JP2005100922A - Electrode material manufacturing method of the same, and battery using the same - Google Patents

Electrode material manufacturing method of the same, and battery using the same Download PDF

Info

Publication number
JP2005100922A
JP2005100922A JP2004021120A JP2004021120A JP2005100922A JP 2005100922 A JP2005100922 A JP 2005100922A JP 2004021120 A JP2004021120 A JP 2004021120A JP 2004021120 A JP2004021120 A JP 2004021120A JP 2005100922 A JP2005100922 A JP 2005100922A
Authority
JP
Japan
Prior art keywords
lithium
composite oxide
battery
electrode material
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004021120A
Other languages
Japanese (ja)
Inventor
Masayuki Tsuda
昌幸 津田
Hideaki Otsuka
秀昭 大塚
Yoji Sakurai
庸司 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2004021120A priority Critical patent/JP2005100922A/en
Publication of JP2005100922A publication Critical patent/JP2005100922A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide an Li-Ni-Ti complex oxide for providing a battery with a large capacity and an excellent cycle property, containing the Li-Ni-Ti complex oxide having a layered structure expressed by a space group R-3m as a positive electrode activator, and a manufacturing method of the same and a battery using the same. <P>SOLUTION: The electrode material is the Li-Ni-Ti complex oxide having a layered structure of which the crystal structure belongs to the space group R-3m, including divalent Ni and tetravalent Ti, expressed by a general formula; Li<SB>a</SB>Ni<SB>x</SB>Ti<SB>1-x</SB>O<SB>2-α</SB>(0.95≤a≤1.05, 0.45≤x≤0.55, -0.1≤α≤0.1). The manufacturing method of the electrode material ion-exchanging Li with Na, and the battery using the electrode material are provided. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は電極材料、その製造方法及びその電極材料を正極活物質として含む電池、さらに詳細には、放電容量の大きく、サイクル特性に優れた電池を提供する技術に関するものである。   The present invention relates to an electrode material, a manufacturing method thereof, a battery including the electrode material as a positive electrode active material, and more particularly to a technique for providing a battery having a large discharge capacity and excellent cycle characteristics.

Liと遷移金属の複合酸化物を正極活物質として用いた電池は、軽量かつ大容量を有することから携帯電話電源用用途を中心に、広く用いられている。しかしながら、現在最も多く使用されているLi−Co複合酸化物系材料は、充放電に伴う結晶構造変化により、その理論比容量の全てを利用することはできず、理論値の半分に当たる150mAh/gしか利用できていない状況にある。   Batteries using a composite oxide of Li and a transition metal as a positive electrode active material are widely used mainly for applications for mobile phone power supplies because of their light weight and large capacity. However, the Li-Co composite oxide material that is most frequently used at present cannot use all of its theoretical specific capacity due to the change in crystal structure accompanying charge / discharge, and it is 150 mAh / g, which is half the theoretical value. It can only be used.

充填方法の最適化等により電池としての容量向上が行われてきたが、それも頭打ちの状態となっている。Li−Co複合酸化物に代わる新たな複合酸化物材料系として、Li−Ni複合酸化物やLi−Mn複合酸化物等が検討され、その比容量は200mAh/gを超えるものも報告されている。   Although the capacity of the battery has been improved by optimizing the filling method or the like, it has also reached its peak. Li-Ni composite oxide, Li-Mn composite oxide, etc. have been studied as a new composite oxide material system replacing Li-Co composite oxide, and those whose specific capacity exceeds 200 mAh / g have been reported. .

しかしこれらの材料系でも、サイクル特性の不十分さや、安全性の問題、高温での保存特性等の課題が存在する。これらの課題に対して、遷移金属の一部を他の遷移金属等で置換することにより改善する方法が種々報告されているが、比容量が減少してしまい実用には十分ではなかった。   However, even these materials have problems such as insufficient cycle characteristics, safety problems, and storage characteristics at high temperatures. Various methods have been reported to solve these problems by substituting a part of the transition metal with another transition metal or the like. However, the specific capacity is reduced, which is not sufficient for practical use.

これに対し、近年では複数の遷移金属の複合酸化物系として、特開2002−42813公報に代表されるLiNi0.5Mn0.5といった材料系が報告されている。この系の特徴は2種類の遷移金属それぞれが異なる役割を果たしている点であり、通常の部分置換された系とは異なる全く新しい材料系ということができる。LiNi0.5Mn0.5の場合にはNiが2+/4+の酸化還元反応により電極材料の機能を示し、一方Mnは4価で安定に存在し構造を維持する機能を与えている。この材料系(またはそれに該当する組成を有する化合物)は、特開平9−199127号公報、および特開2003−17060公報においても報告がなされている。 On the other hand, in recent years, a material system such as LiNi 0.5 Mn 0.5 O 2 typified by JP-A-2002-42813 has been reported as a composite oxide system of a plurality of transition metals. The feature of this system is that each of the two kinds of transition metals plays a different role, and it can be said that it is a completely new material system different from a normal partially substituted system. In the case of LiNi 0.5 Mn 0.5 O 2 , Ni exhibits a function of an electrode material by an oxidation-reduction reaction of 2 + / 4 +, while Mn stably exists in a tetravalent state and provides a function of maintaining the structure. . This material system (or a compound having a composition corresponding thereto) is also reported in Japanese Patent Application Laid-Open Nos. 9-199127 and 2003-17060.

発明者らはこの材料系において、その特性等の報告がなされていないLi−Ni−Ti複合酸化物に注目し、その特性を明らかにすべく検討を行ってきた中で、既報の特開平9−199127号公報、および特開2003−17060公報に掲載されている方法においては電極材料の性能を示すLi−Ni−Ti複合酸化物を得ることは不可能であることを見出した。   The inventors paid attention to Li-Ni-Ti composite oxides whose properties and the like have not been reported in this material system, and have been studying to clarify the properties. It has been found that it is impossible to obtain a Li—Ni—Ti composite oxide exhibiting the performance of an electrode material by the methods described in JP-A-199127 and JP-A-2003-17060.

具体的には、既報の特開平9−199127号公報、および特開2003−17060公報に掲載されている方法によると、空間群Fm3mで表される結晶構造を有する材料が得られた。この結晶構造は電極材料として機能しないことが知られており(芳尾、小沢、リチウムイオン二次電池−材料と応用−、日刊工業新聞社(1996))、実際、機能しなかった。電極材料として機能させるには、LiNi0.5Mn0.5と同様に層状構造を有する結晶構造を得る必要がある。
小槻、芳澤、永山、特開2002−42813公報 浅岡、渡邊、小林、特開平9−199127号公報 安斎、特開2003−17060公報 山崎、木村、特開平10−87327号公報 芳尾、小沢、リチウムイオン二次電池−材料と応用−、日刊工業新聞社(1996) 菅野、電気化学、No.9、63(1995)
Specifically, according to the methods described in the published Japanese Patent Application Laid-Open Nos. 9-199127 and 2003-17060, a material having a crystal structure represented by the space group Fm3m was obtained. It is known that this crystal structure does not function as an electrode material (Yao, Ozawa, Lithium ion secondary battery-materials and applications-, Nikkan Kogyo Shimbun (1996)), and actually did not function. In order to function as an electrode material, it is necessary to obtain a crystal structure having a layered structure like LiNi 0.5 Mn 0.5 O 2 .
Kominato, Yoshizawa, Nagayama, JP 2002-42813 A Asaoka, Watanabe, Kobayashi, Japanese Patent Laid-Open No. 9-199127 Ansai, JP2003-17060A Yamazaki, Kimura, JP 10-87327 A Yoshio, Ozawa, Lithium-ion secondary battery-Materials and applications-, Nikkan Kogyo Shimbun (1996) Kanno, Electrochemistry, No. 9, 63 (1995)

本発明は、上記のような現状の課題を解決し、空間群としてR−3mで表される層状構造を有するLi−Ni−Ti複合酸化物を正極活物質として含み、放電容量が大きく、サイクル特性に優れた電池を提供するためのLi−Ni一Ti複合酸化物の製造方法を新たに提供することにある。   The present invention solves the above problems as described above, includes a Li—Ni—Ti composite oxide having a layered structure represented by R-3m as a space group as a positive electrode active material, has a large discharge capacity, and a cycle. The object is to newly provide a method for producing a Li—Ni—Ti composite oxide in order to provide a battery having excellent characteristics.

