JP2005090925A - Refrigerant leakage detecting device and refrigerator using the same - Google Patents

Refrigerant leakage detecting device and refrigerator using the same Download PDF

Info

Publication number
JP2005090925A
JP2005090925A JP2003329149A JP2003329149A JP2005090925A JP 2005090925 A JP2005090925 A JP 2005090925A JP 2003329149 A JP2003329149 A JP 2003329149A JP 2003329149 A JP2003329149 A JP 2003329149A JP 2005090925 A JP2005090925 A JP 2005090925A
Authority
JP
Japan
Prior art keywords
power value
axis
current
refrigerator
axis current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003329149A
Other languages
Japanese (ja)
Inventor
Kosaku Adachi
幸作 足立
Hiroki Marutani
裕樹 丸谷
Akihiro Noguchi
明裕 野口
Tsutomu Sakuma
勉 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Consumer Marketing Corp
Toshiba Lifestyle Products and Services Corp
Original Assignee
Toshiba Corp
Toshiba Consumer Marketing Corp
Toshiba Home Appliances Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Consumer Marketing Corp, Toshiba Home Appliances Corp filed Critical Toshiba Corp
Priority to JP2003329149A priority Critical patent/JP2005090925A/en
Priority to KR1020057018295A priority patent/KR20060058050A/en
Priority to CNB2004800079569A priority patent/CN100359264C/en
Priority to EP04720265.0A priority patent/EP1691150B1/en
Priority to PCT/JP2004/003451 priority patent/WO2005028972A1/en
Publication of JP2005090925A publication Critical patent/JP2005090925A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/22Preventing, detecting or repairing leaks of refrigeration fluids
    • F25B2500/222Detecting refrigerant leaks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/04Refrigerators with a horizontal mullion

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerant leakage detecting device which can surely deal with the input variation of a compressor to improve the detection accuracy of refrigerant leakage in a refrigerator using a flammable refrigerant. <P>SOLUTION: When a refrigerant leakage point occurs on a low pressure side during a refrigerating cycle, the air is sucked in because the pressure in the cycle during operation is negative, to raise the power. When this increment of an instant power value Wi(t) for judgment is larger than an increment reference value G1, it is judged that a leakage has occurred on the low pressure side. When a refrigerant leakage point occurs on a high pressure side during the refrigerating cycle, the pressure in the cycle during operation is reduced, accompanied by the reduction in power. This reduction value of the instant power value Wi(t) for judgment is larger than a reduction reference value G2, it is judged that a leakage has occurred on the high pressure side. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、可燃性冷媒を用いた冷蔵庫に関する。   The present invention relates to a refrigerator using a combustible refrigerant.

近年、冷蔵庫に使用されているハイドロカーボンなどの冷媒は、可燃性を有するため、冷媒漏れが生じた場合に火災などの災害に発展する可能性があり、このような場合であっても十分な安全を確保する必要がある。   In recent years, refrigerants such as hydrocarbons used in refrigerators are flammable, so if a refrigerant leaks, there is a possibility of developing into a disaster such as a fire. It is necessary to ensure safety.

従来、インバータ制御の冷蔵庫における可燃性冷媒の冷媒漏れ検知は、コンプレッサの入力変化を、PWM駆動のデューティ変化として監視し、コンプレッサの回転数が一定期間において、デューティが初期値に対しある比率を越えた段階で冷凍サイクルの低圧側から漏れたことを判断し、ある比率を低下した段階で冷凍サイクルの高圧側から漏れたことを判定している(例えば、特許文献1参照)。
特開2003−139446
Conventionally, refrigerant leakage detection of flammable refrigerant in an inverter-controlled refrigerator monitors the input change of the compressor as a duty change of the PWM drive, and the duty exceeds a certain ratio with respect to the initial value during a fixed period of the compressor speed. At this stage, it is determined that leakage has occurred from the low pressure side of the refrigeration cycle, and at a stage where a certain ratio has been reduced, it has been determined that leakage has occurred from the high pressure side of the refrigeration cycle (see, for example, Patent Document 1).
JP2003-139446

しかしながら、上記のようなPWM駆動のデューティ値で判定する場合、次のような問題点がある。   However, when the determination is made based on the duty value of PWM driving as described above, there are the following problems.

まず、AC入力電圧の変動により、デューティが変化するため正常時に誤検出する可能性があるという問題点がある。   First, since the duty changes due to fluctuations in the AC input voltage, there is a problem that erroneous detection may occur at normal times.

次に、図9に示すように、コンプレッサの入力変動に対し、デューティ値の変化量が少なく、判定のための閾値を大きくすると冷媒漏れと誤検出する可能性が高く、逆に小さくすると冷媒漏れを検出できないという問題点がある。   Next, as shown in FIG. 9, if the amount of change in the duty value is small with respect to the input fluctuation of the compressor and the threshold value for determination is increased, there is a high possibility of erroneous detection of refrigerant leakage. There is a problem that cannot be detected.

そこで、本発明は、可燃性冷媒を使用した冷蔵庫において、コンプレッサの入力変動に対し確実に対応して、冷媒漏れの検出精度を向上することができる冷媒漏れ検知装置を提供する。   Accordingly, the present invention provides a refrigerant leak detection device that can reliably cope with input fluctuations of a compressor and improve the accuracy of refrigerant leak detection in a refrigerator using a combustible refrigerant.

本発明は、三相のブラシレスDCモータで回転するコンプレッサと、凝縮器と、蒸発器を少なくとも有する冷凍サイクルと、前記ブラシレスDCモータの固定子巻線へ三相の駆動電流を供給するインバータ回路と、前記インバータ回路へPWM信号を供給するPWM回路と、前記三相の駆動電流を検知する駆動電流検知手段と、前記検知した三相の駆動電流に基づいて、前記ブラシレスDCモータの回転子の磁束に対応した電流成分であるd軸電流と、前記ブラシレスDCモータのトルクに対応した電流成分であるq軸電流とに変換するdq変換手段と、前記変換したd軸電流とq軸電流と外部から入力する速度指令信号に基づいて、基準q軸電流と基準d軸電流を出力する制御手段と、前記基準q軸電流と基準d軸電流とを、基準q軸電圧と基準d軸電圧に変換する電圧変換手段と、前記変換した基準q軸電圧と基準d軸電圧を三相電圧に変換して前記PWM回路へ出力する三相変換手段と、前記検知したq軸電流と前記基準q軸電圧との積から電力値を算出する電力値算出手段と、前記電力算出手段で算出した電力値から基準電力値を抽出し、その抽出の所定時間後の判定用電力値を抽出し、前記基準電力値と前記判定用電力値との差が、所定値以上のときに冷媒漏れと判定する判定手段と、を有することを特徴とする冷媒漏れ検知装置である。   The present invention relates to a compressor rotating with a three-phase brushless DC motor, a condenser, a refrigeration cycle having at least an evaporator, and an inverter circuit for supplying a three-phase drive current to a stator winding of the brushless DC motor; A PWM circuit for supplying a PWM signal to the inverter circuit, a driving current detecting means for detecting the three-phase driving current, and a magnetic flux of the rotor of the brushless DC motor based on the detected three-phase driving current. Dq conversion means for converting into a d-axis current which is a current component corresponding to the current and a q-axis current which is a current component corresponding to the torque of the brushless DC motor, and the converted d-axis current and q-axis current from the outside Control means for outputting a reference q-axis current and a reference d-axis current based on an input speed command signal, and the reference q-axis current and the reference d-axis current are converted into a reference q-axis voltage. Voltage conversion means for converting to a reference d-axis voltage; three-phase conversion means for converting the converted reference q-axis voltage and reference d-axis voltage into a three-phase voltage and outputting the same to the PWM circuit; and the detected q-axis current Power value calculation means for calculating a power value from the product of the reference q-axis voltage and a power value calculated by the power calculation means, and a power value for determination after a predetermined time from the extraction is extracted. A refrigerant leakage detection device comprising: a determination unit that extracts and determines that the refrigerant leaks when a difference between the reference power value and the determination power value is equal to or greater than a predetermined value.

本発明の冷媒漏れ検知装置では、検知したq軸電流と基準q軸電圧との積から電力値を算出して、前記算出した電力値から基準電力値を抽出し、その抽出の所定時間後の判定用電力値を抽出し、前記基準電力値と前記判定用電力値との差が、所定値以上のときに冷媒漏れと判定するため、冷媒漏れを確実に判定できる。   In the refrigerant leak detection device of the present invention, the power value is calculated from the product of the detected q-axis current and the reference q-axis voltage, the reference power value is extracted from the calculated power value, and a predetermined time after the extraction. Since the determination power value is extracted and the refrigerant leakage is determined when the difference between the reference power value and the determination power value is equal to or greater than a predetermined value, the refrigerant leakage can be reliably determined.

