and Ni, olivine-type LiMPO 4 ( M: Co, Ni, Mn, Fe) can be used.

上記リチウム二次電池に用いる電解質の溶媒としては、例えば、1,2−ジメトキシエタン、1,2−ジエトキシエタン、プロピレンカーボネート、エチレンカーボネート、γ−ブチロラクトン、テトラヒドロフラン、1,3−ジオキソラン、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネートなどが挙げられ、これらは複数を同時に使用することもできる。また、この溶媒には必要に応じて他の成分を添加することも可能である。   Examples of the electrolyte solvent used in the lithium secondary battery include 1,2-dimethoxyethane, 1,2-diethoxyethane, propylene carbonate, ethylene carbonate, γ-butyrolactone, tetrahydrofuran, 1,3-dioxolane, and diethyl carbonate. , Dimethyl carbonate, ethyl methyl carbonate and the like, and a plurality of these may be used simultaneously. Moreover, it is also possible to add another component to this solvent as needed.

上記電解質の溶質としては、例えば、LiClO4、LiPF6、LiBF4、LiAsF6、LiSbF6、LiCF3SO3、LiC49SO3、LiCF3CO2、Li224(SO32、LiN(CF3SO22、LiN(CF3SO22、LiCn2n+1SO3(n≧2)、LiN(RfOSO22[ここで、Rfはフルオロアルキル基を示す。]、LiN(CF3SO2)(C49SO2)、LiN(C25SO2)(C49SO2)、LiN(CF3SO2)(C25SO2)などが挙げられる。 The solute of the electrolyte, for example, LiClO 4, LiPF 6, LiBF 4, LiAsF 6, LiSbF 6, LiCF 3 SO 3, LiC 4 F 9 SO 3, LiCF 3 CO 2, Li 2 C 2 F 4 (SO 3 ) 2 , LiN (CF 3 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , LiC n F 2n + 1 SO 3 (n ≧ 2), LiN (RfOSO 2 ) 2 [where Rf is a fluoroalkyl group Indicates. ], LiN (CF 3 SO 2 ) (C 4 F 9 SO 2), LiN (C 2 F 5 SO 2) (C 4 F 9 SO 2), LiN (CF 3 SO 2) (C 2 F 5 SO 2 ) And the like.

さらに、上記電解質(電解液)以外にも、Liイオンの輸送体であれば制約無く用いることができ、例えば、各種ポリマーからなるゲルポリマー電解質、真性ポリマー電解質、LiPONなどの無機固体電解質、Liイオン含有常温溶融塩などを用いることができる。   In addition to the above electrolyte (electrolyte), any Li ion transporter can be used without restriction. For example, gel polymer electrolytes composed of various polymers, intrinsic polymer electrolytes, inorganic solid electrolytes such as LiPON, Li ions, etc. A room temperature molten salt or the like can be used.

上記リチウム二次電池に用いるセパレータとしては、強度が充分で上記電解液を多く保持できるものが良く、この点から、厚み10〜50μm、開口率30〜70%のポリプロピレン製、ポリエチレン製、またはポリプロピレンとポリエチレンのコポリマー製のフィルムや不織布からなるセパレータが好ましい。   The separator used for the lithium secondary battery is preferably a separator having sufficient strength and capable of holding a large amount of the electrolytic solution. From this point, polypropylene, polyethylene, or polypropylene having a thickness of 10 to 50 μm and an aperture ratio of 30 to 70% A separator made of a copolymer film of polyethylene and polyethylene or a nonwoven fabric is preferred.

さらに、本実施形態の薄膜電極は、上記リチウム二次電池以外にも、リチウム一次電池などの電極としても使用することができる。   Furthermore, the thin film electrode of the present embodiment can be used as an electrode for a lithium primary battery, in addition to the lithium secondary battery.

次に、本発明を実施例に基づき具体的に説明する。なお、本発明は、以下の実施例に限定されるものではない。   Next, the present invention will be specifically described based on examples. The present invention is not limited to the following examples.

