JP2005078892A - Organic el element, its manufacturing method, and mask - Google Patents

Organic el element, its manufacturing method, and mask Download PDF

Info

Publication number
JP2005078892A
JP2005078892A JP2003306400A JP2003306400A JP2005078892A JP 2005078892 A JP2005078892 A JP 2005078892A JP 2003306400 A JP2003306400 A JP 2003306400A JP 2003306400 A JP2003306400 A JP 2003306400A JP 2005078892 A JP2005078892 A JP 2005078892A
Authority
JP
Japan
Prior art keywords
mask
organic
substrate
thin film
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003306400A
Other languages
Japanese (ja)
Inventor
Yoshiki Otani
新樹 大谷
Satoshi Takato
聡 高藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Display Corp
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Kyocera Display Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, Kyocera Display Corp filed Critical Asahi Glass Co Ltd
Priority to JP2003306400A priority Critical patent/JP2005078892A/en
Publication of JP2005078892A publication Critical patent/JP2005078892A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/173Passive-matrix OLED displays comprising banks or shadow masks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Details Or Accessories Of Spraying Plant Or Apparatus (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent a resistor and uneven luminescence from being generated by preventing liquid applied by a spraying method to form an organic thin film from spreading out. <P>SOLUTION: After forming a positive electrode wiring, a negative electrode connecting terminal, an insulating film, and a barrier plate on a substrate 1, an organic thin film layer is laminated. At this time, a mask 9 having a mask opening part 11 and a level difference, the width of which is not less than 0.05 mm and the depth of which is not less than 10-40 μm, on the surface side facing the substrate around the mask opening 11 is mounted to the substrate 1, and a solution is prevented from spreading out by applying the solution of an organic material by a spray gun 10. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、有機EL表示素子、その製造方法およびマスクに関する。   The present invention relates to an organic EL display element, a manufacturing method thereof, and a mask.

近年、有機EL素子を使用した有機EL表示素子の開発が盛んに行われている。有機EL表示素子は、液晶表示装置と比較して視野角が広く、また、応答速度も速く、有機物が発光の多様性を有することから、次世代の表示装置として期待されている。   In recent years, organic EL display elements using organic EL elements have been actively developed. An organic EL display element is expected as a next-generation display device because it has a wider viewing angle and a faster response speed than a liquid crystal display device, and organic materials have a variety of light emission.

有機EL素子の一般的な構成を図6および図7に示す。図6は、電極が配置される側から基板を観察した場合の模式図であり、図7は、図6のP−Q切断線における断面図である。図6では、上層に設けられた陰極配線等によって隠れる構成部も示している。   A general configuration of the organic EL element is shown in FIGS. 6 is a schematic view when the substrate is observed from the side where the electrodes are arranged, and FIG. 7 is a cross-sectional view taken along the line PQ in FIG. FIG. 6 also shows components that are hidden by the cathode wiring or the like provided in the upper layer.

図6と図7を参照して有機EL表示素子の一般的な製造方法について以下に説明する。   A general method for manufacturing an organic EL display element will be described below with reference to FIGS.

図6において、まず基板1上に、陽極配線2Aと陰極接続端子2Bとを形成する。続いて、開口部3を有する絶縁膜4を形成する。開口部3は、陽極配線2Aと陰極配線7とを交差することになる位置に設ける。そして、陽極配線2Aと直交するように隔壁5を形成する。   In FIG. 6, first, an anode wiring 2A and a cathode connection terminal 2B are formed on a substrate 1. Subsequently, an insulating film 4 having an opening 3 is formed. The opening 3 is provided at a position where the anode wiring 2A and the cathode wiring 7 intersect each other. Then, a partition wall 5 is formed so as to be orthogonal to the anode wiring 2A.

続いて、有機材料の溶液を塗布または蒸着し、第1の有機薄膜層6を形成する。なお、有機薄膜層として複数の層を形成するが、図7では、複数の層をまとめて第1の有機薄膜層6として示す。溶液は、有機薄膜層を形成すべき領域に一定の厚みで有機薄膜層を形成できるように、有機材料濃度等を調整する。第1の有機薄膜層6を形成した後、陰極配線7を第1の有機薄膜層上に蒸着する。隔壁5が第1の有機薄膜層6や陰極配線7を分離することにより、隔壁間に第1の有機薄膜層6を形成し、また、パターニングした陰極配線7を形成する。   Subsequently, a solution of an organic material is applied or evaporated to form the first organic thin film layer 6. In addition, although a several layer is formed as an organic thin film layer, in FIG. 7, a several layer is collectively shown as the 1st organic thin film layer 6. FIG. The solution adjusts the organic material concentration and the like so that the organic thin film layer can be formed with a certain thickness in the region where the organic thin film layer is to be formed. After the first organic thin film layer 6 is formed, the cathode wiring 7 is deposited on the first organic thin film layer. The partition wall 5 separates the first organic thin film layer 6 and the cathode wiring 7 to form the first organic thin film layer 6 between the partition walls, and the patterned cathode wiring 7 is formed.

あるいは、有機EL素子を保護するための保護膜として、ポリマー等で構成される第2の有機薄膜層を陰極配線7上に形成する場合もある。第2の有機薄膜層(図示せず)も、塗布法等によって形成する。   Alternatively, a second organic thin film layer made of a polymer or the like may be formed on the cathode wiring 7 as a protective film for protecting the organic EL element. The second organic thin film layer (not shown) is also formed by a coating method or the like.

また、基板1の電極等を配置した面には、もう一枚の基板(図示せず)を対向するように配置する。この基板において、基板1の有機EL素子に対向する領域の外周にシール材(図示せず)を塗布する。このシール材によって、基板1ともう一枚の基板を接着する。有機EL素子を基板およびシール材で封止し、水分や酸素にさらされないように保持する。   In addition, another substrate (not shown) is disposed to face the surface of the substrate 1 on which the electrodes and the like are disposed. In this substrate, a sealing material (not shown) is applied to the outer periphery of the region of the substrate 1 facing the organic EL element. With this sealing material, the substrate 1 and another substrate are bonded. The organic EL element is sealed with a substrate and a sealing material and held so as not to be exposed to moisture or oxygen.

有機薄膜層を形成するために、有機薄膜層となる有機材料を液体中に分散または溶解させ、溶液として塗布して、所望の有機薄膜層を形成する技術(湿式塗布方法、以下、単に塗布法と記す)が知られている。特許文献1には、有機薄膜層のうち少なくとも一層を塗布法により形成することが記載されている。   In order to form an organic thin film layer, a technique for forming a desired organic thin film layer by dispersing or dissolving an organic material to be an organic thin film layer in a liquid and applying it as a solution (wet coating method, hereinafter simply coating method) Is known). Patent Document 1 describes that at least one of the organic thin film layers is formed by a coating method.

塗布法としては、例えば、オフセット印刷法、凸版印刷法、マスクスプレー法等がある。オフセット印刷法や凸版印刷法は、印刷版を用いて、有機材料を溶媒中に分散または溶解させた溶液の層を所定の領域のみに形成する方法であるが、ポリマー等の有機薄膜層を溶解するための溶媒によっては版が溶けたり、版の成分が溶液中に溶出する等の問題がある。   Examples of the coating method include an offset printing method, a relief printing method, and a mask spray method. The offset printing method and the relief printing method are methods in which a layer of a solution in which an organic material is dispersed or dissolved in a solvent is formed only in a predetermined region using a printing plate, but an organic thin film layer such as a polymer is dissolved. Depending on the solvent used, there are problems such as dissolution of the plate and dissolution of the components of the plate into the solution.