かかる問題を解決するために本発明による電極材料は、2価のNiと4価のTiを含有し、一般式LiNiTi1−x2−α(0.95≦a≦1.05、0.45≦x≦0.55、−0.1≦α≦0.1)で表される、結晶構造が空間群R−3mに帰属される層状構造を有するLi−Ni−Ti複合酸化物であることを特徴とする。さらに望ましくは、上記一般式におけるxが0.5であるところの、結晶構造が空間群R−3mに帰属される層状構造を有するLi−Ni一Ti複合酸化物であることを特徴とする。 In order to solve such a problem, the electrode material according to the present invention contains divalent Ni and tetravalent Ti, and has a general formula of Li a Ni x Ti 1-x O 2-α (0.95 ≦ a ≦ 1. 05, 0.45 ≦ x ≦ 0.55, −0.1 ≦ α ≦ 0.1), and a Li—Ni—Ti composite having a layered structure in which the crystal structure belongs to the space group R-3m It is an oxide. More preferably, it is a Li—Ni—Ti composite oxide having a layered structure in which the crystal structure belongs to the space group R-3m, where x in the above general formula is 0.5.

本発明の電極材料の製造方法は、2価のNiと4価のTiを含有し、一般式NaNiTi1−y2−β(0.95≦b≦1.05、0.45≦y≦0.55、−0.1≦β≦0.1)で表される、結晶構造が空間群R−3mに帰属される層状構造を有するNa−Ni−Ti複合酸化物を原料に用いて、NaとLiをイオン交換することを特徴とする。さらに望ましくは、上記一般式におけるyが0.5であるところの、結晶構造が空間群R−3mに帰属される層状構造を有するNa−Ni−Ti複合酸化物を原料に用いて、NaとLiをイオン交換することを特徴とする。 The method for producing an electrode material of the present invention contains divalent Ni and tetravalent Ti, and has a general formula Na b Ni y Ti 1-y O 2 -β (0.95 ≦ b ≦ 1.05,. 45 ≦ y ≦ 0.55, −0.1 ≦ β ≦ 0.1), and a raw material is a Na—Ni—Ti composite oxide having a layered structure in which the crystal structure belongs to the space group R-3m Used for ion exchange of Na and Li. More preferably, Na—Ni—Ti composite oxide having a layered structure in which the crystal structure belongs to space group R-3m, where y in the general formula is 0.5, is used as a raw material. It is characterized by ion exchange of Li.

また本発明の電池は、前述の方法により製造されたLi−Ni−Ti複合酸化物を正極活物質として含む正極を有し、リチウムを可逆的に挿入・脱離あるいは吸蔵・放出できる物質を含む負極を有し、リチウムイオンが前記正極および前記負極と電気化学反応をするための移動を行い得る物質を電解質物質として含むことを特徴とする。   In addition, the battery of the present invention includes a positive electrode that includes the Li—Ni—Ti composite oxide manufactured by the above-described method as a positive electrode active material, and includes a material that can reversibly insert, desorb, occlude, and release lithium. It has a negative electrode, The lithium ion contains the substance which can perform the movement for an electrochemical reaction with the said positive electrode and the said negative electrode as an electrolyte substance, It is characterized by the above-mentioned.

本発明による製造方法によれば、結晶構造が空間群R−3mに帰属される層状構造を有するLi−Ni−Ti複合酸化物の合成が可能となり、その方法により製造されたLi−Ni−Ti複合酸化物を正極活物質として用いることにより大きな放電容量を持つ電池を実現することができ、種々の電子機器の電源を始め、様々な分野に利用できるという利点を有する。   According to the production method of the present invention, it becomes possible to synthesize a Li—Ni—Ti composite oxide having a layered structure whose crystal structure belongs to the space group R-3m, and Li—Ni—Ti produced by the method. By using the composite oxide as the positive electrode active material, a battery having a large discharge capacity can be realized, and there is an advantage that it can be used in various fields including power sources of various electronic devices.

本発明をさらに詳しく説明する。発明者は電極材料として機能する、結晶構造が空間群R−3mに帰属される層状構造を有するLi−Ni−Ti複合酸化物電極材料の製造方法について検討を行ったところ、既報特開平9−199127号公報、および特開2003−17060公報に掲載された方法では、前記酸化物を得ることは不可能であることを確認した。そこで、新たな製造方法を鋭意探索した結果、結晶構造が空間群R−3mに帰属される層状構造を有するNa−Ni−Ti複合酸化物を原料として、イオン交換を行うことによって前記Li−Ni−Ti複合酸化物を得られることを見出した。   The present invention will be described in more detail. The inventor examined a method for producing a Li—Ni—Ti composite oxide electrode material that functions as an electrode material and has a layered structure in which the crystal structure belongs to the space group R-3m. It was confirmed that the oxides could not be obtained by the methods described in Japanese Patent Application Laid-Open No. 1991127 and Japanese Patent Application Laid-Open No. 2003-17060. Therefore, as a result of earnestly searching for a new production method, ion exchange is performed by using the Na—Ni—Ti composite oxide having a layered structure in which the crystal structure belongs to the space group R-3m as a raw material. It has been found that a -Ti composite oxide can be obtained.

既報特開平9−199127号公報、および特開2003−17060公報に掲載された方法によって得られるLi−Ni−Ti複合酸化物は、電極材料として機能しない空間群Fm3mに帰属される岩塩型構造を有しているのに対し、本発明による製造方法により得られるLi−Ni−Ti複合酸化物は、電極材料として機能する空間群R−3mに帰属される層状構造を有している。またこの製造方法により得られたLi−Ni−Ti複合酸化物を正極活物質に用いる電池により、従来よりも放電容量が大きく、サイクル特性に優れた電池を製造、実現できることを確かめ、その認識の下に本発明を完成した。   The Li—Ni—Ti composite oxide obtained by the methods disclosed in the published Japanese Patent Application Laid-Open Nos. 9-199127 and 2003-17060 has a rock salt structure belonging to the space group Fm3m that does not function as an electrode material. In contrast, the Li—Ni—Ti composite oxide obtained by the production method according to the present invention has a layered structure belonging to the space group R-3m that functions as an electrode material. In addition, it was confirmed that a battery using a Li—Ni—Ti composite oxide obtained by this production method as a positive electrode active material can produce and realize a battery having a larger discharge capacity and superior cycle characteristics than before. The present invention was completed below.