(実施例1)
古河サーキットフォイル社製の厚み15μmの電解銅箔を50mm×30mmに切り出して本実施例の集電体とした。次に、表面の酸化被膜、油脂、汚れなどを除去するために、上記集電体を40℃に加熱した濃度10%の硫酸水溶液中に4分間浸漬した。その後、水酸化ナトリウム5g/dm3、オルトケイ酸ナトリウム20g/dm3、炭酸ナトリウム(無水)10g/dm3、n−ドデシルトリメチルアンモニウムクロリド1g/dm3をそれぞれ溶解させた脱脂水溶液を準備し、この脱脂水溶液を60℃に加熱した浴中で、上記集電体を5A/dm2の電流密度で1分間の陰極電解脱脂を行った。次に、この集電体を蒸留水で水洗した後、再び濃度10%の硫酸水溶液中に浸漬して集電体表面を中和するとともに脱脂剤を完全に除去した。
(Example 1)
A 15 μm-thick electrolytic copper foil manufactured by Furukawa Circuit Foil Co., Ltd. was cut into 50 mm × 30 mm to obtain a current collector of this example. Next, the current collector was immersed in a 10% strength sulfuric acid aqueous solution heated to 40 ° C. for 4 minutes in order to remove oxide films, oils and dirt on the surface. Then, sodium hydroxide 5 g / dm 3, sodium orthosilicate 20 g / dm 3 sodium carbonate (anhydrous) 10 g / dm 3, to prepare a degreasing aqueous solution prepared by dissolving n- dodecyl trimethyl ammonium chloride 1 g / dm 3, respectively, the The current collector was subjected to cathodic electrolytic degreasing for 1 minute at a current density of 5 A / dm 2 in a bath in which the degreasing aqueous solution was heated to 60 ° C. Next, the current collector was washed with distilled water, and then again immersed in a 10% concentration sulfuric acid aqueous solution to neutralize the current collector surface and completely remove the degreasing agent.

続いて、硫酸第一錫40g/dm3、硫酸60g/dm3、クレゾールスルホン酸40g/dm3、ゼラチン2g/dm3、β−ナフトール1g/dm3を溶解させた水溶液からなるSnめっき液を調製した。このめっき液をスターラーで攪拌しながら、めっき液中に上記集電体を浸漬して、1A/dm2の電流密度で150分間の電解めっきを行い、集電体表面に厚み7μmのSnめっき薄膜を形成し、その後水洗して薄膜電極を得た。 Subsequently, an Sn plating solution comprising an aqueous solution in which stannous sulfate 40 g / dm 3 , sulfuric acid 60 g / dm 3 , cresol sulfonic acid 40 g / dm 3 , gelatin 2 g / dm 3 , and β-naphthol 1 g / dm 3 was dissolved. Prepared. While stirring the plating solution with a stirrer, the current collector is immersed in the plating solution, and electroplating is performed at a current density of 1 A / dm 2 for 150 minutes, and a 7 μm thick Sn plating thin film is formed on the surface of the current collector. And then washed with water to obtain a thin film electrode.

次に、円形開口部を有するニッケル製のマイクロメッシュを準備した。このマイクロメッシュの円形開口部の総面積は6500μm2、空孔率は60%、厚みは100μmとした。このマイクロメッシュを上記薄膜電極のSnめっき薄膜側に配置して、ロールプレス機を用いてギャップを調節して加圧した。これにより、図1(d)に示すように、Snめっき薄膜12に凸部14と凹部15を形成した。 Next, a nickel micromesh having a circular opening was prepared. The total area of the circular openings of the micromesh was 6500 μm 2 , the porosity was 60%, and the thickness was 100 μm. The micromesh was placed on the Sn plating thin film side of the thin film electrode, and the gap was adjusted using a roll press machine, and the pressure was applied. Thereby, as shown in FIG.1 (d), the convex part 14 and the recessed part 15 were formed in the Sn plating thin film 12. As shown in FIG.

その後、上記薄膜電極を真空電気炉にて220℃で17時間熱処理してSnめっき薄膜をCu合金化した後、室温まで徐冷した。次に、この薄膜電極をアルゴン雰囲気中のドライボックスに移し、41mm×25.5mmに打ち抜いて実施例1の負極とした。   Thereafter, the thin film electrode was heat-treated at 220 ° C. for 17 hours in a vacuum electric furnace to convert the Sn plating thin film into a Cu alloy, and then gradually cooled to room temperature. Next, this thin film electrode was transferred to a dry box in an argon atmosphere and punched out to 41 mm × 25.5 mm to obtain a negative electrode of Example 1.