また、マスクスプレー法は、所望の領域に合致するようなマスク開口部を有するマスクを配置して、有機材料を分散または溶解させた溶液を窒素等の気体媒体中に分散させる等をすることによって、溶液を噴霧する方法である。マスクスプレー法の場合、マスクをかけることにより所望の領域にポリマー等の有機薄膜層を塗布することができるという利点を有しているが、マスク開口部の周囲の基板対向面と基板表面との間隙が大き過ぎる場合、スプレーした霧状の溶液がマスク開口部の周囲の基板対向面と基板表面の間隙まで到達し、所望の塗布パターンを得ることができないという問題がある。また、マスク開口部の周囲の基板対向面と基板表面との間隙が小さ過ぎる場合、基板に塗布した溶液が毛管現象によってマスク開口部の周囲の基板対向面と基板表面の間隙に入り、溶液が広がり、やはり所望の塗布パターンを得ることができないという問題がある。   In the mask spray method, a mask having a mask opening that matches a desired region is arranged, and a solution in which an organic material is dispersed or dissolved is dispersed in a gaseous medium such as nitrogen. This is a method of spraying a solution. In the case of the mask spray method, there is an advantage that an organic thin film layer such as a polymer can be applied to a desired region by applying a mask, but there is a difference between the substrate facing surface around the mask opening and the substrate surface. When the gap is too large, there is a problem that the sprayed mist solution reaches the gap between the substrate facing surface around the mask opening and the substrate surface, and a desired coating pattern cannot be obtained. Also, if the gap between the substrate facing surface around the mask opening and the substrate surface is too small, the solution applied to the substrate enters the gap between the substrate facing surface around the mask opening and the substrate surface due to capillary action, and the solution There is a problem that the desired coating pattern cannot be obtained.

特開2001−351779号公報(段落0012−0017、第1図および第2図)Japanese Patent Laid-Open No. 2001-351799 (paragraphs 0012-0017, FIGS. 1 and 2)

以上のように、マスクスプレー法で有機材料の溶液を噴霧により塗布し、有機薄膜層を形成する際、マスク開口部の周囲の基板対向面と基板表面との間隙の大きさが適切でない場合、所望の塗布パターンを得ることができないという問題が生じる。   As described above, when the organic material solution is applied by spraying using the mask spray method to form the organic thin film layer, when the size of the gap between the substrate facing surface around the mask opening and the substrate surface is not appropriate, There arises a problem that a desired coating pattern cannot be obtained.

図8は、マスク開口部の周囲の基板対向面と基板表面との間隙に沿って、溶液が広がった場合の溶液の形状を模式的に示した図である。図8では、隔壁5と有機材料の溶液8のみを示し、他の構成部の図示は省略した。図8において、破線で示した領域は、マスク開口部の範囲、すなわち塗布した溶液が広がらずに留まっているべき範囲を示している。溶液は、この破線の領域より広がらないことが理想である。しかし、既に説明したように、マスク開口部の周囲の基板対向面と基板表面との間隙の大きさが適切でない場合、有機材料の溶液8はマスク開口部の周囲の基板対向面と基板表面の間隙に沿って広がる。その結果、図8に示すように、溶液は、破線で示す範囲よりも広がる。   FIG. 8 is a diagram schematically showing the shape of the solution when the solution spreads along the gap between the substrate facing surface around the mask opening and the substrate surface. In FIG. 8, only the partition walls 5 and the organic material solution 8 are shown, and the other components are not shown. In FIG. 8, a region indicated by a broken line indicates a range of the mask opening, that is, a range where the applied solution should remain without spreading. Ideally, the solution should not spread beyond this dashed area. However, as already described, when the size of the gap between the substrate facing surface around the mask opening and the substrate surface is not appropriate, the organic material solution 8 is formed between the substrate facing surface around the mask opening and the substrate surface. Spread along the gap. As a result, as shown in FIG. 8, the solution spreads beyond the range indicated by the broken line.

このように溶液が広がることにより、以下のような問題が生じる。溶液が広がり、陰極接続端子2B上に有機薄膜が形成されると、薄膜が陰極接続端子2Bと陰極配線7との間の抵抗体となる。有機EL素子は、陰極配線7と陽極配線2Aとの間に電流を流すことによって駆動する。そのため、接続端子2Bと陰極配線7との間に抵抗体が存在すると発熱するという問題が生じる。また、抵抗体が存在すると、陰極配線7と陰極接続端子2Bとの間の接続不良が生じる場合もある。   As the solution spreads as described above, the following problems occur. When the solution spreads and an organic thin film is formed on the cathode connection terminal 2B, the thin film becomes a resistor between the cathode connection terminal 2B and the cathode wiring 7. The organic EL element is driven by passing a current between the cathode wiring 7 and the anode wiring 2A. Therefore, there arises a problem that heat is generated when a resistor is present between the connection terminal 2B and the cathode wiring 7. Further, if a resistor is present, a connection failure between the cathode wiring 7 and the cathode connection terminal 2B may occur.

また、溶液は一定の厚みが得られるように濃度等を調整するが、溶液が広がると、所望の厚みを得ることが困難となる。マスク開口部の周囲の溶液は、外側に広がり、有機薄膜層の厚さは分布を持ち、マスク開口部近傍の膜厚は外側に向かって薄くなる。このように、有機薄膜層の厚さにむらが生じるため、各表示画素発光時に発光むらが生じる。
また、溶液が広がるという問題は、有機EL素子の保護膜としてポリマー等の第2の有機薄膜層を陰極配線7上に塗布法で形成する場合にも生じる。第2の有機薄膜層が塗布領域よりも外に広がり、膜厚が不均一になり膜厚の薄い部分ができると、有機EL素子を保護する機能が弱くなり、表示品位の経時劣化などの問題が発生する。
Further, the concentration and the like of the solution are adjusted so that a constant thickness can be obtained. However, when the solution spreads, it becomes difficult to obtain a desired thickness. The solution around the mask opening spreads outward, the thickness of the organic thin film layer has a distribution, and the film thickness near the mask opening decreases toward the outside. As described above, unevenness occurs in the thickness of the organic thin film layer, and thus unevenness in light emission occurs when each display pixel emits light.
Further, the problem that the solution spreads also occurs when a second organic thin film layer such as a polymer is formed on the cathode wiring 7 by a coating method as a protective film of the organic EL element. If the second organic thin film layer spreads outside the coating region, the film thickness becomes non-uniform and a thin film is formed, the function of protecting the organic EL element is weakened, and the display quality deteriorates over time. Will occur.

また、塗布領域よりも外に溶液が広がり、有機EL素子のシール材を塗布する位置に有機薄膜が形成されると、シール材と基板の間の密着力が低下する。   Further, when the solution spreads outside the application region and the organic thin film is formed at a position where the organic EL element sealing material is applied, the adhesion between the sealing material and the substrate is reduced.

そこで、本発明は、マスク開口部の周囲の基板対向面と基板表面との間隙の大きさを適切な値に保ち、有機EL素子において有機薄膜層を形成するために塗布した液体が広がることを防止し、抵抗体の発生、発光むらの発生およびシール材の基板との密着力低下を防ぐことができる有機EL素子の製造方法を提供することを目的とする。   Therefore, the present invention maintains that the gap between the substrate facing surface around the mask opening and the substrate surface is kept at an appropriate value, and spreads the liquid applied to form the organic thin film layer in the organic EL element. It is an object of the present invention to provide a method for producing an organic EL element that can prevent the generation of resistors, the occurrence of unevenness of light emission, and the decrease in adhesion of a sealing material to a substrate.