本発明の製造方法により製造されるLi−Ni−Ti複合酸化物電極材料は、2価のNiと4価のTiをほぼ1:1の割合で含有し、結晶構造が空間群R−3mに帰属される層状構造を有する。既報特開平9−199127号公報、および特開2003−17060公報においては、この酸化物(あるいは同様の組成を有する化合物)を得る方法として、Li、Ni、Tiの各塩、水酸化物または酸化物等の原料を混合したもの、あるいはLi塩にNiとTiの混合水酸化物を混合したものを、大気中(酸素存在下)で焼成することにより合成されるとしている。   The Li—Ni—Ti composite oxide electrode material produced by the production method of the present invention contains divalent Ni and tetravalent Ti in a ratio of approximately 1: 1, and the crystal structure is in the space group R-3m. It has an assigned layered structure. In the published Japanese Patent Application Laid-Open No. 9-199127 and Japanese Patent Application Laid-Open No. 2003-17060, Li, Ni, Ti salts, hydroxides or oxides are used as methods for obtaining this oxide (or a compound having a similar composition). It is said that it is synthesized by firing a mixture of raw materials such as a product or a mixture of Li salt and a mixed hydroxide of Ni and Ti in the atmosphere (in the presence of oxygen).

しかしながら、Li−Ni−Ti複合酸化物についての実施例の報告はなく、また実際に、このような固相合成法では合成不可能であることを発明者らは見出した。発明者らが同様の方法により合成を試みたところ、650〜700℃の領域ではR−3mに帰属される構造も得られるが、大部分はFm3mに帰属される岩塩型構造となることを確認した。   However, there is no report of the Example about Li-Ni-Ti complex oxide, and the inventors found out that it cannot actually synthesize | combine by such a solid-phase synthesis method. When the inventors tried to synthesize by the same method, a structure attributed to R-3m was obtained in the region of 650 to 700 ° C., but it was confirmed that most of the structure was a rock salt structure attributed to Fm3m. did.

この岩塩型構造は、電極材料としてほとんど機能しないことが知られており、実際に電池を作製したところ機能しなかった。これはTiがLiとの複合酸化物を生成するに当たり、その原子半径の相関から岩塩型構造になりやすいことに基づいている(菅野、電気化学、No.9、63(1995))。   This rock salt structure is known to hardly function as an electrode material, and when a battery was actually fabricated, it did not function. This is based on the fact that when Ti forms a composite oxide with Li, it tends to have a rock salt structure from the correlation of atomic radii (Ogino, Electrochemistry, No. 9, 63 (1995)).

そこで本発明においては、TiおよびNiの両元素ともに層状構造の複合酸化物を生成可能なNaと組み合わせ、前駆体となるNa−Ni−Ti複合酸化物を合成し、イオン交換を行うことで層状構造を有するLi−Ni−Ti複合酸化物の合成を可能とした。   Therefore, in the present invention, both Ti and Ni elements are combined with Na capable of forming a complex oxide having a layered structure, a precursor Na-Ni-Ti complex oxide is synthesized, and ion exchange is performed to form a layered structure. The synthesis of a Li—Ni—Ti composite oxide having a structure was made possible.

Na−Ni一Ti複合酸化物の合成には、Na塩と2価のNi塩および4価のTi塩を量論比(2:1:1)にて混合し、不活性雰囲気中(Ar、N等)で仮焼成および本焼成を行うことで合成する。ここで不活性雰囲気を用いるのはNiの酸化を防ぐためである。またこの際、炭素を添加することによりNiの酸化を確実に防ぐことが可能になり、また結果的に酸化物表面を炭素がコーティングし導電率向上も可能となる。前述の原料については、Ni2価およびTi4価の塩を用いれば特に制限はないが、入手の容易さ、取り扱いのしやすさから、炭酸ナトリウム、水酸化ニッケル、酸化チタンの組み合わせが簡便である。また、特開平10−87327号公報にあるような混合水酸化物を用いるとNiとTiの良く分散した試料を得ることもできる。 For the synthesis of the Na—Ni mono-Ti composite oxide, Na salt, divalent Ni salt and tetravalent Ti salt were mixed in a stoichiometric ratio (2: 1: 1), and the reaction was conducted in an inert atmosphere (Ar, N 2 or the like) and pre-baking and main baking. Here, the inert atmosphere is used to prevent oxidation of Ni. At this time, the addition of carbon makes it possible to reliably prevent the oxidation of Ni, and as a result, the oxide surface is coated with carbon and the conductivity can be improved. The aforementioned raw materials are not particularly limited as long as Ni divalent and Ti tetravalent salts are used, but a combination of sodium carbonate, nickel hydroxide and titanium oxide is simple because of availability and ease of handling. Further, when a mixed hydroxide as disclosed in JP-A-10-87327 is used, a sample in which Ni and Ti are well dispersed can be obtained.

得られたNa−Ni−Ti複合酸化物のイオン交換にはリチウム塩を用いた溶融塩法を用いる。この方法により短時間で結晶性の良い試料を得ることができる。この際もNiの酸化を防ぐために不活性雰囲気中で行う。   A molten salt method using a lithium salt is used for ion exchange of the obtained Na—Ni—Ti composite oxide. By this method, a sample with good crystallinity can be obtained in a short time. Also in this case, it is performed in an inert atmosphere in order to prevent oxidation of Ni.

リチウム塩として硝酸リチウムを用いた場合、255℃未満であると溶融しない恐れがあり、300℃を超えた温度で処理を行うと、岩塩型構造への構造変化が生じ、電極性能を著しく低下させるため注意が必要である。基本的に、硝酸リチウムが確実に溶融し、かつ、できる限り低い温度が好ましい。したがって、最も好ましくは270℃前後である。   When lithium nitrate is used as the lithium salt, it may not melt when the temperature is lower than 255 ° C. When the treatment is performed at a temperature exceeding 300 ° C, the structure changes to a rock salt type structure, and the electrode performance is remarkably deteriorated. Therefore, attention is necessary. Basically, it is preferred that the temperature be as low as possible so that the lithium nitrate melts reliably. Therefore, it is most preferably around 270 ° C.

また、イオン交換反応は濃度差により生じるのでLiはNaに対して相当の量が必要であること、後処理で洗浄するのにLi塩を必要以上に過剰にするのは現実的でないことから、Li/Na比が5〜10倍が好ましい。   In addition, since the ion exchange reaction occurs due to a difference in concentration, Li requires a considerable amount with respect to Na, and it is not realistic to make the Li salt excessive more than necessary for washing in the post-treatment. The Li / Na ratio is preferably 5 to 10 times.

さらに、反応時間は、短時間である場合にはイオン交換反応が十分に進行しない恐れがあるが、本発明の製造方法で用いるNa−Ni−Ti複合酸化物は、反応のしやすい材料であり、かつ、長時間の反応は岩塩型構造への構造変化の恐れもあることから1〜24時間が好ましく、短時間で十分な試料が得られることから、さらに好ましくは1〜5時間である。   Furthermore, when the reaction time is short, the ion exchange reaction may not proceed sufficiently, but the Na—Ni—Ti composite oxide used in the production method of the present invention is a material that is easy to react. In addition, a long-time reaction is preferably 1 to 24 hours because there is a risk of structural change to a rock salt structure, and more preferably 1 to 5 hours because a sufficient sample can be obtained in a short time.