請求項1に係る発明は、三相のブラシレスDCモータで回転するコンプレッサと、凝縮器と、蒸発器を少なくとも有する冷凍サイクルと、前記ブラシレスDCモータの固定子巻線へ三相の駆動電流を供給するインバータ回路と、前記インバータ回路へPWM信号を供給するPWM回路と、前記三相の駆動電流を検知する駆動電流検知手段と、前記検知した三相の駆動電流に基づいて、前記ブラシレスDCモータの回転子の磁束に対応した電流成分であるd軸電流と、前記ブラシレスDCモータのトルクに対応した電流成分であるq軸電流とに変換するdq変換手段と、前記変換したd軸電流とq軸電流と外部から入力する速度指令信号に基づいて、基準q軸電流と基準d軸電流を出力する制御手段と、前記基準q軸電流と基準d軸電流とを、基準q軸電圧と基準d軸電圧に変換する電圧変換手段と、前記変換した基準q軸電圧と基準d軸電圧を三相電圧に変換して前記PWM回路へ出力する三相変換手段と、前記検知したq軸電流と前記基準q軸電圧との積から電力値を算出する電力値算出手段と、前記電力算出手段で算出した電力値から基準電力値を抽出し、その抽出の所定時間後の判定用電力値を抽出し、前記基準電力値と前記判定用電力値との差が、所定値以上のときに冷媒漏れと判定する判定手段と、を有することを特徴とする冷媒漏れ検知装置である。   The invention according to claim 1 supplies a three-phase driving current to a compressor rotating by a three-phase brushless DC motor, a condenser, a refrigeration cycle having at least an evaporator, and a stator winding of the brushless DC motor. The brushless DC motor based on the detected three-phase drive current, an inverter circuit that performs PWM circuit that supplies a PWM signal to the inverter circuit, drive current detection means that detects the three-phase drive current, and Dq conversion means for converting a d-axis current that is a current component corresponding to the magnetic flux of the rotor and a q-axis current that is a current component corresponding to the torque of the brushless DC motor; and the converted d-axis current and q-axis Control means for outputting a reference q-axis current and a reference d-axis current based on a current and a speed command signal input from the outside, and the reference q-axis current and the reference d-axis current, Voltage conversion means for converting to a quasi-q-axis voltage and a reference d-axis voltage; three-phase conversion means for converting the converted reference q-axis voltage and reference d-axis voltage into a three-phase voltage and outputting the same to the PWM circuit; A power value calculating means for calculating a power value from a product of the detected q-axis current and the reference q-axis voltage; a reference power value is extracted from the power value calculated by the power calculating means; and a predetermined time after the extraction A refrigerant leak detection device comprising: a determination unit that extracts a determination power value and determines that the refrigerant leaks when a difference between the reference power value and the determination power value is equal to or greater than a predetermined value. is there.

請求項2に係る発明は、前記ブラシレスDCモータの回転子の回転は、磁石トルクとリラクタンストルクを併用する構造であり、最大トルクが得られるように負のd軸電流を流す構成となし、前記電力算出手段は、前記検知したd軸電流と基準d軸電圧の積を、前記検知q軸電流と基準q軸電圧の積に加えた値から電力値を算出することを特徴とする請求項1記載の冷媒漏れ検知装置である。   According to a second aspect of the present invention, the rotation of the rotor of the brushless DC motor has a structure in which a magnet torque and a reluctance torque are used in combination, and a negative d-axis current is supplied so as to obtain a maximum torque. 2. The power calculating means calculates a power value from a value obtained by adding a product of the detected d-axis current and a reference d-axis voltage to a product of the detected q-axis current and a reference q-axis voltage. It is a refrigerant | coolant leak detection apparatus of description.

請求項3に係る発明は、前記判定手段は、前記基準電力値を抽出した後、一定時間毎に電力値を複数抽出し、この複数抽出した電力値を平均化して前記判定用電力値を求めることを特徴とする請求項1記載の冷媒漏れ検知装置である。   According to a third aspect of the present invention, the determination means extracts a plurality of power values at regular time intervals after extracting the reference power value, and averages the plurality of extracted power values to obtain the determination power value. The refrigerant leak detection device according to claim 1, wherein

請求項4に係る発明は、請求項1から3の中で少なくとも一項に記載の冷媒漏れ検知装置を用いたことを特徴とする冷蔵庫である。   The invention according to claim 4 is a refrigerator characterized by using the refrigerant leak detection device according to at least one of claims 1 to 3.

請求項5に係る発明は、前記判定手段は、前記冷媒漏れと判定したときに冷却を継続しながら、前記冷蔵庫に設けられている高電圧部品を一時的に停止し、前記冷媒漏れと判定してから所定時間経過後に前記冷蔵庫に設置した温度センサの検出温度に応じて前記高電圧部品の停止を解除することを特徴とする請求項4記載の冷蔵庫。   According to a fifth aspect of the present invention, the determination means temporarily stops a high-voltage component provided in the refrigerator while continuing cooling when it is determined that the refrigerant leaks, and determines that the refrigerant leaks. 5. The refrigerator according to claim 4, wherein the stop of the high-voltage component is released according to a temperature detected by a temperature sensor installed in the refrigerator after a predetermined time has elapsed.

請求項6に係る発明は、前記冷蔵庫の扉開閉の回数に応じて、前記所定時間を変更することを特徴とする請求項5記載の冷蔵庫である。   The invention according to claim 6 is the refrigerator according to claim 5, wherein the predetermined time is changed in accordance with the number of times the door of the refrigerator is opened and closed.

請求項1に係る発明の冷媒漏れ検知装置では、検知したq軸電流と基準q軸電圧との積から電力値を算出して、前記算出した電力値から基準電力値を抽出し、その抽出の所定時間後の判定用電力値を抽出し、前記基準電力値と前記判定用電力値との差が、所定値以上のときに冷媒漏れと判定するため、冷媒漏れを確実に判定できる。   In the refrigerant leak detection device according to the first aspect of the present invention, the power value is calculated from the product of the detected q-axis current and the reference q-axis voltage, and the reference power value is extracted from the calculated power value. Since the determination power value after a predetermined time is extracted and the refrigerant leakage is determined when the difference between the reference power value and the determination power value is greater than or equal to a predetermined value, the refrigerant leakage can be determined reliably.

請求項2に係る発明の冷媒漏れ検知装置では、回転子が永久磁石埋め込み型の場合、磁石トルクの他にq軸方向のインダクタンスとd軸方向のインダクタンスによる差によるリラクタンストルクが発生し、両者の合成トルクが磁石トルクを上回る。この合成トルクが最大のポイントで駆動するように電流位相を誘起電圧(q軸方向)に対し進ませる手法が用いられる。この場合の負のIdを流すことで電流位相を進ませて最大トルクを活用するため、d軸にも電力が発生する。したがって、電力算出手段は、検知したd軸電流と基準d軸電圧の積を、検知q軸電流と基準q軸電圧の積に加えた値から電力値を算出する。   In the refrigerant leak detection device according to the second aspect of the present invention, when the rotor is a permanent magnet embedded type, reluctance torque is generated in addition to the magnet torque, due to the difference between the inductance in the q-axis direction and the inductance in the d-axis direction. The combined torque exceeds the magnet torque. A method is used in which the current phase is advanced with respect to the induced voltage (q-axis direction) so that the combined torque is driven at the maximum point. In this case, since the negative torque Id is applied to advance the current phase and utilize the maximum torque, power is also generated in the d-axis. Therefore, the power calculation means calculates a power value from a value obtained by adding the product of the detected d-axis current and the reference d-axis voltage to the product of the detected q-axis current and the reference q-axis voltage.

請求項3に係る発明の冷媒漏れ検知装置では、瞬時電力値を算出するために、コンプレッサの一回転中においてバラツキが発生する。これを防止するために、一回転中あるいは数回転の瞬時電力値の平均値を算出する。   In the refrigerant leak detection device according to the third aspect of the invention, variations occur during one revolution of the compressor in order to calculate the instantaneous power value. In order to prevent this, an average value of instantaneous power values during one revolution or several revolutions is calculated.