本発明の態様1は、基板上に、第1の電極、複数の有機薄膜、第2の電極をこの順になるように配置し、複数の有機薄膜の少なくとも一つの有機薄膜の形成の際に、マスク開口部を有するマスクを基板に向かい合うように配置し、有機薄膜の材料を面状に塗布する有機EL表示素子の製造方法であって、開口部の周囲に段差を有するマスクを用い、前記段差のある表面が基板に向かい合うように基板に接触配置し、マスク開口部を通して有機薄膜の材料を面状にスプレーすることを特徴とする有機EL表示素子の製造方法を提供する。   In the aspect 1 of the present invention, the first electrode, the plurality of organic thin films, and the second electrode are arranged in this order on the substrate, and when forming at least one organic thin film of the plurality of organic thin films, A method of manufacturing an organic EL display device, in which a mask having a mask opening is disposed so as to face a substrate, and a material for an organic thin film is applied in a planar shape, wherein a mask having a step around the opening is used. A method of manufacturing an organic EL display element is provided, wherein the organic thin film material is sprayed in a planar shape through a mask opening so as to be in contact with the substrate so that a certain surface faces the substrate.

本発明の態様2は、態様1において、第2の電極の上に有機薄膜を形成する請求項1に記載の有機EL表示素子の製造方法を提供する。
本発明の態様3は、態様1または2において、有機薄膜の材料が、正孔注入層の材料である有機EL表示素子の製造方法を提供する。
本発明の態様4は、マスク開口部を有する有機EL表示素子の製造に用いるマスクであって、マスク表面のマスク開口部の周囲に段差が設けられ、マスク開口部の端部から段差の端部までの幅が0.05mm以上、マスクの表面から段差までの深さが10〜40μmであることを特徴とするマスクを提供する。
本発明の態様5は、態様1、2または3に記載の有機EL表示素子の製造方法を用いて製造した有機EL表示素子を提供する。
Aspect 2 of the present invention provides the method for producing an organic EL display element according to claim 1, wherein an organic thin film is formed on the second electrode in aspect 1.
Aspect 3 of the present invention provides a method for producing an organic EL display element according to Aspect 1 or 2, wherein the material of the organic thin film is a material of a hole injection layer.
Aspect 4 of the present invention is a mask used for manufacturing an organic EL display element having a mask opening, and a step is provided around the mask opening on the mask surface, and the end of the step from the end of the mask opening. And a depth from the surface of the mask to the step is 10 to 40 μm.
Aspect 5 of the present invention provides an organic EL display element manufactured using the method for manufacturing an organic EL display element according to Aspect 1, 2 or 3.

本発明による有機EL素子の製造方法によれば、有機薄膜層の所望の塗布領域に合致するマスク開口部を有し、液状材料が所望の領域以外に広がるのを防止するため基板対向面のマスク開口部周囲に段差を形成されたマスクを基板に取り付けた後、液状材料をスプレーすることによって、液状材料を所望の領域に塗布し、液状材料が所望の領域以外に広がるのを防ぐことができる。従って、液状材料の広がりによって、第2の電極表面に抵抗体となる有機薄膜層が付着することを防止し、駆動時の発熱およびシール材の基板との密着力低下を防ぐことができる。また、有機化合物層の膜厚のむらを抑え、発光むらを低減することができる。   According to the method of manufacturing an organic EL element according to the present invention, the mask on the substrate facing surface has a mask opening that matches a desired application region of the organic thin film layer and prevents the liquid material from spreading outside the desired region. By attaching a mask having a step around the opening to the substrate and then spraying the liquid material, the liquid material can be applied to a desired region and the liquid material can be prevented from spreading outside the desired region. . Accordingly, it is possible to prevent the organic thin film layer serving as a resistor from adhering to the surface of the second electrode due to the spread of the liquid material, and it is possible to prevent heat generation during driving and a decrease in adhesion of the sealing material to the substrate. In addition, unevenness in the thickness of the organic compound layer can be suppressed, and unevenness in light emission can be reduced.

以下、本発明を実施するための最良の形態について図6と図7を参照しながら説明する。   Hereinafter, the best mode for carrying out the present invention will be described with reference to FIGS. 6 and 7. FIG.

まず、図6において基板1の上にITO(Indium Tin Oxide)を成膜し、エッチングを施すことによって陽極配線2Aおよび接続端子2Bを形成する。
次に、例えば、ポリイミドの溶液を用い、膜厚0.7μmの絶縁膜4を成膜する。さらに、表示画素となる位置の絶縁膜を除去し、開口部3を設ける。
続いて、絶縁膜4の上層に、陰極配線の配置位置の両側に位置するように隔壁5を形成する。隔壁5は、例えば、アクリル樹脂を用い、高さは、3.4μmになるようにすればよい。隔壁5は、基板1から離れるにつれて断面が広がる逆テーパ構造となるように形成することが好ましい。逆テーパ構造とすることにより、その上から蒸着する有機薄膜層や陰極配線7が逆テーパ形状の段差のところで不連続となり、隔壁に平行な方向では、有機膜および陰極は連続的に形成され、隔壁と直交する陽極に平行な方向では、有機膜および陰極を確実に分離することができる。
First, in FIG. 6, ITO (Indium Tin Oxide) is formed on the substrate 1 and etched to form the anode wiring 2A and the connection terminal 2B.
Next, for example, a 0.7 μm-thick insulating film 4 is formed using a polyimide solution. Further, the insulating film at a position to be a display pixel is removed and an opening 3 is provided.
Subsequently, the barrier ribs 5 are formed on the insulating film 4 so as to be located on both sides of the positions where the cathode wirings are arranged. The partition wall 5 may be made of, for example, acrylic resin, and the height may be 3.4 μm. The partition wall 5 is preferably formed so as to have an inversely tapered structure in which the cross section increases as the distance from the substrate 1 increases. By adopting the reverse taper structure, the organic thin film layer and the cathode wiring 7 deposited from above become discontinuous at the steps of the reverse taper shape, and the organic film and the cathode are continuously formed in the direction parallel to the partition wall, In the direction parallel to the anode perpendicular to the partition walls, the organic film and the cathode can be reliably separated.

次に、各有機薄膜層を積層する。図2のように基板に塗布すべき領域に対応したマスク開口部11を有し、マスク開口部11の周囲の基板対向面側に、図3に示すように、幅W、W、Wが0.05mm以上、深さDが10〜40μmの段差を形成したマスクを、マスクの基板対向面と基板1が対向するように取り付ける。図2は本発明で使用するマスクの一例の正面図であり、図3は、図2に示したマスクのA−A´断面線における断面図である。 Next, each organic thin film layer is laminated | stacked. A mask opening 11 corresponding to a region to be applied to the substrate as shown in FIG. 2 is provided, and widths W 1 , W 3 , W as shown in FIG. A mask in which a step 4 having a height of 4 mm and a depth D of 10 to 40 μm is attached so that the substrate facing surface of the mask and the substrate 1 face each other. FIG. 2 is a front view of an example of the mask used in the present invention, and FIG. 3 is a cross-sectional view taken along the line AA ′ of the mask shown in FIG.

次に、正孔注入層を形成するための溶液を、マスクスプレー法によって塗布する。正孔注入層を形成するための溶液としては、例えば、ポリビニルカルバゾールを0.5%(質量百分率)溶解した安息香酸エチル溶液がある。図1は、本発明を用いて溶液を塗布する場合の一例を示した模式図である。   Next, a solution for forming the hole injection layer is applied by a mask spray method. As a solution for forming the hole injection layer, for example, there is an ethyl benzoate solution in which polyvinyl carbazole is dissolved by 0.5% (mass percentage). FIG. 1 is a schematic view showing an example of applying a solution using the present invention.

溶液を、マスクスプレー法によって塗布する場合、塗布した溶液は、マスク開口部11の周囲の基板対向面と基板表面の間隙に沿って広がろうとする。しかし、図1に示すように、マスク開口部11の周囲には段差を設けており、マスク開口部11の周囲の基板対向面と基板表面の間隙が適切な値になっているので、塗布した溶液が塗布すべきでない領域まで広がることはない。また、毛管現象により溶液が広がることもない。したがって、溶液は、接続端子2Bと陰極配線7との接触部分まで達しない。さらに、それぞれの開口部3における有機薄膜層(この場合、正孔注入層)の膜厚のむらも低減される。   When the solution is applied by a mask spray method, the applied solution tends to spread along the gap between the substrate facing surface around the mask opening 11 and the substrate surface. However, as shown in FIG. 1, there is a step around the mask opening 11, and the gap between the substrate facing surface around the mask opening 11 and the substrate surface is an appropriate value, so that the coating was applied. It does not extend to areas where the solution should not be applied. Further, the solution does not spread due to capillary action. Therefore, the solution does not reach the contact portion between the connection terminal 2 </ b> B and the cathode wiring 7. Furthermore, the unevenness of the film thickness of the organic thin film layer (in this case, the hole injection layer) in each opening 3 is also reduced.

正孔注入層の上に、正孔輸送層、発光層を順に積層していく。これらの層をスプレー法にて塗布する際も、液状材料の広がりは防止される。正孔輸送層、発光層を蒸着法によって積層してもよい。   On the hole injection layer, a hole transport layer and a light emitting layer are sequentially laminated. Even when these layers are applied by a spray method, the spread of the liquid material is prevented. You may laminate | stack a positive hole transport layer and a light emitting layer by a vapor deposition method.

マスクの取り付け方法は、基板の上にマスクを載せ、マスクの自重で固定する方法でもよいし、SUS430、SUS410、SUS444のようなフェリ磁性物質または強磁性物質を含むマスクを用い、基板を挟んでマスクと反対側に磁石を配置し、磁石によってマスクを固定する方法でもよい。マスクと基板を磁石で固定する場合、マスクと基板の間隔を10mm程度空けた状態でマスクと基板の位置あわせを行い、その後、基板の上にマスクを固定する。   The mask may be attached by placing the mask on the substrate and fixing it by its own weight, or using a mask containing a ferrimagnetic material or a ferromagnetic material such as SUS430, SUS410, or SUS444 and sandwiching the substrate. A method of arranging a magnet on the opposite side of the mask and fixing the mask with the magnet may be used. When the mask and the substrate are fixed with a magnet, the mask and the substrate are aligned with a distance of about 10 mm between the mask and the substrate, and then the mask is fixed on the substrate.

マスクの基板対向面側に形成した段差の幅W、WおよびWは、基板上の隔壁構造体と接しないようにするために必要であり、0.05〜5mmであることが好ましい。0.05mm以下であると、段差の加工が困難だからである。0.05mm以下の段差の加工が困難な理由を以下に記す。 The widths W 1 , W 3, and W 4 of the step formed on the substrate facing surface side of the mask are necessary so as not to contact the partition wall structure on the substrate, and are preferably 0.05 to 5 mm. . This is because it is difficult to process the step when the thickness is 0.05 mm or less. The reason why it is difficult to process a step of 0.05 mm or less will be described below.

段差は、マスク開口部をエッチングで形成した後、フィルムレジストなどで段差加工部分以外をカバーし,エッチングして形成する。このような方法では、段差の深さの最大を40μmとすると、段差の幅を0.05mm以下にするのは困難となるからである。
また、5mm以下とするのは、5mm以上であると、表示領域以外の部分が大きくなり、表示素子としての機能が損なわれるからである。
また、段差の幅は、図3に示すWが100μm以下にならないようにしなければならない。エッチングでは、100μm以下に形成するのは困難だからである。
The step is formed by forming the mask opening by etching, covering the portion other than the step processed portion with a film resist or the like, and etching. This is because in such a method, if the maximum step depth is 40 μm, it is difficult to make the step width 0.05 mm or less.
Further, the reason why the thickness is 5 mm or less is that when the thickness is 5 mm or more, a portion other than the display area becomes large and the function as a display element is impaired.
The width of the step, W 2 shown in FIG. 3 must be such not to 100μm or less. This is because it is difficult to form a thickness of 100 μm or less by etching.

マスクの基板対向面側に形成した段差の深さDは、10〜40μmであることが好ましい。10μm未満であると、マスク開口部の周囲の基板対向面と基板表面の間隙が小さいために、基板に塗布した溶液が毛管現象によってマスク開口部の周囲の基板対向面と基板表面の間隙に入り、所望のパターンを得ることができないからである。また、40μmを超えると、スプレーガンから噴霧した溶液がマスク開口部の周囲の基板対向面と基板表面の間隙に到達し、所望のパターンを得ることができないからである。   The depth D of the step formed on the substrate facing surface side of the mask is preferably 10 to 40 μm. If the thickness is less than 10 μm, the gap between the substrate facing surface around the mask opening and the substrate surface is small, so that the solution applied to the substrate enters the gap between the substrate facing surface around the mask opening and the substrate surface due to capillary action. This is because a desired pattern cannot be obtained. On the other hand, if the thickness exceeds 40 μm, the solution sprayed from the spray gun reaches the gap between the substrate facing surface around the mask opening and the substrate surface, and a desired pattern cannot be obtained.

また、マスクの基板対向面側に形成した段差の幅W、WおよびWおよび段差の深さDおよびマスク開口部の周囲の基板対向面の幅WおよびWは、スプレーガンの噴霧特性や基板のデザインに合わせ、図2におけるX方向とY方向で異なる値をとるようにしてもよい。さらに、マスクの基板対向面側に形成した段差の幅W、Wは、スプレーガンの噴霧特性や基板のデザインに合わせ、お互い異なった値であってもよい。 The width W 1 , W 3 and W 4 of the step formed on the substrate facing surface side of the mask, the depth D of the step, and the width W 2 and W 5 of the substrate facing surface around the mask opening are determined by the spray gun. Different values may be taken in the X direction and the Y direction in FIG. 2 according to the spray characteristics and the substrate design. Further, the widths W 1 and W 3 of the step formed on the substrate facing surface side of the mask may be different from each other in accordance with the spray characteristics of the spray gun and the design of the substrate.

また、図9のようにマスクの基板対向面側に形成した段差は、図9における段差の深さD、Dが、10〜40μmの範囲内であれば、基板と平行である必要はなく、傾斜していてもよい。 Further, the step formed on the substrate facing surface side of the mask as shown in FIG. 9 needs to be parallel to the substrate if the depths D 1 and D 2 of the step in FIG. 9 are in the range of 10 to 40 μm. And may be inclined.

発光層の上層に陰極界面層を蒸着させ、その上層に陰極配線7を蒸着させる。陰極界面層として、例えば、LiFを蒸着させ、陰極配線7としてアルミニウムを蒸着させればよい。
有機薄膜層、陰極界面層および陰極配線7は、隔壁5によって分離され、各隔壁5の間の領域に形成する。
A cathode interface layer is deposited on the light emitting layer, and a cathode wiring 7 is deposited on the cathode interface layer. For example, LiF may be deposited as the cathode interface layer, and aluminum may be deposited as the cathode wiring 7.
The organic thin film layer, the cathode interface layer, and the cathode wiring 7 are separated by the partition walls 5 and are formed in regions between the partition walls 5.

次に、基板1と対になる基板(図示せず)において、有機EL素子と対向する領域の外周にシール材を塗布する。そして、シール材を塗布した基板と基板1とを重ね合わせる。
このような有機EL素子の製造方法によれば、有機材料の溶液を塗布する際、マスク開口部の周囲の基板対向面側に形成した段差によってマスク開口部の周囲の基板対向面と基板表面との間隙が適切な値となり、溶液の広がりが防止され、基板1において、接続端子2Bと陰極配線7との接続部には有機薄膜は形成されない。よって、陰極配線7と接続端子2Bとは良好な状態で接続され、駆動時における発熱を防止することができる。さらに、開口部3における有機薄膜層の膜厚のむらも低減されるので、発光むらも低減することができる。
Next, a sealing material is applied to the outer periphery of a region facing the organic EL element on a substrate (not shown) that is paired with the substrate 1. And the board | substrate and the board | substrate 1 which apply | coated the sealing material are piled up.
According to such a method for manufacturing an organic EL element, when applying a solution of an organic material, the substrate facing surface and the substrate surface around the mask opening are formed by a step formed on the substrate facing surface side around the mask opening. Therefore, the spread of the solution is prevented, and the organic thin film is not formed on the connection portion between the connection terminal 2B and the cathode wiring 7 in the substrate 1. Therefore, the cathode wiring 7 and the connection terminal 2B are connected in good condition, and heat generation during driving can be prevented. Furthermore, since unevenness of the film thickness of the organic thin film layer in the opening 3 is also reduced, unevenness in light emission can also be reduced.

なお、基板を重ね合わせる前に、ポリマー等で構成される第2の有機薄膜層を陰極配線7の上層に形成してもよい。この第2の有機薄膜層は、有機EL素子を保護する役割を果たす。この第2の有機薄膜層を塗布法により形成する際にも、マスク開口部の周囲の基板対向面側に形成した段差によって溶液の広がりは防止される。   Note that a second organic thin film layer made of a polymer or the like may be formed in the upper layer of the cathode wiring 7 before the substrates are overlaid. The second organic thin film layer serves to protect the organic EL element. Even when the second organic thin film layer is formed by a coating method, the spread of the solution is prevented by the step formed on the substrate facing surface side around the mask opening.

以下に本発明の実施例と比較例を説明する。例1〜例3が実施例で、例4〜例6が比較例である。例1〜例6に使用するマスクの仕様を表1に示す。なお、表1に記したサイズは図2のX方向でのサイズのみを示している。   Examples of the present invention and comparative examples will be described below. Examples 1 to 3 are examples, and examples 4 to 6 are comparative examples. Table 1 shows the specifications of the masks used in Examples 1 to 6. In addition, the size described in Table 1 shows only the size in the X direction of FIG.

例1〜例6のY方向でのサイズは以下の通りである。例1〜例6のY方向でのサイズW、W、W、Lは、それぞれ11.0mm、15.5mm、9.25mm、26.5mmである。他のサイズは、例1〜例3および例5では、W、WおよびWが、0.05mmとなるようにし、例4ではW、WおよびWが、0.00mmとなるようにし、例6では、W、Wがそれぞれ0.0mm、9.25mmとなるようにした。 The sizes in Examples 1 to 6 in the Y direction are as follows. The sizes W 6 , W 7 , W 8 , and L in Examples 1 to 6 are 11.0 mm, 15.5 mm, 9.25 mm, and 26.5 mm, respectively. In other examples, in Examples 1 to 3 and 5, W 1 , W 3 and W 4 were set to 0.05 mm, and in Example 4, W 1 , W 3 and W 4 were set to 0.00 mm. In Example 6, W 2 and W 5 were set to 0.0 mm and 9.25 mm, respectively.

Figure 2005078892
Figure 2005078892

[例1]
無アルカリガラス基板の上にITOを成膜し、エッチングを施すことにより、厚さ300nmの陽極配線および陰極接続端子を形成する。
次に、陽極配線を設けた基板の面にポリイミドの溶液を塗布し、0.7μmの膜厚の絶縁膜を成膜する。続いて、表示画素となる位置のポリイミドを除去し、300μm×300μmの正方形の開口部を設ける。
続いて、ポリイミドの層表面において、アクリル樹脂膜を塗布し、64本の陰極配線を分離配置できるように隔壁を形成する。隔壁は逆テーパ構造にし、高さは3.4μmにする。
[Example 1]
An ITO wiring is formed on an alkali-free glass substrate and etched to form anode wiring and cathode connection terminals having a thickness of 300 nm.
Next, a polyimide solution is applied to the surface of the substrate provided with the anode wiring to form an insulating film having a thickness of 0.7 μm. Subsequently, the polyimide at the position to be a display pixel is removed, and a 300 μm × 300 μm square opening is provided.
Subsequently, an acrylic resin film is applied on the surface of the polyimide layer, and partition walls are formed so that 64 cathode wirings can be separately arranged. The partition wall has a reverse taper structure and a height of 3.4 μm.

その後、図2に示すように基板の有機薄膜層を設けるべき位置に対応したマスク開口部を縦11個、横13個有するステンレス製のマスクをガラス基板に取り付ける。マスク開口部のサイズは、図2のX方向が23mmで、Y方向が15.5mmである。また、マスク開口部のピッチは、図2のX方向が31mmで、Y方向が26.5mmである。このとき、金属マスクのマスク開口部と有機薄膜層を設けるべき位置が重なるように配置する。   Thereafter, as shown in FIG. 2, a stainless steel mask having 11 vertical and 13 horizontal mask openings corresponding to the position where the organic thin film layer of the substrate is to be provided is attached to the glass substrate. The size of the mask opening is 23 mm in the X direction in FIG. 2 and 15.5 mm in the Y direction. Further, the pitch of the mask openings is 31 mm in the X direction in FIG. 2 and 26.5 mm in the Y direction. At this time, it arrange | positions so that the position which should provide the mask opening part and organic thin film layer of a metal mask may overlap.

マスク開口部の周囲には、基板対向面側に段差を形成している。形成した段差は、図2のX方向での断面では、幅W、Wが3.2mm、Wが1.0mm、Wが1.6mm、深さDが10μmで、図2のY方向での断面では、幅W、Wが0.05mm、Wが10.9mm、深さDが10μmである。 A step is formed on the substrate facing surface side around the mask opening. In the cross section in the X direction of FIG. 2, the formed step has a width W 1 , W 3 of 3.2 mm, W 4 of 1.0 mm, W 2 of 1.6 mm, and a depth D of 10 μm. In the cross section in the Y direction, the widths W 1 and W 3 are 0.05 mm, W 2 is 10.9 mm, and the depth D is 10 μm.

続いて、0.5%(質量百分率)のポリビニルカルバゾールを溶解した安息香酸エチル溶液をマスクスプレー法によって、塗布し、正孔注入層を形成する。塗布する安息香酸エチル溶液の粘度は2.4mPa・sである。   Subsequently, an ethyl benzoate solution in which 0.5% (percentage by mass) of polyvinyl carbazole is dissolved is applied by a mask spray method to form a hole injection layer. The viscosity of the ethyl benzoate solution to be applied is 2.4 mPa · s.

マスクスプレー法による塗布条件は、ノードソン株式会社製のマイクロスプレーガンを使用し、噴霧圧は0.04MPa、ノズル基板間距離は60mmとする。ノズル開度は、実際に塗布した膜の膜厚を触針式の膜厚計で測定し、10〜12nmの範囲内の膜厚が得られるようにスプレーガン付属のマイクロゲージで調整する。
ノズルは互いに直交する駆動軸を有する2軸搬送系に接続し、速度160mm/secで図2のX方向にスキャンし、マスク端までスキャンを終えるたびにY方向に4mm/ピッチで平行移動させながら連続して塗布する。
The coating conditions by the mask spray method are a micro spray gun manufactured by Nordson Co., Ltd., the spray pressure is 0.04 MPa, and the distance between nozzle substrates is 60 mm. The nozzle opening is adjusted with a micro gauge attached to the spray gun so that the film thickness of the actually applied film is measured with a stylus-type film thickness meter and a film thickness within the range of 10 to 12 nm is obtained.
The nozzle is connected to a biaxial transport system having drive axes that are orthogonal to each other, scans in the X direction in FIG. 2 at a speed of 160 mm / sec, and translates at a rate of 4 mm / pitch in the Y direction each time scanning to the mask end is completed. Apply continuously.

このとき、塗布した溶液は、マスク開口部から広がることなく、シール材を塗布する位置や接続端子2Bと陰極配線7との接触部分に付着することはない。また、それぞれの開口部3における正孔注入層の膜厚のむらも低減され、24〜30nmとなる。
続いて、正孔注入層の上層にα−NPD(N、N′−ジ(ナフタレン−1−イル)−N、N′−ジフェニル−ベンジジン)を蒸着して膜厚40nmの正孔輸送層を形成する。さらにその上層に、発光層のホスト化合物となるAlq(トリス(8−ヒドロキシナト)アルミニウム)と、ゲスト化合物の蛍光性色素となるクマリン6とを同時に蒸着して、膜厚60nmの発光層を形成する。
At this time, the applied solution does not spread from the mask opening and does not adhere to the position where the sealing material is applied or to the contact portion between the connection terminal 2 </ b> B and the cathode wiring 7. Moreover, the nonuniformity of the film thickness of the hole injection layer in each opening 3 is reduced to 24 to 30 nm.
Subsequently, α-NPD (N, N′-di (naphthalen-1-yl) -N, N′-diphenyl-benzidine) is deposited on the upper layer of the hole injection layer to form a hole transport layer having a thickness of 40 nm. Form. Furthermore, Alq (tris (8-hydroxynato) aluminum) serving as a host compound of the light emitting layer and coumarin 6 serving as a fluorescent dye of the guest compound are simultaneously deposited on the upper layer to form a light emitting layer having a thickness of 60 nm. To do.

続いて、発光層の上層にLiFを蒸着して、膜厚0.5nmの陰極界面層を形成する。その後、アルミニウムを蒸着して、膜厚100nmの陰極配線を形成する。この結果、隔壁によってアルミニウムの膜を分離し、64本の陰極配線を形成する。   Subsequently, LiF is deposited on the light emitting layer to form a cathode interface layer having a thickness of 0.5 nm. Thereafter, aluminum is vapor-deposited to form a cathode wiring with a thickness of 100 nm. As a result, the aluminum film is separated by the partition walls, and 64 cathode wirings are formed.

このガラス基板とは別の基板の有機EL素子と対向する領域の外周にシール材としてエポキシ系紫外線硬化性樹脂を塗布し、有機EL素子を配置したガラス基板と対向させる。二枚の基板を対向させた後、紫外線を照射してシール材を硬化させ、基板同士を接着させる。その後、80℃のクリーンオーブン中で1時間熱処理を施し、シール材の硬化を促進させる。この結果、シール材および一対の基板によって、有機EL素子が存在する基板間と、基板の外部とが隔離される。
基板の外周付近の不要部分を切断除去すると共に各有機EL素子に分割し、陽極配線に信号電極ドライバを接続し、陰極接続端子に走査電極ドライバを接続する。
An epoxy ultraviolet curable resin is applied as a sealing material on the outer periphery of a region facing the organic EL element of a substrate different from the glass substrate, and is made to face the glass substrate on which the organic EL element is arranged. After making the two substrates face each other, the sealing material is cured by irradiating ultraviolet rays, and the substrates are bonded to each other. Thereafter, heat treatment is performed in a clean oven at 80 ° C. for 1 hour to promote curing of the sealing material. As a result, the sealing material and the pair of substrates separate the substrate where the organic EL element is present from the outside of the substrate.
Unnecessary portions near the outer periphery of the substrate are cut and removed and divided into organic EL elements, a signal electrode driver is connected to the anode wiring, and a scanning electrode driver is connected to the cathode connection terminal.

本発明の製造方法により、有機薄膜層の溶液を塗布する際、溶液が陰極配線と陰極接続端子の接触部分まで広がることが防止され、有機薄膜層の膜厚のむらが軽減され、有機EL表示素子を駆動したときの各表示画素の発光むらも軽減することができる。   According to the manufacturing method of the present invention, when the solution of the organic thin film layer is applied, the solution is prevented from spreading to the contact portion between the cathode wiring and the cathode connection terminal, the unevenness of the film thickness of the organic thin film layer is reduced, and the organic EL display element The light emission unevenness of each display pixel when driving can be reduced.

[例2]
正孔注入層を形成する際に使用するマスクを変更する。すなわち、マスク開口部周囲の基板対向面側に設ける段差の深さDを20μmに変更し、他の条件は例1と同一の条件で有機EL表示素子を作成する。
[Example 2]
The mask used when forming the hole injection layer is changed. That is, the depth D of the step provided on the substrate facing surface side around the mask opening is changed to 20 μm, and the organic EL display element is produced under the same conditions as in Example 1 except for the other conditions.

ポリビニルカルバゾールを溶解した安息香酸エチル溶液を噴霧する際、マスク開口部から広がることなく、シール材を塗布する位置や、接続端子2Bと陰極配線7との接触部分には塗布されることはない。また、それぞれの開口部3における正孔注入層の膜厚のむらも例1と同様に24〜30nmとなる。有機EL表示素子にして駆動したときに各表示画素の発光むらも視認することができないレベルである。   When spraying an ethyl benzoate solution in which polyvinyl carbazole is dissolved, it does not spread from the mask opening and is not applied to the position where the sealing material is applied or to the contact portion between the connection terminal 2B and the cathode wiring 7. Further, the unevenness of the film thickness of the hole injection layer in each opening 3 is 24 to 30 nm as in Example 1. When the organic EL display element is driven, the uneven light emission of each display pixel cannot be visually recognized.

[例3]
正孔注入層を形成する際に使用するマスク開口部周囲の基板対向側に設ける段差の深さを40μmに変更し、さらに、0.25%(質量百分率)のポリビニルカルバゾールを溶解した安息香酸エチル溶液を噴霧圧0.1MPaでマスクスプレー法によって塗布し、正孔注入層を形成する。他の条件は例1と同一の条件で有機EL表示素子を作成する。
[Example 3]
The depth of the step provided on the opposite side of the substrate around the mask opening used for forming the hole injection layer is changed to 40 μm, and further 0.25% (mass percentage) of polyvinyl carbazole is dissolved in ethyl benzoate The solution is applied at a spray pressure of 0.1 MPa by a mask spray method to form a hole injection layer. Other conditions are the same as those in Example 1, and an organic EL display element is prepared.

ポリビニルカルバゾールを溶解した安息香酸エチル溶液を噴霧する際、マスク開口部から広がることなく、シール材を塗布する位置や、接続端子2Bと陰極配線7との接触部分には塗布されることはない。また、それぞれの開口部3における正孔注入層の膜厚のむらも例1と同様に24〜30nmとなる。有機EL表示素子にして駆動したときに各表示画素の発光むらも視認することができないレベルである。   When spraying an ethyl benzoate solution in which polyvinyl carbazole is dissolved, it does not spread from the mask opening and is not applied to the position where the sealing material is applied or to the contact portion between the connection terminal 2B and the cathode wiring 7. Further, the unevenness of the film thickness of the hole injection layer in each opening 3 is 24 to 30 nm as in Example 1. When the organic EL display element is driven, the uneven light emission of each display pixel cannot be visually recognized.

[例4]
正孔注入層を形成する際に使用するマスクを図4に示す断面形状のマスクに変更する。すなわち、マスク開口部周囲の基板対向面の段差をなくし、他の条件は例1と同一の条件で有機EL表示素子を作成する。
[Example 4]
The mask used for forming the hole injection layer is changed to a cross-sectional mask shown in FIG. That is, the step of the substrate facing surface around the mask opening is eliminated, and the organic EL display element is formed under the same conditions as in Example 1 except for the above.

基板には一般に幅10mm以内に10μmのうねりがある。このため、マスク開口部周囲の基板対向面の段差をなくしても、マスク開口部の周囲の基板対向面と基板表面との間にうねりによる間隙が生じる。したがって、ポリビニルカルバゾールを溶解した安息香酸エチル溶液をスプレーガンにて噴霧すると、霧状の溶液が毛管現象のため、マスク開口部の周囲の基板対向面と基板表面との間隙に入り、接続端子2Bと陰極配線7との接触部分にまで広がる。また、それぞれの開口部3における正孔注入層の膜厚のむらも例1に比べ大きくなり、10〜35nmとなる。   The substrate generally has a waviness of 10 μm within a width of 10 mm. For this reason, even if the step of the substrate facing surface around the mask opening is eliminated, a gap due to undulation is generated between the substrate facing surface around the mask opening and the substrate surface. Therefore, when an ethyl benzoate solution in which polyvinyl carbazole is dissolved is sprayed with a spray gun, the mist-like solution enters the gap between the substrate facing surface around the mask opening and the substrate surface due to capillary action, and the connection terminal 2B And the cathode wiring 7 contact area. Further, the nonuniformity of the film thickness of the hole injection layer in each opening 3 is larger than that in Example 1, and becomes 10 to 35 nm.

有機EL素子の溶液を塗布する際、溶液が陰極配線と陰極接続端子の接触部分まで広がり、陰極接続端子2B上に有機薄膜が形成される。また、有機薄膜層の膜厚のむらも発生する。
このような方法で作成した有機EL表示素子を駆動させると、各表示画素の発光むらも視認することができるレベルであり、陰極接続端子2Bと陰極配線との間で発熱が生じ通電を継続することで接続部分が断線する場合がある。
When the solution of the organic EL element is applied, the solution spreads to the contact portion between the cathode wiring and the cathode connection terminal, and an organic thin film is formed on the cathode connection terminal 2B. In addition, unevenness of the film thickness of the organic thin film layer also occurs.
When the organic EL display element created by such a method is driven, the light emission unevenness of each display pixel is at a level that can be visually recognized, and heat is generated between the cathode connection terminal 2B and the cathode wiring, and the energization is continued. As a result, the connection part may be disconnected.

[例5]
正孔注入層を形成する際に使用する金属マスクのみを変更する。すなわち、マスク開口部周囲の基板対向側につける段差の深さDを50μmに変更し、他の条件は例1と同一の条件で有機EL表示素子を作成する。
[Example 5]
Only the metal mask used when forming the hole injection layer is changed. That is, the depth D of the step provided on the substrate facing side around the mask opening is changed to 50 μm, and the other conditions are the same as in Example 1 to produce an organic EL display element.

スプレーガンから噴霧したポリビニルカルバゾールを溶解した安息香酸エチル溶液は、マスク開口部の周囲の基板対向面と基板表面の間隙まで到達し、接続端子2Bと陰極配線7との接触部分にまで広がる。また、それぞれの開口部3における正孔注入層の膜厚のむらも例1に比べ大きくなり、10〜35nmとなる。   The ethyl benzoate solution in which polyvinyl carbazole sprayed from the spray gun is dissolved reaches the gap between the substrate facing surface and the substrate surface around the mask opening and spreads to the contact portion between the connection terminal 2 </ b> B and the cathode wiring 7. Further, the nonuniformity of the film thickness of the hole injection layer in each opening 3 is larger than that in Example 1, and becomes 10 to 35 nm.

有機EL素子の溶液を塗布する際、溶液が陰極配線と陰極接続端子の接触部分まで広がり、陰極接続端子2B上に有機薄膜が形成される。また、有機薄膜層の膜厚のむらも発生する。
このような方法で作成した有機EL表示素子を駆動させると、例3と同じく、各表示画素の発光むらも視認することができるレベルであり、陰極接続端子2Bと陰極配線との間で発熱が生じ、断線となる。
When the organic EL element solution is applied, the solution spreads to the contact portion between the cathode wiring and the cathode connection terminal, and an organic thin film is formed on the cathode connection terminal 2B. In addition, unevenness of the thickness of the organic thin film layer also occurs.
When the organic EL display element created by such a method is driven, the emission unevenness of each display pixel can be visually recognized as in Example 3, and heat is generated between the cathode connection terminal 2B and the cathode wiring. It will be broken.

[例6]
正孔注入層を形成する際に使用する金属マスクのみを図5に示す形状のマスクに変更する。すなわち、図3におけるWをゼロに変更し、他の条件は例1と同一の条件で有機EL表示素子を作成する。
[Example 6]
Only the metal mask used when forming the hole injection layer is changed to a mask having the shape shown in FIG. That is, W 2 in FIG. 3 is changed to zero, and an organic EL display element is created under the same conditions as in Example 1 except for the other conditions.

スプレーガンから噴霧したポリビニルカルバゾールを溶解した安息香酸エチル溶液は、マスク開口部の周囲の基板対向面と基板表面の間隙を通り、さらに隣りの開口部まで到達し、接続端子2Bと陰極配線7との接触部分にまで広がる。また、それぞれの開口部3における正孔注入層の膜厚のむらは例1〜例4に比べ最も大きく、5〜35nmとなる。   The ethyl benzoate solution in which the polyvinyl carbazole sprayed from the spray gun is dissolved passes through the gap between the substrate facing surface and the substrate surface around the mask opening and reaches the adjacent opening, and the connection terminal 2B and the cathode wiring 7 It spreads to the contact part. Further, the non-uniformity of the film thickness of the hole injection layer in each opening 3 is the largest as compared with Examples 1 to 4, and is 5 to 35 nm.

有機EL素子の溶液を塗布する際、溶液が陰極配線と陰極接続端子の接触部分まで広がり、陰極接続端子2B上に有機薄膜が形成される。また、有機薄膜層の膜厚のむらも発生する。
このような方法で作成した有機EL表示素子を駆動させると、例3と同じく、各表示画素の発光むらも容易に視認することができるレベルであり、陰極接続端子2Bと陰極配線との間で発熱が生じ断線となる。
When the organic EL element solution is applied, the solution spreads to the contact portion between the cathode wiring and the cathode connection terminal, and an organic thin film is formed on the cathode connection terminal 2B. In addition, unevenness of the film thickness of the organic thin film layer also occurs.
When the organic EL display device created by such a method is driven, the light emission unevenness of each display pixel can be easily visually recognized as in Example 3, and between the cathode connection terminal 2B and the cathode wiring. Heat generation occurs and breaks.

