JP2005093962A - Reactor - Google Patents

Reactor Download PDF

Info

Publication number
JP2005093962A
JP2005093962A JP2003329218A JP2003329218A JP2005093962A JP 2005093962 A JP2005093962 A JP 2005093962A JP 2003329218 A JP2003329218 A JP 2003329218A JP 2003329218 A JP2003329218 A JP 2003329218A JP 2005093962 A JP2005093962 A JP 2005093962A
Authority
JP
Japan
Prior art keywords
reactor
alloy
powder
flux density
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003329218A
Other languages
Japanese (ja)
Inventor
Takao Yabumi
崇生 藪見
Satoshi Takemoto
聡 武本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2003329218A priority Critical patent/JP2005093962A/en
Publication of JP2005093962A publication Critical patent/JP2005093962A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • H01F2003/106Magnetic circuits using combinations of different magnetic materials

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reactor which uses a dust core and in which improvement of equipment efficiency and superposition property is realized. <P>SOLUTION: The reactor has a corner like a ring and uses the dust core 1. In the dust core, a material of an interior portion 10 has a high saturation magnetic flux density, and material of an exterior portion 20 has a low saturation magnetic flux density and a low loss. For example, a Fe-Si based alloy, Fe-Co based alloy or Fe-Ni based alloy is used as a material of soft magnetic powder of the interior portion 10, and a Fe-Si-Al based alloy or Fe-Ni based alloy is used as a material of soft magnetic powder of the exterior portion 20. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は圧粉磁芯を用いたリアクトルに関する。さらに詳しくは、磁芯における損失が低減されかつ重畳特性が向上されてなるリアクトルに関する。   The present invention relates to a reactor using a dust core. More specifically, the present invention relates to a reactor in which loss in a magnetic core is reduced and superposition characteristics are improved.

従来より、電圧変換用、昇圧用、降圧用、フィルタ用、インピーダンス調整用としてリアクトルが用いられている。このリアクトルにおいては、一般的に周期的に変化する電流が印加されているため、ヒステリシス損、渦電流損などがリアクトル磁芯に発生し、装置効率を低下させる一因となっている。   Conventionally, a reactor is used for voltage conversion, boosting, stepping down, filtering, and impedance adjustment. In this reactor, since a current that changes periodically is generally applied, hysteresis loss, eddy current loss and the like are generated in the reactor magnetic core, which is a cause of lowering the apparatus efficiency.

また、リアクトルにおいては、入力電流に対してインダクタンスが一定となる範囲が広いこと、いわゆる重畳特性がよいことが要求されている。   Further, the reactor is required to have a wide range in which the inductance is constant with respect to the input current, that is, so-called superposition characteristics are good.

しかしながら、従来の圧粉磁芯を用いたリアクトルにおいてはその磁芯は単一の材質により構成されているため、結果的に磁束密度が低い個所にも飽和磁束密度が高くかつ高損失の材質が用いられることになり、装置効率の向上および重畳特性の改善に関しては一定の限界があるという問題がある。   However, in a conventional reactor using a dust core, the core is made of a single material. As a result, a material having a high saturation magnetic flux density and a high loss is also present at a location where the magnetic flux density is low. As a result, there is a problem that there is a certain limit with respect to improvement in apparatus efficiency and improvement in superposition characteristics.

本発明はかかる従来技術の課題に鑑みなされたものであって、装置効率の向上および重畳特性の改善が図られてなる圧粉磁芯を用いたリアクトルを提供することを目的としている。   The present invention has been made in view of the problems of the prior art, and an object of the present invention is to provide a reactor using a dust core in which device efficiency and superimposition characteristics are improved.

本発明者等はかかる従来技術の課題に対し鋭意研究した結果、リアクトル磁芯においては閉磁路を形成するために曲がり部は少なくとも4個所存在し、その曲がり部内部における磁束密度分布は内側で高く、外側に行くにしたがって低くなるという特性を有していることに着目し、本発明を完成するに至った。   As a result of intensive research on the problems of the prior art, the present inventors have found that there are at least four bent portions in the reactor core to form a closed magnetic circuit, and the magnetic flux density distribution inside the bent portion is high inside. The present invention has been completed by paying attention to the fact that it has a characteristic of becoming lower as going outward.

すなわち、本発明のリアクトルは、曲がり部を有する圧粉磁芯を用いたリアクトルであって、前記磁芯の内側部の材質を飽和磁束密度が高いものとし、外側部の材質を飽和磁束密度が低くかつ低損失のものとしてなるものである。   That is, the reactor of the present invention is a reactor using a powder magnetic core having a bent portion, wherein the material of the inner portion of the magnetic core has a high saturation magnetic flux density, and the material of the outer portion has a saturation magnetic flux density. It is low and has a low loss.

本発明のリアクトルにおいては、内側部の軟磁性粉末の材質が、Fe−Si系合金、Fe−Co系合金またはFe−Ni系合金とされてなるのが好ましい。   In the reactor of the present invention, it is preferable that the material of the soft magnetic powder in the inner portion is an Fe—Si alloy, an Fe—Co alloy, or an Fe—Ni alloy.

また、本発明のリアクトルにおいては、外側部の軟磁性粉末の材質が、Fe−Si−Al系合金やFe−Ni系合金とされてなるのが好ましい。   Moreover, in the reactor of this invention, it is preferable that the material of the soft magnetic powder of an outer part is made into a Fe-Si-Al type alloy or a Fe-Ni type alloy.

さらに、本発明のリアクトルにおいては、磁芯がリング部、円筒部またはアール部を有するのが好ましい。   Furthermore, in the reactor of this invention, it is preferable that a magnetic core has a ring part, a cylindrical part, or a round part.

本発明によれば、圧粉磁芯を用いたリアクトルにおける装置損失を低減でき、しかも重畳電流の増加が可能となり重畳特性も向上するという優れた効果が得られる。   According to the present invention, it is possible to reduce the apparatus loss in the reactor using the dust core, and to obtain an excellent effect that the superposition current can be increased and the superposition characteristics are improved.

以下、添付図面を参照しながら本発明を実施形態に基づいて説明するが、本発明はかかる実施形態のみに限定されるものではない。   Hereinafter, although the present invention is explained based on an embodiment, referring to an accompanying drawing, the present invention is not limited only to this embodiment.

本発明の一実施形態に係るリング状リアクトルに適用される磁芯を図1に概略図で示す。   A magnetic core applied to a ring-shaped reactor according to an embodiment of the present invention is schematically shown in FIG.

磁芯Cは、図1に示すように、リング状内側部10と、その外側に一体的に配設されたリング状外側部20との2層構造とされてなるものである。内側部10および外側部20は共に、図2に示すように、軟磁性粉末1aの周囲を絶縁物1bで被覆してなる圧粉磁芯1とされる。また、内側部10と外側部20との一体化は、例えば内側部10外周と外側部20内周とを接着剤により接合することによりなされる。   As shown in FIG. 1, the magnetic core C has a two-layer structure of a ring-shaped inner portion 10 and a ring-shaped outer portion 20 that is integrally disposed on the outer side thereof. As shown in FIG. 2, the inner part 10 and the outer part 20 are both a dust core 1 in which the periphery of the soft magnetic powder 1a is covered with an insulator 1b. Further, the inner portion 10 and the outer portion 20 are integrated by, for example, joining the outer periphery of the inner portion 10 and the inner periphery of the outer portion 20 with an adhesive.

軟磁性粉末1aは、例えば噴霧法によるFe−Si系合金、Fe−Co系合金、Fe−Si−Al系合金やFe−Ni系合金の粉末とされる。また、粉末(原料粉末)1aの粒径は0.1〜500μmとされ、そのアスペクト比(=長軸/短軸)は例えば1.1〜2.5とされればよいが、粒径は10〜250μmとされるのが好ましく、アスペクト比は1.2〜2.0とされるのが好ましい。   The soft magnetic powder 1a is, for example, a powder of Fe—Si alloy, Fe—Co alloy, Fe—Si—Al alloy or Fe—Ni alloy by spraying. The particle diameter of the powder (raw material powder) 1a is 0.1 to 500 μm and the aspect ratio (= major axis / minor axis) may be, for example, 1.1 to 2.5. The aspect ratio is preferably 10 to 250 μm, and the aspect ratio is preferably 1.2 to 2.0.

