JP2005083493A - 車両の制御装置 - Google Patents

車両の制御装置 Download PDF

Info

Publication number
JP2005083493A
JP2005083493A JP2003316867A JP2003316867A JP2005083493A JP 2005083493 A JP2005083493 A JP 2005083493A JP 2003316867 A JP2003316867 A JP 2003316867A JP 2003316867 A JP2003316867 A JP 2003316867A JP 2005083493 A JP2005083493 A JP 2005083493A
Authority
JP
Japan
Prior art keywords
engine
ecu
cylinders
vehicle
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003316867A
Other languages
English (en)
Inventor
Kazutoshi Nozaki
和俊 野崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003316867A priority Critical patent/JP2005083493A/ja
Publication of JP2005083493A publication Critical patent/JP2005083493A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Control Of Transmission Device (AREA)

Abstract

【課題】 可変気筒エンジンを搭載しかつニュートラル制御を実行する場合において燃費をより向上させる。
【解決手段】 ECT_ECU1020は、前進走行ポジションで車両の状態が予め定められた条件を満足して停止した場合に入力クラッチC1を解放させるニュートラル制御を実行する。エンジンECU1010は、エンジン100の運転状態に基づいて稼働気筒数を変更する可変気筒制御装置を実行する。ECT_ECU1020は、エンジンECU1010により制御されるエンジン100の稼働気筒数を検知する回路と、検知回路により検知された結果エンジン100が部分気筒稼働されている場合においてニュートラル制御を実行する場合には、入力クラッチC1の目標油圧を低減させる回路とを含む。
【選択図】 図1