請求項4に係る発明の冷蔵庫では、可燃性冷媒を用いた冷蔵庫の冷媒漏れ検知装置に好適である。   The refrigerator of the invention according to claim 4 is suitable for a refrigerant leakage detection device for a refrigerator using a combustible refrigerant.

請求項5に係る発明の冷蔵庫では、早い段階で冷媒漏れの可能性有りと判断し、周囲ガス濃度が可燃範囲に達し、部品不良と重なった場合着火の可能性がある高圧電気部品を停止するため、通常冷却を継続しながら万一の安全が確保でき、かつ冷媒漏れが誤検知だった場合に速やかに、かつ確実に通常運転に復帰できる。   In the refrigerator of the invention according to claim 5, it is determined that there is a possibility of refrigerant leakage at an early stage, and the high-pressure electrical component that may be ignited is stopped when the ambient gas concentration reaches the combustible range and overlaps with a component failure. Therefore, in the unlikely event that normal cooling is continued, safety can be ensured, and when the refrigerant leakage is erroneously detected, the normal operation can be promptly and surely restored.

請求項6に係る発明の冷蔵庫は、温度による冷蔵庫の状態を判断する前の扉開閉の回数に応じて、温度センサによる判定までの時間を変更し、確実に冷却性能の状況を判断できる。   The refrigerator of the invention according to claim 6 can reliably determine the state of the cooling performance by changing the time until the determination by the temperature sensor according to the number of times of opening and closing the door before determining the state of the refrigerator according to the temperature.

(実施形態)
以下、本発明の一実施形態の冷蔵庫1を説明する。
(Embodiment)
Hereinafter, the refrigerator 1 of one Embodiment of this invention is demonstrated.

(1)冷蔵庫1の構成
まず、冷蔵庫1の構成について図1と図2に基づいて説明する。
(1) Structure of refrigerator 1 First, the structure of the refrigerator 1 is demonstrated based on FIG. 1 and FIG.

図1は、本実施形態を示す冷蔵庫1の断面図で、図2は冷蔵庫1の冷凍サイクルである。   FIG. 1 is a cross-sectional view of the refrigerator 1 showing the present embodiment, and FIG. 2 is a refrigeration cycle of the refrigerator 1.

冷蔵庫1のキャビネットは、断熱箱体9と内箱8で形成され、断熱仕切壁2によって冷蔵温度帯30と冷凍温度帯31に区画され、両温度帯30、31の冷気は完全に独立し、各冷気が混合することのない構造となっている。   The cabinet of the refrigerator 1 is formed of a heat insulating box 9 and an inner box 8, and is partitioned into a refrigeration temperature zone 30 and a freezing temperature zone 31 by the heat insulating partition wall 2, and the cold air in both temperature zones 30, 31 is completely independent. Each cold air is not mixed.

冷蔵温度帯30の庫内は冷蔵仕切板3によって冷蔵貯蔵室4と野菜室5とに仕切られ、冷凍温度帯31の庫内は第1冷凍室6と第2冷凍室7から成り、各室はそれぞれ開閉ドア4a、5a、6a、7aを有している。また、冷蔵貯蔵室4には、庫内温度を検知するための温度センサ(以下、Rセンサという)34と、脱臭装置35が配されている。この脱臭装置35としては、高電圧部品を使用し、例えば、一対の電極間に光触媒を配し、これら電極の間で放電を行いオゾンを発生させて脱臭を行う方式のものである。   The inside of the refrigerated temperature zone 30 is partitioned into the refrigerated storage room 4 and the vegetable compartment 5 by the refrigeration partition plate 3, and the inside of the freezing temperature zone 31 is composed of the first freezer compartment 6 and the second freezer compartment 7, Has open / close doors 4a, 5a, 6a and 7a, respectively. The refrigerated storage room 4 is provided with a temperature sensor (hereinafter referred to as R sensor) 34 for detecting the internal temperature and a deodorizing device 35. As this deodorizing device 35, a high voltage component is used, for example, a photocatalyst is arranged between a pair of electrodes, and discharge is performed between these electrodes to generate ozone to perform deodorization.

野菜室5の背面には冷蔵室蒸発器10と冷蔵室冷却ファン11が配置され、冷蔵室冷却ファン11は庫内温度変動やドア開閉によって任意に運転される。そして、冷蔵貯蔵室4の背面は、冷気を冷蔵温度帯30内に供給するための冷気循環路18となっている。冷凍室蒸発器12の下部には、除霜ヒータ26が配されてれいる。   A refrigeration room evaporator 10 and a refrigeration room cooling fan 11 are disposed on the back of the vegetable room 5, and the refrigeration room cooling fan 11 is arbitrarily operated by changing the temperature in the cabinet or opening and closing the door. The rear surface of the refrigerated storage chamber 4 serves as a cold air circulation path 18 for supplying cold air into the refrigerated temperature zone 30. A defrost heater 26 is disposed below the freezer evaporator 12.

冷凍室蒸発器12と冷凍室冷却ファン13は第1及び第2冷凍室6、7の背壁に配置され、冷気を循環することで第1及び第2冷凍室6、7が冷却される。   The freezer compartment evaporator 12 and the freezer compartment cooling fan 13 are disposed on the back walls of the first and second freezer compartments 6 and 7, and the first and second freezer compartments 6 and 7 are cooled by circulating cold air.

冷蔵庫1の背壁下部の機械室14には、図2に示す如く冷凍サイクルを構成するコンプレッサ15、凝縮器21がそれぞれ配置され、コンプレッサ15から吐出された可燃性冷媒は、凝縮器21を通った後、切替弁22の可燃性冷媒切換機構によって可燃性冷媒流路が交互に切り替えられて冷凍モードと冷蔵モードを交互に実現できる。   As shown in FIG. 2, a compressor 15 and a condenser 21 constituting a refrigeration cycle are arranged in the machine room 14 below the back wall of the refrigerator 1, and combustible refrigerant discharged from the compressor 15 passes through the condenser 21. After that, the combustible refrigerant flow path is alternately switched by the combustible refrigerant switching mechanism of the switching valve 22 so that the refrigeration mode and the refrigeration mode can be realized alternately.

切替弁22の一方の出口には冷蔵キャピラリーチューブ23と冷蔵室蒸発器10が順次接続され、切替弁22の他方の出口には冷凍キャピラリーチューブ24と冷凍室蒸発器12が順次接続され、冷凍室蒸発器12にアキュームレータ16が接続されている。   The refrigerating capillary tube 23 and the refrigerating room evaporator 10 are sequentially connected to one outlet of the switching valve 22, and the freezing capillary tube 24 and the freezing room evaporator 12 are sequentially connected to the other outlet of the switching valve 22. An accumulator 16 is connected to the evaporator 12.

上記構成の冷蔵庫1によれば、切替弁22によって可燃性冷媒流路が切り替わり、冷凍温度帯31冷却時の冷凍モードでは、可燃性冷媒が冷凍キャピラリーチューブ24で減圧されて冷凍室蒸発器12に入り、冷凍温度帯31を冷却した後、再びコンプレッサ15に戻る。   According to the refrigerator 1 configured as described above, the combustible refrigerant flow path is switched by the switching valve 22, and in the refrigerating mode at the time of cooling the freezing temperature zone 31, the combustible refrigerant is decompressed by the freezing capillary tube 24 to the freezer evaporator 12. After entering and cooling the freezing temperature zone 31, it returns to the compressor 15 again.

一方、冷蔵温度帯30冷却時の冷蔵モードでは、可燃性冷媒は冷蔵キャピラリーチューブ23で減圧され、冷蔵室蒸発器10に入り、冷蔵温度帯30を冷却した後、冷凍室蒸発器12を通って再びコンプレッサ15に戻る冷凍サイクルを構成する。   On the other hand, in the refrigerating mode at the time of cooling in the refrigerating temperature zone 30, the flammable refrigerant is decompressed by the refrigerating capillary tube 23, enters the refrigerating chamber evaporator 10, cools the refrigerating temperature zone 30, and then passes through the freezer compartment evaporator 12. A refrigeration cycle returning to the compressor 15 is configured again.

冷凍モード(図3,4ではF冷却という)時の可燃性冷媒は、冷凍キャピラリーチューブ24、冷凍室蒸発器12、アキュームレータ16の順で流れ、冷凍室冷却ファン13の運転によって冷気が庫内を循環し、第1及び第2冷凍室6、7の冷却が行われる。   In the refrigeration mode (referred to as F cooling in FIGS. 3 and 4), the flammable refrigerant flows in the order of the freezing capillary tube 24, the freezer evaporator 12, and the accumulator 16. It circulates and the 1st and 2nd freezer compartments 6 and 7 are cooled.