上記負極を電子顕微鏡で観察したところ、凸部14の高さH1は9μmであった。なお、マイクロメッシュの空孔率が60%であるので、凸部14の面積占有率xは60%となる。   When the negative electrode was observed with an electron microscope, the height H1 of the convex portion 14 was 9 μm. Note that since the porosity of the micromesh is 60%, the area occupation ratio x of the convex portions 14 is 60%.

(実施例2)
円形開口部を有するニッケル製のマイクロメッシュに代えて、六角形開口部を有するニッケル製のマイクロメッシュを用いた以外は、実施例1と同様にして実施例2の負極を作製した。このマイクロメッシュの六角形開口部の総面積は6500μm2、空孔率は40%、厚みは150μmとした。
(Example 2)
A negative electrode of Example 2 was produced in the same manner as Example 1 except that a nickel micromesh having a hexagonal opening was used instead of the nickel micromesh having a circular opening. The total area of the hexagonal openings of the micromesh was 6500 μm 2 , the porosity was 40%, and the thickness was 150 μm.

実施例1と同様に上記負極を電子顕微鏡で観察したところ、凸部14の高さH1は10μmであった。なお、マイクロメッシュの空孔率が40%であるので、凸部14の面積占有率xは40%となる。   When the negative electrode was observed with an electron microscope in the same manner as in Example 1, the height H1 of the convex portion 14 was 10 μm. Since the porosity of the micromesh is 40%, the area occupation ratio x of the convex portion 14 is 40%.

(実施例3)
円形開口部を有するニッケル製のマイクロメッシュに代えて、六角形開口部を有するニッケル製のマイクロメッシュを用いた以外は、実施例1と同様にして実施例3の負極を作製した。このマイクロメッシュの六角形開口部の総面積は6500μm2、空孔率は70%、厚みは200μmとした。
(Example 3)
A negative electrode of Example 3 was produced in the same manner as Example 1 except that a nickel micromesh having a hexagonal opening was used instead of the nickel micromesh having a circular opening. The total area of the hexagonal openings of the micromesh was 6500 μm 2 , the porosity was 70%, and the thickness was 200 μm.

実施例1と同様に上記負極を電子顕微鏡で観察したところ、凸部14の高さH1は8μmであった。なお、マイクロメッシュの空孔率が70%であるので、凸部14の面積占有率xは70%となる。   When the negative electrode was observed with an electron microscope in the same manner as in Example 1, the height H1 of the convex portion 14 was 8 μm. In addition, since the porosity of the micromesh is 70%, the area occupation ratio x of the convex portion 14 is 70%.

(実施例4)
マイクロメッシュの空孔率を20%とした以外は、実施例1と同様にして実施例4の負極を作製した。
Example 4
A negative electrode of Example 4 was produced in the same manner as in Example 1 except that the porosity of the micromesh was 20%.

実施例1と同様に上記負極を電子顕微鏡で観察したところ、凸部14の高さH1は5μmであった。なお、マイクロメッシュの空孔率が20%であるので、凸部14の面積占有率xは20%となる。   When the negative electrode was observed with an electron microscope in the same manner as in Example 1, the height H1 of the convex portion 14 was 5 μm. In addition, since the porosity of the micromesh is 20%, the area occupation ratio x of the convex portions 14 is 20%.

(比較例1)
Snめっき薄膜に凹凸を形成しなかった以外は、実施例1と同様にして比較例1の負極を作製した。
(Comparative Example 1)
A negative electrode of Comparative Example 1 was produced in the same manner as in Example 1 except that the unevenness was not formed on the Sn plating thin film.

(比較例2)
薄膜の凸部14の高さH1を1μmとした以外は、実施例1と同様にして比較例2の負極を作製した。
(Comparative Example 2)
A negative electrode of Comparative Example 2 was produced in the same manner as in Example 1 except that the height H1 of the convex portion 14 of the thin film was set to 1 μm.

(比較例3)
電解めっき時間を600分、マイクロメッシュの厚みを300μm、Snめっき薄膜の厚みを10μmとし、Snめっき薄膜の凸部14の高さH1を22μmとした以外は、実施例1と同様にして比較例3の負極を作製した。
(Comparative Example 3)
Comparative Example as in Example 1 except that the electrolytic plating time was 600 minutes, the thickness of the micromesh was 300 μm, the thickness of the Sn plating thin film was 10 μm, and the height H1 of the convex portion 14 of the Sn plating thin film was 22 μm. 3 negative electrode was produced.

