JP2005077097A - Fluid leakage detector for airtight container - Google Patents

Fluid leakage detector for airtight container Download PDF

Info

Publication number
JP2005077097A
JP2005077097A JP2003209537A JP2003209537A JP2005077097A JP 2005077097 A JP2005077097 A JP 2005077097A JP 2003209537 A JP2003209537 A JP 2003209537A JP 2003209537 A JP2003209537 A JP 2003209537A JP 2005077097 A JP2005077097 A JP 2005077097A
Authority
JP
Japan
Prior art keywords
pressure
bellows
airtight container
airtight
inert gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003209537A
Other languages
Japanese (ja)
Inventor
Atsushi Sekine
厚 関根
Yoshiaki Watabe
義明 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aviation Electronics Industry Ltd
Original Assignee
Japan Aviation Electronics Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aviation Electronics Industry Ltd filed Critical Japan Aviation Electronics Industry Ltd
Priority to JP2003209537A priority Critical patent/JP2005077097A/en
Publication of JP2005077097A publication Critical patent/JP2005077097A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluid leakage detector capable of detecting leakage of inert gas filled in a storage case of a high-voltage electric power source part in an inertia navigation system of an aircraft, and capable of preventing the inert gas in the storage case from being hardly replaced with air even when landings and flights of the aircraft are repeated. <P>SOLUTION: An inner space of a bellows 4 is communicated with an inner space of an airtight container 2. A linear displacement gage 6 detects a displacement of an end face plate 5 via a detecting rod 7. The bellows 4 is contracted under atmospheric pressure atmosphere as shown in Fig.(a), and is expanded under reduced pressure atmosphere as shown in Fig.(b). A leakage amount of the inert gas from the airtight container 2 is estimated based on a change in a measured value measured by the linear displacement gage 6. The bellows 4 is contracted and expanded in response to a pressure difference between pressures in its inside and outside, the inside pressure of the airtight container 2 is atmospheric pressure when under the atmospheric pressure atmosphere, and the inert gas in the airtight container 2 is precluded thereby from being replaced with the air containing moisture to restrain insulation pressure-proofness of the high-voltage electric power source part from being deteriorated. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、気密容器の流体漏れ検出装置に関し、特に気密容器の外周囲圧力の変動に伴なって発生する該気密容器内の気体の漏れを検出する気密容器の流体漏れ検出装置に関する。
【0002】
【従来の技術】
一般に、航空機等に搭載される慣性航法装置に用いられるリングレーザジャイロには、所定の高圧電源部による高圧電源の供給が必要不可欠である。航空機は通常所定の高度を保持して飛行するが、航空機内の気圧は地上に対比して低圧であるために、機内における必要度に応じて与圧が付与されて正常値に維持されている。しかしながら、上記の慣性航法装置の場合は、通常与圧が付与されない非与圧室に設置されているので、航空機の飛行中は該装置の外周囲気圧は正常値よりもかなり低い環境状態に置かれている。
【0003】
この低気圧環境では、リングレーザジャイロの高圧電源部の電気的絶縁耐圧が低下する。この絶縁耐圧の低下により、高圧電源部の高圧回路とシャーシとの間に放電が生じることがある。地上の常気圧においては正常に動作する高圧電源部も、飛行中の低気圧環境下でこのような放電が起こると、正常な電源として機能しない。航空機の飛行中においても、高圧電源部を地上と同じ常気圧に保持すれば、高圧電源部における放電は防止できる。そこで、高圧電源部を気密性のある気密ケース(気密容器)内に納め、気密ケース内に乾燥窒素等の不活性化ガスを充填するという放電防止策が従来から採られている。
【0004】
しかしながら、該気密ケースの気密シール部に欠陥があったり、または経年変化により該シール部に劣化が生じたりして、僅かでもシール部に隙間が生じると、航空機が上昇した場合には、外部気圧の低下により気密ケース内部の不活性ガスが外部に漏れ出してしまい、航空機が下降して地上に戻った場合には、相対的にケースの内部圧力よりも外部圧力の方が高くなるので、外部の湿った空気が気密ケース内に侵入してくるという状態となる。このように、航空機の飛行状態に応じて上昇と下降とが繰返して行われると、ケース内部の不活性ガスが湿った外部の空気に置換されて、高圧電源部の絶縁耐圧が低下し、高圧電源部の故障に至る。このような高圧電源部の故障を未然に防ぐには、該気密ケース内の不活性ガスの漏れ量を検出することによって、気密ケースの欠陥や劣化を早期に発見し、気密ケースの修繕や交換により、気密ケースの気密性を常に保持することが必要である。
【0005】
気密空間の気密性を検知する従来の技術としてなお、特開2001ー349500号公報に記載された「蛇腹型伸縮管継手の漏洩検知装置」が知られている。特開2001ー349500号公報は、気体若しくは液体用の配管において、内管と外管より成る二重管構造の蛇腹型伸縮管継手を有する管継手に適用され、内管などの破損による流体の漏洩の有無を、視覚的に容易に検知することを目的とする漏洩検知装置を提案している。図3は、その特開2001ー349500号公報において図1として示された漏洩検知装置の構造図である。この漏洩検知装置は、気体または液体用の内管12と外管13からなる二重管構造の蛇腹型伸縮部14を有する蛇腹型伸縮管継手11に適用されている。漏洩検出路17は、内管12と外管13からなる二重管構造における空隙16に連通している。この漏洩検知装置は、主要構成要素として、検知用管18、接続部19、ベローズ22、ケーシング23、スプリング24および検知動作子25等を含むベローズ型圧力検知器20により構成されている。スプリング24及びベローズ22は感圧動作手段21を構成している。
【0006】
図3において、正常動作時においては、ベローズ22はスプリング24によって下方に押し下げられており、ベローズ22に固定されている検知動作子25は、ケーシング23の内部に納められた状態となっている。この状態においては、ベローズ22の内部の気体圧力による押し上げる力と、スプリング23の押し下げる圧力との均衡がとられている。しかし、異常事態として、例えば蛇腹型伸縮部14の内管12に亀裂などの破損が発生し、輸送用配管15の内部から空隙16内の圧力よりも高い圧力が空隙16に導入されるような場合には、漏洩検出路17を介してベローズ22の内部の圧力も上昇し、感圧動作手段21の均衡が崩れてスプリング24に抗してベローズ22が伸長して、検知動作子25が押し上げられてケーシング23の外部に突出する。この蛇腹型伸縮継手の漏洩検知装置によれば、目視できない部位に位置する蛇腹型伸縮部14の内管の破損による流体の漏洩を、検知動作子25の突出に基づき視覚的に検知することができ、該破損の有無を容易に確認することができるとしている。
【0007】
【発明が解決しようとする課題】
前述のように、航空機の慣性航法装置においては、高圧電源部における機能障害を防止する手段として、該高圧電源部を気密ケース内に納め、該気密ケース内に乾燥窒素等の不活性ガスを充填している。しかしながら、気密ケースの気密シール部における欠陥やシール部の劣化等により僅かでも気密シール部に隙間が生じると、航空機が上昇した場合には、外部気圧の低下により気密ケース内部の不活性ガスが外部に漏れ出してしまい、航空機が下降して地上に戻った場合には、相対的にケースの内部圧力よりも外部圧力の方が高くなるので、外部の湿った空気がケース内に侵入するという状態となる。このように、航空機の飛行状態に応じて上昇と下降とが繰返して行われると、ケース内部の不活性ガスが湿った外部の空気に置換されて、高圧電源部が絶縁耐圧劣化により故障することがある。
【0008】
そこで、該気密ケース内の不活性ガスの漏れ量を検出することにより、気密ケース内の不活性ガスと気密ケース外部の空気との混合を未然に防止する対応策が求められる。ところが、航空機等に搭載される慣性航法装置に用いられるリングレーザジャイロの高圧電源部の場合には、気密ケースからの不活性ガスの漏れ量が極めて微量であり、その漏れ量を検出することは容易なことではない。このように、リングレーザジャイロの高圧電源部においては不活性ガスの漏れ量が極めて微量であるので、気密ケースからの不活性ガス漏れ量を的確に検知することができず、不活性ガスが湿った外部の空気に置換されることによって発生する絶縁耐圧劣化による機能障害を、簡易な手段で未然に防止することは困難であった。
【0009】
一方、特開2001ー349500号公報の蛇腹型伸縮継手の漏洩検知装置は、蛇腹型伸縮管継手における目視困難な部位に存在する破損障害による流体の漏洩の有無の検知を目的としており、該破損障害により管内より漏れる流体の圧力が、比較的高圧力の場合に適用される流体漏洩の単能的検知手段であり、上記の慣性航法装置の高圧電源部における気密性の収納ケースの場合のように、漏れ量が極めて微量である場合に対応する漏洩検出手段としては原理的に不適である。また、慣性航法装置における漏れ量検知手段は、気密性の収納ケースからの不活性ガス漏れ量を検知する機能だけではなく、収納ケースの外周囲圧力が大気圧であるときには、該収納ケースの内部圧力を、大気圧に対応する所定正常値に保持するとともに、収納ケース内の空気と外部の空気との置換を回避する機能をも併せて有することを必要とするので、前記公報に開示される漏洩検知手段の適用は不可能である。何れにしても、蛇腹型伸縮管継手に適用される漏洩検出装置の機構的複雑性と特殊性とに関連して、その応用面が極めて限定されるという欠点がある。
【0010】
そこで、本発明の目的は、慣性航法装置の高圧電源部において、収納ケースの不活性ガスの微量の漏れ量を検出することを可能にするとともに、該慣性航法装置を搭載する航空機が着陸および高空での飛行を交互に繰り返すときの高圧電源部の絶縁耐圧の劣化を抑制できる気密容器の漏れ量検出装置を提供することにある。
【0011】
【課題を解決するための手段】
前述の課題を解決するために本発明は次の手段を提供する。
【0012】
(1)気密容器の内部空間に連通する連通孔でもって、該気密容器の内部空間と自らの内部空間を連通し、内外圧力差に応じて所定方向に伸縮するベローズと、
前記ベローズにおける特定位置の前記所定方向の変位を検知する変位検知手段と
を有し、
前記変位検知手段で検知した前記変位に基づき前記気密容器の流体漏れを検知する気密容器の流体漏れ検出装置。
【0013】
(2)気密容器の内部空間に連通する連通孔でもって、該気密容器の内部空間と自らの内部空間を連通し、内外圧力差に応じて所定方向に伸縮するベローズと、
前記ベローズが所定長さに伸びたときに、該ベローズの特定部位が接触し、該特定部位が押す圧力を検知する圧力計と
を有し、
前記圧力計で検知した前記圧力の変動に基づき前記気密容器の流体漏れを検知する気密容器の流体漏れ検出装置。
【0014】
【発明の実施の形態】
次に、図面を参照して、本発明の実施の形態を説明する。先ず本発明の第1の実施の形態について説明する。図1(a)および(b)は、本発明の第1の実施の形態である気密容器の流体漏れ検出装置1と、流体漏れ検出装置1で内部気体の漏れ量が検出される気密容器2との結合構造の断面図である。気密容器2は気密容器本体2aと蓋2bとでなる。蓋2bは、気密シール部3(ガスケット、オーリングおよび接着剤等)により気密容器本体2aの上部開口を封止している。気密容器本体2aには、別の小さい開口2cが設けてある。
【0015】
気密容器の流体漏れ検出装置1はベローズ4と、直線変位計6と、筐体8とを備えてなる。筐体8は円筒状である。筐体8の左端は気密容器本体2の右側面に固着されている。筐体8の右端は開放孔9を介して、大気に開放されている。そこで、端面板5には常に外周囲圧力(大気圧)が加わっている。
【0016】
ベローズ4の左側端は開口であり、ベローズ4の右側端は端面板5で封止されている。ベローズ4の左側端の開口(前述の連通孔に相当)の縁は、気密容器本体2の開口2cの縁に密着して固定されている(封止されている)。ベローズ4の内部空間は、開口2cを介して気密容器2の内部空間に連通しており、ベローズ4の内部圧力は気密容器2の内部圧力と同じである。ベローズ4および端面板5の外周は筐体8の内壁に接触している。
【0017】
ベローズ4は、軸方向に伸縮自在であり、内部空間と大気との圧力差に応じて軸方向に自在に伸縮する弾性体である。ベローズ4および端面板5の外周は筐体8の内壁に接触しているので、ベローズ4が軸方向に伸縮するとき、ベローズ4および端面板5の外周は筐体8の内壁に摺接し、その内壁に案内される。そこで、ベローズ4は、軸を筐体8の軸に常に一致させて、軸方向に伸縮する。
【0018】
端面板5の位置は、気密容器2の内部空間の圧力と外周囲圧力(大気圧)との差に対応している。端面板5の軸方向変位は、直線変位計6に伝達される。検知棒7は、直線変位計6の可動部材であり、ベローズ4の端面の位置を表す指標でもある。
【0019】
図1(a)は、内部にガス等の気体が充填された初期状態において、図1の装置が航空機に搭載されており、その航空機が地上にある場合の如く、図1の装置の外周囲圧力が常圧であるときに、気密容器2の内部圧力と外周囲圧力の大気圧とが均衡している状態を示している。ベローズ4の端面板5に加えられる気密容器2の内部圧力は、開放孔9を介して端面板5に印加される大気圧と均衡し、ベローズ4は静止した状態にある。この初期状態において、端面板5に固定されている検知棒7を介して、直線変位計6により端面板5の位置D0 (ここで端面板5の位置は、直線変位計6が設定されている筐体8の右側端面を基準として計測するものとする)が計測されるものとする。
【0020】
