JP2005072402A - 半導体レーザ装置ならびにこれを使用した半導体レーザモジュールおよび光ファイバ増幅装置 - Google Patents

半導体レーザ装置ならびにこれを使用した半導体レーザモジュールおよび光ファイバ増幅装置 Download PDF

Info

Publication number
JP2005072402A
JP2005072402A JP2003302288A JP2003302288A JP2005072402A JP 2005072402 A JP2005072402 A JP 2005072402A JP 2003302288 A JP2003302288 A JP 2003302288A JP 2003302288 A JP2003302288 A JP 2003302288A JP 2005072402 A JP2005072402 A JP 2005072402A
Authority
JP
Japan
Prior art keywords
semiconductor laser
laser device
layer
cladding layer
gainasp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003302288A
Other languages
English (en)
Inventor
Jiyunji Yoshida
順自 吉田
Naoki Tsukiji
直樹 築地
Yasushi Oki
泰 大木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2003302288A priority Critical patent/JP2005072402A/ja
Publication of JP2005072402A publication Critical patent/JP2005072402A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

【課題】信頼性に優れ、かつ高出力動作の可能な半導体レーザ装置を提供する。
【解決手段】p型クラッド層、n型クラッド層および活性層を有する半導体レーザ装置において、前記n型クラッド層は、InPおよびGaInAsPを含んだ組成の互いに異なる2以上の層、特に好ましくは超格子構造からなり、かつ、前記n型クラッド層の屈折率は前記p型クラッド層の屈折率より大きいことを特徴とする。
【選択図】 図1