Description

本発明は、車両の制御装置に関し、特に、ニュートラル制御を実行する自動変速機を搭載した車両の制御装置に関する。
車両に搭載される自動変速機は、エンジンとトルクコンバータ等を介して繋がるとともに複数の動力伝達経路を有してなる変速機構を有して構成され、たとえば、アクセル開度および車速に基づいて自動的に動力伝達経路の切換えを行なう、すなわち自動的に変速比(走行速度段)の切換えを行なうように構成される。一般的に、自動変速機を有した車両には運転者により操作されるシフトレバーが設けられ、シフトレバー操作に基づいて変速ポジション(たとえば、後進走行ポジション、ニュートラルポジション、前進走行ポジション)が設定され、このように設定された変速ポジション内(通常は、前進走行ポジション内)において自動変速制御が行なわれる。
このような自動変速機を有した車両において、前進走行ポジションが設定されて車両が停止している状態では、アイドリング回転するエンジンからの駆動力がトルクコンバータを介して変速機に伝達され、これが車輪に伝達されるため、いわゆるクリープ現象が発生する。クリープ現象は、登坂路での停車からの発進をスムーズに行なわせることができるなど、所定条件下では非常に有用なのであるが、車両を停止保持したいときには不要な現象であり、車両のブレーキを作動させてクリープ力を抑えるようになっている。すなわち、エンジンからのクリープ力をブレーキにより抑えるようになっており、その分エンジンの燃費が低下するという問題がある。
このようなことから、前進走行ポジションにおいて、ブレーキペダルが踏み込まれてブレーキが作動されるとともにアクセルがほぼ全閉となって車両が停止している状態では、前進走行ポジションのまま変速機をニュートラルに近いニュートラル状態として、燃費の向上を図ることが提案されている。
自動変速機における入力クラッチ(フォワードクラッチ、前進クラッチともいう)を係合状態から解放状態に変更して、このようなニュートラル状態を実現することにより燃費の向上を図っている。以下、このような制御をニュートラル制御という。
一方、燃費向上を図るための技術として、エンジンの部分負荷時に一部の気筒の稼働を休止して稼動気筒の数を減少させることによりエンジン全体としての燃料消費率の向上を図った可変気筒エンジンが一般に知られている。通常のエンジンでは、部分負荷運転ではエンジン全体の吸入空気量を低減させるためにスロットル弁により吸気通路が絞られ、スロットル弁下流側の吸気管の負圧が増大する。このため、エンジン燃焼室に空気を吸入する際のポンピングロスが増大する。これに対し、可変気筒エンジンでは低負荷運転時に一部の気筒の作動を休止し、残りの気筒のみで運転を行なう。同一の負荷状態では通常の全気筒稼働時に比べて気筒休止時には稼動気筒の減少に応じて吸気量を増大させて稼動気筒当たりの出力を増大させる必要が生じる。従って、可変気筒エンジンでは、気筒休止時には同一負荷状態の全気筒稼働に比べて吸気通路の絞りが少なく、吸気管の負圧が小さい状態で運転されることになる。このため、部分負荷時のポンピングロスが低減されエンジン全体としての燃料消費率が向上するというものである。
すなわち、このような可変気筒エンジンにおいては、エンジンの吸気弁および排気弁は燃料の供給の有無にかかわらず常に開閉をおこなっており、また、一般に、稼働気筒数が多いほど、振動が少なく、ドライバビリティがよく、また稼働気筒数が少ないほど、アイドルスピードコントロールバルブの開度が最も大きくなるのでポンピングロスが最小となり燃費がよくなるということである。
特開平9−158751号公報(特許文献1)は、このような可変気筒エンジンの出力制御装置を開示する。この出力制御装置は、燃料供給を停止して、その後、供給を再開する時に必要最小限の燃料を供給することを可能とする。この出力制御装置は、減速時に流体を介した係合により変速機と結合されるエンジンの出力制御装置であって、予め定めた第1の走行状態まで減速されたときに予め定めた気筒の稼働を停止し、さらに減速されて第2の走行状態になったときに稼働を停止した気筒の内の少なくとも一部の稼働を再開し、再開後の出力を、予め定めた目標出力から車両側から入力される逆駆動力を差し引いた出力に制御する。
この特許文献1に開示された出力制御装置によると、稼働を停止した気筒の稼働を再開するときに、目標出力から車両側からの逆駆動力の分を差し引いた出力のみ与えることができ必要以上の出力が供給されることが防止される。また、この出力制御装置においては、稼働気筒数と吸入空気量の調製範囲でより高い目標エンジン回転数を設定してドライバビリティを良くすることもできる。
特開平9−158751号公報
しかしながら、特許文献1には、ニュートラル制御について言及したものではなく、たとえ、高いエンジン回転数を設定するという開示があっても、ニュートラル制御と可変気筒制御とを組合わせた場合、すなわち、全気筒稼働時であっても部分気筒稼働時であっても、ニュートラル制御を実行する場合に発生する以下のような問題点を特許文献1に開示された出力制御装置では解決し得ない。