上記実施例1〜4および比較例1〜3の負極の主な構成を表1に示す。   Table 1 shows main structures of the negative electrodes of Examples 1 to 4 and Comparative Examples 1 to 3.

Figure 2005108521
次に、上記で作製した負極と組み合わせるための正極を以下のように作製した。先ず、正極活物質であるLiCoO2を90重量部、導電助剤であるカーボンブラックを6重量部、バインダとしてポリフッ化ビニリデンを4重量部、溶剤としてN−メチルピロリドンを40重量部、をそれぞれ均一になるように混合して正極合剤含有ペーストを調製した。続いて、集電体となる厚さ20μmのアルミニウム箔の片面に、上記正極合剤含有ペーストを、単位面積あたりの合剤重量が32mg/cm2になるように塗布して乾燥した後、カレンダー処理を行って、全厚94μm、電極密度3.2g/cm3となるように正極合剤層の厚みを調整した。その後、41mm×25.5mmに打ち抜いて正極とした。
Figure 2005108521
Next, a positive electrode to be combined with the negative electrode produced above was produced as follows. First, 90 parts by weight of LiCoO 2 as a positive electrode active material, 6 parts by weight of carbon black as a conductive additive, 4 parts by weight of polyvinylidene fluoride as a binder, and 40 parts by weight of N-methylpyrrolidone as a solvent are uniform. A positive electrode mixture-containing paste was prepared by mixing. Subsequently, the positive electrode mixture-containing paste was applied to one side of an aluminum foil having a thickness of 20 μm serving as a current collector so that the mixture weight per unit area was 32 mg / cm 2 , and then dried. The treatment was performed to adjust the thickness of the positive electrode mixture layer so that the total thickness was 94 μm and the electrode density was 3.2 g / cm 3 . Then, it punched out to 41 mm x 25.5 mm, and was set as the positive electrode.

電解液としては、1mol/dm3のLiPF6を、エチレンカーボネートとジエチレンカーボネートの混合溶媒(混合体積比=1:2)に溶解したものを用いた。セパレータとしては、ヘキストセラニーズ社製のポリプロピレン製セパレータ“Celgard♯2400”(商品名、厚さ10μm)を用いた。 As an electrolytic solution, a solution obtained by dissolving 1 mol / dm 3 of LiPF 6 in a mixed solvent of ethylene carbonate and diethylene carbonate (mixing volume ratio = 1: 2) was used. As the separator, a polypropylene separator “Celgard # 2400” (trade name, thickness: 10 μm) manufactured by Hoechst Celanese was used.

上記正極と、実施例1〜4および比較例1〜3の負極とをそれぞれ組み合わせ、その正極と負極との間に上記セパレータを配置して積層した後、アルミラミネートフィルム製の外装材に挿入し、上記電解液を注入し、外装材の電解液注入口をヒートシールにより封止して、モデルセルを作製した。   The positive electrode and the negative electrodes of Examples 1 to 4 and Comparative Examples 1 to 3 were combined, and the separator was placed between the positive electrode and the negative electrode for lamination, and then inserted into an aluminum laminate film exterior material. The above electrolyte solution was injected, and the electrolyte solution injection port of the exterior material was sealed by heat sealing to produce a model cell.

このモデルセルを用いて温度25℃にて充放電試験を行った。充電は、電流密度0.5mA/cm2の定電流で4.3Vまで充電後、4.3Vの定電圧で充電電流が0.05mA/cm2に到達するまで充電し、放電は、電流密度0.5mA/cm2の定電流で放電終止電圧3Vまで放電し、初回充電容量および初回放電容量を測定して、下記式1により初回充放電効率を算出した。なお、初回充電とは第1回目の充電をいい、初回放電とは第1回目の放電をいう。 A charge / discharge test was performed at a temperature of 25 ° C. using this model cell. Charging is performed at a constant current of 0.5 mA / cm 2 at a current density of 4.3 V, and then charged at a constant voltage of 4.3 V until the charging current reaches 0.05 mA / cm 2. The battery was discharged at a constant current of 0.5 mA / cm 2 to a discharge end voltage of 3 V, and the initial charge capacity and the initial discharge capacity were measured. Note that the first charge refers to the first charge, and the first discharge refers to the first discharge.