Description

本発明は半導体レーザ装置に関するものであり、特に好適には、EDFAやラマン増幅器等の光ファイバ増幅器用の励起光源として用いられる高出力の半導体レーザ装置に関する。
近年、インターネットの急速な普及や企業内LAN間接続の急増等によって、データトラフィックが飛躍的に増大している。このような中で、高速・大容量のデータ伝送を可能にするWDM(波長多重伝送)システムが発展を遂げ普及している。
WDMシステムでは、複数の光信号をそれぞれ異なる波長に乗せることにより、1本のファイバで毎秒数十ギガビット〜数テラビットにも及ぶ大容量伝送を実現している。特に既存のWDMシステムには、エルビウム添加光ファイバ増幅器(Erbium−Doped Fiber Amplifier、以下、EDFA)やラマン増幅器等の光ファイバ増幅器が必須であり、これにより広帯域・長距離伝送を可能としている。ここでEDFAは、エルビウム(Er)元素を添加した特殊な光ファイバを波長1480nmあるいは980nmの励起光源により励起することにより、伝送信号である波長1550nm帯の光を上記特殊な光ファイバの中で増幅する光ファイバ増幅器である。
また、ラマン増幅器は、EDFAのように特殊なファイバを必要としない、通常の伝送路ファイバを利得媒体とする光ファイバ増幅器である。励起光源の波長よりもおよそ100nm程度、長波長帯域でラマン利得が得られるため、任意の波長帯で増幅可能となる。このため、複数の励起光源を選ぶことにより、従来のEDFAをベースとしたWDM伝送システムに比べ広帯域で平坦な利得を有する伝送帯域を実現することができるという特徴を有している。
WDMシステムの安定性向上や中継数の低減を実現するためには、高出力かつ広帯域の光ファイ増幅器が要求される。この光ファイバ増幅器用途の励起光源、特に高出力EDFA用途やラマン増幅器用途の励起光源としては、InP基板上に形成されたGaInAsPを材料とする埋め込みヘテロ構造(BH構造)の半導体レーザが用いられる。
GaInAsP系半導体レーザにおいて高信頼性および高出力動作を実現するためには、素子長を長くすることや活性層幅を広くすることにより、素子抵抗や熱抵抗を低減させ、活性層からの発熱を抑制することが有効である。
ここで、活性層幅を広くする場合は、高次の横モードを抑制するために、活性層を含む領域と含まない領域での等価屈折率の差が小さくなるように活性層構造を最適化する必要がある。この等価屈折率差が小さいほど、活性層を含む領域の屈折率が小さくなるため、光の電界分布はクラッド層へよりしみ出すことになる。
また、n型InP基板上にレーザ構造を形成する場合には、p型上部クラッド層のドーパントとして、亜鉛(Zn)が一般的に用いられる。Znは光を吸収する性質を持つため、上部クラッド層へしみだした光を吸収し、半導体レーザの高出力動作を妨げる要因となっていた。これに対しては、以下のような技術が公開されている(非特許文献1参照)。これは、n型InP基板を有する半導体レーザ装置において、バンドギャップ組成波長が0.95μmのGaInAsPをn型クラッド層に用いるものである。上記GaInAsPは、p型クラッド層に用いるInPに比べて屈折率が大きいため、レーザ光の強度分布が、従来の活性層を中心とした分布に比べてn型クラッド層寄りにシフトした分布となり、p型クラッド層中のZnによる光吸収が抑制されることになる。
Y. Nagashima, S.Onuki, Y.Shimose, A.Yamada and T. Kikugawa, PD 1.4''Novel Asymmetric-Cladding 1.48-um Pump Laser with Extremely High Slope Efficiency and CW Output Power of > 1W'', LEOS 2002 Post Deadline Papers of "The 15th Annual Meeting of the IEEE Lasers & Electro-Optics Society", Scotland, November 10, 2002
しかしながら、上記のような構造では組成波長0.95μmのGaInAsPをクラッド層として用いるために、相当な厚さ、たとえば7.5μmといった厚さのGaInAsPを基板上に結晶成長する必要がある。一般にInP上にGaInAsPを結晶成長する場合、格子整合条件を維持しながら良質な結晶を得るのが困難であるといった問題がある。特に、成長するGaInAsPの厚さが厚くなるほど、InPとGaInAsPの格子定数差に基づく歪エネルギーが成長に伴って蓄積されるため、高品質の結晶を実現することが困難となり、製造される半導体レーザ装置の高出力動作や信頼性の面で不利である。
本発明は上記に鑑みてなされたものであって、信頼性に優れ、かつ高出力動作の可能な半導体レーザを提供することを目的とする。
上記目的を達成するために、請求項1に記載の発明は、p型クラッド層、n型クラッド層および活性層を有する半導体レーザ装置において、前記n型クラッド層は、InPおよびGaInAsPを含んだ組成の互いに異なる2以上の層からなり、かつ、前記n型クラッド層の屈折率は前記p型クラッド層の屈折率より大きいことを特徴とするものである。
請求項2に記載の発明は、上記の半導体レーザ装置において、前記GaInAsPの組成波長は、1.0μm以上であることを特徴とするものである。
請求項3に記載の発明は、請求項1または請求項2に記載の半導体レーザ装置において、前記組成の互いに異なる2以上の層は、超格子構造を形成していることを特徴とするものである。
請求項4に記載の発明は、請求項1〜3のいずれかに記載の半導体レーザ装置において、前記活性層は、量子井戸構造を有することを特徴としている。
請求項5に記載の発明は、請求項1〜4のいずれかに記載の半導体レーザ装置において、前記半導体レーザ装置は、分離閉じ込めヘテロ(SCH)構造を有することを特徴としている。
請求項6に記載の発明は、請求項5に記載の半導体レーザ装置において、前記SCH構造は単一の層または二以上の層からなり、前記超格子構造の実効的なバンドギャップ組成波長は、前記SCH構造を構成する層のうち最もバンドギャップ組成波長の小さい層の組成波長以下であることを特徴としている。
請求項7に記載の発明は、請求項1〜6のいずれかに記載の半導体レーザ装置と、前記半導体レーザ装置から出射されたレーザ光を外部に導波する光導波路と、前記半導体レーザ装置と前記光導波路とを光結合する光結合手段とを備えたことを特徴とする半導体レーザモジュールである。
請求項8に記載の発明は、請求項7に記載のレーザモジュールと、信号光を伝送する光導波路と、前記半導体レーザモジュールから出射される励起光を該光導波路に入射させるための光合波手段とを備えたことを特徴とする光ファイバ増幅装置である。
以下、本発明の効果について説明する。本発明の請求項1に記載の半導体レーザ装置は、n型クラッド層がInPおよびGaInAsPを含んだ組成の互いに異なる2以上の層からなり、かつ、前記n型クラッド層の屈折率は前記p型クラッド層の屈折率より大きいため、レーザ光の強度分布をn型クラッド層寄りにシフトさせ、p型クラッド層中における光吸収を抑制することができる。したがって、InP基板上に作製される半導体レーザ装置において高出力動作を実現することができる。
本発明の請求項2に記載の半導体レーザ装置においては、n型クラッド層中のGaInAsPの組成波長は1.0μm以上であるため、良質な結晶のn型クラッド層を得ることができ、高出力で信頼性に優れた半導体レーザ装置を得ることができる。
本発明の請求項3に記載の半導体レーザ装置においては、前記組成の互いに異なる2以上の層は超格子構造を形成しているため、n型クラッド層の結晶成長の際に歪エネルギーの蓄積を抑制できる。このため良好な結晶性が得られ、高出力で信頼性に優れた半導体レーザ装置を得ることができる。
