JP2005076285A - Foaming method in foam shield construction method and foaming material used for foam shield construction method - Google Patents

Foaming method in foam shield construction method and foaming material used for foam shield construction method Download PDF

Info

Publication number
JP2005076285A
JP2005076285A JP2003307983A JP2003307983A JP2005076285A JP 2005076285 A JP2005076285 A JP 2005076285A JP 2003307983 A JP2003307983 A JP 2003307983A JP 2003307983 A JP2003307983 A JP 2003307983A JP 2005076285 A JP2005076285 A JP 2005076285A
Authority
JP
Japan
Prior art keywords
foaming
viscosity
construction method
shield construction
bubble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003307983A
Other languages
Japanese (ja)
Other versions
JP3994076B2 (en
Inventor
Keizo Miki
慶造 三木
Yoichi Moriya
洋一 守屋
Masayoshi Izawa
昌佳 井沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Keihin Soil Co Ltd
Original Assignee
Obayashi Corp
Keihin Soil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp, Keihin Soil Co Ltd filed Critical Obayashi Corp
Priority to JP2003307983A priority Critical patent/JP3994076B2/en
Priority to PCT/JP2004/012883 priority patent/WO2005021932A1/en
Priority to CNB2004800247579A priority patent/CN100549363C/en
Publication of JP2005076285A publication Critical patent/JP2005076285A/en
Application granted granted Critical
Publication of JP3994076B2 publication Critical patent/JP3994076B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/38Gaseous or foamed well-drilling compositions
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/06Making by using a driving shield, i.e. advanced by pushing means bearing against the already placed lining
    • E21D9/0642Making by using a driving shield, i.e. advanced by pushing means bearing against the already placed lining the shield having means for additional processing at the front end
    • E21D9/0678Adding additives, e.g. chemical compositions, to the slurry or the cuttings

Abstract

<P>PROBLEM TO BE SOLVED: To perform a foam shield construction method, without using the other additive and an auxiliary construction method, even in the highly water permeable gravel ground. <P>SOLUTION: One kind selected from CMC, guagum, and an alginic acid or a mixture of these is added to a foaming agent being a main agent as a thickener. A foaming material solution adjusted to viscosity of 300 to 500 mPas, is foamed by prescribed foaming power via a foaming device 18, and an aqueous solution of a metal ion is added to and mixed with foam provided just after foaming. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、気泡シールド工法において、特に透水性の高い砂礫地盤に用いて好適な気泡の生成方法及び気泡材に関する。   The present invention relates to a bubble generation method and a bubble material suitable for use in a gravel ground with high water permeability in a bubble shield method.

泥土圧系シールドで使用されている加泥材は、(a)ベントナイト系、(b)セルロース系、(c)ポリアクリルアミド系、(d)吸水性樹脂系、(e)界面活性剤係に分類される。   The mud materials used in the mud pressure shield are classified into (a) bentonite, (b) cellulose, (c) polyacrylamide, (d) water-absorbing resin, and (e) surfactants. Is done.

これらのうち、気泡シールド工法で使用される気泡剤は、一般に(e)界面活性剤系に属し、特殊気泡剤(OK−2……パルプを原料としたセルロース系高分子を起泡材の主剤とするもの)の水溶液にエアを混入して生成されるものである。この気泡材を切羽に注入することにより、掘削土の流動性と止水性とを向上させるとともに、チャンバー内土砂の付着を防止し、切羽の安定性を確保しながらスムーズな掘削を行うことができる。   Among these, the foaming agent used in the bubble shield method generally belongs to (e) surfactant system, and special foaming agent (OK-2 ... Cellulose polymer made from pulp as the main ingredient of foaming material. )) Is produced by mixing air into the aqueous solution. By injecting this foam material into the face, the fluidity and water-stopping performance of the excavated soil can be improved, and adhesion of soil in the chamber can be prevented, and smooth excavation can be performed while ensuring the stability of the face. .