いま、図1の装置が航空機に搭載されており、その航空機が上昇した場合の如く、図1の装置の外周囲圧力が低下したとする。外周囲圧力が常圧である図1の初期状態から、気密容器2の外周囲圧力が低下した状態に移ると、上記の圧力の均衡状態が破れて、気密容器2の内部圧力が相対的に外周囲圧力よりも高くなり、ベローズ4が伸長して端面板5は、図1(b)に示されるように、筐体8の端面に近接するように変位する。但し、直線変位計6においては計測値限界が規定されており、外周囲圧力の低下に伴う端面板5の変位位置は、その計測値限界に対応する規定位置に保持される。図1(b)は、その状態を示している。
【0021】
この図1(b)の状態において、気密容器2の気密シール部3に、僅少の欠陥が存在している場合を想定すると、気密容器2の内部圧力と外周囲圧力との差異に応じて、微量ではあるが気密容器2からのガス漏れが生じる。
【0022】
次の段階において、外周囲圧力が低下した図1(b)状態から外周囲圧力が再度上昇して常圧の状態に戻ると、ベローズ4は、図1(a)に示されるように収縮して、気密容器2の内部圧力と外周囲圧力とが均衡する状態に戻る。この均衡状態において、直線変位計6により、ベローズ4の端面板5の位置D1 が計測される。この場合には、外周囲圧力が低下した際に、僅少ではあるが気密容器2からのガス漏れが生じているので、気密容器2の内部圧力が僅かながら低下しており、計測されるベローズ4の端面板5の位置D1 と、図1(a)に示される初期状態における端面板5の位置D0 との間には微小の差異が生じてD0 <D1 という関係が成立つ。
【0023】
このD1 およびD0 の位置は、直線変位計6により精度高く計測されて、その差異(D1―D0 )の数値を参照することにより、外周囲圧力の低下に伴うガスの漏れ量を検出することができる。また上記の外周囲圧力の低下が繰返して生じる場合には、大気圧と均衡する状態に復帰する度に該位置を計測して、最終的に計測される位置と前記位置D0 との差異の数値を参照することにより、最終的なガスの漏れ量を検出することができる。なお実質的には、ベローズ4のバネ定数、端面板5の内外面における実効面積差異および端面板5と筐体8との間のフリクション(摩擦)等を考慮した上でガスの漏れ量が推算される。直線変位計6は、気密容器2における僅かなガス漏れをも検知できる程度に、非常に高い精度で端面板5の位置を検知できる。
【0024】
また気密容器2の内部圧力が常圧の外周囲圧力と均衡する状態に復帰したときの内外圧力の均衡状態においては、気密容器2からのガス漏れは必然的に回避され、または外部からの気密容器2に対する湿った空気等の流入も当然に回避される。このように、図1の実施の形態は、気密容器2の内部空間圧力と外周囲圧力とを均衡させることによりガスの漏れ量を検出する方式であるから、ガスの漏れ量が検出できるだけではなく、気密容器2の内部に外部の湿った空気が流入することを原理的に防止できる。これは、本実施の形態の特徴の一つである。
【0025】
本実施の形態である気密容器の流体漏れ検出装置は、航空機搭載の慣性航法装置における高圧電源部の収納ケースの漏れ検出手段に適用して好適である。この収納ケースは、図1の気密容器2に相当する。航空機は離陸して飛行した後に下降して地上に降りるという運用状態を繰り返すので、気密容器2は、外周囲圧力が常気圧→低気圧→常気圧→低気圧→常気圧という具合に交互に変動する環境下に置かれる。従って、数回の飛行運用後において、不活性化ガスの漏れ量が、高圧電源部の機能保持に必要とされる許容限界内にあるか否かを判定することが求められる。
【0026】
仮に5回の飛行運用後に、結果的に漏れ量が高圧電源部の機能保持上の許容限界外にあるものと判定された場合を想定してみると、初期状態における端面板5の位置の計測値D0 に対応して、地上に降りる度に気密容器2の漏れ量をチェックすることにより、端面板5の位置としてD1 ,D2 ,D3 ,D4 ,D5 なる5個の計測値が求められる。不活性ガスの漏れ量は飛行の度に累増するので、前述のように、D0 <D1 <D2 <D3 <D4 <D5 となる。この想定例においては、直線変位計6による位置計測値の差異(D5 −D0 )に対応する気密容器2の内部圧力が、許容限界外であるものと判定されて、この時点において、該気密容器2の気密シール部に対する改修が求められることになる。
【0027】
即ち、図1の実施の形態の気密容器の流体漏れ検出装置が航空機搭載の慣性航法装置における高圧電源部の収納ケースの漏れ検出手段に適用される場合には、飛行状態により収納ケースに不活性ガスの漏れが生じることがあっても、地上に降りる度に該不活性ガスの漏れ量を検出して収納ケースの許容限界と比較することにより、収納ケース内の圧力を正常値に保持することが可能となり、高圧電源部の機能を正常に維持することができる。しかも、地上着陸時においては、収納ケースの内部圧力と、外周囲圧力の大気圧とは圧力が均衡しているので、内部の不活性化ガスが外部に漏れることはなく、また外部の湿った空気が気密ケース内に侵入することもない。このように、航空機搭載の慣性航法装置における高圧電源部の収納ケースの漏れ検出手段として本実施例を適用したとき、収納ケース内部の不活性ガスが湿った外部の空気に置換されて、高圧電源部の絶縁耐圧が低下し、高圧電源部が故障するという従来技術の欠点も解決される。
【0028】
次に、本発明の第2の実施の形態について説明する。図2(a)及び(b)は、本発明の第2の実施の形態である気密容器の流体漏れ検出装置101と、流体漏れ検出装置101で内部気体の漏れ量が検出される気密容器2との結合構造の断面図である。気密容器2は図1のものと同じである。図2(a)は、気密容器の流体漏れ検出装置101及び気密容器2が常圧の外周囲圧力雰囲気に置かれた状態を示し、図2(b)は、気密容器の流体漏れ検出装置101及び気密容器2が常圧より低圧の外周囲圧力雰囲気に置かれた状態を示す。
【0029】
気密容器の流体漏れ検出装置101はベローズ4と、圧力計10と、筐体108とを備えてなる。図2(a)及び(b)の気密容器の流体漏れ検出装置101は、図1の気密容器の流体漏れ検出装置1における直線変位計6に代えて圧力計10を備える。ベローズ4(端面板5を含む)の構造は、図1におけるものと同じである。筐体108は、図1の筐体8と同じ径の円筒形であり、右側端面に開放孔9を備える点も図1の構造と同じであるが、長さが図1の筐体8より短い。気密容器2とベローズ4との結合構造は、図1と同じである。ベローズ4および端面板5の外周が筐体108の内壁に摺接し、ベローズ4および端面板5が筐体108の内壁に案内されて、軸方向に摺動する構造も、図1と同じである。
【0030】
図2(a)は、気密容器2の内部にガスが所定圧力に充填され、外周囲圧力が常圧である初期状態を示している。初期状態では、気密容器の流体漏れ検出装置101が常圧の外周囲圧力雰囲気に置かれ、ベローズ4の弾力に抗して外周囲圧力がベローズ4を圧縮し、ベローズ4の内部圧力が外周囲圧力と均衡するまでベローズ4が短縮された状態を示す。初期状態においては、ベローズ4の端面板5は、圧力計10の感圧面より或る距離だけ離れて位置している。
【0031】
図2(b)は、気密容器の流体漏れ検出装置101が常圧より低い外周囲圧力雰囲気に置かれ、ベローズ4は自らの弾力により伸張し、ベローズ4の右側端面をなす端面板5が圧力計10の感圧面に接触して、ベローズ4の伸張が停止した状態を示す。図2(b)の状態では、ベローズ4の内部圧力(即ち気密容器2の内部圧力)と外周囲圧力との差圧に対応した圧力が圧力計10で検出される。圧力計10で検出される圧力は、主として該差圧、端面板5の面積およびベローズ4のバネ定数(弾性係数)で定まる。したがって、該差圧は圧力計10の検知圧力の関数である。また、外周囲圧力が一定値に安定しているときは、該差圧は気密容器2の内部圧力の関数であるから、該差圧の変動から気密容器2の内部圧力の変化、ひいては気密容器2の内部気体の漏れの程度を検知できる。
【0032】
図2(a)の初期状態では、気密容器2の内部圧力が、外周囲圧力の大気圧と略々均衡しており、ベローズ4の端面板5は、圧力計10の感圧面とは或る距離を置いた状態で静止している。この初期状態を起点として、気密容器2の外周囲圧力が一定値以下に低下すると、気密容器2の内部圧力と外周囲圧力との間に相対的な圧力差が生じてベローズ4が伸長し、図2(b)に示されるように、端面板5が圧力計10の感圧面に当接し、ベローズ4の内部圧力と外周囲圧力との差圧が圧力計10により計測できる。
【0033】
外周囲圧力が低下し、流体漏れ検出装置101が図2(b)の状態に至ったとき、気密容器2の気密シール部3に僅少の欠陥が存在すると、内外圧力差に応じて微量ではあるが気密容器2からのガス漏れが生じる。なお、気密容器2から僅かなガス漏れが生じて気密容器2の内部圧力が僅かに低下しても、気密容器2の内部圧力低下よりも外周囲圧力の低下の方が相対的に大であるので、該外周囲圧力が一定値以下の状態にあるとき、端面板5と圧力計10の感圧面とは接触状態を継続し、圧力計10は気密容器2の内外圧力差の検知を継続する。
【0034】
流体漏れ検出装置101が図2(b)の状態にあり、しかも外周囲圧力が安定しているときに、圧力計10の計測値が減少すれば、気密容器2においてガス漏れがあったことを意味する。したがって、図2(a)及び(b)の実施の形態の採用により、流体漏れ検出装置101が常圧より一定値以上低い外周囲圧力雰囲気にあるときに、気密容器2においてガス漏れがあったことを検知できる。
【0035】
この実施の形態が図2(a)の状態にあり、気密容器2が常圧雰囲気にあるとき、気密容器2の内外圧力は均衡している。そこで、図2(a)及び(b)の実施の形態の採用により、低圧雰囲気においては気密容器2からガス漏れが生じる程度に気密シール部3が劣化したとしても、気密容器2が常圧雰囲気にあるときに、劣化した気密シール部3を介して外部から湿った空気が気密容器2の内に進入することは防止できる。
【0036】
航空機に搭載される慣性航法装置の高圧電源部を収納する収納ケースに図2の実施の形態を適用する場合には、一定値以下に気圧が低下する一定高度において航空機が安定に飛行する状態で、圧力計10の検知圧力の変動の程度に基づき、ガスの漏れ量を検出できる。圧力計10は、僅かなガス漏れによる気密容器2の内部圧力の変化を検知できる程度に、高精度に圧力変化を検知できる。
なお、図1の実施の形態を変形し、図1の構造において、直線変位計6に並べて図2の圧力計10を配置した流体漏れ検出装置を構成すれば、常圧にあるときの端面板5の位置の偏移に基づき気密容器2のガス漏れを検知するとともに、常圧より一定値以上低い外周囲圧力雰囲気にあるときにも圧力計10の検出圧力の変動に基づき気密容器2のガス漏れを検知できるようにすることもできる。このような図1の変形構造でも、気密容器2が常圧雰囲気にあるとき、気密容器2の内外圧力は均衡している。そこで、低圧雰囲気においては気密容器2からガス漏れが生じる程度に気密シール部3が劣化したとしても、気密容器2が常圧雰囲気にあるときに、劣化した気密シール部3を介して外部から湿った空気が気密容器2の内に進入することは防止できる。
【0037】
【発明の効果】
以上に説明したように、本発明によれば、慣性航法装置の高圧電源部において、収納ケースの不活性ガスの微量の漏れ量を検出することを可能にするとともに、該慣性航法装置を搭載する航空機が着陸および高空での飛行を交互に繰り返すときの高圧電源部の絶縁耐圧の劣化を抑制できる気密容器の漏れ量検出装置を提供できる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態を示す断面図である。
【図2】本発明の第2の実施の形態を示す断面図である。
【図3】従来例を示す断面図である。
【符号の説明】
1,101 気密容器の流体漏れ検出装置
2 気密容器
3 気密シール部
4 ベローズ
5 端面板
6 直線変位計
7 検知棒
8,108 筐体
9 開放孔
10 圧力計
11 蛇腹型伸縮管継手
12 内管
13 外管
14 蛇腹型伸縮部
15 輸送用配管
16 空隙
17 漏洩検出路
18 検知用管
19 接続部
20 ベローズ型圧力検知器
21 感圧動作手段
22 ベローズ
23 ケーシング
24 スプリング
25 検知動作子
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fluid leak detection device for a hermetic container, and more particularly to a fluid leak detection device for a hermetic container that detects a gas leak in the hermetic container that occurs due to fluctuations in the external ambient pressure of the hermetic container.
[0002]
[Prior art]
In general, for a ring laser gyro used in an inertial navigation apparatus mounted on an aircraft or the like, it is indispensable to supply a high-voltage power supply by a predetermined high-voltage power supply unit. Aircraft usually fly at a predetermined altitude, but the air pressure in the aircraft is low compared to the ground, so pressure is applied according to the degree of necessity in the aircraft and maintained at a normal value. . However, since the inertial navigation device described above is installed in a non-pressurized chamber that is not normally pressurized, the ambient ambient pressure of the device is placed in an environmental state that is considerably lower than the normal value during flight of the aircraft. It has been.
[0003]
In this low-pressure environment, the electrical withstand voltage of the high-voltage power supply unit of the ring laser gyro is lowered. Due to the decrease in the withstand voltage, a discharge may occur between the high voltage circuit of the high voltage power supply unit and the chassis. A high-voltage power supply unit that operates normally at atmospheric pressure on the ground does not function as a normal power supply when such a discharge occurs in a low-pressure environment during flight. Even during flight of the aircraft, if the high-voltage power supply unit is maintained at the same atmospheric pressure as the ground, discharge in the high-voltage power supply unit can be prevented. Therefore, a discharge prevention measure has been conventionally taken in which the high-voltage power supply unit is housed in an airtight case (airtight container) having airtightness and an inert gas such as dry nitrogen is filled in the airtight case.
[0004]