また、この条件で充放電試験を行い、下記式2によりサイクル特性を算出した。なお、下記放電容量および充電容量は、正極合剤1gあたりの電気容量(mAh/g)で表される。   In addition, a charge / discharge test was performed under these conditions, and the cycle characteristics were calculated by the following formula 2. In addition, the following discharge capacity and charge capacity are represented by electric capacity (mAh / g) per 1 g of the positive electrode mixture.

(数1)
初回充放電効率(%)=(初回放電容量/初回充電容量)×100 (式1)
(数2)
サイクル特性(%)=(20サイクル後の放電容量/初回放電容量)×100 (式2)
また、初回充電時の電池の厚み変化をすべて負極の厚み変化によるものとして、下記式3により充電時の負極の厚み変化率(%)を算出した。
(Equation 1)
Initial charge / discharge efficiency (%) = (initial discharge capacity / initial charge capacity) × 100 (Formula 1)
(Equation 2)
Cycle characteristics (%) = (discharge capacity after 20 cycles / initial discharge capacity) × 100 (Formula 2)
Further, assuming that all changes in the thickness of the battery during the initial charge were due to changes in the thickness of the negative electrode, the rate of change in thickness (%) of the negative electrode during charging was calculated according to the following formula 3.

(数3)
厚み変化率(%)=〔(初回充電時の電池厚み)−(充電前の電池厚み)〕/(充電前の薄膜の厚み+集電体の厚み)×100 (式3)
電池の厚みの測定は、上記各モデルセルをミツトヨ社製のレーザホロゲージに取り付けてカウンタ装置によって厚み変化を測定した。その結果を表2に示す。
(Equation 3)
Thickness change rate (%) = [(Battery thickness at first charge) − (Battery thickness before charge)] / (Thin film thickness before charge + Current collector thickness) × 100 (Equation 3)
The thickness of the battery was measured by attaching the above model cells to a laser holo gauge manufactured by Mitutoyo Corporation and measuring the thickness change with a counter device. The results are shown in Table 2.

Figure 2005108521
表2から明らかなように、実施例1〜4は、比較例1に比べて、サイクル特性が高く、厚み変化率が低かった。これは、実施例1〜4では、活物質薄膜の体積膨張による応力を薄膜電極の凹凸が緩和し、電極の膨張、集電体の皺寄れ、および活物質薄膜内部のクラックの発生が抑制されているためと考えられる。また、薄膜の凸部の高さが2μmを下回った比較例2では、活物質薄膜の体積膨張による応力の緩和が不十分となり、厚み変化率が高くなったため、サイクル特性も低下したもと考えられる。さらに、薄膜の凸部の高さが20μmを上回った比較例3では、凸部の高さが高すぎるため薄膜構造の維持が困難となり、サイクル特性が低下したものと考えられる。
Figure 2005108521
As is clear from Table 2, Examples 1 to 4 had higher cycle characteristics and a lower thickness change rate than Comparative Example 1. In Examples 1 to 4, the unevenness of the thin film electrode relaxes the stress caused by the volume expansion of the active material thin film, and the expansion of the electrode, the current collector creeping, and the occurrence of cracks inside the active material thin film are suppressed. It is thought that it is because. Further, in Comparative Example 2 in which the height of the convex portion of the thin film was less than 2 μm, the relaxation of the stress due to the volume expansion of the active material thin film became insufficient, and the rate of change in thickness was increased, so that the cycle characteristics were also deteriorated. It is done. Furthermore, in Comparative Example 3 in which the height of the convex portion of the thin film exceeded 20 μm, it was considered that the thin film structure was difficult to maintain because the height of the convex portion was too high, and the cycle characteristics were deteriorated.

なお、初回放電容量は、活物質であるSnの量に依存するため、薄膜の凹凸の有無に関わりなく約665mAh/gの容量となった。   Since the initial discharge capacity depends on the amount of Sn as the active material, the capacity was about 665 mAh / g regardless of whether the thin film was uneven.

本発明の薄膜電極は、活物質薄膜の体積変化による影響を最小限に抑えて、電極の膨張、集電体の皺寄れ、および活物質薄膜内部のクラックの発生を抑制することが可能である。このため、本発明の薄膜電極を用いることでサイクル特性などの信頼性に優れ、かつ高容量のリチウム二次電池の作製が可能となり、このリチウム二次電池を電源とする各種の携帯電子端末機器などの小型軽量化に貢献できる。   The thin film electrode of the present invention can minimize the influence of the volume change of the active material thin film and suppress the expansion of the electrode, the current collector creeping, and the occurrence of cracks inside the active material thin film. . For this reason, by using the thin film electrode of the present invention, it is possible to produce a lithium secondary battery with excellent reliability such as cycle characteristics and a high capacity, and various portable electronic terminal devices using the lithium secondary battery as a power source This can contribute to reducing the size and weight.