まず、可変気筒制御とは関係させないで、ニュートラル制御における燃費向上効果が発現するメカニズムについて説明する。
トルクコンバータの容量係数に基づいて、ニュートラル制御を実行した場合と実行しなかった場合とにおける相違点について説明する。
図5は、トルクコンバータの容量係数の特性を表わす一般的な図であって、0〜1までの速度比e(=タービン回転数NT/エンジン回転数NE)に対するトルクコンバータの容量係数を示している。
ニュートラル制御が実行される直前は、前進走行ポジションで車両が停止している状態であるので、速度比e=0、容量係数C=C(1)である。ニュートラル制御が実行されると、前進走行ポジションで車両が停止している状態で入力クラッチC1が解放されるので、速度比eがたとえばe=0.9、容量係数C=C(2)(C(1)>C(2)>0)になる。
エンジン回転数NEが一定であれば、エンジントルクTE=トルクコンバータのポンプ側トルクTP=C×NEで表わされる。したがって、エンジン回転数NEが一定のもとで、ニュートラル制御が実行されて入力クラッチC1が解放されて、トルクコンバータによりエンジントルクが伝達されて速度比eが上昇して容量係数CがC(1)からC(2)に低下する。
これにより、ニュートラル制御が実行されている時にエンジンに要求されるトルクはC(2)×NEで表わされるものであって、それは、ニュートラル制御が実行されていない時にエンジンに要求されるトルクであるC(1)×NEよりも小さいので、燃費向上効果が発現する。なお、実際には、速度比eが目標速度比になるように入力クラッチC1の係合圧がフィードバック制御される。
このようにして発生するニュートラル制御における燃費向上のメカニズムを前提として、エンジンの稼働気筒数が異なる場合にニュートラル制御が実行された場合について説明する。以下の説明では、6気筒エンジンを一例として、部分気筒稼働時には3気筒のみに燃料が供給され点火されると想定する。
図6に、ニュートラル制御を実行する際に、稼働気筒数が異なっても(6気筒、3気筒)、入力クラッチC1の目標係合圧(目標油圧)が同じ油圧であった場合について説明する。トルク比(=タービントルクTT/エンジントルクTE)は、速度比eにより一義的に定まるので、エンジントルクTEが大きい6気筒稼働時には、タービントルクTTも大きくなり、ECT_ECUは入力クラッチC1を解放させる(滑らせる)ように作動して、目標の速度比eになるように制御が行なわれる。エンジントルクTEが小さい3気筒稼働時には、タービントルクTTは小さくなり、ECT_ECUは入力クラッチC1を係合させる(滑らせない)ように作動して、目標の速度比eになるように制御が行なわれる。
そのため、図6に示すように、入力クラッチC1の目標係合圧(目標油圧)が同じであると(3気筒稼働時にも、6気筒稼働時と同じように、入力クラッチの目標油圧が高い状態)、3気筒稼働時においてはニュートラル制御の開始から、速度比eが一定の領域(目標とする速度比で安定する領域)になって燃費向上効果が発現するまでの時間が、6気筒稼働時に比べて遅れてしまう。
すなわち、エンジントルクTEが小さい3気筒稼働時には、タービントルクTTは小さくなり、ECT_ECUは入力クラッチC1を係合させる(滑らせない)ように作動する傾向にあり、入力クラッチC1の目標油圧が高いままでは、目標とする速度比に到達するように実行されるフィードバック制御において整定時間が長くなってしまう。また、図6に示すように、3気筒稼働時には入力クラッチC1が係合側の状態から解放側(目標速度比eを満足する入力クラッチC1の解放側)になるように制御されるので、ニュートラル制御が実行されてから入力クラッチC1を急激に解放することが発生する場合もあり、入力クラッチC1の解放ショックが発生し得る。
このように、ニュートラル制御の開始時において、全気筒稼働されている場合と、部分気筒稼働されている場合とで、従来の通り、入力クラッチC1の目標係合圧(目標油圧)を同じ油圧に設定したのでは、部分気筒稼働時のニュートラル制御の燃費向上効果の発現が遅れてしまう。
本発明は、上述の課題を解決するためになされたものであって、その目的は、可変気筒エンジンを搭載し、かつニュートラル制御を実行する場合において、良好な燃費向上特性を実現させることができる車両の制御装置を提供することである。
第1の発明に係る車両の制御装置は、前進走行ポジションで車両の状態が予め定められた条件を満足して停止した場合に入力クラッチを解放させるニュートラル制御装置と、エンジンの運転状態に基づいて稼働気筒数を変更する可変気筒制御装置とを搭載した車両を制御する。この制御装置は、可変気筒制御装置により制御されるエンジンの稼働気筒数を検知するための検知手段と、検知手段により検知されたエンジンの稼働気筒数に基づいて、ニュートラル制御における入力クラッチの目標油圧を変更するための変更手段とを含む。