冷蔵モード(図3,4ではR冷却という)時は、切替弁22が切り替わり、可燃性冷媒流路が冷凍温度帯31側から冷蔵温度帯30側に切り替わると可燃性冷媒は冷蔵室蒸発器10に流れ、冷蔵室ファン11の運転によって冷蔵貯蔵室4と野菜室5を冷却する。   In the refrigeration mode (referred to as R cooling in FIGS. 3 and 4), when the switching valve 22 is switched and the flammable refrigerant flow path is switched from the refrigeration temperature zone 31 side to the refrigeration temperature zone 30 side, the flammable refrigerant is stored in the refrigerator compartment evaporator 10. The refrigerator compartment 4 and the vegetable compartment 5 are cooled by the operation of the refrigerator compartment fan 11.

(2)冷蔵庫1の電気系統の構造
冷蔵庫1の電気系統の構造について、図5のブロック図に基づいて説明する。
(2) Structure of the electric system of the refrigerator 1 The structure of the electric system of the refrigerator 1 is demonstrated based on the block diagram of FIG.

図5に示すように、コンプレッサ15を駆動する三相のブラシレスDCモータ(以下、コンプモータという)28と、このコンプモータ28を駆動する駆動装置(以下、コンプ駆動装置という)32と、このコンプ駆動装置32を制御する冷蔵庫1の主制御部33とから構成されている。さらに、主制御部33には、各部屋4,5,6,7のドア4a〜7aにそれぞれ設けられたドアスイッチ4b〜7bが接続されている。さらに、主制御部33には、脱臭装置35、除霜ヒータ26、Rセンサ34が接続されている。   As shown in FIG. 5, a three-phase brushless DC motor (hereinafter referred to as a “comp motor”) 28 that drives the compressor 15, a drive device (hereinafter referred to as a “comp drive device”) 32 that drives this compressor motor 28, and this compressor It is comprised from the main control part 33 of the refrigerator 1 which controls the drive device 32. FIG. Further, the main control unit 33 is connected to door switches 4b to 7b provided in the doors 4a to 7a of the rooms 4, 5, 6 and 7, respectively. Furthermore, a deodorizing device 35, a defrosting heater 26, and an R sensor 34 are connected to the main control unit 33.

まず、コンプ駆動装置32の構造について説明する。   First, the structure of the comp drive device 32 will be described.

コンプ駆動装置32は、インバータ回路42と、整流回路44と、交流電源46と、PWM形成部48と、AD変換部50と、dq変換部52と、速度検出部54と、速度指令出力部56と、速度PI制御部58と、q軸電流PI制御部60と、d軸電流PI制御部62と、三相変換部64とより構成されている。   The compressor driving device 32 includes an inverter circuit 42, a rectifying circuit 44, an AC power supply 46, a PWM forming unit 48, an AD converting unit 50, a dq converting unit 52, a speed detecting unit 54, and a speed command output unit 56. A speed PI control unit 58, a q-axis current PI control unit 60, a d-axis current PI control unit 62, and a three-phase conversion unit 64.

コンプレッサ15を回転させるコンプモータ28は、上記したように三相のブラシレスDCモータである。このコンプモータ28の三相(u相、v相、w相)の固定子巻線40u,40v,40Wにインバータ回路42が三相の駆動電流を流す。   The compressor motor 28 that rotates the compressor 15 is a three-phase brushless DC motor as described above. The inverter circuit 42 causes a three-phase drive current to flow through the three-phase (u-phase, v-phase, and w-phase) stator windings 40u, 40v, and 40W of the comp motor 28.

このインバータ回路42は、6個のパワースイッチング半導体であるトランジスタTr1〜Tr6より構成されたフルブリッジインバータ回路である。なお、図では示されていないが、このスイッチングトランジスタTr1〜Tr6に対して並列に逆方向にダイオードが接続されている。また、スイッチングトランジスタT1とTr4に直列に駆動電流を検知するための検知抵抗R1が接続され、スイッチングトランジスタTr2とTr5に直列に検知抵抗R2が接続され、スイッチングトランジスタTr28とTr6に直列に検知抵抗R28が接続されている。   The inverter circuit 42 is a full bridge inverter circuit composed of transistors Tr1 to Tr6 which are six power switching semiconductors. Although not shown in the figure, a diode is connected in reverse to the switching transistors Tr1 to Tr6 in parallel. A detection resistor R1 for detecting a drive current is connected in series to the switching transistors T1 and Tr4, a detection resistor R2 is connected in series to the switching transistors Tr2 and Tr5, and a detection resistor R28 is connected in series to the switching transistors Tr28 and Tr6. Is connected.

整流回路44は商用電源(AC100V)である交流電源46から交流電圧が供給され、これを整流してインバータ回路42に供給する。   The rectifier circuit 44 is supplied with an AC voltage from an AC power supply 46 that is a commercial power supply (AC 100 V), and rectifies and supplies it to the inverter circuit 42.

PWM形成部は、6個のスイッチングトランジスタTr1〜Tr6のゲート端子に、PWM信号を供給する。PWM形成部48は、後から説明する三相の電圧Vu,Vv,Vwに基づいてパルス幅変調を行い、所定のタイミングで各スイッチングトランジスタTr1〜Tr6をON/OFFする。   The PWM forming unit supplies a PWM signal to the gate terminals of the six switching transistors Tr1 to Tr6. The PWM forming unit 48 performs pulse width modulation based on three-phase voltages Vu, Vv, and Vw, which will be described later, and turns on / off the switching transistors Tr1 to Tr6 at a predetermined timing.

AD変換部50は、検知抵抗R1,R2,R28における電圧値を検知して、各相の電圧値をアナログ値からデジタル値に変換し、三相の駆動電流Iu,Iv,Iwを出力する。   The AD converter 50 detects the voltage values at the detection resistors R1, R2, and R28, converts the voltage value of each phase from an analog value to a digital value, and outputs three-phase drive currents Iu, Iv, and Iw.

dq変換部52は、AD変換部50から出力された駆動電流Iu,Iv,Iwを、磁束に対応した電流成分であるd軸(direct-axis)の電流Idと、コンプモータ28のトルクに対応した電流成分であるq軸(quadrature-axis)の電流Iqに変換する。   The dq conversion unit 52 corresponds to the drive currents Iu, Iv, and Iw output from the AD conversion unit 50 to the d-axis (direct-axis) current Id that is a current component corresponding to the magnetic flux and the torque of the comp motor 28. It is converted to a q-axis (quadrature-axis) current Iq.

この変換方法は、(1)式に示すように、三相のIu,Iv,Iwを二相のIα,Iβに変換する。この三相の電流と二相の電流との関係を表したベクトル図が図6である。

Figure 2005090925
次に、このように変換した二相の電流Iα,Iβをq軸電流Iqとd軸電流Idに(2)式を用いて変換する。この二相の駆動電流と変換(検知)したq軸電流Iqとd軸電流Idとの関係は図7に示すベクトル図のような関係を有する。
Figure 2005090925
速度検出部54では、検知したq軸電流Iqとd軸電流Idに基づいて、コンプモータ28の回転角θと回転速度ωを検出する。q軸電流とd軸電流に基づいてコンプモータ28の回転子の位置である回転角θを求め、このθを微分することにより回転速度ωを求める。 In this conversion method, three-phase Iu, Iv, and Iw are converted into two-phase Iα and Iβ as shown in the equation (1). FIG. 6 is a vector diagram showing the relationship between the three-phase current and the two-phase current.
Figure 2005090925
Next, the two-phase currents Iα and Iβ converted in this way are converted into a q-axis current Iq and a d-axis current Id using the formula (2). The relationship between the two-phase drive current, the converted (detected) q-axis current Iq, and the d-axis current Id is as shown in the vector diagram of FIG.
Figure 2005090925
The speed detector 54 detects the rotation angle θ and the rotation speed ω of the comp motor 28 based on the detected q-axis current Iq and d-axis current Id. Based on the q-axis current and the d-axis current, a rotation angle θ which is the position of the rotor of the comp motor 28 is obtained, and the rotational speed ω is obtained by differentiating this θ.