本発明の請求項4に記載の半導体レーザ装置においては、前記活性層は量子井戸構造を有するため、高出力化に特に有利であるという効果を奏する。
本発明の請求項5に記載の半導体レーザ装置は、分離閉じ込めヘテロ(SCH)構造を有するため、高出力化に更に有利であるという効果を奏する。
本発明の請求項6に記載の発明によれば、前記超格子構造の実効的なバンドギャップ組成波長は、前記SCH構造を構成する層のうち最もバンドギャップ組成波長の小さい層の組成波長以下であることとしたため、超格子結晶を含んだn型クラッド層からSCH層を介した活性層へのキャリアの注入が良好に行われるという効果を奏する。
本発明の請求項7に記載の発明によれば、請求項1〜6のいずれかに記載の半導体レーザ装置を用いてレーザモジュールを構成するため、高出力・高信頼性のレーザモジュールを得ることができる。
本発明の請求項8に記載の発明によれば、請求項7に記載のレーザモジュールを用いて光増幅装置を構成するため、高性能・高信頼性の光増幅装置を得ることができる。
以下、添付図面を参照して、本発明に係る半導体レーザ装置、半導体レーザ装置モジュールおよび光増幅装置の実施の形態を説明する。但し、これらの実施の形態により本発明が限定されるものではない。
なお、以下において特に断りのない限り、化合物半導体の組成を表すのに、その組成を持つ半導体が吸収できる光の最大波長(バンドギャップ組成波長)をもって表すこととする。
[実施の形態1]
まず、実施の形態1に係る半導体レーザ装置について説明する。実施の形態1に係る半導体レーザ装置は、のちに説明するように、GRIN−SCH−MQW(graded−index separate confinement hetero structure multi quantum well:分布屈折率分離閉じ込め多重量子井戸)構造を有する埋め込みヘテロ型半導体レーザ装置であり、n型のInP基板上にGaInAsP系の材料を用いて構成されている。特に、n型クラッド層として、InPおよび組成波長が1.0μm以上のGaInAsPを含み、かつ等価的な組成波長が1.0μm以下である超格子構造を用いていることが特徴である。但し、GaInAsPのバンドギャップ組成波長は半導体レーザ装置の発振波長を超えない値が望ましい。
図1は実施の形態1に係る半導体レーザ装置の縦断面図である。特に、図1(a)は、長手方向の縦断面図を示し、図1(b)は、光出射面に平行な断面図を示す。図1(c)は図1(b)の一部を拡大したものである。図1において、この半導体レーザ装置10は、n型InP半導体基板1上に、n型の下部クラッド層2A、アンドープの下部光閉じ込め層3A、活性層4、アンドープの上部光閉じ込め層3B、p型の上部クラッド層2B、p型のGaInAsPコンタクト層5が積層されている。なお、上部クラッド層、下部クラッド層および活性層を構成する材料については後述する。これらの層は、有機金属気相成長(MOCVD)法や分子線エピタキシー(MBE)法などのエピタキシャル成長法を用いて形成される。InPからなるクラッド層へのドーパントとしては、p型にはZnが用いられ、n型にはSe、Sなどが用いられる。
図1(b)に示すように、上部クラッド層2B、活性層4および下部クラッド層2Aは、メサストライプ7を構成している。このメサストライプ7は、フォトリソグラフィとエッチングを用いて形成される。メサストライプ7の側方には、p型ブロック層8およびn型ブロック層9が形成され、メサストライプ7を埋め込んでいる。
また、この半導体レーザ装置10は、InP基板1の下側表面にはn側下部電極6Aを備え、p型GaInAsPコンタクト層5の表面にはp側上部電極6Bを備えている。
さらに、図1(a)に示すように、光が出射する前端面fおよびそれに対向した後端面rが、共振器長Lをもつ共振器を形成している。前端面および後端面は、へき開により作られる。前端面f上および後端面r上には、それぞれ、高出力動作のために、低反射膜11および高反射膜が被覆されている。
p側上部電極6Bおよびn側下部電極6Aは、電源(図示されていない。)に接続される。電源から供給された電流は、p側上部電極6Bから、p型GaInAsPコンタクト層5、p型上部クラッド層2B、上部光閉じ込め層3B、活性層4、下部光閉じ込め層3A、n型下部クラッド層2A、n型InP基板1を通って、n側下部電極6Aに至る。注入された電流によって活性層4が発光し、前端面fと後端面rから形成される共振器によってレーザ発振する。
メサストライプ7をp型ブロック層8およびn型ブロック層9が埋め込んでいる埋め込みヘテロ(BH)構造は、電流を活性層4に注入する役割を持つと共に、安定した水平単一横モードでの発振を可能にする。また、横モードの制御が可能であれば、BH構造でなくとも良く、たとえばリッジ構造やセルフアライン構造(SAS)などであっても良い。
また、この実施の形態1に示した半導体レーザ装置10は、高出力動作を可能にする構造として、共振器長L、低反射膜11および高反射膜12の反射率、活性層4付近の構造、活性層4へのドーピング、そして本発明の特徴であるn型下部クラッド層2Aの構造に特徴を持たせている。以下、これらの特徴について説明する。
(共振器長ならびに反射膜の反射率) 共振器長Lは、光出力・消費電力・動作電流といった半導体レーザ装置の仕様に応じて決められるものであり、高出力動作のためには800μm以上とすることが望ましい。本実施の形態ではL=1300μmとした。また、低反射膜11の反射率は5%以下、高反射膜12の反射率は90%以上が望ましい。本実施の形態では、L=1300μmに対して、低反射膜11の反射率を1.5%、高反射膜12の反射率を98%とした。なお、これらの反射率として適切な値は、共振器長L、等価屈折率差、光閉じ込め係数、内部損失などの活性層構造に応じて変わるものである。
(活性層付近の層の組成・厚さなど) 図2は、本実施の形態に係る半導体レーザ装置における、活性層付近のバンドギャップダイアグラムである。活性層4は、井戸層4Aと障壁層4Bとが交互に積層されてなる多重量子井戸(MQW)構造である。図2では特に、井戸層数が5層である場合について示している。なお、本実施の形態においては、活性層に多重量子井戸構造を用いているが、井戸数が1から構成される単一量子井戸構造であっても、問題はない。
また、下部光閉じ込め層3Aおよび上部光閉じ込め層3Bは、バンドギャップエネルギーが活性層4から離れるに従って階段状に増加する複数の層3A、3A、・・・、3Aおよび3B、3B、・・・、3Bからなる傾斜屈折率(GRIN)構造としている。このGRIN−SCH構造は線形であることが好ましい。すなわち、図2に示されるように、3A、3A、・・・、3Aのエネルギーバンドエッジを繋ぐ包絡線h1ならびに3B、3B、・・・、3Bのエネルギーバンドエッジを繋ぐ包絡線h2が、それぞれ直線となることが好ましい。
また、上部および下部光閉じ込め層は、その厚さや組成が互いに対称となるように設計される。しかし、下部光閉じ込め層3Aの厚さを上部光閉じ込め層3Bよりも厚くした非対称構造とすることも、後述するn型下部クラッド層の構造と組み合わせることで、高出力動作に効果的である。
また、高出力動作のために、活性層を歪多重量子井戸構造とすることが好ましい。井戸層の歪量としては、絶対値が0.5%以上であれば、圧縮歪・引張歪のいずれであっても高出力動作が可能であるが、より好ましくは、井戸層に圧縮歪が生じ、障壁層に引張歪が生じるような歪補償構造とし、井戸層の歪量を1.5%以上とすることで、高出力動作を更に有利に実現することができる。
以上のような好ましいMQW−GRIN−SCH構造の一例として、本実施の形態ではGaInAsP系の材料を用い、各層の材料の組成波長を表1のようにした。また、表1において、光閉じ込め層については下部光閉じ込め層3Aの各層について示したが、上部光閉じ込め層3Bについても同様とする。すなわち、3Aを3Bなどと読み替えればよい。