第1の発明によると、可変気筒制御装置により部分気筒稼働されているとき(たとえば6気筒エンジンで3気筒が稼働しているとき)、ニュートラル制御を実行する場合には、全気筒稼働している場合に比べて低い油圧が入力クラッチの目標油圧として設定される。このようにすると、3気筒稼働時には、エンジントルクが小さく入力クラッチが係合側であるので、目標油圧を変更(たとえば低く)することにより、ニュートラル制御の開始から、より早く一定の速度比である領域に入いることができる。もし、目標油圧を全気筒稼働と同じであると、ニュートラル制御の開始から、一定の速度比である領域に入るまでの時間が長引いてニュートラル制御の効果である燃費向上効果を発現しにくくなる。その結果、可変気筒エンジンを搭載し、かつニュートラル制御を実行する場合において、良好な燃費向上特性を実現させることができる車両の制御装置を提供することができる。
第2の発明に係る車両の制御装置においては、第1の発明の構成に加えて、変更手段は、検知手段により検知された稼働気筒数に基づいて部分気筒稼働中であると判断されると、全気筒稼働中よりも目標油圧を低減させるための手段を含む。
第2の発明によると、部分気筒稼働時には、エンジントルクが小さく入力クラッチが係合側であるので、目標油圧を低くすることにより、ニュートラル制御の開始から、より早く一定の速度比である領域に入いることができる。目標油圧を全気筒稼働と同じで変更しない場合に比べて、ニュートラル制御の効果である燃費向上効果を発現しやすくできる。
以下、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明では、同一の部品には同一の符号を付してある。それらの名称および機能も同じである。したがってそれらについての詳細な説明は繰返さない。
本発明の実施の形態に係る制御装置を含む車両のパワートレーンについて説明する。本実施の形態に係る制御装置は、図1に示すECU(Electronic Control Unit)1000により実現される。本実施の形態では、自動変速機を流体継手としてトルクコンバータを備え、歯車式変速機構を有する自動変速機として説明する。なお、自動変速機は、ベルト式などの無段変速機(CVT:Continuously Variable Transmission)であってもよい。
図1を参照して、本実施の形態に係る制御装置を含む車両のパワートレーンについて説明する。本実施の形態に係る制御装置は、図1に示すECT(Electronic Controlled Automatic Transmission)_ECU1020により実現される。
図1に示すように、この車両のパワートレーンは、エンジン100と、トルクコンバータ200と、自動変速機300と、ECU1000とから構成される。
エンジン100の出力軸は、トルクコンバータ200の入力軸に接続される。エンジン100とトルクコンバータ200とは回転軸により連結されている。したがって、エンジン回転数センサ400により検知されるエンジン100の出力軸回転数NE(エンジン回転数NE)とトルクコンバータ200の入力軸回転数(ポンプ回転数NP)とは同じである。
トルクコンバータ200は、入力軸と出力軸とを直結状態にするロックアップクラッチ210と、入力軸側のポンプ羽根車220と、出力軸側のタービン羽根車230と、ワンウェイクラッチ250を有し、トルク増幅機能を発現するステータ240とから構成される。トルクコンバータ200と自動変速機300とは、回転軸により接続される。トルクコンバータ200の出力軸回転数NT(タービン回転数NT)は、タービン回転数センサ410により検知される。自動変速機300の出力軸回転数NOUTは、出力軸回転数センサ420により検知される。
図2に自動変速機300の作動表を示す。図2に示す作動表によると、摩擦要素であるクラッチ要素(図中のC1〜C4)や、ブレーキ要素(B1〜B4)、ワンウェイクラッチ要素(F0〜F3)が、どのギヤ段の場合に係合および解放されるかを示している。車両の発進時に使用される1速時には、クラッチ要素(C1)、ワンウェイクラッチ要素(F0、F3)が係合する。これらのクラッチ要素の中で、特にクラッチ要素C1を入力クラッチ310という。この入力クラッチ310は、前進クラッチやフォワードクラッチとも呼ばれ、図2の作動表に示すように、パーキング(P)ポジション、後進走行(R)ポジション、ニュートラル(N)ポジション以外の、車両が前進するための変速段を構成する際に必ず係合状態で使用される。
前進走行(D)ポジションであって、車両の状態が予め定められた条件を満足して停止した場合に、入力クラッチ310を解放して所定のスリップ状態にして、ニュートラルに近い状態にする制御をニュートラル制御という。