However, if there is a defect in the hermetic seal part of the hermetic case, or the seal part is deteriorated due to aging, and there is even a gap in the seal part, if the aircraft rises, the external pressure As the inert gas inside the airtight case leaks to the outside due to a decrease in the air pressure and the aircraft descends and returns to the ground, the external pressure is relatively higher than the internal pressure of the case, so the external pressure The damp air will enter the airtight case. In this way, when the ascending and descending are repeated according to the flight state of the aircraft, the inert gas inside the case is replaced with moist external air, and the withstand voltage of the high-voltage power supply unit decreases, The power supply unit will be damaged. In order to prevent such a failure of the high-voltage power supply unit, by detecting the amount of inert gas leaked in the airtight case, defects and deterioration of the airtight case are detected at an early stage, and the airtight case is repaired or replaced. Therefore, it is necessary to always maintain the airtightness of the airtight case.
[0005]
As a conventional technique for detecting the airtightness of an airtight space, a “leak detection device for bellows type expansion joint” described in Japanese Patent Application Laid-Open No. 2001-349500 is known. Japanese Patent Application Laid-Open No. 2001-349500 is applied to a pipe joint having a bellows type expansion joint having a double pipe structure including an inner pipe and an outer pipe in a pipe for gas or liquid. Proposes a leak detection device aimed at visually detecting the presence or absence of leaks. FIG. 3 is a structural diagram of the leak detection apparatus shown as FIG. 1 in Japanese Patent Laid-Open No. 2001-349500. This leak detection device is applied to a bellows type expansion and contraction pipe joint 11 having a bellows type expansion and contraction portion 14 having a double tube structure comprising an inner tube 12 and an outer tube 13 for gas or liquid. The leak detection path 17 communicates with a gap 16 in a double tube structure including the inner tube 12 and the outer tube 13. This leak detection apparatus is constituted by a bellows type pressure detector 20 including a detection pipe 18, a connecting portion 19, a bellows 22, a casing 23, a spring 24, a detection operation element 25, and the like as main components. The spring 24 and the bellows 22 constitute the pressure sensitive operation means 21.
[0006]
In FIG. 3, during normal operation, the bellows 22 is pushed downward by a spring 24, and the detection operating element 25 fixed to the bellows 22 is in a state of being housed inside the casing 23. In this state, a balance between the pushing-up force by the gas pressure inside the bellows 22 and the pushing-down pressure of the spring 23 is achieved. However, as an abnormal situation, for example, the inner pipe 12 of the bellows type expansion / contraction part 14 is broken, such as a crack, and a pressure higher than the pressure in the gap 16 is introduced into the gap 16 from the inside of the transportation pipe 15. In this case, the pressure inside the bellows 22 also rises via the leak detection path 17, the pressure sensitive operation means 21 is unbalanced, the bellows 22 is extended against the spring 24, and the detection actuator 25 is pushed up. And protrudes outside the casing 23. According to the leak detection device for the bellows-type expansion joint, it is possible to visually detect fluid leakage due to the breakage of the inner tube of the bellows-type extension / contraction part 14 located at an invisible part based on the protrusion of the detection operation element 25. The presence or absence of the damage can be easily confirmed.
[0007]
[Problems to be solved by the invention]
As described above, in an inertial navigation system for an aircraft, as a means for preventing functional failure in a high-voltage power supply unit, the high-voltage power supply unit is placed in an airtight case, and the airtight case is filled with an inert gas such as dry nitrogen. doing. However, if even a slight gap occurs in the airtight seal due to defects in the airtight seal of the airtight case or deterioration of the seal, etc., when the aircraft rises, the inert gas inside the airtight case is externally reduced due to a decrease in external atmospheric pressure. When the aircraft descends and returns to the ground, the external pressure is relatively higher than the internal pressure of the case, so that external moist air enters the case. It becomes. In this way, if the ascending and descending are repeated according to the flight state of the aircraft, the inert gas inside the case is replaced with moist external air, and the high-voltage power supply unit fails due to dielectric breakdown voltage deterioration. There is.
[0008]
Therefore, there is a need for a countermeasure for preventing the mixture of the inert gas in the airtight case and the air outside the airtight case by detecting the leakage amount of the inert gas in the airtight case. However, in the case of a high-voltage power supply unit of a ring laser gyro used for an inertial navigation device mounted on an aircraft or the like, the amount of inert gas leakage from the airtight case is extremely small, and it is possible to detect the amount of leakage. It ’s not easy. As described above, since the amount of inert gas leakage is extremely small in the high-voltage power supply section of the ring laser gyroscope, the amount of inert gas leakage from the airtight case cannot be accurately detected, and the inert gas becomes damp. In addition, it has been difficult to prevent a functional failure due to dielectric breakdown voltage degradation caused by replacement with outside air by simple means.
[0009]
On the other hand, the leak detection device for a bellows type expansion joint disclosed in Japanese Patent Application Laid-Open No. 2001-349500 is intended to detect the presence or absence of fluid leakage due to a breakage fault present in a portion of the bellows type expansion pipe joint that is difficult to see. This is a single-function detection means for fluid leakage that is applied when the pressure of fluid leaking from the pipe due to a failure is relatively high, as in the case of the airtight storage case in the high-voltage power supply of the above-mentioned inertial navigation system. In addition, it is unsuitable in principle as a leak detection means corresponding to a case where the leak amount is extremely small. In addition, the leakage amount detection means in the inertial navigation device has not only a function of detecting the amount of inert gas leaked from the airtight storage case, but also when the outer ambient pressure of the storage case is atmospheric pressure, Since it is necessary to maintain the pressure at a predetermined normal value corresponding to the atmospheric pressure and to have a function of avoiding the replacement of the air in the storage case with the external air, it is disclosed in the above publication. Application of leak detection means is impossible. In any case, there is a drawback that its application is extremely limited in relation to the mechanical complexity and speciality of the leak detection device applied to the bellows type expansion joint.
[0010]
Accordingly, an object of the present invention is to enable detection of a small amount of inert gas leakage in a storage case in a high-voltage power supply unit of an inertial navigation device, and to make an aircraft equipped with the inertial navigation device land and An object of the present invention is to provide a leak amount detection device for an airtight container capable of suppressing deterioration of the dielectric strength of a high voltage power supply unit when the flight in the air is repeated alternately.