また、気泡シールド工法では、掘進地盤の性状、すなわち粒径加積曲線から気泡材のタイプが決定され(非特許文献1を参照)、例えば図1に示すように、Aタイプ(溶液粘度2.7mPa・s)の適用範囲は、粘土、シルト、細砂などからなるIゾーンあるいはIIゾーンの範囲であるのに対し、Bタイプ(溶液粘度300mPa・s)の適用範囲は、細砂、粗砂などからなるII〜IIIゾーンに適合する。   In the bubble shield method, the type of bubble material is determined from the properties of the excavated ground, that is, the particle size accumulation curve (see Non-Patent Document 1). For example, as shown in FIG. The application range of 7 mPa · s) is the range of zone I or II consisting of clay, silt, fine sand, etc., whereas the application range of type B (solution viscosity 300 mPa · s) is fine sand, coarse sand Fits II-III zone consisting of

このBタイプでは、OK−1に増粘剤OK−2を添加して気泡に粘性を与え、気泡強度を増加したものであるため、II〜IIIゾーンに適合できることになる。
気泡シールド工法技術資料「土質と特殊気泡材の選定基準」 平成15年3月 シールド工法技術協会発行 http://www.shield-method.gr.jp/what/kiho.PDF
In this B type, the thickener OK-2 is added to OK-1 to give viscosity to the bubbles and increase the strength of the bubbles, so that it can be adapted to the II to III zones.
Bubble shield construction technical data “Selection criteria for soil and special foam materials” March 2003 Shield Construction Method Association of Japan http://www.shield-method.gr.jp/what/kiho.PDF

しかしながら、特に透水性の高い砂礫地盤、とりわけIVゾーンに属する透水係数の大きい土質では、Bタイプを用いたとしても豊富な地下水の湧出により気泡が消泡しやすく、切羽の安定保持が困難になったり、スクリューコンベアからの噴発などの不具合が生じ、掘進に支障を来すことがあった。   However, especially in the highly permeable gravel ground, especially in the soil with a high permeability coefficient belonging to the IV zone, even if the B type is used, bubbles are easily removed due to abundant groundwater discharge, making it difficult to keep the face stable. Or problems such as eruption from the screw conveyor occurred, which sometimes hindered the excavation.

それ故に、他の添加材の併用や、補助工法を必要としている。これは、従来のBタイプの粘度以上に粘性をあげると、粘性による発泡装置内の圧力増加や、詰まりなどが生ずるため発泡倍率が低下し、気泡シールドのBタイプの標準である6倍発泡ができなくなるからである。   Therefore, the use of other additives and auxiliary methods are required. This is because if the viscosity is increased beyond the viscosity of the conventional B type, the pressure in the foaming device increases due to the viscosity and clogging occurs, so the expansion ratio is reduced, and the B type standard of the bubble shield B type is 6 times foaming. Because it becomes impossible.

本発明は、以上の課題を解決するものであり、Bタイプの起泡材を用いて所期の発泡倍率を確保した上でさらに増粘させることで、透水性の高い砂礫地盤においても他の添加材や、補助工法を用いることなく、気泡シールド工法を実施できるようにした気泡シールド工法における気泡の生成方法及び気泡シールド工法に用いられる気泡材を提供するものである。   The present invention solves the above-mentioned problems, and further increases the viscosity after securing the desired foaming ratio using a B-type foaming material. The present invention provides a bubble generation method and a bubble material used in the bubble shield method in which the bubble shield method can be carried out without using an additive or an auxiliary method.

本発明に係る気泡の生成方法は、主剤としての起泡材に、増粘剤として、CMC,グアガム、アルギン酸の中から選ばれた一種ないしはそれらの混合物を添加し、粘度300〜500mPa・sに調整された起泡材溶液を発泡装置を通して所定の発泡倍率で発泡させ、その直後に得られた気泡に金属イオンの水溶液を添加混合することを特徴とする。また、本発明方法は、請求項1において、前記金属イオンが、三価金属イオンまたはカルシウムイオンであることを特徴とする。さらに本発明方法は、請求項1または2において、前記金属イオンに液性調整用助剤を添加したことを特徴とする。   In the method for producing bubbles according to the present invention, one or a mixture selected from CMC, guar gum and alginic acid is added as a thickener to a foaming material as a main agent, and the viscosity is 300 to 500 mPa · s. The adjusted foaming material solution is foamed at a predetermined foaming ratio through a foaming apparatus, and an aqueous solution of metal ions is added and mixed into the bubbles obtained immediately thereafter. The method of the present invention is characterized in that, in claim 1, the metal ions are trivalent metal ions or calcium ions. Furthermore, the method of the present invention is characterized in that, in claim 1 or 2, a liquidity adjusting aid is added to the metal ions.