これらのパワートレーンを制御するECU1000は、エンジン100を制御するエンジンECU1010と、自動変速機300を制御するECT(Electronic Controlled Automatic Transmission)_ECU1020と、VSC(Vehicle Stability Control)_ECU1030とを含む。
ECT_ECU1010には、タービン回転数センサ410からタービン回転数NTを表わす信号が、出力軸回転数センサ420から出力軸回転数NOUTを表わす信号が入力される。また、ECT_ECU1010には、エンジンECU1010から、エンジン回転数センサ400にて検知されたエンジン回転数NEを表わす信号と、スロットルポジションセンサにて検知されたスロットル開度を表わす信号とが入力される。
これら回転数センサは、トルクコンバータ200の入力軸、トルクコンバータ200の出力軸および自動変速機300の出力軸に取り付けられた回転検出用ギヤの歯に対向して設けられている。これらの回転数センサは、トルクコンバータ200の入力軸、トルクコンバータ200の出力軸および自動変速機300の出力軸の僅かな回転の検出も可能なセンサであり、たとえば、一般的に半導体式センサと称される磁気抵抗素子を使用したセンサである。
さらに、ECT_ECU1020には、VSC_ECU1030から、Gセンサにて検知された車両加速度を表わす信号と、ブレーキ圧を表わす信号とが入力される。
ECT_ECU1020から、自動変速機300に、入力クラッチ310の係合圧指令信号と、ソレノイド制御信号が出力される。この入力クラッチ310の係合圧は、目標油圧に基づいてトルクコンバータ200の速度比eが一定になるようにフィードバック制御される。また、エンジンECU1010においては、エンジン100の運転状態に応じて、エンジン100の稼働気筒数を変更する可変気筒制御を実行する。ここでは、エンジン100は6気筒エンジンで、部分気筒稼働時には3気筒のみが稼働されるものとする。
図3を参照して、本実施の形態に係る制御装置のECT_ECU1020において実行されるプログラムの制御構造について説明する。
ステップ(以下、ステップをSと略す。)100にて、ECT_ECU1020は、車両が停止状態であるか否かを判断する。すなわち、車両が停止状態であって、エンジン100がアイドル状態であるか否かを判断する。この判断は、ECT_ECU1020に入力されるスロットル開度信号やブレーキ圧信号などに基づいて、エンジン100がアイドル状態であって車両の状態が予め定められた状態(停止状態)であるか否かに基づいて行なわれる。車両が停止(アイドル状態)であると(S100にてYES)、処理はS200へ移される。もしそうでないと(S100にてNO)、この処理は終了する。なお、この図3に示すフローチャートはサブルーチンであって、この処理を終了するとは、メインルーチンに戻るということを示す。
S200にて、ECT_ECU1020は、可変気筒制御が実行中であるか否かを判断する。この判断は、エンジンECU1010からECT_ECU1020に入力される可変気筒実行中信号(部分気筒制御実行中)に基づいて行なわれる。エンジン100が可変気筒制御を実行中(部分気筒稼働状態)であると(S200にてYES)、処理はS600へ移される。もしそうでないと(S200にてNO)、処理はS300へ移される。
S300にて、ECT_ECU1020は、N制御の許可条件が成立したか否かを判断する。この判断は、ECT_ECU1020に入力されるスロットル開度信号やブレーキ圧信号やアクセル開度信号などに基づいて行なわれる。ニュートラル制御が許可されると(S300にてYES)、処理はS400へ移される。もしそうでないと(S300にてNO)、この処理は終了する。
S400にて、ECT_ECU1020は、ニュートラル制御を開始する。ECT_ECU1020は、入力クラッチC1係合圧指令信号をトルクコンバータ200における速度比が目標の速度比になるようにフィードバック制御を実行する。このニュートラル制御を実行することによりトルクコンバータ200における速度比が目標の速度比となり、エンジン100に要求されるトルクが減少して燃費向上効果が発生する。
S500にて、ECT_ECU1020は、ニュートラル制御における入力クラッチC1の目標油圧を目標油圧(2)に設定する。その後、処理は終了する。
S600にて、ECT_ECU1020は、N制御が許可されたか否かを判断する。この処理は、前述のS300と同じ処理である。
S700にて、ECT_ECU1020はニュートラル制御を開始する。このS700における処理は前述のS400における処理と同じである。
S800にて、ECT_ECU1020は、ニュートラル制御における入力クラッチC1の目標油圧を目標油圧C(1)に設定する。この目標油圧(1)は目標油圧(2)よりも低い油圧である。