冷蔵庫1の主制御部33では、dq変換部52から送られてきたq軸電流Iqに基づいて速度指令信号Sを出力する。   The main control unit 33 of the refrigerator 1 outputs a speed command signal S based on the q-axis current Iq sent from the dq conversion unit 52.

速度指令出力部56は、主制御部33からの速度指令信号Sと、速度検出部54からの回転速度ωに基づいて基準回転速度ωrefを出力する。基準回転速度ωrefは、現在の回転速度ωと共に速度PI制御部58に入力される。   The speed command output unit 56 outputs a reference rotation speed ωref based on the speed command signal S from the main control unit 33 and the rotation speed ω from the speed detection unit 54. The reference rotational speed ωref is input to the speed PI control unit 58 together with the current rotational speed ω.

速度PI制御部58では、基準回転速度ωrefと現在の回転速度ωとの差分量に基づいてPI制御を行い、基準q軸電流Iqrefと基準d軸電流Idrefを出力し、現在のq軸電流Iqと現在のd軸電流Idと共にq軸電流PI制御部60とd軸電流PI制御部62にそれぞれ出力する。   The speed PI control unit 58 performs PI control based on the difference between the reference rotational speed ωref and the current rotational speed ω, outputs the reference q-axis current Iqref and the reference d-axis current Idref, and the current q-axis current Iq. And the current d-axis current Id are output to the q-axis current PI control unit 60 and the d-axis current PI control unit 62, respectively.

q軸電流PI制御部60では、PI制御を行うと共に電流/電圧変換を行い、基準q軸電圧Vqを出力する。   The q-axis current PI control unit 60 performs PI control, performs current / voltage conversion, and outputs a reference q-axis voltage Vq.

d軸電流PI制御部62では、PI制御を行うと共に電流/電圧変換を行い、基準d軸電圧Vdを出力する。   The d-axis current PI control unit 62 performs PI control and current / voltage conversion, and outputs a reference d-axis voltage Vd.

三相変換部64では、基準d軸電圧Vdと基準q軸電圧Vqを、まず二相の電圧に(3)式に基づいて変換する。

Figure 2005090925
この変換された二相の電圧Vα,Vβを、三相の電圧Vu,Vv,Vwに(4)式に基づいて変換する。
Figure 2005090925
この変換された三相の電圧Vu,Vv,Vwを前記したPWM形成部48に出力する。 The three-phase converter 64 first converts the reference d-axis voltage Vd and the reference q-axis voltage Vq into a two-phase voltage based on the equation (3).
Figure 2005090925
The converted two-phase voltages Vα, Vβ are converted into three-phase voltages Vu, Vv, Vw based on the equation (4).
Figure 2005090925
The converted three-phase voltages Vu, Vv, and Vw are output to the PWM forming unit 48 described above.

以上のコンプ駆動装置32によれば、検知したd軸電流Idとq軸電流Iqに基づいて回転速度を検知し、この回転速度ωと、主制御部からの速度指令信号Sに基づいてフィードバック制御を行い、速度指令信号Sに合わせた回転速度ωrefでコンプモータ28が回転するようにPWM形成部48からPWM信号をインバータ回路42に出力する。インバータ回路42はこれに基づいて、三相の駆動電流をコンプモータ28の三相の固定子巻線40に出力する。   According to the compressor driving device 32 described above, the rotational speed is detected based on the detected d-axis current Id and q-axis current Iq, and feedback control is performed based on the rotational speed ω and the speed command signal S from the main control unit. The PWM forming unit 48 outputs a PWM signal to the inverter circuit 42 so that the compressor motor 28 rotates at the rotational speed ωref that matches the speed command signal S. Based on this, the inverter circuit 42 outputs a three-phase drive current to the three-phase stator winding 40 of the compressor motor 28.

(3)電力算出方法
次に、電力の算出方法について述べる。
(3) Power Calculation Method Next, a power calculation method will be described.

電力は、dq軸にて算出する。回転子の永久磁石が表面型タイプの場合、Id=0の時に効率が最大となるように制御するためq軸方向しか電力が発生しない。よって、コンプモータ28の瞬時電力Wiは、検知したq軸電流Iq(t)と基準q軸電圧Vq(t)の積から求める。すなわち、

Wi(t)=Iq(t)×Vq(t) ・・・(5)

で算出できる。
The power is calculated on the dq axis. When the permanent magnet of the rotor is of the surface type, electric power is generated only in the q-axis direction because control is performed so that the efficiency becomes maximum when Id = 0. Therefore, the instantaneous power Wi of the compressor motor 28 is obtained from the product of the detected q-axis current Iq (t) and the reference q-axis voltage Vq (t). That is,

Wi (t) = Iq (t) × Vq (t) (5)

It can be calculated by

そして瞬時電力Wi(t)を、主制御部33に送信する。図8に示すように、瞬時電力Wi(t)はコンプモータ28の入力実測値と合っている。   Then, the instantaneous power Wi (t) is transmitted to the main control unit 33. As shown in FIG. 8, the instantaneous power Wi (t) matches the actual input value of the compressor motor 28.

なお、コンプ入力は冷凍サイクルの負荷により決定するため、AC電圧は影響しない。   Note that the AC input is not affected because the compressor input is determined by the load of the refrigeration cycle.

(4)可燃性冷媒が漏れた場合の挙動
ここで、可燃性冷媒を用いた冷凍サイクル運転中に可燃性冷媒が漏れた場合の瞬時電力値Wi(t)の挙動について説明する。
(4) Behavior when flammable refrigerant leaks Here, the behavior of the instantaneous power value Wi (t) when the flammable refrigerant leaks during the refrigeration cycle operation using the flammable refrigerant will be described.

図3に、冷凍サイクルの低圧側から可燃性冷媒が漏れた場合の電力変化を示す。   FIG. 3 shows a change in electric power when combustible refrigerant leaks from the low pressure side of the refrigeration cycle.

冷凍サイクル中の低圧側に冷媒漏れ個所が発生(図3のF冷却の丸数字2)すると運転中のサイクル内圧力は負圧のため空気を吸い込み、電力が上昇する。この判定用の瞬時電力値Wi(t)の増加値が所定値(以下、増加基準値G2という)を超えると低圧側漏れと判定する。   When a refrigerant leakage point occurs on the low-pressure side in the refrigeration cycle (circle number 2 for F cooling in FIG. 3), the cycle pressure during operation is negative, so air is sucked and power is increased. When the increase value of the instantaneous power value Wi (t) for this determination exceeds a predetermined value (hereinafter referred to as an increase reference value G2), it is determined that there is a low-pressure side leak.

冷凍サイクル中の高圧側に冷媒漏れ個所が発生(図4のR冷却の丸数字2)すると運転中のサイクル内圧力減少に伴い、電力が減少する。この判定用の瞬時電力値Wi(t)の減少値が所定値(以下、減少基準値G1という)を越えると高圧漏れと判定する。   If a refrigerant leakage point is generated on the high pressure side in the refrigeration cycle (R cooling circled number 2 in FIG. 4), the electric power is reduced as the pressure in the cycle during operation decreases. When the decrease value of the instantaneous power value Wi (t) for determination exceeds a predetermined value (hereinafter referred to as a decrease reference value G1), it is determined that there is a high pressure leak.

(5)第1の冷媒漏れ判定方法
次に、冷媒漏れの判定方法について説明する。
(5) First refrigerant leakage determination method Next, a refrigerant leakage determination method will be described.

主制御部33は、送られてきた瞬時電力値Wi(t)を監視し、冷媒漏れの判定を行う。   The main control unit 33 monitors the sent instantaneous power value Wi (t) and determines whether the refrigerant is leaking.

(5−1)高圧側の冷媒漏れ
コンプレッサ15が起動してから数分後に、基準電力値Wi(t0)を記憶する。その後一定間隔にて実電力値Wi(t)と基準電力値Wi(t0)を比較する。そして、判定用電力値Wi(t)が基準電力値Wi(t0)に対し減少基準値G1を越えると高圧漏れ判定を行う。すなわち、

Wi(t0)−Wi(t)>G1 ・・・(6)

となる。
(5-1) High-pressure-side refrigerant leakage Several minutes after the compressor 15 is started, the reference power value Wi (t0) is stored. Thereafter, the actual power value Wi (t) and the reference power value Wi (t0) are compared at regular intervals. When the determination power value Wi (t) exceeds the decrease reference value G1 with respect to the reference power value Wi (t0), a high-pressure leak determination is performed. That is,

Wi (t0) -Wi (t)> G1 (6)

It becomes.