本発明を用いて溶液を塗布する場合の一例を示した模式図。The schematic diagram which showed an example in the case of apply | coating a solution using this invention. 本発明で使用するマスクの一例の正面図。The front view of an example of the mask used by this invention. 図2に示すマスクのA−A´断面線における断面図。Sectional drawing in the AA 'sectional line of the mask shown in FIG. 例4のマスクのA−A´断面線における断面図。Sectional drawing in the AA 'cross section line of the mask of Example 4. FIG. 例6のマスクのA−A´断面線における断面図。Sectional drawing in the AA 'cross section line of the mask of Example 6. FIG. 一般的な構成の有機EL素子の模式図。The schematic diagram of the organic EL element of a general structure. 図6のP−Q断面線における断面図。Sectional drawing in the PQ sectional line of FIG. マスク開口部の周囲の基板対向面と基板表面との間隙に沿って、溶液が広がった形状を示す模式図。The schematic diagram which shows the shape which the solution spread along the clearance gap between the board | substrate opposing surface around a mask opening part, and a substrate surface. 基板対向面の段差が、傾斜しているマスクのA−A´断面線における断面図。Sectional drawing in the AA 'cross section line of the mask which the level | step difference of a board | substrate opposing surface inclines.

符号の説明Explanation of symbols

1 ガラス基板
2A 陽極配線
2B 陰極接続端子
3 開口部
4 絶縁膜
5 隔壁
6 第1の有機薄膜層
7 陰極パターン
8 有機材料の溶液
9 マスク
10 スプレーガン
11 マスク開口部
DESCRIPTION OF SYMBOLS 1 Glass substrate 2A Anode wiring 2B Cathode connection terminal 3 Opening 4 Insulating film 5 Partition 6 First organic thin film layer 7 Cathode pattern 8 Solution of organic material 9 Mask 10 Spray gun 11 Mask opening

Claims (5)

基板上に、第1の電極、複数の有機薄膜、第2の電極をこの順になるように配置し、複数の有機薄膜の少なくとも一つの有機薄膜の形成の際に、マスク開口部を有するマスクを基板に向かい合うように配置し、有機薄膜の材料を面状に塗布する有機EL表示素子の製造方法であって、
開口部の周囲に段差を有するマスクを用い、前記段差のある表面が基板に向かい合うように基板に接触配置し、マスク開口部を通して有機薄膜の材料を面状にスプレーすることを特徴とする有機EL表示素子の製造方法。
A first electrode, a plurality of organic thin films, and a second electrode are arranged in this order on a substrate, and a mask having a mask opening is formed when forming at least one organic thin film of the plurality of organic thin films. A method of manufacturing an organic EL display element, which is disposed so as to face a substrate and applies a material of an organic thin film in a planar shape,
An organic EL device comprising: a mask having a step around an opening; and a substrate in contact with the step so that the surface having the step faces the substrate; and spraying a thin film of an organic thin film material through the mask opening. A method for manufacturing a display element.
第2の電極の上に有機薄膜を形成する請求項1に記載の有機EL表示素子の製造方法。   The method for producing an organic EL display element according to claim 1, wherein an organic thin film is formed on the second electrode. 有機薄膜の材料が正孔注入層の材料である請求項1または2に記載の有機EL表示素子の製造方法。   The method for producing an organic EL display element according to claim 1, wherein the material of the organic thin film is a material of a hole injection layer. マスク開口部を有する有機EL表示素子の製造に用いるマスクであって、マスク表面のマスク開口部の周囲に段差が設けられ、マスク開口部の端部から段差の端部までの幅が0.05mm以上、マスクの表面から段差までの深さが10〜40μmであることを特徴とするマスク。   A mask used for manufacturing an organic EL display element having a mask opening, wherein a step is provided around the mask opening on the mask surface, and the width from the end of the mask opening to the end of the step is 0.05 mm. As mentioned above, the depth from the mask surface to a level | step difference is 10-40 micrometers, The mask characterized by the above-mentioned. 請求項1、2または3に記載の有機EL表示素子の製造方法を用いて製造した有機EL表示素子。
The organic EL display element manufactured using the manufacturing method of the organic EL display element of Claim 1, 2, or 3.
JP2003306400A 2003-08-29 2003-08-29 Organic el element, its manufacturing method, and mask Pending JP2005078892A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003306400A JP2005078892A (en) 2003-08-29 2003-08-29 Organic el element, its manufacturing method, and mask

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003306400A JP2005078892A (en) 2003-08-29 2003-08-29 Organic el element, its manufacturing method, and mask

Publications (1)

Publication Number Publication Date
JP2005078892A true JP2005078892A (en) 2005-03-24

Family

ID=34409488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003306400A Pending JP2005078892A (en) 2003-08-29 2003-08-29 Organic el element, its manufacturing method, and mask

Country Status (1)

Country Link
JP (1) JP2005078892A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006085457A1 (en) * 2005-02-14 2006-08-17 Pioneer Corporation Process and equipment for the production of coated members and surface mask
WO2007088945A1 (en) * 2006-02-02 2007-08-09 Pioneer Corporation Film forming mask, process for producing display device, and display device
JP2008243421A (en) * 2007-03-26 2008-10-09 Mitsubishi Chemicals Corp Formation method of organic thin film, and manufacturing method of organic electroluminescent element
JP2015069882A (en) * 2013-09-30 2015-04-13 株式会社Screenホールディングス Coating device and coating method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006085457A1 (en) * 2005-02-14 2006-08-17 Pioneer Corporation Process and equipment for the production of coated members and surface mask
WO2007088945A1 (en) * 2006-02-02 2007-08-09 Pioneer Corporation Film forming mask, process for producing display device, and display device
JP4853876B2 (en) * 2006-02-02 2012-01-11 パイオニア株式会社 Deposition mask, display device manufacturing method, and display device
JP2008243421A (en) * 2007-03-26 2008-10-09 Mitsubishi Chemicals Corp Formation method of organic thin film, and manufacturing method of organic electroluminescent element
JP2015069882A (en) * 2013-09-30 2015-04-13 株式会社Screenホールディングス Coating device and coating method

Similar Documents

Publication Publication Date Title
JP7203746B2 (en) OLED display mother board and its manufacturing method, OLED display panel manufacturing method and its OLED display device
JP4255724B2 (en) Manufacturing method of organic EL display and organic EL display
JP4612009B2 (en) Organic light-emitting display device and method for manufacturing the same
CN109755410B (en) Organic light-emitting display panel, preparation method and display device
US10276812B2 (en) Display device and manufacturing method thereof
JP2007035322A (en) Manufacturing method of organic led display and organic led display
EP1819203A1 (en) Organic electroluminescence display panel and method for manufacturing the same
JP2008243545A (en) Organic electroluminescent display and its manufacturing method
JP4369211B2 (en) Manufacturing method of organic EL display
US20060033080A1 (en) Mixed solution for a display device and method for fabricating a display device by using the same
JP2008208426A (en) Mask for film deposition and method for producing mask for film deposition
JP2005078892A (en) Organic el element, its manufacturing method, and mask
JP2006073222A (en) Organic el display device and manufacturing method of organic el display device
JP2007317546A (en) Organic el display device, and manufacturing method of organic el display device
JP2005183184A (en) Manufacturing method of organic el display device
JP2005174842A (en) Organic el display and its manufacturing method
US10249842B2 (en) Organic EL device, organic EL lighting panel, organic EL lighting apparatus, and organic EL display
JP2005063959A (en) Organic el display and its manufacturing method
JP2007323889A (en) Organic led element, and its manufacturing method
JP2005158388A (en) Manufacturing method of organic el display device
JP2008108512A (en) Manufacturing method for organic electroluminescent element and electro-optical apparatus
JP2007227046A (en) Organic el display device
JP2007317547A (en) Organic el display device, and manufacturing method of organic el display device
JP4305825B2 (en) Organic EL display panel and manufacturing method thereof
JP2011210531A (en) Manufacturing method of organic el light-emitting device, plasma treatment device, and electronic equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060629

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091020