図3に示すフローチャートによると、可変気筒制御が実行されている場合(部分気筒稼働状態)においてニュートラル制御が実行されるときの入力クラッチC1の目標油圧は低く、可変気筒制御が実行されていない場合(全気筒稼働状態)においてニュートラル制御が実行される場合の入力クラッチC1の目標油圧は高い油圧に設定されることになる。
以上のような構造およびフローチャートに基づく、本実施の形態に係る車両の制御装置であるECT_ECU1020を搭載した車両の動作について説明する。
可変気筒制御装置およびニュートラル制御装置を実装した車両が赤信号の交差点などで停止し運転者がアクセルペダルを放して、ブレーキペダルを踏み込み、自動変速機300が前進走行ポジション(Dポジション)の状態であって、可変気筒制御が実行中であると(部分気筒稼働中)(S100にてYES、S200にてYES、S600にてYES)、ニュートラル制御が開始される(S700)。このとき、ニュートラル制御における入力クラッチC1の目標油圧が低く設定される(S800)。
一方、同じように車両が赤信号の交差点で停止した場合であっても、可変気筒制御の実行中でなくても(全気筒稼働中)(S200にてNO、S300にてYES)、ニュートラル制御が開始される(S400)。このとき、ニュートラル制御における入力クラッチC1の目標油圧は、通常の目標油圧(可変気筒制御により部分気筒稼働されているときよりも高い油圧)に設定される。
図4に、入力クラッチC1の係合圧(目標圧、指示圧)の時間変化を示す。
実線がニュートラルクラッチC1の係合圧の時間変化曲線を示すものであって、本実施の形態に係るECT_ECU1020により目標油圧を下げる制御が実行された場合に対応する。トルクコンバータ200の速度比が一定領域になるまでの時間が短いことがわかる。
一点鎖線がニュートラルクラッチC1の係合圧の時間変化曲線を示すものであって、本実施の形態に係るECT_ECU1020により目標油圧を下げる制御が実行されなかった場合に対応する。トルクコンバータ200の速度比が一定領域になるまでの時間が長いことがわかる。
図4に示すのは、いずれの場合も、可変気筒制御によりエンジン100の6気筒のうちの3気筒のみが稼働されている状態である。
図4に示すように、本実施の形態に係るECT_ECU1020によりニュートラル制御時の入力クラッチC1の目標油圧を低く設定する制御が実行される場合には実線で示すように、トルクコンバータ200が目標速度比になるように入力クラッチC1の係合圧がフィードバック制御され、速度比が一定となる領域に到達するまでに時間が短い。一方、部分気筒制御が実行される場合において、従来のようにニュートラル制御時の入力クラッチC1の目標油圧が高いままであると、トルクコンバータ200の速度比が一定となる領域に到達するまでの時間が長くかかる。
図4および図6を比較すればわかるように、全気筒稼働(6気筒)においてニュートラル制御が行なわれた場合に速度比が一定領域に到達する時間も、部分気筒可動(3気筒)においてニュートラル制御が行なわれた場合に速度比が一定領域になる場合までの時間も同じような時間になる。すなわち、本実施の形態に係るECT_ECU1020により、可変気筒制御の実行の有無にかかわらずニュートラル制御の開始からトルクコンバータ200の速度比が一定になる領域に到達するまでの時間を同じぐらいにすることができる。このため、本実施の形態に係るECT_ECU1020により、部分気筒制御がされている場合に入力クラッチC1の目標油圧を低くしない場合に比べてニュートラル制御による燃費向上効果をより早く発現させることができる。
なお、上述した実施の形態においては、トルクコンバータを構成要素として説明したが、トルクコンバータは本発明の必須の構成要素ではない。トルクコンバータが存在しない場合であっても、本発明の適用は可能である。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
本発明の実施の形態に係る車両の制御装置であるECT_ECUを含むパワートレーンの制御ブロック図である。 図1に示す自動変速機の作動表である。 ECT_ECUで実行されるニュートラル制御処理のプログラムの制御構造を示す図である。 本発明の実施の形態に係る制御装置であるECT_ECUが搭載された車両の自動変速機における入力クラッチC1の係合圧の時間的変化を示すタイミングチャートである。 トルクコンバータの速度比と容量係数との関係を示す図である。 従来のECT_ECUが搭載された車両の自動変速機における入力クラッチC1の係合圧の時間的変化を示すタイミングチャートである。
符号の説明
100 エンジン、200 トルクコンバータ、210 ロックアップクラッチ、220 ポンプ羽根車、230 タービン羽根車、240 ステータ、250 ワンウェイクラッチ、300 自動変速機、310 入力クラッチ、400 エンジン回転数センサ、410 タービン回転数センサ、420 出力軸回転数センサ、1000 ECU、1010 エンジンECU、1020 ECT_ECU、1030 VSC_ECU。