[0011]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention provides the following means.
[0012]
(1) A bellows that communicates with the internal space of the hermetic container and the internal space of the hermetic container with a communication hole that communicates with the internal space of the hermetic container, and expands and contracts in a predetermined direction according to an internal / external pressure difference;
Displacement detecting means for detecting displacement in the predetermined direction at a specific position in the bellows,
A fluid leak detection device for an airtight container that detects a fluid leak in the airtight container based on the displacement detected by the displacement detection means.
[0013]
(2) A bellows that communicates with the internal space of the hermetic container and the internal space of the hermetic container with a communication hole that communicates with the internal space of the hermetic container, and expands and contracts in a predetermined direction according to an internal / external pressure difference;
When the bellows extends to a predetermined length, a specific part of the bellows comes into contact, and has a pressure gauge that detects the pressure pressed by the specific part,
A fluid leak detection device for an airtight container that detects a fluid leak in the airtight container based on a change in the pressure detected by the pressure gauge.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings. First, a first embodiment of the present invention will be described. 1A and 1B show a fluid leak detection device 1 for an airtight container according to a first embodiment of the present invention, and an airtight container 2 in which the amount of leakage of internal gas is detected by the fluid leak detection device 1. FIG. The airtight container 2 includes an airtight container main body 2a and a lid 2b. The lid 2b seals the upper opening of the hermetic container body 2a with a hermetic seal portion 3 (gasket, O-ring, adhesive, etc.). Another small opening 2c is provided in the airtight container body 2a.
[0015]
An airtight container fluid leak detection device 1 includes a bellows 4, a linear displacement meter 6, and a housing 8. The housing 8 is cylindrical. The left end of the housing 8 is fixed to the right side surface of the airtight container body 2. The right end of the housing 8 is open to the atmosphere through an opening hole 9. Therefore, the outer peripheral pressure (atmospheric pressure) is always applied to the end face plate 5.
[0016]
The left end of the bellows 4 is an opening, and the right end of the bellows 4 is sealed with an end face plate 5. The edge of the opening at the left end of the bellows 4 (corresponding to the above-described communication hole) is fixed (sealed) in close contact with the edge of the opening 2c of the airtight container body 2. The internal space of the bellows 4 communicates with the internal space of the airtight container 2 through the opening 2c, and the internal pressure of the bellows 4 is the same as the internal pressure of the airtight container 2. The outer peripheries of the bellows 4 and the end face plate 5 are in contact with the inner wall of the housing 8.
[0017]
The bellows 4 is an elastic body that can expand and contract in the axial direction, and can freely expand and contract in the axial direction according to a pressure difference between the internal space and the atmosphere. Since the outer peripheries of the bellows 4 and the end face plate 5 are in contact with the inner wall of the casing 8, when the bellows 4 expands and contracts in the axial direction, the outer peripheries of the bellows 4 and the end face plate 5 are in sliding contact with the inner wall of the casing 8. Guided to the inner wall. Therefore, the bellows 4 expands and contracts in the axial direction with its axis always coinciding with the axis of the housing 8.
[0018]
The position of the end face plate 5 corresponds to the difference between the pressure in the internal space of the airtight container 2 and the external ambient pressure (atmospheric pressure). The axial displacement of the end face plate 5 is transmitted to the linear displacement meter 6. The detection rod 7 is a movable member of the linear displacement meter 6 and is also an index representing the position of the end face of the bellows 4.
[0019]
FIG. 1 (a) shows the outer periphery of the apparatus of FIG. 1 as if the apparatus of FIG. 1 was mounted on an aircraft in an initial state where the gas or the like was filled therein, and the aircraft was on the ground. When the pressure is normal pressure, the internal pressure of the airtight container 2 and the atmospheric pressure of the external ambient pressure are balanced. The internal pressure of the hermetic container 2 applied to the end face plate 5 of the bellows 4 is balanced with the atmospheric pressure applied to the end face plate 5 through the open hole 9, and the bellows 4 is in a stationary state. In this initial state, the position D0 of the end face plate 5 is set by the linear displacement meter 6 via the detection rod 7 fixed to the end face plate 5 (here, the position of the end face plate 5 is set to the linear displacement meter 6). It is assumed that measurement is performed using the right end surface of the housing 8 as a reference).
[0020]
Now, assume that the apparatus of FIG. 1 is mounted on an aircraft, and the external ambient pressure of the apparatus of FIG. From the initial state of FIG. 1 in which the external ambient pressure is normal pressure, when the external ambient pressure of the airtight container 2 is lowered, the equilibrium state of the pressure is broken, and the internal pressure of the airtight container 2 is relatively The bellows 4 expands due to the pressure higher than the external ambient pressure, and the end face plate 5 is displaced so as to be close to the end face of the housing 8 as shown in FIG. However, the measurement value limit is defined in the linear displacement meter 6, and the displacement position of the end face plate 5 accompanying the decrease in the external ambient pressure is held at the specified position corresponding to the measurement value limit. FIG. 1B shows this state.
[0021]
In the state of FIG. 1B, assuming that a slight defect exists in the hermetic seal portion 3 of the hermetic container 2, according to the difference between the internal pressure of the hermetic container 2 and the outer ambient pressure, Gas leakage from the hermetic container 2 occurs although the amount is small.
[0022]
In the next stage, when the external ambient pressure rises again from the state of FIG. 1B where the external ambient pressure has decreased and returns to the normal pressure state, the bellows 4 contracts as shown in FIG. Thus, the internal pressure of the airtight container 2 and the external ambient pressure return to a balanced state. In this balanced state, the linear displacement meter 6 measures the position D1 of the end plate 5 of the bellows 4. In this case, when the outer ambient pressure is reduced, gas leakage from the airtight container 2 is slight, but the internal pressure of the airtight container 2 is slightly reduced, and the bellows 4 to be measured is measured. A slight difference occurs between the position D1 of the end face plate 5 and the position D0 of the end face plate 5 in the initial state shown in FIG. 1A, and the relationship D0 <D1 is established.