ここで、粒径およびアスペクト比を前記のように設定するのは、次のような理由による。すなわち、粒径が0.1μm未満であれば現状では粉末1aの製造が不可能である一方、粒径が500μmを超えると渦電流による損失が爆発的に増大するという問題があるからである。また、アスペクト比が1.1より小さい場合、粉末1aが丸過ぎ成形体の強度が低下する一方、アスペクト比が2.5より大きい場合は異形になり過ぎ密度が上がらず十分な磁束密度が得られなく、かつ絶縁性を確保することも困難となるからである。   Here, the particle size and the aspect ratio are set as described above for the following reason. In other words, if the particle size is less than 0.1 μm, the production of the powder 1a is impossible at present, but if the particle size exceeds 500 μm, the loss due to eddy current increases explosively. On the other hand, when the aspect ratio is smaller than 1.1, the strength of the powder 1a is too round, while the strength of the molded body is decreased. On the other hand, when the aspect ratio is larger than 2.5, the shape becomes too deformed and the density does not increase and a sufficient magnetic flux density is obtained. This is because it is difficult to ensure insulation.

絶縁物1bは例えばシリコーン樹脂とされる。   The insulator 1b is, for example, a silicone resin.

圧粉磁芯は、例えば次のようにして得られる。   The dust core is obtained, for example, as follows.

(1)軟磁性粉末(原料粉末)1aに、シリコーン樹脂1bを1質量%混合して乾燥させる。 (1) 1% by mass of silicone resin 1b is mixed with soft magnetic powder (raw material powder) 1a and dried.

(2)乾燥した軟磁性粉末1aとシリコーン樹脂1bとの混合物に、潤滑剤例えばステアリン酸亜鉛を0.5質量%混合して室温で、プレス圧を例えば1080〜1960MPaとして所定形状(例えばリング状)にプレス成形する。 (2) A mixture of the dried soft magnetic powder 1a and the silicone resin 1b is mixed with a lubricant, for example, zinc stearate 0.5% by mass and at a room temperature, with a pressing pressure of, for example, 1080 to 1960 MPa, a predetermined shape (for example, a ring shape) ).

(3)得られたプレス成形品をAr雰囲気中で熱処理する。熱処理温度は例えば700℃で、保持時間は例えば1時間とされる。 (3) The obtained press-molded product is heat-treated in an Ar atmosphere. The heat treatment temperature is, for example, 700 ° C., and the holding time is, for example, 1 hour.

内側部10は磁束密度が高くなる関係上、用いられる軟磁性粉末1aは、例えばFe−Si系合金、Fe−Co系合金、Fe−Ni系合金の粉末とされる。この場合、仕様で規定される磁束密度より飽和磁束密度の高い材質のものを用いることにより、磁芯Cの小型化も図られる。   The soft magnetic powder 1a to be used is, for example, an Fe—Si alloy, an Fe—Co alloy, or an Fe—Ni alloy powder because the inner portion 10 has a high magnetic flux density. In this case, the magnetic core C can be miniaturized by using a material having a saturation magnetic flux density higher than the magnetic flux density specified in the specification.

Fe−Si系合金の組成は、例えばFe−3wt%Si、Fe−6.5wt%Siなどとされ、Fe−Co系合金の組成は、例えばFe−50wt%Co、Fe−49wt%Co−2wt%Vなどとされ、Fe−Ni系合金の組成は、例えばFe−47wt%Niなどとされる。   The composition of the Fe-Si alloy is, for example, Fe-3 wt% Si, Fe-6.5 wt% Si, and the composition of the Fe-Co alloy is, for example, Fe-50 wt% Co, Fe-49 wt% Co-2 wt. The composition of the Fe—Ni alloy is, for example, Fe-47 wt% Ni.

外側部20は磁束密度が低くなる関係上、用いられる軟磁性粉末1aは飽和磁束密度は低いが低損失のもの、例えばFe−Si−Al系合金やFe−Ni系合金の粉末とされる。   The outer portion 20 has a low magnetic flux density, so that the soft magnetic powder 1a used has a low saturation magnetic flux density but a low loss, for example, Fe—Si—Al alloy or Fe—Ni alloy powder.