また、本発明に係る気泡シールド工法に用いられる気泡材は、主剤としての起泡材に、増粘剤として、CMC,グアガム、アルギン酸の中から選ばれた一種ないしはそれらの混合物を添加し、粘度300〜500mPa・sに調整された起泡材溶液を発泡装置を通して所定の発泡倍率で発泡させ、その直後に得られることを特徴とする。   In addition, the foam material used in the foam shield method according to the present invention is a foaming material as a main agent, and as a thickener, one or a mixture selected from CMC, guar gum, and alginic acid is added. The foaming material solution adjusted to 300 to 500 mPa · s is foamed at a predetermined foaming ratio through a foaming apparatus, and obtained immediately thereafter.

金属イオン溶液の添加により、発泡装置を通じて吐出された気泡の主成分はゲル化し、所期の発泡倍率に保持されつつ、さらに増粘した状態で掘削機先端より吐出される。使用される金属イオンとしては、三価の金属イオンまたはカルシウムイオンが望ましい。液性調整用助剤の添加により、増粘しやすい液性に保たれる。   By adding the metal ion solution, the main components of the bubbles discharged through the foaming apparatus are gelled and discharged from the excavator tip in a further thickened state while being maintained at the desired expansion ratio. The metal ion used is preferably a trivalent metal ion or calcium ion. By adding a liquid property adjusting aid, the liquid property is easily increased.

図2は本発明方法を適用した気泡シールド工法を示す。図において、1はシールド掘削機、2は掘削機1に後続して構築されたトンネルセグメントである。   FIG. 2 shows a bubble shield method to which the method of the present invention is applied. In the figure, 1 is a shield excavator and 2 is a tunnel segment constructed following the excavator 1.

シールド掘削機1は、筒形のスキンプレート3の前面にカッターディスク4を備え、図示しないジャッキによりセグメント2の前端部に反力を取って前進しつつカッターディスク4を回転することで切羽を掘削し、カッターディスク4の背面にあって隔壁5で仕切られたチャンバー6内に取り込んだ掘削ズリをスクリューコンベア7により搬送し、その後部に配置されたズリ搬送台車に受け渡し、排土するよう構成されている。   The shield excavator 1 is provided with a cutter disk 4 on the front surface of a cylindrical skin plate 3, and excavates the face by rotating the cutter disk 4 while moving forward by taking a reaction force at the front end of the segment 2 with a jack (not shown). The excavation gap taken into the chamber 6 on the back surface of the cutter disk 4 and partitioned by the partition wall 5 is conveyed by the screw conveyor 7, delivered to the gap conveyance carriage disposed at the rear thereof, and discharged. ing.

掘削機1の後部において、セグメント2により囲われたトンネル坑内には、搬送用軌条8が架設され、本実施の形態では、この軌条8上に気泡生成プラントを構成する各種台車が一列に連結されている。各台車は、後部側から順に起泡材貯留台車9、駆動台車10、制御台車11、発泡台車12とからなっており、これに加え、発泡用台車12上には金属イオン貯留槽13が配置されている。   In the rear part of the excavator 1, a transport rail 8 is installed in a tunnel mine surrounded by the segment 2, and in this embodiment, various carts constituting the bubble generation plant are connected in a row on the rail 8. ing. Each cart is composed of a foaming material storage cart 9, a driving cart 10, a control cart 11, and a foaming cart 12 in that order from the rear side. In addition, a metal ion storage tank 13 is disposed on the foaming cart 12. Has been.