[0023]
The positions of D1 and D0 are measured with high accuracy by the linear displacement meter 6, and by referring to the numerical value of the difference (D1-D0), it is possible to detect the amount of gas leakage accompanying the decrease in the external ambient pressure. it can. Further, when the above-described decrease in the external ambient pressure occurs repeatedly, the position is measured every time when the state returns to a state balanced with the atmospheric pressure, and the numerical value of the difference between the position finally measured and the position D0 By referring to, it is possible to detect the final amount of gas leakage. In practice, the amount of gas leakage is estimated in consideration of the spring constant of the bellows 4, the effective area difference between the inner and outer surfaces of the end plate 5, the friction between the end plate 5 and the housing 8, and the like. Is done. The linear displacement meter 6 can detect the position of the end plate 5 with very high accuracy to the extent that even a slight gas leak in the airtight container 2 can be detected.
[0024]
Further, in the equilibrium state of the internal and external pressures when the internal pressure of the hermetic container 2 returns to a state where it is balanced with the normal ambient pressure, the gas leakage from the hermetic container 2 is inevitably avoided or the external airtightness is avoided. Naturally, inflow of moist air or the like into the container 2 is also avoided. As described above, since the embodiment of FIG. 1 is a method for detecting the amount of gas leakage by balancing the internal space pressure of the hermetic container 2 and the external ambient pressure, not only the amount of gas leakage can be detected. In principle, external wet air can be prevented from flowing into the airtight container 2. This is one of the features of this embodiment.
[0025]
The fluid leak detection device for an airtight container according to the present embodiment is suitable for application to leak detection means for a storage case of a high voltage power supply unit in an inertial navigation device mounted on an aircraft. This storage case corresponds to the airtight container 2 of FIG. Since the aircraft repeats the operational state of taking off and flying and then descending and descending to the ground, the airtight container 2 alternately changes the ambient pressure in the order of normal pressure → low pressure → normal pressure → low pressure → normal pressure. Placed in an environment where Therefore, after several flight operations, it is required to determine whether or not the leakage amount of the inert gas is within the allowable limit required for maintaining the function of the high-voltage power supply unit.
[0026]
Assuming that after five flight operations, the amount of leakage is determined to be outside the allowable limit for maintaining the function of the high-voltage power supply unit, the position of the end face plate 5 in the initial state is measured. Corresponding to the value D0, by checking the leakage amount of the airtight container 2 every time it gets down to the ground, five measured values D1, D2, D3, D4, and D5 are obtained as positions of the end face plate 5. Since the leakage amount of the inert gas increases with each flight, as described above, D0 <D1 <D2 <D3 <D4 <D5. In this assumption example, it is determined that the internal pressure of the airtight container 2 corresponding to the difference (D5−D0) in the position measurement value by the linear displacement meter 6 is outside the allowable limit, and at this time, the airtight container The airtight seal part 2 is required to be repaired.
[0027]
That is, when the fluid leak detection device for the hermetic container of the embodiment of FIG. 1 is applied to the leak detection means of the storage case of the high-voltage power supply unit in the inertial navigation device mounted on the aircraft, it is inactive in the storage case depending on the flight state. Even if a gas leak occurs, the pressure inside the storage case is maintained at a normal value by detecting the amount of the inert gas leak and comparing it with the allowable limit of the storage case each time it gets down to the ground. And the function of the high-voltage power supply unit can be maintained normally. Moreover, at the time of landing on the ground, the internal pressure of the storage case and the atmospheric pressure of the external ambient pressure are balanced, so that the internal inert gas does not leak to the outside, and the external wet Air does not enter the airtight case. Thus, when this embodiment is applied as a leakage detection means for a storage case of a high-voltage power supply unit in an aircraft-mounted inertial navigation device, the inert gas inside the storage case is replaced with moist external air, and the high-voltage power supply The disadvantage of the prior art that the insulation withstand voltage of the part decreases and the high-voltage power supply part fails is also solved.
[0028]
Next, a second embodiment of the present invention will be described. 2A and 2B show a fluid leak detection device 101 for an airtight container according to a second embodiment of the present invention, and an airtight container 2 in which the leak amount of internal gas is detected by the fluid leak detection device 101. FIG. The airtight container 2 is the same as that of FIG. FIG. 2A shows a state in which the fluid leak detection device 101 of the airtight container and the airtight container 2 are placed in an atmospheric pressure atmosphere at normal pressure, and FIG. 2B shows the fluid leak detection device 101 of the airtight container. And the state where the airtight container 2 was put in the external ambient pressure atmosphere lower than normal pressure is shown.
[0029]
The fluid leak detection device 101 for an airtight container includes a bellows 4, a pressure gauge 10, and a housing 108. 2A and 2B includes a pressure gauge 10 in place of the linear displacement meter 6 in the air leak detection apparatus 1 of the airtight container of FIG. The structure of the bellows 4 (including the end face plate 5) is the same as that in FIG. The casing 108 has a cylindrical shape with the same diameter as the casing 8 of FIG. 1 and is similar to the structure of FIG. 1 in that the right end face is provided with an open hole 9, but the length is longer than that of the casing 8 of FIG. short. The coupling structure of the airtight container 2 and the bellows 4 is the same as that in FIG. The outer periphery of the bellows 4 and the end face plate 5 is in sliding contact with the inner wall of the housing 108, and the bellows 4 and the end face plate 5 are guided by the inner wall of the housing 108 to slide in the axial direction, as in FIG. .
[0030]
FIG. 2A shows an initial state in which the gas is filled in the hermetic container 2 at a predetermined pressure and the outer ambient pressure is normal pressure. In the initial state, the fluid leak detection device 101 of the airtight container is placed in an atmospheric pressure ambient pressure atmosphere, and the outer peripheral pressure compresses the bellows 4 against the elasticity of the bellows 4, and the internal pressure of the bellows 4 is the outer ambient pressure. The bellows 4 is shown in a shortened state until it balances with the pressure. In the initial state, the end plate 5 of the bellows 4 is located a certain distance away from the pressure sensitive surface of the pressure gauge 10.