本発明の薄膜電極の製造方法の一例を示す工程図である。It is process drawing which shows an example of the manufacturing method of the thin film electrode of this invention. 本発明の薄膜電極の製造方法の他の一例を示す工程図である。It is process drawing which shows another example of the manufacturing method of the thin film electrode of this invention.

符号の説明Explanation of symbols

11、21 集電体
12、22 薄膜
13 金属メッシュ
13a 開口部
23 金属板
23a 突起
14、24 凸部
15、25 凹部
16、26 薄膜電極
H1 凸部14の高さ
H2 凸部24の高さ
DESCRIPTION OF SYMBOLS 11, 21 Current collector 12, 22 Thin film 13 Metal mesh 13a Opening 23 Metal plate 23a Protrusion 14, 24 Convex part 15, 25 Concave part 16, 26 Thin film electrode H1 Height of convex part H2 Height of convex part 24

Claims (10)

リチウムと合金化しない金属から形成された集電体と、前記集電体の表面に形成され、リチウムと合金化する元素を含む薄膜とを備えた薄膜電極であって、
前記薄膜が、凸部および凹部を備え、
前記凸部の高さが、2μm以上20μm以下であることを特徴とする薄膜電極。
A thin film electrode comprising: a current collector formed of a metal that does not alloy with lithium; and a thin film that is formed on a surface of the current collector and includes an element that is alloyed with lithium,
The thin film includes a convex portion and a concave portion,
The height of the convex part is 2 μm or more and 20 μm or less.
前記集電体の表面に垂直投影した前記凸部または前記凹部の投影部の形状が、円形、三角形、四角形、および六角形から選ばれる少なくとも一つの形状である請求項1に記載の薄膜電極。   2. The thin film electrode according to claim 1, wherein a shape of the projected portion or the projected portion of the recessed portion that is vertically projected onto the surface of the current collector is at least one shape selected from a circle, a triangle, a quadrangle, and a hexagon. 前記集電体の表面に垂直投影した前記凸部の投影部の総面積が、前記薄膜が形成された前記集電体の総面積の40%以上80%以下である請求項1または2に記載の薄膜電極。   3. The total area of the projections of the convex portions projected perpendicularly to the surface of the current collector is 40% or more and 80% or less of the total area of the current collector on which the thin film is formed. Thin film electrode. 前記集電体の厚みが、5μm以上30μm以下である請求項1〜3のいずれかに記載の薄膜電極。   The thin film electrode according to claim 1, wherein the current collector has a thickness of 5 μm or more and 30 μm or less. 前記リチウムと合金化する元素が、ケイ素および錫から選ばれる少なくとも一つの元素である請求項1〜4のいずれかに記載の薄膜電極。   The thin film electrode according to claim 1, wherein the element alloyed with lithium is at least one element selected from silicon and tin. 前記薄膜の主成分が、Cu6Sn5およびNi3Sn4から選ばれるいずれか一つである請求項1〜5のいずれかに記載の薄膜電極。 The thin film electrode according to claim 1, wherein a main component of the thin film is any one selected from Cu 6 Sn 5 and Ni 3 Sn 4 . リチウムと合金化しない金属からなる集電体の表面に、リチウムと合金化する元素を含む薄膜を形成する工程と、
前記薄膜を凹凸形成部材で加圧することにより、前記薄膜の表面に凹凸を形成する工程と、
を含むことを特徴とする薄膜電極の製造方法。
Forming a thin film containing an element alloying with lithium on the surface of a current collector made of a metal that is not alloyed with lithium;
Forming the irregularities on the surface of the thin film by pressing the thin film with an irregularity forming member;
A method for producing a thin film electrode, comprising:
前記凹凸形成部材が、金属メッシュおよび表面に凹凸を有する金属板から選ばれるいずれかの部材である請求項7に記載の薄膜電極の製造方法。   The method for producing a thin film electrode according to claim 7, wherein the unevenness forming member is any member selected from a metal mesh and a metal plate having unevenness on the surface. 前記凹凸を形成した薄膜および前記集電体を加熱する工程をさらに含む請求項7または8に記載の薄膜電極の製造方法。   The method of manufacturing a thin film electrode according to claim 7, further comprising a step of heating the thin film having the irregularities and the current collector. 請求項1〜6のいずれかに記載の薄膜電極を負極として用いたことを特徴とするリチウム二次電池。

A lithium secondary battery using the thin film electrode according to claim 1 as a negative electrode.