Claims (2)

  1. 前進走行ポジションで車両の状態が予め定められた条件を満足して停止した場合に入力クラッチを解放させるニュートラル制御装置と、エンジンの運転状態に基づいて稼働気筒数を変更する可変気筒制御装置とを搭載した車両の制御装置であって、
    前記可変気筒制御装置により制御される前記エンジンの稼働気筒数を検知するための検知手段と、
    前記検知手段により検知されたエンジンの稼働気筒数に基づいて、ニュートラル制御における前記入力クラッチの目標油圧を変更するための変更手段とを含む、車両の制御装置。
  2. 前記変更手段は、前記検知手段により検知された稼働気筒数に基づいて部分気筒稼働中であると判断されると、全気筒稼働中よりも前記目標油圧を低減させるための手段を含む、請求項1に記載の車両の制御装置。
JP2003316867A 2003-09-09 2003-09-09 車両の制御装置 Withdrawn JP2005083493A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003316867A JP2005083493A (ja) 2003-09-09 2003-09-09 車両の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003316867A JP2005083493A (ja) 2003-09-09 2003-09-09 車両の制御装置

Publications (1)

Publication Number Publication Date
JP2005083493A true JP2005083493A (ja) 2005-03-31

Family

ID=34416631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003316867A Withdrawn JP2005083493A (ja) 2003-09-09 2003-09-09 車両の制御装置

Country Status (1)

Country Link
JP (1) JP2005083493A (ja)

Similar Documents

Publication Publication Date Title
JP3685149B2 (ja) 車両用駆動制御装置
US6908413B2 (en) Driving control apparatus for vehicle and driving control method for vehicle
US9656676B2 (en) Vehicle travel control device
US9656670B2 (en) Vehicle travel control device
JP4120642B2 (ja) 車両用駆動制御装置
WO2006095920A1 (ja) 自動変速機の制御装置
JP3843921B2 (ja) 車両用駆動制御装置
JP2004051023A (ja) 車両の制御装置
JP4172345B2 (ja) 車両の制御装置
JP2009019587A (ja) 車両の制御装置
JP4001146B2 (ja) 車両用駆動制御装置
JP2010038300A (ja) 車両の制御装置および制御方法
JP4623146B2 (ja) 車両の制御装置および制御方法
JP2008128312A (ja) 自動変速機の制御装置
JP2005249207A (ja) 車両用駆動制御装置
JP2013204624A (ja) 車両の制御装置
JPH0587236A (ja) 車両のクリープ制御装置
JP2009058112A (ja) 車両用自動変速機の制御装置
JPH05157173A (ja) 車両用自動変速機のクリープ制御装置
JP2005162205A (ja) 車両用駆動制御装置
JP2008120151A (ja) 車両の制御装置
JP2005083493A (ja) 車両の制御装置
JP2007224745A (ja) 車両の制御装置
JP2011089642A (ja) 車両用駆動制御装置
JP6677780B1 (ja) 車両制御装置

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061205