高圧漏れ時は、可燃性冷媒が抜けていくためコンプレッサ15の負荷が低下し電力は極端に低下する。高圧漏れ判定後は、例えば、コンプレッサ15を停止する。   At the time of high-pressure leakage, the combustible refrigerant escapes, so the load on the compressor 15 is reduced and the power is extremely reduced. After the high pressure leak determination, for example, the compressor 15 is stopped.

前記基準電力値に対する減少基準値は、定常時には下回らず、冷媒漏れ時に判定できるように実験的に設定する。   The decrease reference value with respect to the reference power value is set experimentally so that it can be determined at the time of refrigerant leakage without being lower than in a steady state.

(5−2)定圧側の冷媒漏れ
コンプレッサ15の回転数が指定の回転数となってから数分後に基準電力値Wi(t0)を記憶する。例えば、冷凍サイクルが冷凍温度帯31から冷蔵温度帯30に切替った後に再度の基準電力値Wi(t0)を設定する。
(5-2) Refrigerant leakage on constant pressure side The reference power value Wi (t0) is stored several minutes after the rotation speed of the compressor 15 reaches the specified rotation speed. For example, the reference electric power value Wi (t0) is set again after the refrigeration cycle is switched from the refrigeration temperature zone 31 to the refrigeration temperature zone 30.

その後、一定間隔にて判定用電力値Wi(t)と基準電力値Wi(t0)を比較する。そして判定用電力値Wi(t)が、基準電力値Wi(t0)に対し増加基準値G2を越えると低圧漏れ判定を行う。すなわち、

Wi(t)−Wi(t0)>G2 ・・・(7)

となる。
Thereafter, the determination power value Wi (t) and the reference power value Wi (t0) are compared at regular intervals. When the determination power value Wi (t) exceeds the increase reference value G2 with respect to the reference power value Wi (t0), a low pressure leakage determination is performed. That is,

Wi (t) -Wi (t0)> G2 (7)

It becomes.

低圧漏れ判定時は、空気を吸い込むため入力は極端に増加する。基準電力値Wi(t0)に対する比率は、定常時には上回らず、冷媒漏れ時に確実に判定できるように実験的に設定する。高圧漏れ判定後は、例えば、高電圧部品の駆動を停止する。   When judging low-pressure leak, the input increases extremely because air is sucked in. The ratio to the reference power value Wi (t0) is set experimentally so that it does not exceed the steady state and can be reliably determined when the refrigerant leaks. After the high voltage leakage determination, for example, the driving of the high voltage component is stopped.

(6)第2の冷媒漏れ判定方法
回転子が永久磁石埋め込み型の場合、磁石トルクの他にq軸方向のインダクタンスとd軸方向のインダクタンスによる差によるリラクタンストルクが発生し、両者の合成トルクが磁石トルクを上回る。
(6) Second refrigerant leakage determination method When the rotor is a permanent magnet embedded type, in addition to the magnet torque, a reluctance torque is generated due to the difference between the inductance in the q-axis direction and the inductance in the d-axis direction. Exceeds magnet torque.

この合成トルクが最大のポイントで駆動するように電流位相を誘起電圧(q軸方向)に対し進ませる手法が用いられる。この場合の負のIdを流すことで電流位相を進ませて最大トルクを活用するため、d軸にも電力が発生する。   A method is used in which the current phase is advanced with respect to the induced voltage (q-axis direction) so that the combined torque is driven at the maximum point. In this case, since the negative torque Id is applied to advance the current phase and utilize the maximum torque, power is also generated in the d-axis.

この場合のコンプモータ28の瞬時電力値Wi(t)の算出方法は次の通りとなる。   The calculation method of the instantaneous power value Wi (t) of the comp motor 28 in this case is as follows.


Wi(t)=Iq(t)×Vq(t)+Id(t)×Vq(t)

・・・(8)

上記の瞬時電力値Wi(t)を用いて、第1の冷媒漏れ判定方法と同様に判定する。

Wi (t) = Iq (t) × Vq (t) + Id (t) × Vq (t)

... (8)

Using the instantaneous power value Wi (t), the determination is made in the same manner as in the first refrigerant leakage determination method.

(7)第3の冷媒漏れ判定方法
第1、第2の冷媒漏れ判定方法では、電力は瞬時電力値Wi(t)であるため、コンプレッサ15の一回転中においてバラツキが発生する。
(7) Third Refrigerant Leakage Determination Method In the first and second refrigerant leakage determination methods, the electric power is the instantaneous electric power value Wi (t), and therefore variations occur during one rotation of the compressor 15.

よって一回転中あるいは数回転の瞬時電力値Wi(t)の平均値を算出して、基準電力値Wi(t0)と比較して、第1の冷媒漏れ判定方法と同様に判定する。   Therefore, the average value of the instantaneous power value Wi (t) during one rotation or several rotations is calculated, compared with the reference power value Wi (t0), and determined in the same manner as in the first refrigerant leakage determination method.

(8)冷媒漏れ判定後の制御方法
(8−1)第1の制御方法
上記のようにして冷媒漏れと判定されると(以下、第1段階の判定という)、主制御部33は、脱臭装置35や除霜ヒータ36などの高電圧部品の駆動を強制的に停止させて安全を確保する。
(8) Control Method after Refrigerant Leakage Determination (8-1) First Control Method When the refrigerant leakage is determined as described above (hereinafter referred to as a first stage determination), the main control unit 33 performs deodorization. The driving of high voltage components such as the device 35 and the defrosting heater 36 is forcibly stopped to ensure safety.

そして、主制御部33は、第1段階の判定で冷媒漏れと判定してから、第2段階の判定を行う。この第2段階の判定は、第1段階の判定後、一定時間(例えば、12時間)または設定した交互冷却回数(例えば、3回)の経過後、Rセンサ34が検知冷凍室温度が設定温度以下になった場合に、冷媒漏れがなかったと判断して、主制御部33は前記高電圧部品の停止を解除し、設定温度以上であれば冷媒漏れがあったと判断する。   Then, the main control unit 33 performs the second stage determination after determining the refrigerant leakage in the first stage determination. In the second stage determination, after the first stage determination, after a predetermined time (for example, 12 hours) or a set number of alternate cooling times (for example, three times), the R sensor 34 detects the temperature of the freezer compartment. When it becomes below, it judges that there was no refrigerant leakage, the main control part 33 cancels | releases the stop of the said high voltage component, and if it is more than preset temperature, it will judge that there was refrigerant leakage.

この二段階の判定を行う理由は、冷蔵庫内部に多くの食品や熱容量の大きい食品を収納すると庫内温度が上昇してコンプレッサ15の負荷が大きくなり、この状態を第一段階で間違って冷媒漏れと誤検出しても、第二段階で庫内温度が下降していれば冷媒漏れでないと判定し、安定して冷媒漏れを検出できる。   The reason for this two-stage judgment is that if many foods or foods with large heat capacity are stored in the refrigerator, the temperature inside the refrigerator rises and the load on the compressor 15 increases. Even if it is mistakenly detected, if the internal temperature is lowered in the second stage, it is determined that there is no refrigerant leakage, and refrigerant leakage can be detected stably.

(8−2)第2の制御方法
主制御部33が冷媒漏れと判定してから、ドアスイッチ4b〜7bで検知したドア開閉回数が所定回数(例えば、3回)または開扉時間が所定時間(例えば、3分)を超えた場合、万が一、可燃性冷媒が漏れていても外部に流出して濃度が十分薄まっていると判断し、Rセンサ34による判定までの時間を短くしてもよく、この場合、冷蔵庫の正常運転復帰までの時間を短縮できる。
(8-2) Second Control Method After the main control unit 33 determines that the refrigerant has leaked, the door opening / closing frequency detected by the door switches 4b to 7b is a predetermined number (for example, three times) or the door opening time is a predetermined time. If it exceeds (for example, 3 minutes), even if the flammable refrigerant is leaked, it may be judged that the concentration is sufficiently thin by flowing out and the time until the determination by the R sensor 34 may be shortened. In this case, the time until the refrigerator returns to normal operation can be shortened.