JP2003337893A 2003-09-29 2003-09-29 Thin film electrode, manufacturing method of the same, and lithium secondary battery using the thin film electrode Withdrawn JP2005108521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003337893A JP2005108521A (en) 2003-09-29 2003-09-29 Thin film electrode, manufacturing method of the same, and lithium secondary battery using the thin film electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003337893A JP2005108521A (en) 2003-09-29 2003-09-29 Thin film electrode, manufacturing method of the same, and lithium secondary battery using the thin film electrode

Publications (1)

Publication Number Publication Date
JP2005108521A true JP2005108521A (en) 2005-04-21

Family

ID=34533583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003337893A Withdrawn JP2005108521A (en) 2003-09-29 2003-09-29 Thin film electrode, manufacturing method of the same, and lithium secondary battery using the thin film electrode

Country Status (1)

Country Link
JP (1) JP2005108521A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011148997A1 (en) * 2010-05-28 2011-12-01 Semiconductor Energy Laboratory Co., Ltd. Power storage device, electrode, and electric device
JP2013051209A (en) * 2012-11-06 2013-03-14 Nissan Motor Co Ltd Electrode for battery
JP2013214411A (en) * 2012-04-02 2013-10-17 Tokyo Ohka Kogyo Co Ltd Lithium ion secondary battery negative electrode, lithium ion secondary battery, and manufacturing method of lithium ion secondary battery negative electrode
WO2014006973A1 (en) * 2012-07-04 2014-01-09 日東電工株式会社 Electrode for electricity storage devices, electricity storage device using same, and method for producing same
JP2014220042A (en) * 2013-05-01 2014-11-20 日産自動車株式会社 Electrode, method for manufacturing electrode, and battery
WO2016033379A1 (en) * 2014-08-27 2016-03-03 Applied Materials, Inc. Three-dimensional thin film battery
US9337475B2 (en) 2011-08-30 2016-05-10 Semiconductor Energy Laboratory Co., Ltd. Power storage device
US9401247B2 (en) 2011-09-21 2016-07-26 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for power storage device and power storage device
CN107204451A (en) * 2016-03-17 2017-09-26 中国科学院苏州纳米技术与纳米仿生研究所 Metal surface micro-structural, its preparation method and application
WO2018128321A1 (en) * 2017-01-09 2018-07-12 주식회사 엘지화학 Patterning for lithium metal and electrochemical device using same
EP3573145A1 (en) * 2018-05-24 2019-11-27 Contemporary Amperex Technology Co., Limited Battery and method for preparing the same
EP3624238A4 (en) * 2017-08-17 2020-07-29 LG Chem, Ltd. Method for surface patterning of lithium metal, and lithium secondary battery electrode using same
KR20230027420A (en) * 2021-08-19 2023-02-28 한국생산기술연구원 Anode laminate comprising protecting layer with engraved pattern, lithium secondary battery comprising same and method for manufacturing same