上述のことから、最も好ましくはLi/Na比が約5倍の硝酸リチウム中において、約270℃で3〜5時間の処理が良い。過剰なリチウム塩等は水、メタノール等の溶剤で洗浄する。   From the above, it is most preferable to perform the treatment at about 270 ° C. for 3 to 5 hours in lithium nitrate having a Li / Na ratio of about 5 times. Wash excess lithium salt with a solvent such as water or methanol.

また複数のリチウム塩を混合して用いた場合には、塩の溶融温度が低下することからより低い温度での処理も可能となる。リチウム塩には溶融温度条件を満たせば、いかなる塩を利用することも可能であるが、入手の容易さ、取り扱いのしやすさから、硝酸リチウム、塩化リチウム、水酸化リチウムの組み合わせが簡便である。例えば、硝酸リチウムと塩化リチウムのmol%比88:12混合塩は約244℃、硝酸リチウムと水酸化リチウムのmol%比61:39混合塩は約186℃で溶融するので、温度条件により選択すればよい。   When a plurality of lithium salts are mixed and used, the melting temperature of the salt decreases, so that treatment at a lower temperature is possible. Any salt can be used as long as the lithium salt satisfies the melting temperature condition, but the combination of lithium nitrate, lithium chloride, and lithium hydroxide is simple because it is easily available and easy to handle. . For example, a 88:12 mol% ratio salt of lithium nitrate and lithium chloride melts at about 244 ° C, and a 61:39 mol% ratio of lithium nitrate and lithium hydroxide melts at about 186 ° C. That's fine.

処理温度としては、温度が低すぎるとイオン交換反応が十分に進行しない恐れがあること、また300℃を超えた温度で処理を行うと、岩塩型構造への構造変化が生じ、電極性能を著しく低下させるため注意が必要であることから、200〜300℃が好ましい。さらに好ましくは250〜270℃である。   Regarding the processing temperature, if the temperature is too low, the ion exchange reaction may not proceed sufficiently, and if the processing is performed at a temperature exceeding 300 ° C., a structural change to a rock salt type structure occurs and the electrode performance is remarkably improved. Since attention is required to lower the temperature, 200 to 300 ° C. is preferable. More preferably, it is 250-270 degreeC.

また、前述した理由により、Li/Na比は5〜10倍が好ましい。反応時間も同様に1〜24時間が好ましく、さらに好ましくは1〜5時間である。   For the reasons described above, the Li / Na ratio is preferably 5 to 10 times. Similarly, the reaction time is preferably 1 to 24 hours, more preferably 1 to 5 hours.

上述のことから、最も好ましくはLi/Na比が約5倍とした複数のリチウム塩中において、250〜270℃で3〜5時間の処理が良い。過剰なリチウム塩等は水、メタノール等の溶剤で洗浄する。   From the above, it is most preferable to perform treatment at 250 to 270 ° C. for 3 to 5 hours in a plurality of lithium salts having a Li / Na ratio of about 5 times. Wash excess lithium salt with a solvent such as water or methanol.

本発明の製造方法によって製造されたLi−Ni−Ti複合酸化物を正極活物質に用いて電池正極を形成するには、前記方法で製造されたLi−Ni−Ti複合酸化物粉末とポリテトラフルオロエチレンのごとき結着剤粉末との混合物をステンレス等の支持体上に圧着成形する。或いは、かかる活物質粉末に導電性を付与するためアセチレンブラックのような導電性粉末を混合し、これをさらにポリテトラフルオロエチレンのような結着剤粉末を所要に応じて加え、この混合物を金属容器に入れる、あるいはステンレス等の支持体上に圧着成形する、あるいは有機溶剤等の溶媒中に分散してスラリー状にして金属基板上に塗布する、等の手段によって形成される。   In order to form a battery positive electrode using the Li—Ni—Ti composite oxide produced by the production method of the present invention as a positive electrode active material, the Li—Ni—Ti composite oxide powder produced by the above method and polytetra A mixture with a binder powder such as fluoroethylene is compression-molded on a support such as stainless steel. Alternatively, in order to impart conductivity to the active material powder, a conductive powder such as acetylene black is mixed, and a binder powder such as polytetrafluoroethylene is further added as necessary, and this mixture is added to a metal. It is formed by a means such as placing in a container, pressure forming on a support such as stainless steel, or dispersing in a solvent such as an organic solvent to form a slurry and applying it onto a metal substrate.

前記Li−Ni−Ti複合酸化物を正極活物質に用いる電池では、リチウムを可逆的に挿入・脱離あるいは吸蔵・放出できる物質を含む負極を有し、リチウムイオンが前記正極および前記負極と電気化学反応をするための移動を行い得る物質を電解質物質として有することにより、リチウムイオンが正極と負極の間を行き来する電池となる。例えば、負極活物質としては、リチウム金属、リチウム−アルミニウム合金、リチウム−炭素化合物、リチウム含有窒化物など、従来公知の材料を用いることができる。   A battery using the Li—Ni—Ti composite oxide as a positive electrode active material has a negative electrode containing a material capable of reversibly inserting / extracting lithium or inserting / extracting lithium, and lithium ions are electrically connected to the positive electrode and the negative electrode. By having a substance that can move for performing a chemical reaction as an electrolyte substance, a battery in which lithium ions travel between the positive electrode and the negative electrode is obtained. For example, as the negative electrode active material, conventionally known materials such as lithium metal, lithium-aluminum alloy, lithium-carbon compound, and lithium-containing nitride can be used.

前記Li−Ni−Ti複合酸化物を正極活物質に用いる電池では、電解質として、例えばメトキシエタン、ジエトキシエタン、2−メチルテトラヒドロフラン、エチレンカーボネート、プロピレンカーボネート、メチルホルメート、ジメチルスルホキシド、アセトニトリル、ブチロラクトン、ジメチルホルムアミド、ジメチルカーボネート、ジエチルカーボネート、スルホラン、エチルメチルカーボネート等の有機溶媒に、リチウム塩を溶解した非水電解質溶媒、或いは固体電解質、高分子電解質、前記有機溶媒を担持させた高分子電解質等が使用できる。   In the battery using the Li—Ni—Ti composite oxide as the positive electrode active material, for example, methoxyethane, diethoxyethane, 2-methyltetrahydrofuran, ethylene carbonate, propylene carbonate, methyl formate, dimethyl sulfoxide, acetonitrile, butyrolactone are used as the electrolyte. , Non-aqueous electrolyte solvent in which lithium salt is dissolved in an organic solvent such as dimethylformamide, dimethyl carbonate, diethyl carbonate, sulfolane, ethyl methyl carbonate, or the like, or a solid electrolyte, a polymer electrolyte, a polymer electrolyte supporting the organic solvent, etc. Can be used.

また前記電池の放電・充電を繰り返し行うことで、これを二次電池として用いることもできる。   In addition, the battery can be used as a secondary battery by repeatedly discharging and charging the battery.

さらにセパレータ、電池ケース等の構造材料等の他の要素についても従来公知の各種材料が使用でき、特に制限はない。   Furthermore, conventionally known various materials can be used for other elements such as a structural material such as a separator and a battery case, and there is no particular limitation.