表1 図2に示したMQW−GRIN−SCH構造における各層の組成波長
Figure 2005072402
また、上部光閉じ込め層3Bおよび下部光閉じ込め層3Aの厚さは、共に30〜40nmであることが好ましい。
なお、活性層付近の層の厚さ・組成は、上記に示したものに限定されるわけではない。たとえば、光閉じ込め層の構造は、所望の高出力動作が可能であれば、線形なGRIN−SCH構造に限られるものではない。
(活性層へのドーピング) 本実施形態では、同出願人による特開2002−368341に開示されているように、活性層4にn型不純物がドーピングされている。これにより、素子抵抗が低減されるため、素子の熱抵抗を小さくすることができ、高い電流注入時においても低消費電力動作が可能になる。不純物としては、たとえばセレン(Se)、硫黄(S)、シリコン(Si)などを用いることができる。また、n型不純物に代えて、亜鉛(Zn)、ベリリウム(Be)、マグネシウム(Mg)などのp型不純物を用いてもよい。なお、活性層4の全ての領域に不純物がドーピングされている必要は必ずしもなく、一部領域であっても良い。また、ドーピング濃度は、1E+17cm−3〜3E+18cm−3の範囲とすると、特に高出力動作に有利である。なお、所望の高出力動作が可能であれば、活性層にドーピングされた構造としなくても良い。
(クラッド層の構造) 次に、本発明の特徴であるクラッド層の構造について説明する。図1(b)(c)において、p型の上部クラッド層2BはZnをドーピングしたInPからなる。一方、n型の下部クラッド層2Aは、Seなどがドーピングされ、InP(図中の符号は2A)と四元混晶GaInAsP(図中の符号は2A)を数分子層単位の極薄膜として交互に積層してなる超格子結晶で構成される。
この超格子結晶中のGaInAsPは、どのような組成であっても、n型クラッド層の屈折率を大きくする効果を生ずる。しかし、発明者らは、InP上に組成波長の小さいGaInAsPを結晶成長する場合、成長装置の違いや成長条件の変動によって結晶品質が大きく左右されることに着目し、良好なGaInAsP結晶を得るためにはGaInAsPの組成波長を1.0μm以上とすることが望ましいことを見出した。
GaInAsPの組成および厚さは、GaInAsPの組成波長と超格子結晶の組成波長をそれぞれ所望の値にするように決められる。
上のように超格子結晶の組成波長を制御する方法について以下に述べる。InPとGaInAsPの極薄膜からなる超格子結晶SLは、以下の構造式で表すことができる。なお、λQは組成波長λの四元混晶(quaternary)GaInAsPを表す。但し、Nは整数で、超格子の周期数を表す。
[(λQ)/(InP)]・N (式1)
ここで、pおよびqは、それぞれGaInAsPおよびInPの分子層数である。超格子結晶のバンドギャップエネルギーEgSLおよび屈折率nSLは、次のように表すことができる。
EgSL=p/(p+q)・EgλQ+q/(p+q)・EgInP (式2)
SL=p/(p+q)・nλQ+q/(p+q)・nInP (式3)
また、式2より超格子結晶の組成波長ΛSLは次のように表される。
ΛSL=λ・ΛInP(p+q)/(ΛInP・p+λ・q) (式3)
つまり、GaInAsPの組成波長λおよび各極薄膜の分子層数p、qを適切に選ぶことによって、超格子結晶の組成波長ΛSLや屈折率nSLを所望の値とすることができる。
また、超格子結晶全体の厚さtは
t=(p+q)・N・t1ML (式4)
で表される。ここでt1MLは、1分子層に相当する膜厚であり、InP系の場合0.29344nm(InPの格子定数の半分)である。
超格子結晶の成長における各極薄膜の分子層数p、qの制御は、あらかじめ分子層数と原料供給量との関係を求めておくことにより可能である。1分子層に相当する原料を供給すると、二次元エピタキシャル成長モデルでは成長表面が新しい分子層によって100%覆われることになる。しかし、p、qは必ずしも整数としなくともよい。
本実施の形態では、GaInAsPの組成波長λを1.0μmとし、各極薄膜の分子層数をp=3、q=3とした。この超格子結晶の組成波長は、式3より0.958μmとなる。但し、ΛInP=0.92μmを用いた。また、屈折率は、式(2)より3.2059となる。但し、n1.0Q=3.2325、nInP=3.1792を用いた。したがって、n型下部クラッド層2Aの屈折率は、InPからなるp型上部クラッド層2Bの屈折率3.1792に比べて大きくなる。
図3に、基板に垂直な方向における実効的な屈折率分布および活性層4で生じる光の強度分布を模式的に示す。光の強度分布は,図3に示すようなn型の下部クラッド層側に偏った分布となる。したがって、p型の上部クラッド層中のドーパントであるZnによる光吸収が抑制されるため、内部損失の小さなレーザ動作が可能になり、高出力の半導体レーザ装置を得ることができる。
また、上記のような屈折率分布を実現しようとする場合に、従来はたとえば一方のクラッド層の全領域を単一の四元混晶GaInAsPで形成していたため、結晶成長に伴って格子歪エネルギーが蓄積し、製造される半導体レーザ装置の信頼性に問題が生じていた。これに対し、本実施の形態のようにInPとGaInAsPからなる超格子構造とすることによって、クラッド層の結晶成長における格子歪エネルギーの蓄積が抑制され、信頼性に優れた高出力半導体レーザ装置を得ることが可能である。
なお、本実施の形態では、n型の下部クラッド層2AをInPとGaInAsPからなる超格子結晶で構成したが、他の組合せによる超格子結晶、たとえば互いに組成の異なるGaInAsPからなる超格子結晶としても良い。また、n型の下部クラッド層2AをInPとInGaAsからなる超格子結晶としても良い。
[実施の形態2]
つぎに、この発明の実施の形態2について説明する。この実施の形態2は、上述した実施の形態1に示した半導体レーザ装置と、この半導体レーザ装置から出射されたレーザ光を外部に導波する光導波路と、前記半導体レーザ装置と前記光導波路とを光結合する光結合手段とを備えたことをを特徴としている。本実施の形態では、光導波路として光ファイバを、また光結合手段としてレンズを用いているが、もちろんこれらの種類の構成部品に限定されるものではない。