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011148997A1 (en) * 2010-05-28 2011-12-01 Semiconductor Energy Laboratory Co., Ltd. Power storage device, electrode, and electric device
CN102918683A (en) * 2010-05-28 2013-02-06 株式会社半导体能源研究所 Power storage device, electrode, and electric device
US9337475B2 (en) 2011-08-30 2016-05-10 Semiconductor Energy Laboratory Co., Ltd. Power storage device
US9401247B2 (en) 2011-09-21 2016-07-26 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for power storage device and power storage device
JP2013214411A (en) * 2012-04-02 2013-10-17 Tokyo Ohka Kogyo Co Ltd Lithium ion secondary battery negative electrode, lithium ion secondary battery, and manufacturing method of lithium ion secondary battery negative electrode
WO2014006973A1 (en) * 2012-07-04 2014-01-09 日東電工株式会社 Electrode for electricity storage devices, electricity storage device using same, and method for producing same
JP2013051209A (en) * 2012-11-06 2013-03-14 Nissan Motor Co Ltd Electrode for battery
JP2014220042A (en) * 2013-05-01 2014-11-20 日産自動車株式会社 Electrode, method for manufacturing electrode, and battery
WO2016033379A1 (en) * 2014-08-27 2016-03-03 Applied Materials, Inc. Three-dimensional thin film battery
CN107204451A (en) * 2016-03-17 2017-09-26 中国科学院苏州纳米技术与纳米仿生研究所 Metal surface micro-structural, its preparation method and application
WO2018128321A1 (en) * 2017-01-09 2018-07-12 주식회사 엘지화학 Patterning for lithium metal and electrochemical device using same
KR20180081889A (en) * 2017-01-09 2018-07-18 주식회사 엘지화학 Patterning of Lithium metal and electrochemical device prepared thereby
KR102172070B1 (en) 2017-01-09 2020-10-30 주식회사 엘지화학 Patterning of Lithium metal and electrochemical device prepared thereby
EP3624238A4 (en) * 2017-08-17 2020-07-29 LG Chem, Ltd. Method for surface patterning of lithium metal, and lithium secondary battery electrode using same
US11271199B2 (en) 2017-08-17 2022-03-08 Lg Energy Solution, Ltd. Method for patterning lithium metal surface and electrode for lithium secondary battery using the same
EP3573145A1 (en) * 2018-05-24 2019-11-27 Contemporary Amperex Technology Co., Limited Battery and method for preparing the same
CN110534789A (en) * 2018-05-24 2019-12-03 宁德时代新能源科技股份有限公司 Battery and preparation method thereof
CN110534789B (en) * 2018-05-24 2021-01-15 宁德时代新能源科技股份有限公司 Battery and preparation method thereof
US11258091B2 (en) 2018-05-24 2022-02-22 Contemporary Amperex Technology Co., Limited Battery and method for preparing the same
KR20230027420A (en) * 2021-08-19 2023-02-28 한국생산기술연구원 Anode laminate comprising protecting layer with engraved pattern, lithium secondary battery comprising same and method for manufacturing same
KR102599352B1 (en) * 2021-08-19 2023-11-07 한국생산기술연구원 Anode laminate comprising protecting layer with engraved pattern, lithium secondary battery comprising same and method for manufacturing same

Similar Documents

Publication Publication Date Title
JP5313761B2 (en) Lithium ion battery
JP3733071B2 (en) Lithium battery electrode and lithium secondary battery
JP5231557B2 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP3676301B2 (en) Electrode for lithium secondary battery and lithium secondary battery
KR101210190B1 (en) Battery and method of manufacturing the same
US7507502B2 (en) Negative electrode having intermetallic compound that occludes/desorbs lithium as an active material layer on collector for non-aqueous secondary battery and non-aqueous secondary battery using the same
JP4400019B2 (en) Non-aqueous electrolyte battery and method for producing the same
US20220093964A1 (en) Anode active material for lithium secondary battery, manufacturing method thereof, and lithium secondary battery including the same
JP2005196971A (en) Negative electrode for lithium secondary battery, its manufacturing method, and lithium secondary battery
JP2011028883A (en) Nonaqueous electrolyte secondary battery
KR101243913B1 (en) Anode active material, anode and lithium battery containing the same, and preparation method thereof
JP2014511010A (en) Negative electrode active material for lithium secondary battery and method for producing the same
CN102097610A (en) Battery
JP2002237294A (en) Negative electrode for lithium secondary battery
JP2006182925A (en) Core/shell type fine particle and lithium secondary battery including the fine particle
JP2005108521A (en) Thin film electrode, manufacturing method of the same, and lithium secondary battery using the thin film electrode
JP2005108523A (en) Thin film electrode, manufacturing method of the same, and lithium secondary battery using that thin film electrode
KR101097269B1 (en) Negative electrode for lithium secondary battery and manufacturing method thereof
JP3877170B2 (en) Non-aqueous secondary battery negative electrode, method for producing the same, and non-aqueous secondary battery using the negative electrode
JP2007172963A (en) Negative electrode for lithium-ion secondary battery, and its manufacturing method
JP4919451B2 (en) Non-aqueous secondary battery and manufacturing method thereof
EP4287295A1 (en) Secondary battery charging method and charging system
JP2005108522A (en) Thin film electrode, manufacturing method of the same, and lithium secondary battery using that thin film electrode
US20230378792A1 (en) Secondary battery charging method and charging system
JP2006172777A (en) Lithium secondary battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061205