以下実施例によって本発明を具体的に説明するが、本発明はこれらによりなんら制限されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

図1は本発明による製造方法によって製造されたLi−Ni−Ti複合酸化物を、正極活物質に用いる電池の一具体例であるコイン型電池の断面図であり、図中1は封口板、2はガスケット、3は正極ケース、4は負極、5はセパレータ、6は正極合剤ペレットを示す。   FIG. 1 is a cross-sectional view of a coin-type battery as a specific example of a battery using a Li—Ni—Ti composite oxide produced by a production method according to the present invention as a positive electrode active material, wherein 1 is a sealing plate, 2 is a gasket, 3 is a positive electrode case, 4 is a negative electrode, 5 is a separator, and 6 is a positive electrode mixture pellet.

実施例1では、次のようにして製造した試料aを用いた。まずNaCOとNi(OH)とTiOをモル比1:1:1で混合し、Ar中で700℃、12時間焼成した粉末を、圧力75MPaでペレット成型し、その後Ar中で950℃、36時間焼成した。こうして得られたペレットを粉砕し、淡緑色の粉末を得た。この粉末の組成はNaNi0.5Ti0.5であった。このNa−Ni−Ti複合酸化物を、粉末X線回折測定法を用いて同定したところ、空間群R−3mに帰属される層状構造を有していることが分かった。 In Example 1, the sample a manufactured as follows was used. First, Na 2 CO 3 , Ni (OH) 2, and TiO 2 are mixed at a molar ratio of 1: 1: 1, and the powder fired in Ar at 700 ° C. for 12 hours is pellet-molded at a pressure of 75 MPa, and then in Ar Firing was performed at 950 ° C. for 36 hours. The pellets thus obtained were pulverized to obtain a light green powder. The composition of this powder was NaNi 0.5 Ti 0.5 O 2 . When this Na—Ni—Ti composite oxide was identified using a powder X-ray diffraction measurement method, it was found that it had a layered structure belonging to the space group R-3m.

次にこのNa−Ni−Ti複合酸化物を前駆体として、Li/Na比が5となるようにLiNOと混合し、Ar中で270℃、5時間のイオン交換処理を行った。得られた混合物を蒸留水で洗浄し、可溶成分を除去した後、空気中90℃で乾燥し、淡緑色の粉末を得た。この粉末の組成はLiNi0.5Ti0.5であった。こうして得られたLi−Ni−Ti複合酸化物試料をaとする。 Next, this Na—Ni—Ti composite oxide was used as a precursor and mixed with LiNO 3 so that the Li / Na ratio was 5, and ion exchange treatment was performed in Ar at 270 ° C. for 5 hours. The obtained mixture was washed with distilled water to remove soluble components, and then dried in air at 90 ° C. to obtain a light green powder. The composition of this powder was LiNi 0.5 Ti 0.5 O 2 . The Li—Ni—Ti composite oxide sample thus obtained is designated a.

この試料aの粉末X線回折測定の結果、空間群R−3mに帰属される層状構造を有していることが分かった。このX線回折パターンを図2に示した。   As a result of the powder X-ray diffraction measurement of this sample a, it was found that it had a layered structure belonging to the space group R-3m. This X-ray diffraction pattern is shown in FIG.

この試料aの粉末を導電剤(アセチレンブラック)、結着剤(ポリテトラフルオロエチレン)と共に混合の上、ロール成形し、正極合剤ペレット6(厚さ0.3mm、直径15mm)とした。   The powder of sample a was mixed with a conductive agent (acetylene black) and a binder (polytetrafluoroethylene) and roll-molded to form positive electrode mixture pellets 6 (thickness 0.3 mm, diameter 15 mm).

次にステンレス製の封口板1上に金属リチウムの負極4を加圧配置したものをポリプロピレン製ガスケット2の凹部に挿入し、負極4の上にポリプロピレン製で微孔性のセパレータ5、正極合剤ペレット6をこの順序に配置し、電解液としてエチレンカーボネートとジメチルカーボネートの等容積混合溶媒にLiPFを溶解させた1規定溶液を適量注入して含浸させた後に、ステンレス製の正極ケース3を被せてかしめることにより、厚さ2mm、直径23mmのコイン型電池を作製した。 Next, a metal lithium negative electrode 4 placed under pressure on a stainless sealing plate 1 is inserted into a recess of a polypropylene gasket 2, and a polypropylene microporous separator 5 and a positive electrode mixture are formed on the negative electrode 4. The pellets 6 are arranged in this order, and after impregnating an appropriate amount of a 1N solution in which LiPF 6 is dissolved in an equal volume mixed solvent of ethylene carbonate and dimethyl carbonate as an electrolytic solution, the stainless steel positive electrode case 3 is covered. By caulking, a coin-type battery having a thickness of 2 mm and a diameter of 23 mm was produced.

このようにして製造した試料aを正極活物質とする電池を、2.0〜4.3Vまで充放電試験を行ったところ、二次電池として安定に充放電を行うことが可能であった。   When a charge / discharge test was performed from 2.0 to 4.3 V on a battery using the sample a thus produced as a positive electrode active material, it was possible to stably charge and discharge as a secondary battery.

実施例2では、次のようにして製造した試料bを用いる他は、実施例1と同様にしてリチウム電池を作製した。まず、NaCOと、NiとTiを1:1の割合で含む混合水酸化物を、Na:Ni:Ti=2:1:1の比で混合し、Ar中で700℃、12時間焼成した粉末を、圧力75MPaでペレット成型し、その後Ar中で950℃、36時間焼成した。こうして得られたペレットを粉砕し、淡緑色の粉末を得た。この粉末の組成はNaNi0.5Ti0.5であった。このNa−Ni−Ti複合酸化物を、粉末X線回折測定法を用いて同定したところ、空間群R−3mに帰属される層状構造を有していることが分かった。 In Example 2, a lithium battery was produced in the same manner as in Example 1 except that the sample b produced as follows was used. First, Na 2 CO 3 and a mixed hydroxide containing Ni and Ti in a ratio of 1: 1 are mixed at a ratio of Na: Ni: Ti = 2: 1: 1, and then Ar at 700 ° C. for 12 hours. The fired powder was pellet-molded at a pressure of 75 MPa, and then fired in Ar at 950 ° C. for 36 hours. The pellets thus obtained were pulverized to obtain a light green powder. The composition of this powder was NaNi 0.5 Ti 0.5 O 2 . When this Na—Ni—Ti composite oxide was identified using a powder X-ray diffraction measurement method, it was found that it had a layered structure belonging to the space group R-3m.

次にこのNa−Ni−Ti複合酸化物を前駆体として、Li/Na比が5となるようにLiNOと混合し、Ar中で270℃、5時間のイオン交換処理を行った。得られた混合物を蒸留水で洗浄し、可溶成分を除去した後、空気中90℃で乾燥し、淡緑色の粉末を得た。この粉末の組成はLiNi0.5Ti0.5であった。こうして得られたLi−Ni−Ti複合酸化物試料をbとする。 Next, this Na—Ni—Ti composite oxide was used as a precursor and mixed with LiNO 3 so that the Li / Na ratio was 5, and ion exchange treatment was performed in Ar at 270 ° C. for 5 hours. The obtained mixture was washed with distilled water to remove soluble components, and then dried in air at 90 ° C. to obtain a light green powder. The composition of this powder was LiNi 0.5 Ti 0.5 O 2 . The Li—Ni—Ti composite oxide sample thus obtained is designated b.

この試料bの粉末X線回折測定の結果、空間群R−3mに帰属される層状構造を有していることが分かった。   As a result of the powder X-ray diffraction measurement of this sample b, it was found that it had a layered structure belonging to the space group R-3m.