(8−3)第3の制御方法
第2の制御方法とは逆に、ドアスイッチ4b〜7bで検知したドア開閉回数が所定回数を超えた場合、ドアを開けたことによる庫内冷却性能悪化もありうるので、Rセンサ34による判定までの時間を長くしてもよく(例えば、1時間延長する)、この場合、開扉による温度上昇による誤検出を防止でき、冷媒漏れ検知をより確実にできる。
(8-3) Third Control Method Contrary to the second control method, when the number of door opening / closing detected by the door switches 4b to 7b exceeds a predetermined number, the cooling performance inside the chamber is deteriorated due to opening the door. Therefore, the time until the determination by the R sensor 34 may be lengthened (for example, extended by 1 hour). In this case, erroneous detection due to temperature rise due to opening of the door can be prevented, and refrigerant leak detection can be more reliably performed. it can.

(8−4)第4の制御方法
除霜ヒータ26がパイプヒータや発熱温度の低い防爆構造の場合には、冷媒漏れと判定されても制御を停止せずに、Rセンサ34による判定までに冷凍室蒸発器12の除霜を行うことによって、蒸発器の着霜劣化による庫内冷却性能悪化の影響を取り除き、冷媒漏れ検知をより確実にできる。この場合、Rセンサ34による温度検知で、除霜後の温度上昇による誤検知を防止するために、除霜終了後、所定時間後(例えば、6時間後)に検知するようにしてもよい。
(8-4) Fourth Control Method When the defrost heater 26 is a pipe heater or an explosion-proof structure with a low heat generation temperature, the control is not stopped even if it is determined that the refrigerant leaks, and until the determination by the R sensor 34. By performing defrosting of the freezer compartment evaporator 12, it is possible to remove the influence of the deterioration of the internal cooling performance due to the frost deterioration of the evaporator and more reliably detect the refrigerant leakage. In this case, the temperature detection by the R sensor 34 may be performed after a predetermined time (for example, 6 hours) after the completion of the defrosting in order to prevent erroneous detection due to the temperature rise after the defrosting.

(9)変更例
なお、温度センサで検知する温度は、Rセンサ34で検知する冷凍室温度の他に、冷蔵室温度、冷凍室蒸発器温度、冷蔵室蒸発器温度、切替室温度、製氷室温度など冷蔵庫1の冷却性能を判断できる場所であればよい。
(9) Example of change Note that the temperature detected by the temperature sensor is not limited to the freezer temperature detected by the R sensor 34, but the refrigerator temperature, the freezer evaporator temperature, the refrigerator temperature, the switching chamber temperature, and the ice making room. Any place where the cooling performance of the refrigerator 1 such as temperature can be determined may be used.

本発明の冷媒漏れ検知装置は、家庭用冷蔵庫や空調機のコンプレッサに使用できる。   The refrigerant leak detection apparatus of the present invention can be used for a domestic refrigerator or a compressor of an air conditioner.

本発明の一実施形態を示す冷蔵庫の断面図である。It is sectional drawing of the refrigerator which shows one Embodiment of this invention. 本実施形態の冷蔵庫の冷凍サイクル図である。It is a refrigerating cycle figure of the refrigerator of this embodiment. 低圧漏れ時の電力変化である。It is the power change at the time of low pressure leakage. 高圧漏れ時の電力変化である。It is the power change at the time of high pressure leakage. 本実施形態の冷蔵庫のブロック図である。It is a block diagram of the refrigerator of this embodiment. 三相からαβ変化を行うベクトル図である。It is a vector diagram which performs αβ change from three phases. αβからdq変化を行うベクトル図である。It is a vector diagram which changes dq from αβ. コンプ入力実測値と電力値Wiとの関係を示すグラフである。It is a graph which shows the relationship between the compression input actual value and electric power value Wi. 従来のコンプ入力実測値とデューティー値との関係を示すグラフである。It is a graph which shows the relationship between the conventional compression input actual value and duty value.

符号の説明Explanation of symbols

1 冷蔵庫
15 コンプレッサ
28 コンプモータ
32 コンプ駆動装置
33 主制御部
42 インバータ回路
52 dq変換部
64 三相変換部
68 PWM形成部
DESCRIPTION OF SYMBOLS 1 Refrigerator 15 Compressor 28 Comp motor 32 Comp drive device 33 Main control part 42 Inverter circuit 52 dq conversion part 64 Three-phase conversion part 68 PWM formation part

Claims (6)

三相のブラシレスDCモータで回転するコンプレッサと、凝縮器と、蒸発器を少なくとも有する冷凍サイクルと、
前記ブラシレスDCモータの固定子巻線へ三相の駆動電流を供給するインバータ回路と、
前記インバータ回路へPWM信号を供給するPWM回路と、
前記三相の駆動電流を検知する駆動電流検知手段と、
前記検知した三相の駆動電流に基づいて、前記ブラシレスDCモータの回転子の磁束に対応した電流成分であるd軸電流と、前記ブラシレスDCモータのトルクに対応した電流成分であるq軸電流とに変換するdq変換手段と、
前記変換したd軸電流とq軸電流と外部から入力する速度指令信号に基づいて、基準q軸電流と基準d軸電流を出力する制御手段と、
前記基準q軸電流と基準d軸電流とを、基準q軸電圧と基準d軸電圧に変換する電圧変換手段と、
前記変換した基準q軸電圧と基準d軸電圧を三相電圧に変換して前記PWM回路へ出力する三相変換手段と、
前記検知したq軸電流と前記基準q軸電圧との積から電力値を算出する電力値算出手段と、
前記電力算出手段で算出した電力値から基準電力値を抽出し、その抽出の所定時間後の判定用電力値を抽出し、前記基準電力値と前記判定用電力値との差が、所定値以上のときに冷媒漏れと判定する判定手段と、
を有する
ことを特徴とする冷媒漏れ検知装置。
A compressor rotating with a three-phase brushless DC motor, a condenser, and a refrigeration cycle having at least an evaporator;
An inverter circuit for supplying a three-phase drive current to the stator winding of the brushless DC motor;
A PWM circuit for supplying a PWM signal to the inverter circuit;
Drive current detection means for detecting the three-phase drive current;
Based on the detected three-phase drive current, a d-axis current that is a current component corresponding to the magnetic flux of the rotor of the brushless DC motor, and a q-axis current that is a current component corresponding to the torque of the brushless DC motor, Dq conversion means for converting to
Control means for outputting a reference q-axis current and a reference d-axis current based on the converted d-axis current, the q-axis current, and a speed command signal input from the outside;
Voltage converting means for converting the reference q-axis current and the reference d-axis current into a reference q-axis voltage and a reference d-axis voltage;
Three-phase conversion means for converting the converted reference q-axis voltage and reference d-axis voltage into a three-phase voltage and outputting the same to the PWM circuit;
Power value calculating means for calculating a power value from the product of the detected q-axis current and the reference q-axis voltage;
A reference power value is extracted from the power value calculated by the power calculation means, a determination power value after a predetermined time is extracted, and a difference between the reference power value and the determination power value is not less than a predetermined value. Determining means for determining refrigerant leakage at
A refrigerant leak detection device comprising:
前記ブラシレスDCモータの回転子の回転は、磁石トルクとリラクタンストルクを併用する構造であり、最大トルクが得られるように負のd軸電流を流す構成となし、
前記電力算出手段は、
前記検知したd軸電流と基準d軸電圧の積を、前記検知q軸電流と基準q軸電圧の積に加えた値から電力値を算出する
ことを特徴とする請求項1記載の冷媒漏れ検知装置。
The rotation of the rotor of the brushless DC motor is a structure using both magnet torque and reluctance torque, and is configured to flow a negative d-axis current so as to obtain the maximum torque.
The power calculating means includes
The refrigerant leakage detection according to claim 1, wherein the power value is calculated from a value obtained by adding the product of the detected d-axis current and the reference d-axis voltage to the product of the detected q-axis current and the reference q-axis voltage. apparatus.
前記判定手段は、
前記基準電力値を抽出した後、一定時間毎に電力値を複数抽出し、
この複数抽出した電力値を平均化して前記判定用電力値を求める
することを特徴とする請求項1記載の冷媒漏れ検知装置。
The determination means includes
After extracting the reference power value, a plurality of power values are extracted at regular time intervals,
The refrigerant leak detection device according to claim 1, wherein the plurality of extracted power values are averaged to obtain the determination power value.
請求項1から請求項3のうち少なくとも一項に記載の冷媒漏れ検知装置を用いた
ことを特徴とする冷蔵庫。
A refrigerator using the refrigerant leakage detection device according to at least one of claims 1 to 3.
前記判定手段は、
前記冷媒漏れと判定したときに冷却を継続しながら、前記冷蔵庫に設けられている高電圧部品を一時的に停止し、
前記冷媒漏れと判定してから所定時間経過後に前記冷蔵庫に設置した温度センサの検出温度に応じて前記高電圧部品の停止を解除する
ことを特徴とする請求項4記載の冷蔵庫。
The determination means includes
While continuing cooling when it is determined that the refrigerant leaks, temporarily stop the high-voltage components provided in the refrigerator,
The refrigerator according to claim 4, wherein the stop of the high-voltage component is released according to a temperature detected by a temperature sensor installed in the refrigerator after a predetermined time has elapsed since the refrigerant leakage was determined.
前記冷蔵庫の扉開閉の回数に応じて、前記所定時間を変更する
ことを特徴とする請求項5記載の冷蔵庫。
The refrigerator according to claim 5, wherein the predetermined time is changed according to the number of times of opening and closing the door of the refrigerator.
JP2003329149A 2003-09-19 2003-09-19 Refrigerant leakage detecting device and refrigerator using the same Pending JP2005090925A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2003329149A JP2005090925A (en) 2003-09-19 2003-09-19 Refrigerant leakage detecting device and refrigerator using the same
KR1020057018295A KR20060058050A (en) 2003-09-19 2004-03-12 Refrigerant leakage detecting device and refrigerator using the same
CNB2004800079569A CN100359264C (en) 2003-09-19 2004-03-12 Refrigerant leakage detecting device and refrigerator using the same
EP04720265.0A EP1691150B1 (en) 2003-09-19 2004-03-12 Refrigerant leakage detecting device and refrigerator using the same
PCT/JP2004/003451 WO2005028972A1 (en) 2003-09-19 2004-03-12 Refrigerant leakage detecting device and refrigerator using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003329149A JP2005090925A (en) 2003-09-19 2003-09-19 Refrigerant leakage detecting device and refrigerator using the same