Fe−Si−Al系合金の組成は、例えばFe−9.5wt%Si−5.5wt%Alなどとされ、Fe−Ni系合金の組成は、例えばFe−80wt%Ni、Fe−80wt%Ni−2wt%Moなどとされる。   The composition of the Fe-Si-Al alloy is, for example, Fe-9.5 wt% Si-5.5 wt% Al, and the composition of the Fe-Ni alloy is, for example, Fe-80 wt% Ni, Fe-80 wt% Ni. -2 wt% Mo.

このように、本実施形態のリアクトルはその磁芯Cを内側部10と外側部20との2層構造とし、内側部10の材質を飽和磁束密度が高いものとし、外側部20の材質を飽和磁束密度は低いが低損失のものとしているので、装置損失を低減できる。また、前記構成としている結果、重畳電流の増加が可能となり重畳特性も向上する。   Thus, the reactor of the present embodiment has a two-layer structure of the magnetic core C of the inner portion 10 and the outer portion 20, the inner portion 10 is made of a material having a high saturation magnetic flux density, and the outer portion 20 is saturated. Since the magnetic flux density is low but the loss is low, the device loss can be reduced. Further, as a result of the above configuration, the superimposed current can be increased and the superimposition characteristics are also improved.

以上、本発明を実施形態に基づいて説明してきたが、本発明はかかる実施形態のみに限定されるものではなく、種々改変が可能である。例えば、本実施形態では磁芯Cは内側部10と外側部20との2層構造とされているが、3層構造以上の多層構造とすることもできる。   As mentioned above, although this invention has been demonstrated based on embodiment, this invention is not limited only to this embodiment, A various change is possible. For example, in the present embodiment, the magnetic core C has a two-layer structure of the inner portion 10 and the outer portion 20, but may have a multilayer structure having a three-layer structure or more.

本発明のリアクトルは、前記の如く構成されているので、圧粉磁芯を用いたリアクトルにおける装置損失を低減でき、しかも重畳電流の増加が可能となり重畳特性も向上させることができる。   Since the reactor of the present invention is configured as described above, it is possible to reduce the device loss in the reactor using the dust core, and to increase the superimposed current and to improve the superimposed characteristics.

本発明の一実施形態に係るリアクトルに用いられる磁芯の概略図であって、同(a)は平面図を示し、同(b)は断面図を示す。It is the schematic of the magnetic core used for the reactor which concerns on one Embodiment of this invention, Comprising: The same (a) shows a top view, The same (b) shows sectional drawing. 同磁芯の顕微鏡画像の模式図である。It is a schematic diagram of the microscope image of the same magnetic core.

符号の説明Explanation of symbols

1 圧粉磁芯
1a 軟磁性粉末
1b 絶縁物、シリコーン樹脂
10 内側部
20 外側部
C 磁芯
DESCRIPTION OF SYMBOLS 1 Powder magnetic core 1a Soft magnetic powder 1b Insulator, silicone resin 10 Inner part 20 Outer part C Magnetic core

Claims (4)

曲がり部を有する圧粉磁芯を用いたリアクトルであって、前記磁芯の内側部の材質を飽和磁束密度が高いものとし、外側部の材質を飽和磁束密度が低くかつ低損失のものとしてなることを特徴とするリアクトル。 A reactor using a powder magnetic core having a bent portion, wherein the material of the inner portion of the magnetic core has a high saturation magnetic flux density, and the material of the outer portion has a low saturation magnetic flux density and low loss. A reactor characterized by that. 内側部の軟磁性粉末の材質が、Fe−Si系合金、Fe−Co系合金またはFe−Ni系合金とされてなることを特徴とする請求項1記載のリアクトル。 2. The reactor according to claim 1, wherein the material of the soft magnetic powder in the inner part is an Fe-Si alloy, an Fe-Co alloy, or an Fe-Ni alloy. 外側部の軟磁性粉末の材質が、Fe−Si−Al系合金やFe−Ni系合金とされてなることを特徴とする請求項1記載のリアクトル。 The reactor according to claim 1, wherein the material of the soft magnetic powder on the outer side is an Fe-Si-Al alloy or an Fe-Ni alloy. 磁芯がリング部、円筒部またはア−ル部を有することを特徴とする請求項1記載のリアクトル。 2. The reactor according to claim 1, wherein the magnetic core has a ring part, a cylindrical part or an alarm part.
JP2003329218A 2003-09-22 2003-09-22 Reactor Withdrawn JP2005093962A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003329218A JP2005093962A (en) 2003-09-22 2003-09-22 Reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003329218A JP2005093962A (en) 2003-09-22 2003-09-22 Reactor

Publications (1)

Publication Number Publication Date
JP2005093962A true JP2005093962A (en) 2005-04-07

Family

ID=34458522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003329218A Withdrawn JP2005093962A (en) 2003-09-22 2003-09-22 Reactor

Country Status (1)

Country Link
JP (1) JP2005093962A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010186803A (en) * 2009-02-10 2010-08-26 Denso Corp Reactor
WO2014017512A1 (en) * 2012-07-25 2014-01-30 Ntn株式会社 Composite magnetic core and magnetic element
KR20140145589A (en) * 2012-04-16 2014-12-23 바쿰슈멜체 게엠베하 운트 코. 카게 Soft Magnetic Core with Position-Dependent Permeability
EP3024002A1 (en) * 2014-11-21 2016-05-25 Hamilton Sundstrand Corporation Magnetic component with balanced flux distribution

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010186803A (en) * 2009-02-10 2010-08-26 Denso Corp Reactor
KR20140145589A (en) * 2012-04-16 2014-12-23 바쿰슈멜체 게엠베하 운트 코. 카게 Soft Magnetic Core with Position-Dependent Permeability
JP2015515143A (en) * 2012-04-16 2015-05-21 バクームシュメルツェ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニ コマンディートゲゼルシャフト Soft magnetic core with position-dependent permeability
KR101725610B1 (en) * 2012-04-16 2017-04-10 바쿰슈멜체 게엠베하 운트 코. 카게 Soft Magnetic Core with Position-Dependent Permeability
US9812237B2 (en) 2012-04-16 2017-11-07 Vacuumschmelze Gmbh & Co. Kg Soft magnetic core with position-dependent permeability
US9941040B2 (en) 2012-04-16 2018-04-10 Vacuumschmelze Gmbh & Co. Kg Soft magnetic core with position-dependent permeability
WO2014017512A1 (en) * 2012-07-25 2014-01-30 Ntn株式会社 Composite magnetic core and magnetic element
US9620270B2 (en) 2012-07-25 2017-04-11 Ntn Corporation Composite magnetic core and magnetic element
EP3024002A1 (en) * 2014-11-21 2016-05-25 Hamilton Sundstrand Corporation Magnetic component with balanced flux distribution
US9633778B2 (en) 2014-11-21 2017-04-25 Hamilton Sundstrand Corporation Magnetic component with balanced flux distribution

Similar Documents

Publication Publication Date Title
JP4828229B2 (en) High frequency magnetic core and inductance component using the same
JP2007019134A (en) Method of manufacturing composite magnetic material
JP4799583B2 (en) Dust core, dust core manufacturing method, choke coil and manufacturing method thereof
JP2015126047A (en) Dust core, coil component using the same, and method for producing dust core
JP2007134381A (en) Composite magnetic material, dust core using the same, and magnetic element
JP2006032907A (en) High-frequency core and inductance component using the same
WO2021157165A1 (en) Annular magnetic body for noise control
JP6460505B2 (en) Manufacturing method of dust core
JP2007123376A (en) Compound magnetic substance and magnetic device using same, and method of manufacturing same
JP2005093962A (en) Reactor
JP2007067177A (en) Coil component
CN108780693A (en) Magnetic element
JP2006319020A (en) Inductance component
JP2004319652A (en) Core and method of manufacturing the same
JP2010080978A (en) Soft magnetic alloy powder and powder magnetic core
JP2010118484A (en) Inductance element and method of manufacturing the same
JP2654944B2 (en) Composite dust core material and manufacturing method thereof
JP2008195970A (en) Composite magnetic material, powder magnetic core and magnetic element
JPH065427A (en) Inductor and manufacture thereof
JPH10208923A (en) Composite magnetic material and production thereof
JP2003068513A (en) Soft magnetic powder for metal composite core
WO2022186222A1 (en) Magnetic material, dust core, inductor and method for producing dust core
KR100305328B1 (en) Manufacturing method of mold release dust core
JP2000003810A (en) Dust core
JP2018056396A (en) Coil component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060726

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070107