このようにして製造した試料bを正極活物質とする電池を、2.0〜4.3Vまで充放電試験を行ったところ、二次電池として安定に充放電を行うことが可能であった。   When a battery using the sample b thus produced as a positive electrode active material was subjected to a charge / discharge test from 2.0 to 4.3 V, it was possible to charge and discharge stably as a secondary battery.

実施例3では、次のようにして製造した試料cを用いる他は、実施例1と同様にしてリチウム電池を作製した。まず実施例1で作製したNa−Ni−Ti複合酸化物を前駆体として、Li/Na比が5となるようにLiNOと混合し、Ar中で270℃、3時間のイオン交換処理を行った。得られた混合物を蒸留水で洗浄し、可溶成分を除去した後、空気中90℃で乾燥し、淡緑色の粉末を得た。この粉末の組成はLiNi0.5Ti0.5であった。こうして得られたLi−Ni−Ti複合酸化物試料をcとする。 In Example 3, a lithium battery was produced in the same manner as in Example 1 except that the sample c produced as follows was used. First, the Na—Ni—Ti composite oxide prepared in Example 1 was used as a precursor and mixed with LiNO 3 so that the Li / Na ratio was 5, and ion exchange treatment was performed in Ar at 270 ° C. for 3 hours. It was. The obtained mixture was washed with distilled water to remove soluble components, and then dried in air at 90 ° C. to obtain a light green powder. The composition of this powder was LiNi 0.5 Ti 0.5 O 2 . Let the Li-Ni-Ti complex oxide sample obtained in this way be c.

この試料cの粉末X線回折測定の結果、空間群R−3mに帰属される層状構造を有していることが分かった。このX線回折パターンを図3に示した。   As a result of the powder X-ray diffraction measurement of this sample c, it was found that it had a layered structure belonging to the space group R-3m. This X-ray diffraction pattern is shown in FIG.

このようにして製造した試料cを正極活物質とする電池を、2.0〜4.3Vまで充放電試験を行ったところ、二次電池として安定に充放電を行うことが可能であった。   When a charge / discharge test was performed from 2.0 to 4.3 V on a battery using the sample c thus produced as a positive electrode active material, it was possible to stably charge and discharge as a secondary battery.

実施例4では、次のようにして製造した試料dを用いる他は、実施例1と同様にしてリチウム電池を作製した。実施例1で作製したNa−Ni−Ti複合酸化物を前駆体として、Li/Na比が5となるようにLiNOとLiClの混合塩(LiNO:LiCl=88:12(mol%))と混合し、Ar中で250℃、3時間のイオン交換処理を行った。得られた混合物を蒸留水で洗浄し、可溶成分を除去した後、空気中90℃で乾燥し、淡緑色の粉末を得た。この粉末の組成はLiNi0.5Ti0.5であった。こうして得られたLi−Ni−Ti複合酸化物試料をdとする。 In Example 4, a lithium battery was produced in the same manner as in Example 1 except that the sample d produced as follows was used. Using the Na—Ni—Ti composite oxide produced in Example 1 as a precursor, a mixed salt of LiNO 3 and LiCl so that the Li / Na ratio is 5 (LiNO 3 : LiCl = 88: 12 (mol%)) And ion exchange treatment at 250 ° C. for 3 hours in Ar. The obtained mixture was washed with distilled water to remove soluble components, and then dried in air at 90 ° C. to obtain a light green powder. The composition of this powder was LiNi 0.5 Ti 0.5 O 2 . Let the Li-Ni-Ti complex oxide sample obtained in this way be d.

この試料dの粉末X線回折測定の結果、空間群R−3mに帰属される層状構造を有していることが分かった。このX線回折パターンを図4に示した。   As a result of the powder X-ray diffraction measurement of this sample d, it was found that it had a layered structure belonging to the space group R-3m. This X-ray diffraction pattern is shown in FIG.

このようにして製造した試料dを正極活物質とする電池を、2.0〜4.3Vまで充放電試験を行ったところ、二次電池として安定に充放電を行うことが可能であった。   When a battery having the sample d thus produced as a positive electrode active material was subjected to a charge / discharge test from 2.0 to 4.3 V, it was possible to charge and discharge stably as a secondary battery.

(比較例1)
比較例1では、既報の特開平9−199127号公報、および特開2003−17060公報に掲載の製造法と同様にして製造した試料Aを用いる他は、実施例1と同様にしてリチウム電池を作製した。詳細には、まずLiOHと、NiとTiを1:1の割合で含む混合水酸化物を、Li:Ni:Ti=2:1:1の比で混合し、大気中で800℃、24時間焼成し、灰色の粉末を得た。この粉末の組成はLiNi0.5Ti0.5であった。こうして得られたLi−Ni−Ti複合酸化物試料をAとする。
(Comparative Example 1)
In Comparative Example 1, a lithium battery was prepared in the same manner as in Example 1 except that Sample A manufactured in the same manner as the manufacturing method described in the published Japanese Patent Application Laid-Open Nos. 9-199127 and 2003-17060 was used. Produced. Specifically, first, LiOH and a mixed hydroxide containing Ni and Ti in a ratio of 1: 1 are mixed at a ratio of Li: Ni: Ti = 2: 1: 1, and in the atmosphere at 800 ° C. for 24 hours. Baking gave a gray powder. The composition of this powder was LiNi 0.5 Ti 0.5 O 2 . The Li—Ni—Ti composite oxide sample thus obtained is designated as A.

この試料Aの粉末X線回折測定の結果、空間群Fm3mに帰属される岩塩型構造を有していることが分かった。このX線回折パターンを図5に示した。   As a result of the powder X-ray diffraction measurement of this sample A, it was found that it had a rock salt structure belonging to the space group Fm3m. This X-ray diffraction pattern is shown in FIG.

このようにして製造した試料Aを正極活物質とする電池を、2.0〜4.3Vまで充放電試験を行ったところ、ほとんど容量を得ることはできず、充放電を行うことが不可能であった。   When a battery using Sample A thus produced as a positive electrode active material was subjected to a charge / discharge test from 2.0 to 4.3 V, almost no capacity could be obtained and charge / discharge could not be performed. Met.

(比較例2)
比較例2では、次のようにして製造した試料Bを用いる他は、実施例1と同様にしてリチウム電池を作製した。まずLiOHとNi(OH)とTiOをモル比2:1:1で混合し、Ar中で700℃、12時間焼成した粉末を、圧力75MPaでペレット成型し、その後Ar中で950℃、36時間焼成した。こうして得られたペレットを粉砕し、淡緑色の粉末を得た。この粉末の組成はLiNi0.5Ti0.5であった。こうして得られたLi−Ni−Ti複合酸化物試料をBとする。
(Comparative Example 2)
In Comparative Example 2, a lithium battery was produced in the same manner as in Example 1 except that Sample B produced as follows was used. First, LiOH, Ni (OH) 2 and TiO 2 were mixed at a molar ratio of 2: 1: 1, and the powder fired in Ar at 700 ° C. for 12 hours was pellet-molded at a pressure of 75 MPa, and then 950 ° C. in Ar. Baked for 36 hours. The pellets thus obtained were pulverized to obtain a light green powder. The composition of this powder was LiNi 0.5 Ti 0.5 O 2 . The Li—Ni—Ti composite oxide sample thus obtained is designated as B.

この試料Bの粉末X線回折測定の結果、空間群Fm3mに帰属される岩塩型構造を有していることが分かった。   As a result of the powder X-ray diffraction measurement of this sample B, it was found that it had a rock salt type structure belonging to the space group Fm3m.

このようにして製造した試料Bを正極活物質とする電池を、2.0〜4.3Vまで充放電試験を行ったところ、ほとんど容量を得ることはできず、充放電を行うことが不可能であった。   When a battery using the sample B thus produced as a positive electrode active material was subjected to a charge / discharge test from 2.0 to 4.3 V, almost no capacity could be obtained and charge / discharge could not be performed. Met.

従来のLi−Ni−Ti複合酸化物は、電極材料として機能し得ない空間群Fm3mで帰属される結晶構造であるのに対して、本発明では、(空間群R−3mで帰属される層状構造を有する)Na−Ni−Ti複合酸化物を用い、NaとLiをイオン交換することにより空間群R−3mで帰属される層状構造を有するLi−Ni−Ti複合酸化物の製造が可能となり、本材料を正極活物質として用いることにより電池の実現も可能となる。   The conventional Li—Ni—Ti composite oxide has a crystal structure belonging to the space group Fm3m that cannot function as an electrode material, whereas in the present invention, the layered structure belonging to the space group R-3m is used. It is possible to produce a Li-Ni-Ti composite oxide having a layered structure belonging to the space group R-3m by ion exchange of Na and Li using a Na-Ni-Ti composite oxide (having a structure). By using this material as a positive electrode active material, a battery can be realized.

本発明の実施例におけるコイン型電池の構成例を示す断面図。Sectional drawing which shows the structural example of the coin-type battery in the Example of this invention. 粉末X線回折測定により同定した、実施例1で得られたLi−Ni−Ti複合酸化物のX線回折パターン(図中の数字は帰属される回折線の指数を示し、図中右上は帰属される空間群の記号を示す)。X-ray diffraction pattern of the Li—Ni—Ti composite oxide obtained in Example 1 identified by powder X-ray diffraction measurement (the numbers in the figure indicate the index of the assigned diffraction line, and the upper right in the figure is the attribute) The space group symbol to be used). 粉末X線回折測定により同定した、実施例3で得られたLi−Ni−Ti複合酸化物のX線回折パターン(図中の数字は帰属される回折線の指数を示し、図中右上は帰属される空間群の記号を示す)。X-ray diffraction pattern of the Li—Ni—Ti composite oxide obtained in Example 3 identified by powder X-ray diffraction measurement (the numbers in the figure indicate the index of the assigned diffraction line, and the upper right in the figure is the attribute) The space group symbol to be used). 粉末X線回折測定により同定した、実施例4で得られたLi−Ni−Ti複合酸化物のX線回折パターン(図中の数字は帰属される回折線の指数を示し、図中右上は帰属される空間群の記号を示す)。X-ray diffraction pattern of the Li—Ni—Ti composite oxide obtained in Example 4 identified by powder X-ray diffraction measurement (the numbers in the figure indicate the index of the assigned diffraction line, and the upper right in the figure is the attribute) The space group symbol to be used). 粉末X線回折測定により同定した、比較例1で得られたLi−Ni−Ti複合酸化物のX線回折パターン(図中の数字は帰属される回折線の指数を示し、図中右上は帰属される空間群の記号を示す)。X-ray diffraction pattern of the Li—Ni—Ti composite oxide obtained in Comparative Example 1 identified by powder X-ray diffraction measurement (the numbers in the figure indicate the index of the assigned diffraction line, and the upper right in the figure is the attribute) The space group symbol to be used).

符号の説明Explanation of symbols

1 封口板
2 ガスケット
3 正極ケース
4 負極
5 セパレータ
6 正極合剤ペレット
1 Sealing plate 2 Gasket 3 Positive electrode case 4 Negative electrode 5 Separator 6 Positive electrode mixture pellet

Claims (11)

2価のNiと4価のTiを含有し、一般式LiNiTi1−x2−α(0.95≦a≦1.05、0.45≦x≦0.55、−0.1≦α≦0.1)で表される、結晶構造が空間群R−3mに帰属される層状構造を有するLi−Ni−Ti複合酸化物であることを特徴とする電極材料。 It contains divalent Ni and tetravalent Ti, and has a general formula Li a Ni x Ti 1-x O 2-α (0.95 ≦ a ≦ 1.05, 0.45 ≦ x ≦ 0.55, −0 0.1 ≦ α ≦ 0.1), an electrode material characterized by being a Li—Ni—Ti composite oxide having a layered structure in which the crystal structure belongs to the space group R-3m. 請求項1記載の一般式においてx=0.5であり、結晶構造が空間群R−3mに帰属される層状構造を有するLi−Ni−Ti複合酸化物であることを特徴とする電極材料。 2. An electrode material, wherein x is 0.5 in the general formula according to claim 1, and the crystal structure is a Li-Ni-Ti composite oxide having a layered structure belonging to the space group R-3m. 2価のNiと4価のTiを含有し、一般式NaNiTi1−y2−β(0.95≦b≦1.05、0.45≦y≦0.55、−0.1≦β≦0.1)で表される、結晶構造が空間群R−3mに帰属される層状構造を有するNa−Ni−Ti複合酸化物を原料に用いて、NaとLiをイオン交換することを特徴とする電極材料の製造方法。 Containing divalent Ni and tetravalent Ti, formula Na b Ni y Ti 1-y O 2-β (0.95 ≦ b ≦ 1.05,0.45 ≦ y ≦ 0.55, -0 .. 1 ≦ β ≦ 0.1), using Na—Ni—Ti composite oxide having a layered structure whose crystal structure belongs to space group R-3m as a raw material, and ion-exchange of Na and Li A method of manufacturing an electrode material. 請求項3記載の一般式においてy=0.5であり、結晶構造が空間群R−3mに帰属される層状構造を有するNa−Ni−Ti複合酸化物を原料に用いて、NaとLiをイオン交換することを特徴とする電極材料の製造方法。 In the general formula of claim 3, y = 0.5, and using Na-Ni-Ti composite oxide having a layered structure whose crystal structure belongs to the space group R-3m as a raw material, Na and Li A method for producing an electrode material, characterized by ion exchange. 前記イオン交換は前記Na−Ni−Ti複合酸化物と硝酸リチウムを混合し、255〜300℃の温度で、1〜24時間、溶融塩法で行うことを特徴とする請求項3または4記載の電極材料の製造方法。 The ion exchange is performed by a molten salt method by mixing the Na-Ni-Ti composite oxide and lithium nitrate and at a temperature of 255 to 300 ° C for 1 to 24 hours. Manufacturing method of electrode material. 前記イオン交換はLi/Na比が5〜10倍となる量の硝酸リチウム中で行う請求項5記載の電極材料の製造方法。 6. The method for producing an electrode material according to claim 5, wherein the ion exchange is performed in lithium nitrate in an amount such that the Li / Na ratio is 5 to 10 times. 前記イオン交換は、前記Na−Ni−Ti複合酸化物と複数のリチウム塩とを混合し、200〜300℃の温度で、1〜24時間、溶融塩法で行うことを特徴とする請求項3または4記載の電極材料の製造方法。 The ion exchange is performed by a molten salt method by mixing the Na-Ni-Ti composite oxide and a plurality of lithium salts at a temperature of 200 to 300 ° C for 1 to 24 hours. Or the manufacturing method of the electrode material of 4. 前記リチウム塩は、硝酸リチウム、塩化リチウム、水酸化リチウムであることを特徴とする請求項7記載の電極材料の製造方法。 The method for producing an electrode material according to claim 7, wherein the lithium salt is lithium nitrate, lithium chloride, or lithium hydroxide. 前記イオン交換はLi/Na比が5〜10倍となる量の混合したリチウム塩中で行う請求項8記載の電極材料の製造方法。 The method for producing an electrode material according to claim 8, wherein the ion exchange is performed in a mixed lithium salt in an amount such that the Li / Na ratio is 5 to 10 times. 請求項1記載のLi−Ni−Ti複合酸化物を正極活物質として含む正極を有し、リチウムを可逆的に挿入・脱離あるいは吸蔵・放出できる物質を含む負極を有し、リチウムイオンが前記正極および前記負極と電気化学反応をするための移動を行い得る物質を電解質物質として含むことを特徴とする電池。 A positive electrode containing the Li-Ni-Ti composite oxide according to claim 1 as a positive electrode active material, a negative electrode containing a material capable of reversibly inserting / extracting lithium or inserting / extracting lithium, and lithium ions A battery comprising, as an electrolyte substance, a positive electrode and a substance capable of performing migration for causing an electrochemical reaction with the negative electrode. 請求項2記載のLi−Ni−Ti複合酸化物を正極活物質として含む正極を有し、リチウムを可逆的に挿入・脱離あるいは吸蔵・放出できる物質を含む負極を有し、リチウムイオンが前記正極および前記負極と電気化学反応をするための移動を行い得る物質を電解質物質として含むことを特徴とする電池。 A positive electrode containing the Li-Ni-Ti composite oxide according to claim 2 as a positive electrode active material, a negative electrode containing a substance capable of reversibly inserting / extracting lithium or inserting / extracting lithium, wherein lithium ions are A battery comprising, as an electrolyte substance, a positive electrode and a substance capable of performing migration for causing an electrochemical reaction with the negative electrode.
JP2004021120A 2003-08-20 2004-01-29 Electrode material manufacturing method of the same, and battery using the same Pending JP2005100922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004021120A JP2005100922A (en) 2003-08-20 2004-01-29 Electrode material manufacturing method of the same, and battery using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003295911 2003-08-20
JP2004021120A JP2005100922A (en) 2003-08-20 2004-01-29 Electrode material manufacturing method of the same, and battery using the same

Publications (1)

Publication Number Publication Date
JP2005100922A true JP2005100922A (en) 2005-04-14

Family

ID=34466974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004021120A Pending JP2005100922A (en) 2003-08-20 2004-01-29 Electrode material manufacturing method of the same, and battery using the same

Country Status (1)

Country Link
JP (1) JP2005100922A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008130560A (en) * 2006-11-20 2008-06-05 Samsung Sdi Co Ltd Negative electrode active material for lithium secondary battery, its manufacturing method, and lithium secondary battery
JP2008127233A (en) * 2006-11-20 2008-06-05 National Institute Of Advanced Industrial & Technology Lithium-manganese compound oxide containing titanium and nickel
JP2009117259A (en) * 2007-11-08 2009-05-28 Mitsubishi Chemicals Corp Electrode material and electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using them
WO2009139157A1 (en) * 2008-05-15 2009-11-19 パナソニック株式会社 Positive electrode active material for rechargeable battery with nonaqueous electrolyte, positive electrode for rechargeable battery with nonaqueous electrolyte, and rechargeable battery with nonaqueous electrolyte
WO2015049796A1 (en) * 2013-10-04 2015-04-09 日産自動車株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries and method for producing same
JP2015213058A (en) * 2014-04-15 2015-11-26 パナソニックIpマネジメント株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, and method for manufacturing positive electrode active material for nonaqueous electrolyte secondary batteries

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008130560A (en) * 2006-11-20 2008-06-05 Samsung Sdi Co Ltd Negative electrode active material for lithium secondary battery, its manufacturing method, and lithium secondary battery
JP2008127233A (en) * 2006-11-20 2008-06-05 National Institute Of Advanced Industrial & Technology Lithium-manganese compound oxide containing titanium and nickel
JP2009117259A (en) * 2007-11-08 2009-05-28 Mitsubishi Chemicals Corp Electrode material and electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using them
WO2009139157A1 (en) * 2008-05-15 2009-11-19 パナソニック株式会社 Positive electrode active material for rechargeable battery with nonaqueous electrolyte, positive electrode for rechargeable battery with nonaqueous electrolyte, and rechargeable battery with nonaqueous electrolyte
US8318357B2 (en) 2008-05-15 2012-11-27 Panasonic Corporation Positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
WO2015049796A1 (en) * 2013-10-04 2015-04-09 日産自動車株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries and method for producing same
JPWO2015049796A1 (en) * 2013-10-04 2017-03-09 日産自動車株式会社 Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
US9705131B2 (en) 2013-10-04 2017-07-11 Nissan Motor Co., Ltd. Positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP2015213058A (en) * 2014-04-15 2015-11-26 パナソニックIpマネジメント株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, and method for manufacturing positive electrode active material for nonaqueous electrolyte secondary batteries

Similar Documents

Publication Publication Date Title
KR102010690B1 (en) Divalent metal doping for sodium manganese oxide as cathode material for sodium ion batteries
JP6952247B2 (en) Positive electrode active material and battery
JP4832229B2 (en) Nonaqueous electrolyte secondary battery
KR100280998B1 (en) Cathode Active Material for Lithium Secondary Battery
JP5294225B2 (en) Single crystal particles of oxide for lithium secondary battery electrode, method for producing the same, and lithium secondary battery using the same
JP5245210B2 (en) Cathode active material for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the same
JP4496150B2 (en) Lithium / transition metal composite oxide production method and lithium battery using the lithium / transition metal composite oxide
JPH08217452A (en) Needle manganese complex oxide, production and use thereof
JP3260282B2 (en) Non-aqueous electrolyte lithium secondary battery
JPH11507171A (en) Positive electrode material for rechargeable electrochemical cell and method of making the same
JP2014238976A (en) Lithium secondary battery positive electrode active material, and lithium secondary battery arranged by use thereof
EP1135334A1 (en) Multiple doped lithium manganese oxide compounds and methods of preparing same
JP2008103100A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, and its baking tool
JPWO2020044652A1 (en) Positive electrode active material and battery equipped with it
JP3229425B2 (en) Positive electrode for lithium secondary battery and method for producing the same
JP2011243585A (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP2005332629A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and its manufacturing method
JPH10134812A (en) Nonaqueous electrolyte lithium secondary cell and manufacture of its positive electrode material
US20160190577A1 (en) Layered-spinel electrodes for lithium batteries
JP2005100922A (en) Electrode material manufacturing method of the same, and battery using the same
JP3961514B2 (en) Method for producing Li-Ni-Ti composite oxide electrode material and battery using the electrode material
JP2000182616A (en) Manufacture of positive electrode active material for nonaqueous electrolyte secondary battery
JP3961513B2 (en) Method for producing Li-Ni-Ti composite oxide electrode material and battery using the electrode material
JP2002260660A (en) Positive electrode material for nonaqueous electrolyte secondary battery, and manufacturing method therefor
JPH10233212A (en) Electrode active material for nonaqueous battery