[0031]
FIG. 2B shows that the fluid leak detection device 101 of the hermetic container is placed in an external ambient pressure atmosphere lower than normal pressure, the bellows 4 is expanded by its own elasticity, and the end face plate 5 forming the right end face of the bellows 4 is pressurized. A state in which the expansion of the bellows 4 is stopped by contacting the pressure-sensitive surface of the total 10 is shown. In the state of FIG. 2B, the pressure gauge 10 detects a pressure corresponding to the differential pressure between the internal pressure of the bellows 4 (that is, the internal pressure of the hermetic container 2) and the external ambient pressure. The pressure detected by the pressure gauge 10 is mainly determined by the differential pressure, the area of the end face plate 5 and the spring constant (elastic coefficient) of the bellows 4. Therefore, the differential pressure is a function of the pressure detected by the pressure gauge 10. Further, when the outer ambient pressure is stable at a constant value, the differential pressure is a function of the internal pressure of the hermetic container 2, so that the change in the internal pressure of the hermetic container 2 from the fluctuation of the differential pressure, and thus the hermetic container The degree of leakage of the internal gas 2 can be detected.
[0032]
In the initial state of FIG. 2A, the internal pressure of the hermetic container 2 is substantially balanced with the atmospheric pressure of the external ambient pressure, and the end plate 5 of the bellows 4 is a pressure-sensitive surface of the pressure gauge 10. Still at a distance. Starting from this initial state, when the outer ambient pressure of the hermetic container 2 falls below a certain value, a relative pressure difference occurs between the inner pressure of the hermetic container 2 and the outer ambient pressure, and the bellows 4 expands. As shown in FIG. 2B, the end plate 5 abuts on the pressure-sensitive surface of the pressure gauge 10, and the pressure difference between the internal pressure of the bellows 4 and the external ambient pressure can be measured by the pressure gauge 10.
[0033]
When the external ambient pressure decreases and the fluid leak detection device 101 reaches the state shown in FIG. 2B, if there is a slight defect in the hermetic seal portion 3 of the hermetic container 2, the amount is very small depending on the internal / external pressure difference. However, gas leakage from the airtight container 2 occurs. Even if a slight gas leak occurs from the hermetic container 2 and the internal pressure of the hermetic container 2 slightly decreases, the decrease in the external ambient pressure is relatively larger than the decrease in the internal pressure of the hermetic container 2. Therefore, when the outer ambient pressure is below a certain value, the end face plate 5 and the pressure sensitive surface of the pressure gauge 10 are kept in contact with each other, and the pressure gauge 10 continues to detect the pressure difference between the inside and outside of the airtight container 2. .
[0034]
If the fluid leak detection device 101 is in the state of FIG. 2B and the external ambient pressure is stable, if the measured value of the pressure gauge 10 decreases, it is confirmed that there is a gas leak in the hermetic container 2. means. Therefore, by adopting the embodiment of FIGS. 2 (a) and 2 (b), when the fluid leak detection device 101 is in an ambient pressure atmosphere lower than the normal pressure by a certain value or more, there is a gas leak in the hermetic container 2. Can be detected.
[0035]
When this embodiment is in the state of FIG. 2A and the airtight container 2 is in a normal pressure atmosphere, the internal and external pressures of the airtight container 2 are balanced. Therefore, by adopting the embodiment of FIGS. 2 (a) and 2 (b), even if the hermetic seal portion 3 deteriorates to such an extent that gas leaks from the hermetic container 2 in the low pressure atmosphere, the hermetic container 2 remains in the normal pressure atmosphere. It is possible to prevent wet air from entering the hermetic container 2 from the outside through the deteriorated hermetic seal portion 3.
[0036]
When the embodiment shown in FIG. 2 is applied to a storage case for storing a high-voltage power supply unit of an inertial navigation system mounted on an aircraft, the aircraft can fly stably at a constant altitude where the atmospheric pressure drops below a certain value. Based on the degree of fluctuation of the detected pressure of the pressure gauge 10, the amount of gas leakage can be detected. The pressure gauge 10 can detect the pressure change with high accuracy to such an extent that the change in the internal pressure of the airtight container 2 due to a slight gas leak can be detected.
In addition, if the embodiment shown in FIG. 1 is modified to form a fluid leak detection device in which the pressure gauge 10 shown in FIG. 2 is arranged in line with the linear displacement meter 6 in the structure shown in FIG. The gas leakage in the hermetic container 2 is detected based on the shift of the position 5, and the gas in the hermetic container 2 is also detected based on the fluctuation in the detected pressure of the pressure gauge 10 even when the ambient pressure atmosphere is lower than the normal pressure by a certain value or more. It is also possible to detect leaks. Even in the modified structure of FIG. 1, when the airtight container 2 is in a normal pressure atmosphere, the internal and external pressures of the airtight container 2 are balanced. Therefore, even if the hermetic seal 3 is deteriorated to such an extent that gas leaks from the hermetic container 2 in a low-pressure atmosphere, when the hermetic container 2 is in a normal pressure atmosphere, the air is wet from the outside through the deteriorated hermetic seal 3. It is possible to prevent the air from entering the airtight container 2.
[0037]
【The invention's effect】
As described above, according to the present invention, it is possible to detect a small amount of inert gas leakage in the storage case in the high-voltage power supply unit of the inertial navigation device, and to mount the inertial navigation device. It is possible to provide an airtight container leakage amount detection device capable of suppressing deterioration of dielectric strength of a high-voltage power supply unit when an aircraft repeatedly alternates between landing and flying in a high sky.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a first embodiment of the present invention.
FIG. 2 is a cross-sectional view showing a second embodiment of the present invention.
FIG. 3 is a cross-sectional view showing a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1,101 Fluid leak detection apparatus 2 of an airtight container 2 Airtight container 3 Airtight seal part 4 Bellows 5 End face plate 6 Linear displacement meter 7 Detection rod 8,108 Housing | casing 9 Open hole 10 Pressure gauge 11 Bellows type expansion-contraction pipe joint 12 Inner pipe 13 Outer pipe 14 Bellows type expansion / contraction part 15 Transportation pipe 16 Gap 17 Leakage detection path 18 Detection pipe 19 Connection part 20 Bellows pressure detector 21 Pressure sensitive operation means 22 Bellows 23 Casing 24 Spring 25 Detection operation element