図4は、この発明の実施の形態2に係る半導体レーザモジュールの構成を示す縦断面図である。図4において、この半導体レーザモジュール50は、上述した実施の形態1または実施の形態2で示した半導体レーザ装置に対応するレーザ装置51を有する。なお、この半導体レーザ装置51は、p側上部電極がヒートシンク57aに接合されるジャンクションダウン構成としている。半導体レーザモジュール50の筐体として、セラミックなどによって形成されたパッケージ59の内部底面上に、温度制御装置としてのペルチェ素子58が配置される。ペルチェ素子58上にはベース57が配置され、このベース57上にはヒートシンク57aが配置される。ペルチェ素子57には、図示しない電流が与えられ、その極性によって冷却および加熱を行うが、半導体レーザ装置51の温度上昇による発振波長ずれを防止するため、主として冷却器として機能する。すなわち、ペルチェ素子58は、レーザ光が所望の波長に比して長い波長である場合には、冷却して低い温度に制御し、レーザ光が所望の波長に比して短い波長である場合には、加熱して高い温度に制御する。この温度制御は、具体的に、ヒートシンク57a上であって、半導体レーザ装置51の近傍に配置されたサーミスタ58aの検出値を元に制御され、図示しない制御装置は、通常、ヒートシンク57aの温度が一定に保たれるようにペルチェ素子58を制御する。また、図示しない制御装置は、半導体レーザ装置51の駆動電流を上昇させるに従って、ヒートシンク57aの温度が下がるようにペルチェ素子58を制御する。このような温度制御を行うことによって、半導体レーザ装置51の出力安定性を向上させることができ、歩留まりの向上にも有効となる。なお、ヒートシンク57aは、たとえばダイヤモンドなどの高熱伝導率を持つ材質によって形成することが望ましい。これは、ヒートシンク57aが高熱伝導率の材質で形成されると、高電流印加時の発熱が抑制されるからである。
ベース57上には、半導体レーザ装置51およびサーミスタ58aを配置したヒートシンク57a、第1レンズ52、および電流モニタ56が配置される。半導体レーザ装置51から出射されたレーザ光は、第1レンズ52、アイソレータ53、および第2レンズ54を介し、光ファイバ55上に導波される。第2レンズ54は、レーザ光の光軸上であって、パッケージ59上に設けられ、外部接続される光ファイバ55に光結合される。なお、ディテクタ56は、半導体レーザ装置51の反射膜側から漏れた光をモニタ検出する。
なお、ラマン増幅器用励起光源において安定したラマン利得を実現するためには、発振波長が駆動電流によらず安定化していることが要求される。この観点から、本実施の形態のより望ましい変形例として、アイソレータ53を用いずに、ファイバピグテイルにファイバブラッググレーティングを具備したモジュールとしてもよい。
この実施の形態2では、実施の形態1で示した半導体レーザ装置をモジュール化しているため、高出力かつ高信頼性のレーザモジュールを得ることができる。
[実施の形態3]
つぎに、この発明の実施の形態3について説明する。この実施の形態3は、上述した実施の形態2の変形例に示した半導体レーザモジュールを光増幅器、特にラマン増幅器に適用したものである。
図5は、この発明の実施の形態3に係るラマン増幅器の構成を示すブロック図である。このラマン増幅器は、WDM通信システムに用いられる。図5において、このラマン増幅器は、上述した実施の形態2に示した半導体レーザモジュールと同一構成の半導体レーザモジュール60a〜60dを用い、さらに、信号光を伝送する光導波路と、前記半導体レーザモジュールから出射される励起光を該光導波路に入射させるための光合波手段とを備えたことを特徴とする。本実施の形態では、光導波路として光ファイバを、また、光合波手段としてカプラを用いているが、もちろんこれらの種類の構成部品に限定されるものではない。
各半導体レーザモジュール60a、60bは、偏波面保持ファイバ71を介して、複数の発振縦モードを有するレーザ光を偏波合成カプラ61aに出力し、各半導体レーザモジュール60c,60dは、偏波面保持ファイバ71を介して、複数の発振縦モードを有するレーザ光を偏波合成カプラ61bに出力する。ここで、半導体レーザモジュール60a、60bが発振するレーザ光は、同一波長である。また、半導体レーザモジュール60c、60dが発振するレーザ光は、同一波長であるが半導体レーザモジュール60a、60bが発振するレーザ光の波長とは異なる。これは、ラマン増幅が偏波依存性を有するためであり、偏波合成カプラ61a、61bによって偏波依存性が解消されたレーザ光として出力するようにしている。
各偏波合成カプラ61a、61bから出力された異なる波長を持ったレーザ光は、WDMカプラ62によって合成され、合成されたレーザ光は、WDMカプラ65を介してラマン増幅用の励起光として増幅用ファイバ64に出力される。この励起光が入力された増幅用ファイバ64には、増幅対象の信号光が入力され、ラマン増幅される。
増幅用ファイバ64内においてラマン増幅された信号光(増幅信号光)は、WDMカプラ65およびアイソレータ66を介してモニタ光分配用カプラ67に入力される。モニタ光分配用カプラ67は、増幅信号光の一部を制御回路68に出力し、残りの増幅信号光を出力レーザ光として信号光出力ファイバ70に出力する。
制御回路68は、入力された一部の増幅信号光を元に各半導体レーザモジュール60a〜60dのレーザ出力状態、たとえば光強度を制御し、ラマン増幅の利得帯域が平坦な特性となるようにフィードバック制御する。
この実施の形態3に示したラマン増幅器では、実施の形態2に示した半導体レーザモジュールを使用しているため、高性能で信頼性に優れたラマン増幅器となる。
なお、本実施の形態には、実施の形態2に示した光モジュールをラマン増幅器に適用した例を示したが、ラマン増幅器に限らず、他の種類の光増幅器にも適用可能であることは言うまでもない。
本発明の実施の形態1に係る半導体レーザ装置の概略を示す縦断面である。 本発明の実施の形態1に係る半導体レーザ装置の活性層付近のバンドギャップダイアグラムである。 本発明の実施の形態1に係る半導体レーザ装置における基板に垂直な方向における実効的な屈折率分布および活性層4で生じる光の強度分布を示す図である。 本発明の実施の形態2に係る半導体レーザモジュールの構成を示す縦断面図である。 本発明の実施の形態3に係るラマン増幅器の構成を示すブロック図である。
符号の説明
1 InP半導体基板
2A 下部クラッド層
2A InP
2A GaInAsP
2B 上部クラッド層
3A 下部光閉じ込め層
3A、3A、・・・、3A 下部光閉じ込め層を構成する層
3B 上部光閉じ込め層
3B、3B、・・・、3B 上部光閉じ込め層を構成する層
4 活性層
4A 井戸層
4B 障壁層
5 GaInAsPコンタクト層
6A n側下部電極
6B p側上部電極
7 メサストライプ
10、20、51 半導体レーザ装置
11 反射膜
12 反射膜
f 前端面
r 後端面
h1 包絡線
h2 包絡線
50、60a、60b、60c、60d 半導体レーザモジュール
52 第1レンズ
53、66 アイソレータ
54 第2レンズ
55 光ファイバ
56 ディテクタ
57 ベース
58 ペルチェ素子
59 パッケージ
61a 偏波合成カプラ
64 増幅用ファイバ
65 WDMカプラ
67 モニタ光分配用カプラ
68 制御回路
70 信号光出力ファイバ
71 偏波面保持ファイバ

Claims (8)

  1. p型クラッド層、n型クラッド層および活性層を有する半導体レーザ装置において、前記n型クラッド層は、InPおよびGaInAsPを含んだ組成の互いに異なる2以上の層からなり、かつ、前記n型クラッド層の屈折率は前記p型クラッド層の屈折率より大きいことを特徴とする半導体レーザ装置。
  2. 前記GaInAsPのバンドギャップ組成波長は、1.0μm以上であることを特徴とする請求項1に記載の半導体レーザ装置。
  3. 前記組成の互いに異なる2以上の層は、超格子構造を形成していることを特徴とする、請求項1または請求項2に記載の半導体レーザ装置。
  4. 前記活性層は、量子井戸構造を有することを特徴とする、請求項1〜3のいずれかに記載の半導体レーザ装置。
  5. 前記半導体レーザ装置は、分離閉じ込めヘテロ(SCH)構造を有することを特徴とする、請求項1〜4のいずれかに記載の半導体レーザ装置。
  6. 前記SCH構造は単一の層または二以上の層からなり、前記超格子構造の実効的なバンドギャップ組成波長は、前記SCH構造を構成する層のうち最もバンドギャップ組成波長の小さい層の組成波長以下であることを特徴とする、請求項5に記載の半導体レーザ装置。
  7. 請求項1〜6のいずれかに記載の半導体レーザ装置と、前記半導体レーザ装置から出射されたレーザ光を外部に導波する光導波路と、前記半導体レーザ装置と前記光導波路とを光結合する光結合手段とを備えたことを特徴とする半導体レーザモジュール。
  8. 請求項7に記載のレーザモジュールと、信号光を伝送する光導波路と、前記半導体レーザモジュールから出射される励起光を該光導波路に入射させるための光合波手段とを備えたことを特徴とする光ファイバ増幅装置。
JP2003302288A 2003-08-27 2003-08-27 半導体レーザ装置ならびにこれを使用した半導体レーザモジュールおよび光ファイバ増幅装置 Pending JP2005072402A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003302288A JP2005072402A (ja) 2003-08-27 2003-08-27 半導体レーザ装置ならびにこれを使用した半導体レーザモジュールおよび光ファイバ増幅装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003302288A JP2005072402A (ja) 2003-08-27 2003-08-27 半導体レーザ装置ならびにこれを使用した半導体レーザモジュールおよび光ファイバ増幅装置

Publications (1)

Publication Number Publication Date
JP2005072402A true JP2005072402A (ja) 2005-03-17

Family

ID=34406593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003302288A Pending JP2005072402A (ja) 2003-08-27 2003-08-27 半導体レーザ装置ならびにこれを使用した半導体レーザモジュールおよび光ファイバ増幅装置

Country Status (1)

Country Link
JP (1) JP2005072402A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006261589A (ja) * 2005-03-18 2006-09-28 Furukawa Electric Co Ltd:The 光半導体装置、レーザモジュールおよび光半導体装置の製造方法
JP2006278416A (ja) * 2005-03-28 2006-10-12 Sharp Corp 半導体レーザ素子およびそれを含む応用システム
JP2007201293A (ja) * 2006-01-27 2007-08-09 Furukawa Electric Co Ltd:The フォトニック結晶光半導体デバイス
JP2013120893A (ja) * 2011-12-08 2013-06-17 Anritsu Corp 半導体レーザ
WO2013151145A1 (ja) * 2012-04-06 2013-10-10 古河電気工業株式会社 光半導体装置、半導体レーザモジュールおよび光ファイバ増幅器
JP2014154797A (ja) * 2013-02-13 2014-08-25 Furukawa Electric Co Ltd:The 半導体光装置
US10511150B2 (en) 2012-04-06 2019-12-17 Furukawa Electric Co., Ltd. Wavelength-variable laser
US10938183B2 (en) 2012-04-06 2021-03-02 Furukawa Electric Co., Ltd. Wavelength-variable laser

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006261589A (ja) * 2005-03-18 2006-09-28 Furukawa Electric Co Ltd:The 光半導体装置、レーザモジュールおよび光半導体装置の製造方法
JP2006278416A (ja) * 2005-03-28 2006-10-12 Sharp Corp 半導体レーザ素子およびそれを含む応用システム
JP4683972B2 (ja) * 2005-03-28 2011-05-18 シャープ株式会社 半導体レーザ素子およびそれを含む応用システム
JP2007201293A (ja) * 2006-01-27 2007-08-09 Furukawa Electric Co Ltd:The フォトニック結晶光半導体デバイス
JP2013120893A (ja) * 2011-12-08 2013-06-17 Anritsu Corp 半導体レーザ
US10020638B2 (en) 2012-04-06 2018-07-10 Furukawa Electric Co., Ltd. Optical semiconductor device, semiconductor laser module, and optical fiber amplifier
US9083150B2 (en) 2012-04-06 2015-07-14 Furukawa Electric Co., Ltd. Optical semiconductor device, semiconductor laser module, and optical fiber amplifier
US9601905B2 (en) 2012-04-06 2017-03-21 Furukawa Electric Co., Ltd. Optical semiconductor device, semiconductor laser module, and optical fiber amplifier
WO2013151145A1 (ja) * 2012-04-06 2013-10-10 古河電気工業株式会社 光半導体装置、半導体レーザモジュールおよび光ファイバ増幅器
US10511150B2 (en) 2012-04-06 2019-12-17 Furukawa Electric Co., Ltd. Wavelength-variable laser
US10938183B2 (en) 2012-04-06 2021-03-02 Furukawa Electric Co., Ltd. Wavelength-variable laser
US11581706B2 (en) 2012-04-06 2023-02-14 Furukawa Electric Co., Ltd. Wavelength-variable laser
US11605935B2 (en) 2012-04-06 2023-03-14 Furukawa Electric Co., Ltd. Wavelength-variable laser
US12009636B2 (en) 2012-04-06 2024-06-11 Furukawa Electric Co., Ltd. Wavelength-variable laser
JP2014154797A (ja) * 2013-02-13 2014-08-25 Furukawa Electric Co Ltd:The 半導体光装置

Similar Documents

Publication Publication Date Title
US10020638B2 (en) Optical semiconductor device, semiconductor laser module, and optical fiber amplifier
US6845117B2 (en) Semiconductor laser device, semiconductor laser module, and optical fiber amplifier using the device or module
US20010048702A1 (en) Semiconductor laser devices, and semiconductor laser modules and optical communication systems using the same
JP2003168844A (ja) 半導体レーザ装置および光増幅装置
JP2002111135A (ja) 半導体レーザ素子、それを用いた光ファイバ増幅器用励起光源
US6477191B1 (en) Semiconductor laser device, semiconductor laser module, rare-earth-element-doped optical fiber amplifier and fiber laser
US6870871B2 (en) Semiconductor laser devices, and semiconductor laser modules and optical communication systems using the same
US6829285B2 (en) Semiconductor laser device and method for effectively reducing facet reflectivity
JP2005072402A (ja) 半導体レーザ装置ならびにこれを使用した半導体レーザモジュールおよび光ファイバ増幅装置
EP1284532A2 (en) Semiconductor laser device and method for suppressing injection current
US12009636B2 (en) Wavelength-variable laser
US10511150B2 (en) Wavelength-variable laser
US6876680B2 (en) Semiconductor laser device, semiconductor laser module, and optical fiber amplifier
JP5074645B2 (ja) 励起光源装置
US7072372B2 (en) Semiconductor laser device, semiconductor laser module, and optical fiber amplifier
JP2002374037A (ja) 半導体レーザモジュール、それを用いたファイバ増幅器と光通信システム
JP2003174230A (ja) 半導体レーザ装置、半導体レーザモジュールおよび半導体レーザモジュールを用いた光ファイバ増幅器
JP2003318492A (ja) 半導体レーザ装置および半導体レーザモジュール
JP4162905B2 (ja) 光ファイバ増幅器
JP2003324237A (ja) 半導体レーザ装置、半導体レーザモジュールおよびこれを用いた光ファイバ増幅器
Qiu et al. High Performance 800-1000nm single mode lasers using an asymmetric waveguide
JP2002050828A (ja) 半導体レーザモジュール、それを用いた励起光源装置
JP2003309327A (ja) 半導体レーザ装置、半導体レーザモジュールおよび光ファイバ増幅器
JP2003249718A (ja) 半導体レーザ装置、半導体レーザモジュールおよび光ファイバ増幅器
JP2004103677A (ja) 半導体発光素子およびモジュール