貯留台車9は坑内に引き込まれた起泡材配管14から起泡材の供給を受けてここに一時貯留する。駆動台車10は起泡材注入ポンプ15、エアコンプレッサ16を備え、制御台車11はポンプ15及びコンプレッサー16の制御装置17を搭載し、発泡台車12には発泡装置18が備えられ、それぞれが起泡材供給ライン、エアラインを介して接続されている。   The storage cart 9 receives supply of foaming material from the foaming material pipe 14 drawn into the mine and temporarily stores it here. The driving carriage 10 includes a foaming material injection pump 15 and an air compressor 16, the control carriage 11 includes a pump 15 and a controller 17 for the compressor 16, and the foaming carriage 12 includes a foaming device 18, each of which generates foam. It is connected via a material supply line and an air line.

プラント駆動により、貯留台車9に貯留された起泡材はポンプ15により発泡装置18に送られ、発泡装置18の内部でエアコンプレッサ16により生じた圧力空気を所定の圧力比で混入することで、所定の発泡倍率で発泡し、気泡注入管19を通じてカッターディスク4の前面に吐出される。   By the plant driving, the foaming material stored in the storage cart 9 is sent to the foaming device 18 by the pump 15, and the compressed air generated by the air compressor 16 inside the foaming device 18 is mixed at a predetermined pressure ratio, Foaming is performed at a predetermined foaming ratio and is discharged to the front surface of the cutter disk 4 through the bubble injection tube 19.

これに加え、気泡注入管19内には発泡装置18の吐出端近傍において、金属イオン貯留槽13に供給用配管20及びポンプPを通じて接続され、発泡装置18内で発泡した気泡に金属イオン溶液が混入される。この混入比率は、前記制御装置17によりポンプPを駆動制御することで、所定の割合となる。   In addition, the bubble injection pipe 19 is connected to the metal ion storage tank 13 through the supply pipe 20 and the pump P in the vicinity of the discharge end of the foaming device 18, and the metal ion solution is bubbled in the foaming device 18. It is mixed. This mixing ratio becomes a predetermined ratio by driving and controlling the pump P by the control device 17.

以上において、使用される起泡材は前述するII〜IIIゾーンに適合するBタイプ起泡材であって、主たる成分は起泡材の主成分である前述のOK−1に加え、増粘剤としてCMC,グアガム、アルギン酸の中から選ばれた一種ないしはそれらの混合物を添加し、粘度300〜500mPa・sに調整された起泡材溶液である。   In the above, the foaming material used is a B-type foaming material suitable for the aforementioned II to III zones, and the main component is the thickener in addition to the above-mentioned OK-1 which is the main component of the foaming material. As a foaming material solution, the viscosity is adjusted to 300 to 500 mPa · s by adding one or a mixture selected from CMC, guar gum and alginic acid.

添加されるCMC,グアガム、アルギン酸またはこれらの混合物は、三価の金属イオン、あるいはカルシウムイオンの存在下でゲル化し、例えば2倍〜40倍に増粘する。   The added CMC, guar gum, alginic acid or a mixture thereof gels in the presence of trivalent metal ions or calcium ions, and thickens, for example, 2 to 40 times.

したがって本発明では、発泡倍率を所期の状態に保ったまま、気泡中に金属イオン溶液が混入されることで増粘し、この状態でカッターディスク4の前面に供給されるため、透水性の高い砂礫地盤、すなわちIVゾーンに属する透水係数の大きい土質であっても、他の添加剤や補助工法を併用することなく良好な掘削ができ、しかもチャンバー内土砂の塑性流動性と止水性が向上するため、スクリュコンベアーからの噴発も防止できる。   Therefore, in the present invention, while maintaining the foaming ratio in an expected state, the metal ion solution is mixed into the bubbles to increase the viscosity, and in this state, the viscosity is supplied to the front surface of the cutter disk 4. Even in the case of high gravel ground, that is, soil with a high hydraulic conductivity belonging to the IV zone, good excavation can be performed without using other additives and auxiliary methods, and the plastic fluidity and water-stopping property of the soil in the chamber is improved. Therefore, the eruption from the screw conveyor can be prevented.