Claims (2)

気密容器の内部空間に連通する連通孔でもって、該気密容器の内部空間と自らの内部空間を連通し、内外圧力差に応じて所定方向に伸縮するベローズと、
前記ベローズにおける特定位置の前記所定方向の変位を検知する変位検知手段と
を有し、
前記変位検知手段で検知した前記変位に基づき前記気密容器の流体漏れを検知する気密容器の流体漏れ検出装置。
A communication hole communicating with the internal space of the airtight container, communicating the internal space of the airtight container with its own internal space, and a bellows that expands and contracts in a predetermined direction in accordance with an internal / external pressure difference;
Displacement detecting means for detecting displacement in the predetermined direction at a specific position in the bellows,
A fluid leak detection device for an airtight container that detects a fluid leak in the airtight container based on the displacement detected by the displacement detection means.
気密容器の内部空間に連通する連通孔でもって、該気密容器の内部空間と自らの内部空間を連通し、内外圧力差に応じて所定方向に伸縮するベローズと、
前記ベローズが所定長さに伸びたときに、該ベローズの特定部位が接触し、該特定部位が押す圧力を検知する圧力計と
を有し、
前記圧力計で検知した前記圧力の変動に基づき前記気密容器の流体漏れを検知する気密容器の流体漏れ検出装置。
A communication hole communicating with the internal space of the airtight container, communicating the internal space of the airtight container with its own internal space, and a bellows that expands and contracts in a predetermined direction in accordance with an internal / external pressure difference;
When the bellows extends to a predetermined length, a specific part of the bellows comes into contact, and has a pressure gauge that detects the pressure pressed by the specific part,
A fluid leak detection device for an airtight container that detects a fluid leak in the airtight container based on a change in the pressure detected by the pressure gauge.
JP2003209537A 2003-08-29 2003-08-29 Fluid leakage detector for airtight container Pending JP2005077097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003209537A JP2005077097A (en) 2003-08-29 2003-08-29 Fluid leakage detector for airtight container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003209537A JP2005077097A (en) 2003-08-29 2003-08-29 Fluid leakage detector for airtight container

Publications (1)

Publication Number Publication Date
JP2005077097A true JP2005077097A (en) 2005-03-24

Family

ID=34402431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003209537A Pending JP2005077097A (en) 2003-08-29 2003-08-29 Fluid leakage detector for airtight container

Country Status (1)

Country Link
JP (1) JP2005077097A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012506050A (en) * 2008-10-14 2012-03-08 プロクシュ,ロジャー Integrated microactuator and linear variable differential transformer for high precision position measurement
CN104568347A (en) * 2014-12-22 2015-04-29 浙江中烟工业有限责任公司 Testing device and testing method for testing leakage of small cigarette case
CN104614136A (en) * 2014-12-22 2015-05-13 浙江中烟工业有限责任公司 Vacuum decay method for testing leak of cigarette packaging body
CN105547505A (en) * 2016-01-05 2016-05-04 西安航天动力技术研究所 Apparatus for simulating and monitoring temperature field of missile enclosed stern compartment
CN113309613A (en) * 2021-05-25 2021-08-27 中国商用飞机有限责任公司 Gas leakage detection piece, gas leakage detection assembly, bleed air pipeline structure and aircraft
CN114526876A (en) * 2022-01-27 2022-05-24 核电运行研究(上海)有限公司 Differential pressure induction type conical pipe plug, negative pressure leakage detection device and leakage detection method thereof
CN115832486A (en) * 2021-10-20 2023-03-21 宁德时代新能源科技股份有限公司 Battery cell, battery and power consumption device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012506050A (en) * 2008-10-14 2012-03-08 プロクシュ,ロジャー Integrated microactuator and linear variable differential transformer for high precision position measurement
CN104568347A (en) * 2014-12-22 2015-04-29 浙江中烟工业有限责任公司 Testing device and testing method for testing leakage of small cigarette case
CN104614136A (en) * 2014-12-22 2015-05-13 浙江中烟工业有限责任公司 Vacuum decay method for testing leak of cigarette packaging body
CN105547505A (en) * 2016-01-05 2016-05-04 西安航天动力技术研究所 Apparatus for simulating and monitoring temperature field of missile enclosed stern compartment
CN105547505B (en) * 2016-01-05 2018-02-16 西安航天动力技术研究所 A kind of device for simulating the closed deck store temperature field of monitoring guided missile
CN113309613A (en) * 2021-05-25 2021-08-27 中国商用飞机有限责任公司 Gas leakage detection piece, gas leakage detection assembly, bleed air pipeline structure and aircraft
CN113309613B (en) * 2021-05-25 2022-06-10 中国商用飞机有限责任公司 Gas leakage detection piece, gas leakage detection assembly, bleed air pipeline structure and aircraft
CN115832486A (en) * 2021-10-20 2023-03-21 宁德时代新能源科技股份有限公司 Battery cell, battery and power consumption device
CN115832486B (en) * 2021-10-20 2023-12-12 宁德时代新能源科技股份有限公司 Battery cell, battery and electricity utilization device
CN114526876A (en) * 2022-01-27 2022-05-24 核电运行研究(上海)有限公司 Differential pressure induction type conical pipe plug, negative pressure leakage detection device and leakage detection method thereof
CN114526876B (en) * 2022-01-27 2024-06-11 核电运行研究(上海)有限公司 Differential pressure induction type conical pipe plug, negative pressure leakage detection device and leakage detection method thereof

Similar Documents

Publication Publication Date Title
US7987726B2 (en) Method and apparatus for diagnosis of liquid losses in pressure measuring transducers filled with pressure transmitting liquids
US7210337B1 (en) MEMS sensor package leak test
US9914532B2 (en) Shock absorber
KR101726905B1 (en) Fatigue resistant thermowell and methods
US6612177B2 (en) Device for measuring the pressure of liquid or gaseous media
US2841984A (en) Connection for fluid pressure operated devices
CN103998910A (en) Method for detecting a leak on a non-rigid test specimen
JP2014119456A (en) Method for testing airtightness of package
JP2005077097A (en) Fluid leakage detector for airtight container
US20030019298A1 (en) Frost-resistant pressure sensor
KR940021980A (en) Method and apparatus for monitoring gas leakage from gas or liquefied gas containers
CA2313313C (en) Relative pressure sensor
US7732722B1 (en) Hermetically sealed pressure switch with composite actuation mechanism
CN107941405A (en) Hydrostatic sensor and its bearing calibration
JP2007514159A (en) Inspection device for pressure of fluid flowing in liquid or duct stored in tank
US2989084A (en) Exterior seal for differential pressure gages
US3576412A (en) Pressure drop detector with testing means, centrifugal force compensating means, and temperature compensating means
US4305284A (en) Method and means for indicating fluid level by fluid pressure
CN110631658A (en) Detection device for pressure equipment and compressor
JP2006162491A (en) Pressure sensor
US3067614A (en) Apparatus for indicating pressure in fluid system
JP2002328111A (en) Device and method for inspecting air tightness for gas sensor
US2497702A (en) Pressure responsive indicating device
JPH1072093A (en) Pressure tank
JPH06307962A (en) Differential pressure measuring equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050307

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20061215

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20070109

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20070529

Free format text: JAPANESE INTERMEDIATE CODE: A02