Publications (1)

Publication Number Publication Date
JP2005090925A true JP2005090925A (en) 2005-04-07

Family

ID=34372956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003329149A Pending JP2005090925A (en) 2003-09-19 2003-09-19 Refrigerant leakage detecting device and refrigerator using the same

Country Status (5)

Country Link
EP (1) EP1691150B1 (en)
JP (1) JP2005090925A (en)
KR (1) KR20060058050A (en)
CN (1) CN100359264C (en)
WO (1) WO2005028972A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010019439A (en) * 2008-07-08 2010-01-28 Mitsubishi Electric Corp Refrigerating cycle device and operation method of refrigerating cycle device
JP2016031209A (en) * 2014-07-30 2016-03-07 株式会社東芝 Refrigeration cycle system
JPWO2017042859A1 (en) * 2015-09-07 2017-11-16 三菱電機株式会社 Refrigeration cycle system
JP2017219278A (en) * 2016-06-09 2017-12-14 ホシザキ株式会社 Cooling storage house
JP2018091502A (en) * 2016-11-30 2018-06-14 ダイキン工業株式会社 Refrigeration device
CN110940042A (en) * 2018-09-21 2020-03-31 奥克斯空调股份有限公司 Refrigerant leakage detection method and air conditioning device

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110112814A1 (en) * 2009-11-11 2011-05-12 Emerson Retail Services, Inc. Refrigerant leak detection system and method
JP5452629B2 (en) * 2010-02-10 2014-03-26 三菱電機株式会社 Air conditioner
CN104197467B (en) * 2014-08-13 2017-06-20 上海三意电机驱动技术有限公司 A kind of fan coil operating mode detecting and self-adaptation control method and equipment
EP3460346A4 (en) * 2016-05-17 2019-05-08 Mitsubishi Electric Corporation Air conditioner
CN112105876B (en) * 2018-05-10 2022-06-14 三菱电机株式会社 Refrigerant leakage determination device, air conditioner, and refrigerant leakage determination method
KR102500683B1 (en) * 2018-06-29 2023-02-16 엘지전자 주식회사 Apparatus for controlling refrigerator, refrigerator and method for controlling refrigeraotr
US10794629B2 (en) 2018-06-29 2020-10-06 Midea Group Co., Ltd. Negative pressure sensing for an appliance door closure
CN110836519B (en) * 2018-08-16 2021-06-22 奥克斯空调股份有限公司 Air conditioner refrigerant leakage detection method and detection system
CN110836434B (en) * 2018-08-16 2021-06-25 奥克斯空调股份有限公司 Air conditioner refrigerant leakage detection method and device
CN110940046B (en) * 2018-09-21 2021-08-24 奥克斯空调股份有限公司 Refrigerant leakage detection method and air conditioner
CN109781363A (en) * 2018-12-28 2019-05-21 青岛海尔股份有限公司 The detection method and detection device of refrigerator leakproofness
CN109813050B (en) * 2018-12-28 2023-03-17 海尔智家股份有限公司 Refrigerant leakage detection method and device for refrigerator

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3315244B2 (en) * 1994-04-28 2002-08-19 愛知時計電機株式会社 Control device for gas shut-off valve
JP4238497B2 (en) * 2001-09-17 2009-03-18 パナソニック株式会社 Motor drive device for washing machine
US20050086952A1 (en) * 2001-09-19 2005-04-28 Hikaru Nonaka Refrigerator-freezer controller of refrigenator-freezer, and method for determination of leakage of refrigerant
JP4141671B2 (en) * 2001-09-27 2008-08-27 株式会社東芝 refrigerator
JP3999961B2 (en) * 2001-11-01 2007-10-31 株式会社東芝 refrigerator

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010019439A (en) * 2008-07-08 2010-01-28 Mitsubishi Electric Corp Refrigerating cycle device and operation method of refrigerating cycle device
JP2016031209A (en) * 2014-07-30 2016-03-07 株式会社東芝 Refrigeration cycle system
JPWO2017042859A1 (en) * 2015-09-07 2017-11-16 三菱電機株式会社 Refrigeration cycle system
JP2017219278A (en) * 2016-06-09 2017-12-14 ホシザキ株式会社 Cooling storage house
JP2018091502A (en) * 2016-11-30 2018-06-14 ダイキン工業株式会社 Refrigeration device
CN110940042A (en) * 2018-09-21 2020-03-31 奥克斯空调股份有限公司 Refrigerant leakage detection method and air conditioning device
CN110940042B (en) * 2018-09-21 2021-05-18 奥克斯空调股份有限公司 Refrigerant leakage detection method and air conditioning device

Also Published As

Publication number Publication date
EP1691150A4 (en) 2011-07-06
CN100359264C (en) 2008-01-02
KR20060058050A (en) 2006-05-29
EP1691150B1 (en) 2016-11-23
CN1764812A (en) 2006-04-26
WO2005028972A1 (en) 2005-03-31
EP1691150A1 (en) 2006-08-16

Similar Documents

Publication Publication Date Title
JP2005090925A (en) Refrigerant leakage detecting device and refrigerator using the same
US9525369B2 (en) Reverse rotation braking for a PM motor
JP6290028B2 (en) Motor control device, air conditioner, washing machine and refrigerator
US20070101735A1 (en) Heat pump apparatus using expander
KR101776240B1 (en) Motor driving apparatus and home appliance including the same
AU2012383156B2 (en) Heat pump device, air conditioner, and refrigerating machine
WO2004016998A1 (en) Refrigerant leak detector of compressor
US10965237B2 (en) Driving device, air conditioner, and driving method
KR20130106292A (en) Motor control device, motor drive device using the same, compressor, refrigeration device, air conditioner, and motor control method
US11454436B2 (en) Refrigerator having variable speed compressor and control method thereof
JP2007212113A (en) Coolant leakage detecting device, coolant leakage detecting method, and refrigerator using it
JP2005090466A (en) Compressor drive mechanism and refrigerator using the same
KR100582126B1 (en) Motor driving device and cooling fan driving device in refrigerator
KR101918058B1 (en) Apparatus and method for driving brushless motor, and air conditioner having the same
KR101955249B1 (en) Compressor and control method for the compressor
JP6543799B2 (en) refrigerator
JP7034368B1 (en) Motor drive control device, drive control method and refrigeration air conditioner
US20240053071A1 (en) Refrigeration cycle apparatus
JP2006200507A (en) Control device for synchronous type electric compressor
JP2005061709A (en) Cooling fan driving device of refrigerator
KR100650486B1 (en) Refrigerant leak detector of compressor
JP2010101518A (en) Refrigerator
KR20020017575A (en) Refrigerator noise reduction method
JP2001211683A (en) Motor drive
JP2010104201A (en) Inverter apparatus of refrigerator