混入される金属イオンとしては、ミョウバン、硫酸バンドなどのアルミニウム化合物、硫酸鉄、塩化鉄、アルミン酸ソーダ、ホウ砂、ホウ酸などの三価金属イオンの溶液や、塩化カルシウム溶液などが掲げられる。   Examples of the metal ions to be mixed include aluminum compounds such as alum and sulfate bands, solutions of trivalent metal ions such as iron sulfate, iron chloride, sodium aluminate, borax and boric acid, and calcium chloride solutions.

以上に加え、水酸化ナトリウム水溶液、硫酸水溶液などの液性調整用の助剤も予め金属イオン溶液内に混合される。これは液性によって増粘度合いが異なり、例えば、グアガムの場合は液性がアルカリ側で増粘度合いが増し、CMCの場合は酸性側で増粘度合いが増すからである。   In addition to the above, auxiliary agents for liquid property adjustment such as sodium hydroxide aqueous solution and sulfuric acid aqueous solution are also mixed in the metal ion solution in advance. This is because the degree of thickening differs depending on the liquidity. For example, in the case of guar gum, the degree of thickening increases on the alkali side, and in the case of CMC, the degree of thickening increases on the acidic side.

これらの金属イオン溶液は0.5〜10%水溶液形態で起泡材溶液の原液に対して体積比で5〜10%程度の混合比率で混合することが望ましい。この理由は、混合量が5%を回った場合には目的とするゲル化による粘性増加が顕著でなく、また10%を上回った場合には凝集作用による離水などの体積収縮がおこるため、健全な気泡ができないと言う不具合が生ずるからである。   These metal ion solutions are desirably mixed in the form of a 0.5 to 10% aqueous solution in a volume ratio of about 5 to 10% with respect to the stock solution of the foaming material solution. The reason for this is that when the mixing amount exceeds 5%, the targeted increase in viscosity due to gelation is not remarkable, and when it exceeds 10%, volume shrinkage such as water separation due to coagulation occurs. This is because a problem arises in that a simple bubble cannot be formed.

なお、掘削する地盤がIIIゾーンないしはIIゾーンに変化した場合には、ポンプPを停止すれば、ゲル化作業が停止されるため、そのままの粘度及び発泡倍率で切羽に供給することができる。これによって増粘に伴うポンプ負荷などを軽減でき、切り替えるだけでよいので、作業の中断を伴うことがなく、地盤性状にあわせて簡単に変更できる。   When the ground to be excavated is changed to the III zone or the II zone, the gelation operation is stopped by stopping the pump P, so that it can be supplied to the face with the same viscosity and foaming ratio. As a result, the pump load accompanying the thickening can be reduced and only switching is required, so that the operation is not interrupted and can be easily changed according to the ground properties.

<<実施例1>>
洗い砂を用い、Aタイプ、Bタイプ、ゲル化Bタイプの3種の粘度の異なる気泡を注入し、以下の表1〜3に示すごとく、スランプ値と注入率を比較した。なお、スランプ値はいずれもC型粘度計で測定した。

Figure 2005076285
Figure 2005076285
Figure 2005076285
<< Example 1 >>
Using washing sand, three types of bubbles with different viscosities of A type, B type, and gelled B type were injected, and the slump value and injection rate were compared as shown in Tables 1 to 3 below. All slump values were measured with a C-type viscometer.
Figure 2005076285
Figure 2005076285
Figure 2005076285

各表からは、気泡の粘度の高さとスランプ値の大きさとが比例していることが理解される。これは、粘度増加により気泡強度が増加すると、破泡または消泡されにくくなることを示唆するものである。   From each table, it is understood that the height of the bubble viscosity is proportional to the magnitude of the slump value. This suggests that when the bubble strength increases due to an increase in viscosity, it becomes difficult to break or defoam.

<<実施例2>>
増粘剤成分であるグアガムの0.6%液を塩化鉄イオンを用いてゲル化し、液性調整剤としてカセイソーダ溶液を用い、液性による粘度の変化を見たところ、以下の表4に示す結果が得られた。なお、溶液状態の粘度はビスコーステスターにより測定した。

Figure 2005076285
この表からは、塩化鉄イオンの介在により増粘し、また同一添加容量であっても、液性がアルカリ側になるほど増粘度合いが高いことが確認された。 << Example 2 >>
A 0.6% solution of guar gum, which is a thickener component, is gelled using iron chloride ions, a caustic soda solution is used as a liquidity adjusting agent, and a change in viscosity due to liquidity is observed. Results were obtained. The viscosity in the solution state was measured with a viscose tester.
Figure 2005076285
From this table, it was confirmed that the viscosity increased due to the intervention of iron chloride ions, and the viscosity increased as the liquid property became alkaline, even with the same added capacity.

<<実施例3>>
増粘剤成分であるグアガムの0.6%液をアルミン酸ソーダを用いてゲル化し、液性調整剤として希硫酸溶液を用い、液性による粘度の変化を見たところ、以下の表5に示す結果が得られた。なお、溶液状態の粘度はビスコーステスターにより測定した。

Figure 2005076285
この表からは、液性が酸性側であると増粘効果がなく、また過度にアルカリ側に偏ってもかえって粘度が低下し、ちょうどよい液性の範囲(pH9.5)で最大の増粘効果を得ることが判明した。なお、アルミン酸ソーダはそれ自体がアルカリ性物質であるため、希硫酸の添加量に応じてその液性が変化する。 << Example 3 >>
A 0.6% solution of guar gum, which is a thickener component, was gelled using sodium aluminate, and a change in viscosity due to liquidity was observed using a dilute sulfuric acid solution as a liquidity adjusting agent. The results shown are obtained. The viscosity in the solution state was measured with a viscose tester.
Figure 2005076285
From this table, it can be seen that there is no thickening effect if the liquid is on the acidic side, and the viscosity is lowered even if it is excessively biased to the alkali side, and the maximum thickening is achieved in the right liquid range (pH 9.5). It turned out to be effective. Since sodium aluminate itself is an alkaline substance, its liquidity changes depending on the amount of dilute sulfuric acid added.

<<実施例4>>
増粘剤成分であるグアガムの0.6%液をホウ砂を用いてゲル化し、液性による粘度の変化を見たところ、以下の表6に示す結果が得られた。なお、溶液状態の粘度はビスコーステスターにより測定した。

Figure 2005076285
この表からは、金属イオンの増加に応じて粘性が増すこと及びちょうどよい液性の範囲(pH9.0)で最大の増粘効果を得ることが判明した。 << Example 4 >>
A 0.6% solution of guar gum, which is a thickener component, was gelled using borax and the change in viscosity due to the liquid property was observed. The results shown in Table 6 below were obtained. The viscosity in the solution state was measured with a viscose tester.
Figure 2005076285
From this table, it has been found that the viscosity increases as the metal ions increase, and that the maximum thickening effect is obtained in the appropriate liquid range (pH 9.0).

気泡シールド工法において、透水性の高い砂礫地盤の掘削に好適である。   In the bubble shield method, it is suitable for excavation of gravel ground with high water permeability.

土質と起泡材の選定基準を示すグラフである。It is a graph which shows the selection criteria of soil quality and foaming material. 本発明方法を適用した気泡シールド工法を示す説明用断面図である。It is sectional drawing for description which shows the bubble shield construction method to which this invention method is applied.

符号の説明Explanation of symbols

1 シールド掘削機
2 セグメント
9,10,11,12 気泡製造プラント
(9 起泡材貯留台車、10 駆動台車、11 制御台車、12 発泡台車)
13 金属イオン貯留槽
18 発泡装置
DESCRIPTION OF SYMBOLS 1 Shield excavator 2 Segment 9, 10, 11, 12 Bubble production plant (9 Foaming material storage cart, 10 drive cart, 11 control cart, 12 foaming cart)
13 Metal ion storage tank 18 Foaming device

Claims (4)

主剤としての起泡材に、増粘剤として、CMC,グアガム、アルギン酸の中から選ばれた一種ないしはそれらの混合物を添加し、粘度300〜500mPa・sに調整された起泡材溶液を発泡装置を通して所定の発泡倍率で発泡させ、その直後に得られた気泡に金属イオンの水溶液を添加混合することを特徴とする気泡シールド工法における気泡の生成方法。   A foaming device is prepared by adding one or a mixture selected from CMC, guar gum and alginic acid as a thickener to a foaming material as a main agent, and adjusting the viscosity to 300 to 500 mPa · s. A method of generating bubbles in the bubble shield method, characterized in that foaming is carried out at a predetermined foaming ratio through, and an aqueous solution of metal ions is added to and mixed with the bubbles obtained immediately thereafter. 請求項1において、前記金属イオンが、三価金属イオンまたはカルシウムイオンであることを特徴とする気泡シールド工法における気泡の生成方法。   The method for generating bubbles in the bubble shield method according to claim 1, wherein the metal ions are trivalent metal ions or calcium ions. 請求項1または2において、前記金属イオンに液性調整用助剤を添加したことを特徴とする気泡シールド工法における気泡の生成方法。   The method for generating bubbles in the bubble shield method according to claim 1, wherein a liquidity adjusting aid is added to the metal ions. 主剤としての起泡材に、増粘剤として、CMC,グアガム、アルギン酸の中から選ばれた一種ないしはそれらの混合物を添加し、粘度300〜500mPa・sに調整された起泡材溶液を発泡装置を通して所定の発泡倍率で発泡させ、その直後に得られることを特徴とする気泡シールド工法に用いられる気泡材。
A foaming device is prepared by adding one or a mixture selected from CMC, guar gum and alginic acid as a thickener to a foaming material as a main agent, and adjusting the viscosity to 300 to 500 mPa · s. A foam material used for a bubble shield method, which is obtained immediately after foaming at a predetermined foaming ratio.
JP2003307983A 2003-08-29 2003-08-29 Bubble generation method and bubble material used for bubble shield method in bubble shield method Expired - Fee Related JP3994076B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003307983A JP3994076B2 (en) 2003-08-29 2003-08-29 Bubble generation method and bubble material used for bubble shield method in bubble shield method
PCT/JP2004/012883 WO2005021932A1 (en) 2003-08-29 2004-08-30 Method for forming foamed material in foam shield driving method and foamed material for use in foam shield driving method
CNB2004800247579A CN100549363C (en) 2003-08-29 2004-08-30 Bubble generation method in the bubble shield method and the bubble material that in the bubble shield method, uses

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003307983A JP3994076B2 (en) 2003-08-29 2003-08-29 Bubble generation method and bubble material used for bubble shield method in bubble shield method

Publications (2)

Publication Number Publication Date
JP2005076285A true JP2005076285A (en) 2005-03-24
JP3994076B2 JP3994076B2 (en) 2007-10-17

Family

ID=34269494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003307983A Expired - Fee Related JP3994076B2 (en) 2003-08-29 2003-08-29 Bubble generation method and bubble material used for bubble shield method in bubble shield method

Country Status (3)

Country Link
JP (1) JP3994076B2 (en)
CN (1) CN100549363C (en)
WO (1) WO2005021932A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006348727A (en) * 2005-05-18 2006-12-28 Ohbayashi Corp Defoaming method of excavated earth and defoaming material in foam shielding method
JP2014092018A (en) * 2012-11-07 2014-05-19 Ohbayashi Corp Cellular shield construction method suitable for excavating sand gravel subgrade
JP6416426B1 (en) * 2018-05-10 2018-10-31 テクニカ合同株式会社 Method for reforming foam mixed soil

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102635363B (en) * 2012-04-23 2015-01-07 武汉船用机械有限责任公司 Shield machine, and additive injection port and additive injection device for shield machine
CN103305207A (en) * 2013-06-06 2013-09-18 上海贵通新材料科技有限公司 Novel and environmentally-friendly fracturing fluid for exploitation of oil-gas fields
ITUB20159216A1 (en) 2015-12-21 2017-06-21 Mapei Spa FOAMING ADDITIVE FOR THE CONDITIONING OF THE SOIL IN THE PRESENCE OF A MECHANIZED EXCAVATION FOR THE REALIZATION OF TUNNELS
ITUA20161500A1 (en) 2016-03-09 2017-09-09 Lamberti Spa EXCAVATION METHOD IN UNDERGROUND FORMATIONS

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6183798A (en) * 1984-09-28 1986-04-28 株式会社熊谷組 Shield type tunnel drilling method
JP2849041B2 (en) * 1994-06-30 1999-01-20 ザ、プロクター、エンド、ギャンブル、カンパニー Detergent composition
DE19530077A1 (en) * 1995-08-16 1997-02-20 Wolff Walsrode Ag Preparations from non-ionic and ionic hydrocolloids and their use as auxiliary materials for tunnel construction
DE19717899A1 (en) * 1996-12-09 1998-06-10 Wolff Walsrode Ag Process for the production and use of gels as additives for mechanical shield driving
CN1162367C (en) * 2002-12-26 2004-08-18 北京城建集团有限责任公司 Post slip-casting inert slurry for tunnel wall of shield method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006348727A (en) * 2005-05-18 2006-12-28 Ohbayashi Corp Defoaming method of excavated earth and defoaming material in foam shielding method
JP2014092018A (en) * 2012-11-07 2014-05-19 Ohbayashi Corp Cellular shield construction method suitable for excavating sand gravel subgrade
JP6416426B1 (en) * 2018-05-10 2018-10-31 テクニカ合同株式会社 Method for reforming foam mixed soil
JP2019196645A (en) * 2018-05-10 2019-11-14 テクニカ合同株式会社 Method for processing modification of air bubble mixed sediment

Also Published As

Publication number Publication date
CN100549363C (en) 2009-10-14
CN1882762A (en) 2006-12-20
WO2005021932A1 (en) 2005-03-10
JP3994076B2 (en) 2007-10-17

Similar Documents

Publication Publication Date Title
JP3994076B2 (en) Bubble generation method and bubble material used for bubble shield method in bubble shield method
KR102319909B1 (en) Directional press-in method with enhanced digging power
JP2008144026A (en) Additive for shield tunneling
JP5537038B2 (en) Additives and mud pressure shield method and mud pressure propulsion method using this additive
JP6632018B1 (en) Tunnel waterproofing method, tunnel waterproofing system, and waterproofing material
JP6830632B2 (en) Treatment method of mud generated by mud pressure shield method
JP2019206814A (en) Production method of fluidized sand and fluidized sand
JP6497990B2 (en) Liquid admixture for ground stabilization, ground stabilization material, and ground stabilization method using the same
CN109439297B (en) Bubble slurry preparation method for improving earth in earth pressure balance shield cabin
JP5878972B1 (en) Ground improvement method
JP4958588B2 (en) How to use mud
JP2519017B2 (en) Shielding method with bubbles and siliceous paste
JP5967840B2 (en) Injection agent used for ground improvement method
JP2000186280A (en) Shield drilling mud additive
JP2019031791A (en) Fluidized sand and its manufacturing method and ground improvement method using it
JP2002088752A (en) Ground consolidation process
JP2011106105A (en) Soil improvement bubble material suitable for ground improvement method reducing the amount of mud, and ground improvement method
JPH01230893A (en) Earth pressure shield constructing viscosity giving material and earth pressure type shield method
CN109595031B (en) Three-liquid-wall back filling construction method and system in shield tunnel
JP2006249336A (en) Grouting material composition for stabilizing ground and technique for stabilization and reinforcement of ground using the same
JP3124368B2 (en) Earth pressure shield excavation method
JP3611942B2 (en) Shield method
JP2803789B2 (en) Soil cement consolidated construction method
JP5005434B2 (en) Additives used in shield method or propulsion method, manufacturing method thereof, and tunnel method
JP3017031B2 (en) Shield excavation method of shield tunnel method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070730

R150 Certificate of patent or registration of utility model

Ref document number: 3994076

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees