JP2005070195A - Method for manufacturing periodical polarization reversal structure, and optical device - Google Patents

Method for manufacturing periodical polarization reversal structure, and optical device Download PDF

Info

Publication number
JP2005070195A
JP2005070195A JP2003297063A JP2003297063A JP2005070195A JP 2005070195 A JP2005070195 A JP 2005070195A JP 2003297063 A JP2003297063 A JP 2003297063A JP 2003297063 A JP2003297063 A JP 2003297063A JP 2005070195 A JP2005070195 A JP 2005070195A
Authority
JP
Japan
Prior art keywords
single crystal
comb
electrode
substrate
periodically poled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003297063A
Other languages
Japanese (ja)
Other versions
JP4400816B2 (en
Inventor
Shoichiro Yamaguchi
省一郎 山口
Yuichi Iwata
雄一 岩田
Makoto Iwai
真 岩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2003297063A priority Critical patent/JP4400816B2/en
Publication of JP2005070195A publication Critical patent/JP2005070195A/en
Application granted granted Critical
Publication of JP4400816B2 publication Critical patent/JP4400816B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To increase the width of a periodical polarization reversal structure. <P>SOLUTION: One comb-shaped electrode 39A and the other comb-shaped electrode 39B, placed opposite to each other, are disposed on one principal surface of a ferroelectric single crystal substrate. Electrode pieces 23A of the one comb-shaped electrodes 39A and electrode pieces 23B of the other comb-shaped electrodes 39B are placed opposite to one another via a gap 27. The periodical polarization reversal structure is formed by forming a uniform electrode on the other principal surface of the substrate and applying a voltage between the comb shaped electrodes and the uniform electrode. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、周期分極反転構造の製造方法および光デバイスに関するものである。   The present invention relates to a method for manufacturing a periodically poled structure and an optical device.

強誘電体の分極を強制的に反転させる分極反転構造を周期的に形成することで、表面弾性波を利用した光周波数変調器や、非線型分極の分極反転を利用した光波長変換素子などを実現することができる。特に、非線型光学材料の非線型分極を周期的に反転することが可能となれば、高効率な波長変換素子を作製することができ、これを用いて固体レーザなどの光を変換すれば、印刷、光情報処理、光応用計測制御などの分野に応用できる小型軽量の短波長光源を構成することができる。   By periodically forming a polarization inversion structure that forcibly inverts the polarization of a ferroelectric, an optical frequency modulator using surface acoustic waves, an optical wavelength conversion element using polarization inversion of nonlinear polarization, etc. Can be realized. In particular, if it is possible to periodically invert the nonlinear polarization of the nonlinear optical material, a highly efficient wavelength conversion element can be produced, and if this is used to convert light such as a solid-state laser, A compact and lightweight short wavelength light source that can be applied to fields such as printing, optical information processing, and optical applied measurement control can be configured.

強誘電体非線型光学材料に周期状の分極反転構造を形成する手法としては、いわゆる電圧印加法が知られている。この方法では、強誘電体単結晶の基板の一方の主面に櫛形電極を形成し、他方の主面に一様電極を形成し、両者の間にパルス電圧を印加する。こうした方法は、特許文献1に記載されている。
特開平8−220578
A so-called voltage application method is known as a method of forming a periodic domain-inverted structure in a ferroelectric nonlinear optical material. In this method, a comb-shaped electrode is formed on one main surface of a ferroelectric single crystal substrate, a uniform electrode is formed on the other main surface, and a pulse voltage is applied between them. Such a method is described in Patent Document 1.
JP-A-8-220578

ニオブ酸リチウム単結晶などの非線型光学材料から第二高調波を発生させるためには、単結晶に周期状の分極反転を形成する必要がある。この場合には、例えば図1に示すような櫛形電極21を基板の上面に形成する。櫛形電極21は、周期状に配列されている多数の細長い電極片23と、電極片23を電気的に接続する給電パッド22とを備えている。多数の電極片23を矢印Aの方向に向かって多数配列することによって、電極片配列構造24を形成する。隣接する電極片23の間にはそれぞれ隙間が形成されている。この櫛形電極21に対して、抗電界以上となるように電圧を供給すると、各電極片23の主として先端部分から分極反転部が伸び、周期状分極反転構造が生成する。   In order to generate the second harmonic from a non-linear optical material such as a lithium niobate single crystal, it is necessary to form a periodic polarization inversion in the single crystal. In this case, for example, a comb-shaped electrode 21 as shown in FIG. 1 is formed on the upper surface of the substrate. The comb-shaped electrode 21 includes a large number of elongated electrode pieces 23 arranged in a periodic manner, and a power supply pad 22 that electrically connects the electrode pieces 23. By arranging a large number of electrode pieces 23 in the direction of arrow A, an electrode piece arrangement structure 24 is formed. A gap is formed between adjacent electrode pieces 23. When a voltage is supplied to the comb-shaped electrode 21 so as to be equal to or higher than the coercive electric field, the domain-inverted portion extends mainly from the tip portion of each electrode piece 23 to generate a periodic domain-inverted structure.

ここで、短周期の周期分極反転構造を電圧印加法で形成するのに際して、以下の困難な問題があることを見いだした。すなわち、周期20mm程度の比較的広い周期の周期状分極反転構造は、例えば図2に示すように、各電極片23の長手方向Bに向かって広い範囲で形成される。なお、図2は、基板上に形成された周期分極反転構造を、エッチングによって現像した状態を示す顕微鏡写真である。   Here, it has been found that there are the following difficult problems in forming a short-period periodic domain-inverted structure by a voltage application method. That is, the periodic domain-inverted structure having a relatively wide period of about 20 mm is formed in a wide range in the longitudinal direction B of each electrode piece 23 as shown in FIG. FIG. 2 is a photomicrograph showing a state in which the periodically poled structure formed on the substrate is developed by etching.

しかし、周期が短くなってくると、良好な周期分極反転構造を形成することが難しくなることが分かった。例えば周期1.8mmの場合は、図3に示すように、各電極片23の先端部付近だけしか分極反転部が形成されにくい。すなわち、図4の拡大平面図に示すように、給電パッド22から多数の電極片3が一定周期Pで突出している。mは各電極片の線幅であり、隣接する電極片3の間には隙間25が形成されている。図3の例では線幅mは0.3μmと非常に小さくし、各分極反転部26が隣の分極反転部26とつながりにくいように工夫した。ここで、周期Pが例えば18μmと大きい場合には、各電極片23の根元の方向へと向かって各分極反転部26が長く延びる。従って周期分極反転構造の幅W1は、一般的な大きさの光ビームを通すのに十分に大きくなる。しかし、周期Pが3μm以下となると、各電極片23の先端部23a付近から成長した分極反転部26は、電極片23の長手方向Bに向かって長く伸びないうちに、隣の分極反転部26とつながってしまう。この結果、形成された周期分極反転構造38の幅W1は例えば5μm以下と小さく、励起光との重なり部分が小さくなり、波長変換効率の高い素子が得られにくくなる。   However, it has been found that as the period becomes shorter, it becomes difficult to form a good periodic polarization inversion structure. For example, when the period is 1.8 mm, as shown in FIG. 3, the polarization inversion portion is hardly formed only in the vicinity of the tip portion of each electrode piece 23. That is, as shown in the enlarged plan view of FIG. 4, a large number of electrode pieces 3 protrude from the power supply pad 22 at a constant period P. m is the line width of each electrode piece, and a gap 25 is formed between adjacent electrode pieces 3. In the example of FIG. 3, the line width m is very small as 0.3 μm, and it is devised so that each polarization inversion part 26 is not easily connected to the adjacent polarization inversion part 26. Here, when the period P is as large as 18 μm, for example, each polarization inversion portion 26 extends longer toward the root of each electrode piece 23. Therefore, the width W1 of the periodically poled structure is sufficiently large to pass a light beam having a general size. However, when the period P is 3 μm or less, the polarization inversion portion 26 grown from the vicinity of the tip 23 a of each electrode piece 23 does not extend long in the longitudinal direction B of the electrode piece 23, and then the adjacent polarization inversion portion 26. Will be connected. As a result, the width W1 of the formed periodically poled structure 38 is as small as 5 μm or less, for example, and the overlapping portion with the excitation light is reduced, making it difficult to obtain an element with high wavelength conversion efficiency.

本発明の課題は、電圧印加法によって周期分極反転構造を形成するのに際して、周期分極反転構造の幅を大きくできるようにすることであり、励起光との重なり領域を拡大し、高効率な素子を得ることである。   An object of the present invention is to increase the width of a periodically poled structure when a periodically poled structure is formed by a voltage application method. Is to get.

第一の態様に係る発明は、単分域化している強誘電体単結晶基板に周期分極反転構造を製造する方法であって、強誘電体単結晶基板の一方の主面上に、相対向する一方の櫛形電極および他方の櫛形電極を設け、一方の櫛形電極の電極片と他方の櫛形電極の電極片とをギャップを介して対向させ、強誘電体単結晶基板の他方の主面上に一様電極を形成し、櫛形電極と一様電極との間に電圧を印加することによって周期分極反転構造を形成することを特徴とする。   The invention according to the first aspect is a method of manufacturing a periodically poled structure on a single-domain ferroelectric single crystal substrate, the phase opposing structure on one main surface of the ferroelectric single crystal substrate One comb-shaped electrode and the other comb-shaped electrode are provided, and the electrode piece of the one comb-shaped electrode and the electrode piece of the other comb-shaped electrode are opposed to each other with a gap therebetween, on the other main surface of the ferroelectric single crystal substrate A uniform electrode is formed, and a periodic polarization inversion structure is formed by applying a voltage between the comb electrode and the uniform electrode.

また、本発明は、この方法によって製造された周期分極反転構造を備えていることを特徴とする、光デバイスに係るものである。   The present invention also relates to an optical device comprising a periodically poled structure manufactured by this method.

また、第二の態様に係る発明は、強誘電体単結晶基板、および強誘電体単結晶基板の一方の主面から基板内へと向かって伸びる周期分極反転構造を備えている光デバイスであって、周期分極反転構造が強誘電体単結晶基板における光の伝搬方向に向かって延びており、伝搬方向に対して略垂直な方向への周期分極反転構造の幅が10μm以上であり、周期分極反転構造の周期が3μm以下であることを特徴とする。   The invention according to the second aspect is an optical device comprising a ferroelectric single crystal substrate and a periodically poled structure extending from one main surface of the ferroelectric single crystal substrate into the substrate. Thus, the periodically poled structure extends in the light propagation direction in the ferroelectric single crystal substrate, and the width of the periodically poled structure in a direction substantially perpendicular to the propagation direction is 10 μm or more. The period of the inversion structure is 3 μm or less.

また、第三の態様に係る発明は、強誘電体単結晶基板および強誘電体単結晶基板の一方の主面から基板内へと向かって伸びる一対の周期分極反転構造を備えている光デバイスであって、各周期分極反転構造が強誘電体単結晶基板における光の伝搬方向に向かって延びており、各周期分極反転構造の周期が3μm以下であり、一対の周期分極反転構造に対して光ビームを入射させることを特徴とする。   The invention according to the third aspect is an optical device comprising a ferroelectric single crystal substrate and a pair of periodically poled structures extending from one main surface of the ferroelectric single crystal substrate into the substrate. Each periodic polarization reversal structure extends in the direction of light propagation in the ferroelectric single crystal substrate, each periodic polarization reversal structure has a period of 3 μm or less, and light is applied to a pair of periodic polarization reversal structures. A beam is incident.

以下、適宜図面を参照しつつ、本発明を説明する。
第一の態様に係る発明では、強誘電体単結晶基板の一方の主面上に、相対向する一方の櫛形電極および他方の櫛形電極を設け、一方の櫛形電極の電極片と他方の櫛形電極の電極片とをギャップを介して対向させる。例えば、図5に示すように、基板の一方の主面上に一方の櫛形電極39Aおよび他方の櫛形電極39Bが形成されている。櫛形電極39Aは、多数の電極片23Aからなる配列構造24A、および櫛形電極23Aを連結する給電パッド22Aからなっている。櫛形電極39Bは、多数の電極片23Bからなる配列構造24Bおよび櫛形電極23Bを連結する給電パッド22Bからなっている。給電パッド22Aと22Bとが連結部28で電気的に接続されている。櫛形電極39A側の電極片23Aの先端と、櫛形電極39B側の電極片23Bの先端との間にはギャップ27が設けられている。
The present invention will be described below with reference to the drawings as appropriate.
In the invention according to the first aspect, one comb-shaped electrode and the other comb-shaped electrode facing each other are provided on one main surface of the ferroelectric single crystal substrate, and the electrode piece of one comb-shaped electrode and the other comb-shaped electrode are provided. Are opposed to each other through a gap. For example, as shown in FIG. 5, one comb-shaped electrode 39A and the other comb-shaped electrode 39B are formed on one main surface of the substrate. The comb-shaped electrode 39A includes an array structure 24A composed of a large number of electrode pieces 23A, and a power supply pad 22A that connects the comb-shaped electrodes 23A. The comb-shaped electrode 39B includes an array structure 24B composed of a large number of electrode pieces 23B and a power supply pad 22B that connects the comb-shaped electrodes 23B. The power feeding pads 22A and 22B are electrically connected by the connecting portion 28. A gap 27 is provided between the tip of the electrode piece 23A on the comb-shaped electrode 39A side and the tip of the electrode piece 23B on the comb-shaped electrode 39B side.

これに電圧を印加すると、図6に模式的に示すように、各電極片23A、23Bの先端部23a付近から分極反転部26A、26Bがそれぞれ生成し、各電極片の根元の方へと向かって矢印B方向へと伸びる。このとき、周期が小さいことにより、隣接する電極片23A、23Bから生成した各分極反転部は互いにつながり、周期分極反転構造を形成しなくなる。ここで、櫛形電極39A側の電極片23Aと櫛形電極39B側の電極片23Bとのギャップ27の寸法gを十分に小さくすることによって、電極片23A側で発生した分極反転部26Aと電極片23B側で発生した分極反転部26Bとが互いにつながり、連結部29を形成する。この結果、幅W2の周期分極反転構造31が得られる。ここで、周期分極反転構造の幅W2は、図4における幅W1の2倍以上とすることができる。   When a voltage is applied to this, as schematically shown in FIG. 6, polarization inversion portions 26A and 26B are generated from the vicinity of the tip portions 23a of the electrode pieces 23A and 23B, respectively, and travel toward the roots of the electrode pieces. Extend in the direction of arrow B. At this time, since the period is small, the polarization inversion portions generated from the adjacent electrode pieces 23A and 23B are connected to each other, and the periodic polarization inversion structure is not formed. Here, by sufficiently reducing the dimension g of the gap 27 between the electrode piece 23A on the comb-shaped electrode 39A side and the electrode piece 23B on the comb-shaped electrode 39B side, the domain-inverted portion 26A and the electrode piece 23B generated on the electrode piece 23A side. The domain-inverted part 26B generated on the side is connected to each other to form a connecting part 29. As a result, a periodically poled structure 31 having a width W2 is obtained. Here, the width W2 of the periodically poled structure can be set to be twice or more the width W1 in FIG.

電極片23A側で発生した分極反転部26Aと、電極片23B側で発生した分極反転部26Bとを互いに連続させるという観点からは、ギャップgは、5μm以下であることが好ましく、3μm以下であることが更に好ましい。   From the viewpoint of making the polarization inversion portion 26A generated on the electrode piece 23A side and the polarization inversion portion 26B generated on the electrode piece 23B side continuous with each other, the gap g is preferably 5 μm or less, and is 3 μm or less. More preferably.

この結果、図7に示すような光デバイス30が得られる。この光デバイス30には、幅W2の周期分極反転構造31が形成されている。この周期分極反転構造31へと向かって矢印Lのように光ビームを入射させるとき、周期分極反転構造31の幅W2を大きくできくことから、光ビームLの周期分極反転構造への重なり領域を広げることができる   As a result, an optical device 30 as shown in FIG. 7 is obtained. In this optical device 30, a periodically poled structure 31 having a width W2 is formed. When a light beam is incident on the periodic polarization reversal structure 31 as indicated by an arrow L, the width W2 of the periodic polarization reversal structure 31 can be increased. Can be spread

ここで、第二の態様に係る発明においては、周期分極反転構造31の周期が3μm以下であり、かつ、伝搬方向に対して略垂直な方向Bへの周期分極反転構造31の幅W2を10μm以上とする。従来、周期3μm以下の周期分極反転構造の幅は、図1〜図4を参照しつつ説明した理由から高々5μm程度であったため、光ビームの結合効率が低かった。これに対して、本発明によれば、光ビームの周期分極反転構造31への結合効率を向上させることができる。   Here, in the invention according to the second aspect, the period W of the periodically poled structure 31 is 3 μm or less and the width W2 of the periodically poled structure 31 in the direction B substantially perpendicular to the propagation direction is 10 μm. That's it. Conventionally, the width of a periodically poled structure having a period of 3 μm or less has been about 5 μm at the most for the reason described with reference to FIGS. 1 to 4, so that the light beam coupling efficiency has been low. On the other hand, according to the present invention, the coupling efficiency of the light beam to the periodically poled structure 31 can be improved.

また、図6に示すような櫛形電極を使用した場合に、電極片23Aと23Bとのギャップgをある程度以上大きくすると、各電極片から発生した各分極反転部26Aと26Bとが互いに連結するに到らず、別体の分極反転部として残留する。
例えば、図8に模式的に示すように、各電極片23A、23Bの先端部23a付近から分極反転部26A、26Bがそれぞれ生成し、各電極片の根元の方へと向かって矢印B方向へと伸びる。このとき、周期が小さいことにより、隣接する電極片23A、23Bから生成した各分極反転部は互いにつながり、周期分極反転構造を形成しなくなる。ここで、櫛形電極39A側の電極片23Aと櫛形電極39B側の電極片23Bとのギャップ27の寸法gがある程度以上大きいと、電極片23A側で発生した分極反転部26Aと電極片23B側で発生した分極反転部26Bとが連続するに到らず、分極反転部のギャップ32を生成する。この結果、幅W1の周期分極反転構造31A、31Bが得られる。
Further, when the comb-shaped electrode as shown in FIG. 6 is used, if the gap g between the electrode pieces 23A and 23B is increased to some extent, the polarization inversion portions 26A and 26B generated from the electrode pieces are connected to each other. However, it remains as a separate domain-inverted part.
For example, as schematically shown in FIG. 8, polarization inversion portions 26A and 26B are generated from the vicinity of the tip 23a of each electrode piece 23A and 23B, respectively, and in the direction of arrow B toward the base of each electrode piece. It grows. At this time, since the period is small, the polarization inversion portions generated from the adjacent electrode pieces 23A and 23B are connected to each other, and the periodic polarization inversion structure is not formed. Here, if the dimension g of the gap 27 between the electrode piece 23A on the comb-shaped electrode 39A side and the electrode piece 23B on the comb-shaped electrode 39B side is larger than a certain level, the polarization inversion portion 26A generated on the electrode piece 23A side and the electrode piece 23B side The generated domain inversion part 26B does not continue, but the gap 32 of the domain inversion part is generated. As a result, the periodically poled structures 31A and 31B having the width W1 are obtained.

電極片23A側で発生した分極反転部と、電極片23B側で発生した分極反転部とを電気的に互いに分離するという観点からは、ギャップgは、6μm以上であることが好ましく、10μm以上であることが更に好ましい。   From the viewpoint of electrically separating the polarization inversion portion generated on the electrode piece 23A side and the polarization inversion portion generated on the electrode piece 23B side, the gap g is preferably 6 μm or more and preferably 10 μm or more. More preferably it is.

この結果、図9に示すような光デバイス30Aが得られる。この光デバイス30Aには、幅W1の周期分極反転構造31A、31Bが一対形成されている。この周期分極反転構造31A、31Bへと向かって、矢印Lのように光ビームを入射させる。ここで光ビームは、2つの周期分極反転構造31A、31Bに入射することから、個々の周期分極反転構造の幅W3、W4は小さくとも、光ビームLの周期分極反転構造への重なり領域を広げることができる。
分極反転部間のギャップの大きさtは、励起光との重なり領域を拡大させるという観点からは、20μm以下であることが好ましく、15μm以下であることが更に好ましい。
As a result, an optical device 30A as shown in FIG. 9 is obtained. This optical device 30A is formed with a pair of periodically poled structures 31A and 31B having a width W1. A light beam is incident as indicated by an arrow L toward the periodic polarization reversal structures 31A and 31B. Here, since the light beam is incident on the two periodically poled structures 31A and 31B, even if the widths W3 and W4 of the individual periodically poled structures are small, the overlapping region of the light beam L to the periodically poled structure is expanded. be able to.
The size t of the gap between the polarization inversion parts is preferably 20 μm or less, and more preferably 15 μm or less, from the viewpoint of expanding the overlapping region with the excitation light.

ここで、第三の態様に係る発明においては、周期3μm以下の一対の周期分極反転構造を設け、一対の周期分極反転構造に対して光ビームを入射させる。これによって、個々の周期分極反転構造の幅W1、W2は小さくとも、光ビームLの周期分極反転構造への重なり領域を広げることができる。   Here, in the invention according to the third aspect, a pair of periodically poled structures having a period of 3 μm or less is provided, and a light beam is incident on the pair of periodically poled structures. Thereby, even if the widths W1 and W2 of the individual periodically poled structures are small, the overlapping region of the light beam L on the periodically poled structures can be expanded.

強誘電体単結晶基板を構成する強誘電体単結晶の種類は限定されない。しかし、ニオブ酸リチウム(LiNbO)、タンタル酸リチウム(LiTaO)、ニオブ酸リチウム−タンタル酸リチウム固溶体、KLiNb15の各単結晶が特に好ましい。
強誘電体単結晶中には、三次元光導波路の耐光損傷性を更に向上させるために、マグネシウム(Mg)、亜鉛(Zn)、スカンジウム(Sc)及びインジウム(In)からなる群より選ばれる1種以上の金属元素を含有させることができ、マグネシウムが特に好ましい。分極反転特性(条件)が明確であるとの観点からは、ニオブ酸リチウム単結晶、ニオブ酸リチウムータンタル酸リチウム固溶体単結晶、タンタル酸リチウム単結晶にそれぞれマグネシウムを添加したものが特に好ましい。また、強誘電体単結晶中には、ドープ成分として、希土類元素を含有させることができる。この希土類元素は、レーザー発振用の添加元素として作用する。この希土類元素としては、特にNd、Er、Tm、Ho、Dy、Prが好ましい。
The type of the ferroelectric single crystal constituting the ferroelectric single crystal substrate is not limited. However, single crystals of lithium niobate (LiNbO 3 ), lithium tantalate (LiTaO 3 ), lithium niobate-lithium tantalate solid solution, and K 3 Li 2 Nb 5 O 15 are particularly preferable.
The ferroelectric single crystal is selected from the group consisting of magnesium (Mg), zinc (Zn), scandium (Sc) and indium (In) in order to further improve the light damage resistance of the three-dimensional optical waveguide. More than one metal element can be contained, and magnesium is particularly preferred. From the viewpoint that the domain inversion characteristics (conditions) are clear, it is particularly preferable to add magnesium to a lithium niobate single crystal, a lithium niobate-lithium tantalate solid solution single crystal, or a lithium tantalate single crystal. Further, a rare earth element can be contained as a doping component in the ferroelectric single crystal. This rare earth element acts as an additive element for laser oscillation. As this rare earth element, Nd, Er, Tm, Ho, Dy, and Pr are particularly preferable.

ただし、これらの耐光損傷性向上元素や希土類元素を添加した場合には、強誘電体単結晶の導電性が高くなり、周期状分極反転部が櫛形電極の全体にわたって一様に形成されにくくなる。以下の実施形態は、こうした場合に特に好適である。   However, when these light damage resistance improving elements and rare earth elements are added, the conductivity of the ferroelectric single crystal is increased, and the periodic domain-inverted portion is hardly formed uniformly over the entire comb-shaped electrode. The following embodiments are particularly suitable in such a case.

すなわち、櫛型電極をパターニングした全域にわたって分極反転構造を一様に形成させるために、例えば図10に示すような別体の下地基板13を積層する。例えばMgOドープニオブ酸リチウム単結晶からなる基板2の一方の主面1aには櫛形電極3を形成し、基板2の他方の主面2bには一様電極4が形成されている。この基板2の下に、別体の下地基板13を積層する。下地基板13の本体5の一方の主面5a上には第一の導電膜6を形成し、本体5の他方の主面5b上には第二の導電膜7を形成する。本例では、第一の導電膜6と一様電極4とを接触させることで両者を電気的に接続したが、第一の導電膜6と一様電極4との間に別に導電物(好ましくは導電膜)を介在させることによって、両者を電気的に接続することができる。   That is, in order to form a domain-inverted structure uniformly over the entire area where the comb-shaped electrode is patterned, for example, a separate base substrate 13 as shown in FIG. 10 is laminated. For example, a comb-shaped electrode 3 is formed on one main surface 1 a of a substrate 2 made of MgO-doped lithium niobate single crystal, and a uniform electrode 4 is formed on the other main surface 2 b of the substrate 2. A separate base substrate 13 is laminated under the substrate 2. A first conductive film 6 is formed on one main surface 5 a of the main body 5 of the base substrate 13, and a second conductive film 7 is formed on the other main surface 5 b of the main body 5. In this example, the first conductive film 6 and the uniform electrode 4 are brought into contact with each other to be electrically connected, but a conductive material (preferably between the first conductive film 6 and the uniform electrode 4 is preferable. Can be electrically connected to each other by interposing a conductive film.

そして、例えば図11、図12に示すように、容器9内に絶縁オイル8を収容し、絶縁オイル8内に積層体1を浸漬する。この際、櫛形電極3には電線11を接続し、第二の導電膜7には電線10を接続する。電線10および11は高電圧源12に接続されている。この状態で、所定電圧、パルス幅のパルス状電圧を印加すると、櫛形電極3と一様電極4との間に周期状分極反転部が形成される。   For example, as shown in FIGS. 11 and 12, the insulating oil 8 is accommodated in the container 9, and the laminate 1 is immersed in the insulating oil 8. At this time, the electric wire 11 is connected to the comb-shaped electrode 3, and the electric wire 10 is connected to the second conductive film 7. The electric wires 10 and 11 are connected to a high voltage source 12. When a pulse voltage having a predetermined voltage and a pulse width is applied in this state, a periodic polarization inversion portion is formed between the comb electrode 3 and the uniform electrode 4.

ここで、下地基板13をも積層し、下地基板13上の導電膜6、7を介して電圧を印加することによって、櫛形電極3の全体にわたって周期状分極反転部が一様に生成しやすくなる。   Here, by laminating the base substrate 13 and applying a voltage through the conductive films 6 and 7 on the base substrate 13, the periodic polarization inversion portions are easily generated uniformly over the entire comb-shaped electrode 3. .

櫛形電極、一様電極の材質は限定されないが、Al、Au、Ag、Cr、Cu、Ni、Ni-Cr、Pd、Taが好ましい。
第一の導電膜、第二の導電膜の材質は、限定されないが、Al、Au、Ag、Cr、Cu、Ni、Ni-Cr、Pd、Taが好ましい。
The material of the comb electrode and the uniform electrode is not limited, but Al, Au, Ag, Cr, Cu, Ni, Ni—Cr, Pd, and Ta are preferable.
The material of the first conductive film and the second conductive film is not limited, but Al, Au, Ag, Cr, Cu, Ni, Ni—Cr, Pd, and Ta are preferable.

下地基板の基板本体5の材質は絶縁性が高く、材質内の体積抵抗率が均一で、所定の構造強度を有していることが必要である。この材質としては、シリコン、サファイア、水晶、ガラス、ニオブ酸リチウム、タンタル酸リチウム、ニオブ酸リチウム−タンタル酸リチウム固溶体MgOドープニオブ酸リチウム、MgOドープタンタル酸リチウム、ZnOドープニオブ酸リチウム、ZnOドープタンタル酸リチウムを例示できる。   The material of the substrate body 5 of the base substrate is required to have a high insulation property, a uniform volume resistivity within the material, and a predetermined structural strength. This material includes silicon, sapphire, crystal, glass, lithium niobate, lithium tantalate, lithium niobate-lithium tantalate solid solution MgO-doped lithium niobate, MgO-doped lithium tantalate, ZnO-doped lithium niobate, ZnO-doped lithium tantalate. Can be illustrated.

基板2としては、いわゆるZカット基板,オフカットX板、オフカットY板を使用することが特に好適である。オフカットX板、オフカットY板を使用する場合には、オフカット角度は特に限定されない。特に好ましくは、オフカット角度は1°以上であり、あるいは、20°以下である。
印加電圧の大きさは3kV〜8kVが好ましく、パルス周波数は1Hz〜1000Hzが好ましい。
The substrate 2 is particularly preferably a so-called Z-cut substrate, off-cut X plate, or off-cut Y plate. When using an off-cut X plate and an off-cut Y plate, the off-cut angle is not particularly limited. Particularly preferably, the off-cut angle is 1 ° or more, or 20 ° or less.
The magnitude of the applied voltage is preferably 3 kV to 8 kV, and the pulse frequency is preferably 1 Hz to 1000 Hz.

本発明によって形成された周期状分極反転部は、このような分極反転部を有する任意の光学デバイスに対して適用できる。このような光学デバイスは、例えば、第二高調波発生素子等の高調波発生素子を含む。第二高調波発生素子として使用した場合には、高調波の波長は330−1600nmが好ましい。   The periodic domain-inverted part formed by the present invention can be applied to any optical device having such a domain-inverted part. Such an optical device includes, for example, a harmonic generation element such as a second harmonic generation element. When used as a second harmonic generation element, the wavelength of the harmonic is preferably 330-1600 nm.

図10に示す積層体1を作成し、図11、図12に示すような装置を使用して電圧印加法により周期状分極反転構造を形成した。ただし、図5に示すようなパターンの櫛形電極39A、39Bを形成した。
具体的には、MgOをドープしたニオブ酸リチウム単結晶からなる、厚さ0.5mmのzカット基板2と、5度オフyカットの0.5mm厚さの基板5とを用意し、それぞれzカット基板2の+z面2aに櫛型電極29A、29Bをパターニングし、-z面2bには一様電極4を成膜した。5度オフyカット基板5については上下面5a、5bともに一様電極6、7を形成した。分極反転周期Pを1.8μmとした。各電極片の線幅mは0.3μmとした。各電極の材質はTaを使用した。電極厚さは全て1000オングストロームとした。また、zカット基板2の櫛型電極20の表面に、SiO2を2000オングストローム成膜した。図10に示すように、上側にzカット基板2を、下側に5度オフカット基板5を積層し、積層体1を得た。積層体1を、図11に示すように絶縁オイル8内に浸漬し、6kV、パルス幅10Hzのパルス状電圧を、パルス間隔約1秒で印加した。ギャップgを5.0μmとした。
A laminate 1 shown in FIG. 10 was prepared, and a periodic domain-inverted structure was formed by a voltage application method using an apparatus as shown in FIGS. However, comb electrodes 39A and 39B having a pattern as shown in FIG. 5 were formed.
Specifically, a 0.5 mm thick z-cut substrate 2 made of MgO-doped lithium niobate single crystal and a 5 mm off y-cut 0.5 mm thick substrate 5 were prepared, and each was z-cut. Comb electrodes 29A and 29B were patterned on the + z surface 2a of the substrate 2, and the uniform electrode 4 was formed on the -z surface 2b. For the 5 degree off-y cut substrate 5, uniform electrodes 6 and 7 were formed on the upper and lower surfaces 5a and 5b. The polarization inversion period P was set to 1.8 μm. The line width m of each electrode piece was 0.3 μm. Ta was used as the material of each electrode. All electrode thicknesses were 1000 angstroms. Further, a SiO 2 film having a thickness of 2000 Å was formed on the surface of the comb-shaped electrode 20 of the z-cut substrate 2. As shown in FIG. 10, the z-cut substrate 2 was laminated on the upper side, and the 5-degree off-cut substrate 5 was laminated on the lower side, whereby the laminate 1 was obtained. The laminated body 1 was immersed in the insulating oil 8 as shown in FIG. 11, and a pulse voltage of 6 kV and a pulse width of 10 Hz was applied at a pulse interval of about 1 second. The gap g was 5.0 μm.

分極反転が形成されているのかどうかを確認するため、弗硝酸混合液(弗酸:硝酸=1:2)で、ウェハ表面の+z面をウエットエッチングした。この結果、図6に示すように、周期分極反転構造31が形成されていた。周期分極反転構造31の幅W2は4.5μmであった。 In order to confirm whether the polarization inversion was formed, the + z plane of the wafer surface was wet etched with a hydrofluoric acid mixed solution (hydrofluoric acid: nitric acid = 1: 2). As a result, as shown in FIG. 6, the periodically poled structure 31 was formed. The width W2 of the periodically poled structure 31 was 4.5 μm.

実施例1において、ギャップgを3.0μmとしたところ、実施例1と同様にして周期分極反転構造31が生成した。周期分極反転構造31の幅W2は12μmであった。   In Example 1, when the gap g was set to 3.0 μm, the periodically poled structure 31 was generated in the same manner as in Example 1. The width W2 of the periodically poled structure 31 was 12 μm.

実施例1において、ギャップgを6.0μmとしたところ、図8に示すような周期分極反転構造31A、31Bが形成された。各構造31A、31Bの幅W3、W4は、4.5μm、4.5μmであり、ギャップの大きさtは5μmであった。   In Example 1, when the gap g was 6.0 μm, the periodically poled structures 31A and 31B as shown in FIG. 8 were formed. The widths W3 and W4 of the structures 31A and 31B were 4.5 μm and 4.5 μm, respectively, and the gap size t was 5 μm.

従来例の櫛形電極21を示す模式的平面図である。It is a typical top view which shows the comb-shaped electrode 21 of a prior art example. 図1の櫛形電極を用いて形成された、周期18μmの場合の周期分極反転構造の例を示す写真である。It is a photograph which shows the example of the periodic polarization inversion structure in the case of a period of 18 micrometers formed using the comb-shaped electrode of FIG. 図1の櫛形電極を用いて形成された、周期1.8μmの場合の周期分極反転構造の例を示す写真である。It is a photograph which shows the example of the periodic polarization inversion structure in the case of a period of 1.8 micrometers formed using the comb-shaped electrode of FIG. 図1の櫛形電極を用いた場合について、櫛形電極の電極片と分極反転部との位置関係を説明するための平面図である。FIG. 2 is a plan view for explaining the positional relationship between an electrode piece of a comb-shaped electrode and a polarization inversion portion when the comb-shaped electrode of FIG. 1 is used. 本発明例の櫛形電極39A、39Bを模式的に示す平面図である。It is a top view which shows typically the comb-shaped electrodes 39A and 39B of the example of this invention. 図5の櫛形電極を用いた場合について、櫛形電極の電極片と分極反転部との位置関係を説明するための平面図である。It is a top view for demonstrating the positional relationship of the electrode piece of a comb-shaped electrode, and a polarization inversion part about the case where the comb-shaped electrode of FIG. 5 is used. 第二の態様の発明に係る光デバイス30を示す模式図である。It is a schematic diagram which shows the optical device 30 which concerns on invention of 2nd aspect. 図5の櫛形電極を用いた場合について、櫛形電極の電極片と分極反転部との位置関係を説明するための平面図である。It is a top view for demonstrating the positional relationship of the electrode piece of a comb-shaped electrode, and a polarization inversion part about the case where the comb-shaped electrode of FIG. 5 is used. 第三の態様の発明に係る光デバイス30Aを示す模式図である。It is a schematic diagram which shows 30 A of optical devices which concern on invention of a 3rd aspect. 基板2と5との積層体1を示す正面図である。2 is a front view showing a laminate 1 of substrates 2 and 5. FIG. 積層体1に電圧印加法によって分極反転部を形成するための装置を示す模式図である。It is a schematic diagram which shows the apparatus for forming a polarization inversion part in the laminated body 1 by the voltage application method. 図11の装置の上面図である。FIG. 12 is a top view of the apparatus of FIG. 11.

符号の説明Explanation of symbols

1 積層体 2 強誘電体単結晶基板 2a 基板2の一方の主面 2b 基板2の他方の主面 4 一様電極 5 下地基板の基板本体 5a 基板本体5の一方の主面 5b 基板本体5の他方の主面 6 第一の導電膜 7 第二の導電膜 8 絶縁オイル 9 容器 10、11 電線 12 電圧源 13 下地基板 21 従来例の櫛形電極 22、22A、22B 給電パッド 23、23A、23B 電極片 23a 電極片の先端部 24、24A、24B 電極片23、23A、23Bの配列構造 26、26A、26B 分極反転部 27 一対の櫛形電極のギャップ 30、30A 光デバイス 31、31A、31B、38 周期分極反転構造 39A、39B 一対の櫛形電極 A 周期分極反転構造に入射する光ビームの伝搬方向 B 方向Aに略垂直な方向 W1 周期分極反転構造38の幅 W2 周期分極反転構造31の幅 W3、W4 周期分極反転構造31A、31Bの幅 g ギャップ27の大きさ t 周期分極反転構造31Aと31Bとのギャップの大きさ   DESCRIPTION OF SYMBOLS 1 Laminated body 2 Ferroelectric single crystal substrate 2a One main surface of the substrate 2b The other main surface of the substrate 2 4 Uniform electrode 5 Substrate body of the base substrate 5a One main surface of the substrate body 5b 5b of the substrate body 5 The other main surface 6 First conductive film 7 Second conductive film 8 Insulating oil 9 Container 10, 11 Electric wire 12 Voltage source 13 Substrate 21 Conventional comb-shaped electrodes 22, 22A, 22B Power supply pads 23, 23A, 23B Electrodes Piece 23a Electrode piece tip 24, 24A, 24B Arrangement structure of electrode pieces 23, 23A, 23B 26, 26A, 26B Polarization inversion portion 27 Gap between a pair of comb electrodes 30, 30A Optical devices 31, 31A, 31B, 38 Period Polarization reversal structure 39A, 39B A pair of comb electrodes A A Propagation direction of the light beam incident on the periodically poled structure B Direction substantially perpendicular to the direction A W1 Width of the periodically poled structure 38 W2 Width of the periodically poled structure 31 W3, W4 Periodically poled Width of structures 31A and 31B g Size of gap 27 t Size of gap between periodically poled structures 31A and 31B

Claims (11)

単分域化している強誘電体単結晶基板に周期分極反転構造を製造する方法であって、
前記強誘電体単結晶基板の一方の主面上に、相対向する一方の櫛形電極および他方の櫛形電極を設け、前記一方の櫛形電極の電極片と前記他方の櫛形電極の電極片とをギャップを介して対向させ、前記強誘電体単結晶基板の他方の主面上に一様電極を形成し、前記櫛形電極と前記一様電極との間に電圧を印加することによって前記周期分極反転構造を形成することを特徴とする、周期分極反転構造の製造方法。
A method of manufacturing a periodically poled structure on a single domain ferroelectric single crystal substrate,
One comb-shaped electrode and the other comb-shaped electrode facing each other are provided on one main surface of the ferroelectric single crystal substrate, and a gap is formed between the electrode piece of the one comb-shaped electrode and the electrode piece of the other comb-shaped electrode. The periodic domain-inverted structure is formed by forming a uniform electrode on the other main surface of the ferroelectric single crystal substrate and applying a voltage between the comb-shaped electrode and the uniform electrode. A method for producing a periodic domain-inverted structure, characterized in that:
前記ギャップの大きさが5μm以下であることを特徴とする、請求項1記載の方法。   The method according to claim 1, wherein the size of the gap is 5 μm or less. 前記強誘電体単結晶基板が、ニオブ酸リチウム単結晶、タンタル酸リチウム単結晶、およびニオブ酸リチウム−タンタル酸リチウム固溶体単結晶からなる群より選ばれた単結晶からなることを特徴とする、請求項1または2記載の方法。   The ferroelectric single crystal substrate is made of a single crystal selected from the group consisting of a lithium niobate single crystal, a lithium tantalate single crystal, and a lithium niobate-lithium tantalate solid solution single crystal. Item 3. The method according to Item 1 or 2. 前記単結晶に、酸化マグネシウムと酸化亜鉛との少なくとも一方が含有されていることを特徴とする、請求項1〜3のいずれか一つの請求項に記載の方法。   The method according to any one of claims 1 to 3, wherein the single crystal contains at least one of magnesium oxide and zinc oxide. 前記周期分極反転構造の周期が3μm以下であることを特徴とする、請求項1〜4のいずれか一つの請求項に記載の方法。   The method according to claim 1, wherein the period of the periodically poled structure is 3 μm or less. 請求項1〜5のいずれか一つの請求項に記載の方法によって製造された周期分極反転構造を備えていることを特徴とする、光デバイス。   An optical device comprising a periodically poled structure manufactured by the method according to any one of claims 1 to 5. 強誘電体単結晶基板、および前記強誘電体単結晶基板の一方の主面から前記基板内へと向かって伸びる周期分極反転構造を備えている光デバイスであって、
前記周期分極反転構造が前記強誘電体単結晶基板における光の伝搬方向に向かって延びており、前記伝搬方向に対して略垂直な方向への前記周期分極反転構造の幅が10μm以上であり、前記周期分極反転構造の周期が3μm以下であることを特徴とする、光デバイス。
An optical device comprising a ferroelectric single crystal substrate and a periodically poled structure extending from one main surface of the ferroelectric single crystal substrate into the substrate,
The periodic domain-inverted structure extends in the light propagation direction in the ferroelectric single crystal substrate, and the width of the periodic domain-inverted structure in a direction substantially perpendicular to the propagation direction is 10 μm or more; An optical device, wherein a period of the periodically poled structure is 3 μm or less.
強誘電体単結晶基板、および前記強誘電体単結晶基板の一方の主面から前記基板内へと向かって伸びる一対の周期分極反転構造を備えている光デバイスであって、
前記各周期分極反転構造が前記強誘電体単結晶基板における光の伝搬方向に向かって延びており、前記各周期分極反転構造の周期が3μm以下であり、前記一対の周期分極反転構造に対して光ビームを入射させることを特徴とする、光デバイス。
An optical device comprising a ferroelectric single crystal substrate, and a pair of periodically poled structures extending from one main surface of the ferroelectric single crystal substrate into the substrate,
Each of the periodically poled structures extends in the light propagation direction in the ferroelectric single crystal substrate, the period of each of the periodically poled structures is 3 μm or less, and the pair of periodically poled structures is An optical device, wherein a light beam is incident.
前記強誘電体単結晶基板が、ニオブ酸リチウム単結晶、タンタル酸リチウム単結晶、およびニオブ酸リチウム−タンタル酸リチウム固溶体単結晶からなる群より選ばれた単結晶からなることを特徴とする、請求項7または8記載の光デバイス。   The ferroelectric single crystal substrate is made of a single crystal selected from the group consisting of a lithium niobate single crystal, a lithium tantalate single crystal, and a lithium niobate-lithium tantalate solid solution single crystal. Item 9. The optical device according to Item 7 or 8. 前記単結晶に、酸化マグネシウムと酸化亜鉛との少なくとも一方が含有されていることを特徴とする、請求項7〜9のいずれか一つの請求項に記載の光デバイス。   The optical device according to any one of claims 7 to 9, wherein the single crystal contains at least one of magnesium oxide and zinc oxide. 前記強誘電体単結晶基板がZカット基板であることを特徴とする、請求項7〜10のいずれか一つの請求項に記載の光デバイス。   The optical device according to any one of claims 7 to 10, wherein the ferroelectric single crystal substrate is a Z-cut substrate.
JP2003297063A 2003-08-21 2003-08-21 Method for manufacturing periodically poled structure and optical device Expired - Lifetime JP4400816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003297063A JP4400816B2 (en) 2003-08-21 2003-08-21 Method for manufacturing periodically poled structure and optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003297063A JP4400816B2 (en) 2003-08-21 2003-08-21 Method for manufacturing periodically poled structure and optical device

Publications (2)

Publication Number Publication Date
JP2005070195A true JP2005070195A (en) 2005-03-17
JP4400816B2 JP4400816B2 (en) 2010-01-20

Family

ID=34403022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003297063A Expired - Lifetime JP4400816B2 (en) 2003-08-21 2003-08-21 Method for manufacturing periodically poled structure and optical device

Country Status (1)

Country Link
JP (1) JP4400816B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009092843A (en) * 2007-10-05 2009-04-30 Ngk Insulators Ltd Manufacturing method for periodic polarization reversal structure
JP2009092712A (en) * 2007-10-03 2009-04-30 Sony Corp Method for manufacturing optical functional element, and method for manufacturing lithium tantalate single crystal
US7633672B2 (en) 2007-03-08 2009-12-15 Ngk Insulators, Ltd. Wavelength conversion devices
US7931831B2 (en) 2006-11-09 2011-04-26 Ngk Insulators, Ltd. Optical waveguide substrate manufacturing method
US8101099B2 (en) 2006-11-09 2012-01-24 Ngk Insulators, Ltd. Optical waveguide substrate manufacturing method
JP2012189850A (en) * 2011-03-11 2012-10-04 Shimadzu Corp Electrode for periodic domain inversion, method for forming periodic domain inversion structure, and periodic domain inversion element
CN112058614A (en) * 2020-09-09 2020-12-11 重庆科技学院 Novel method for dynamically regulating wettability of ionic liquid

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7931831B2 (en) 2006-11-09 2011-04-26 Ngk Insulators, Ltd. Optical waveguide substrate manufacturing method
US8101099B2 (en) 2006-11-09 2012-01-24 Ngk Insulators, Ltd. Optical waveguide substrate manufacturing method
US7633672B2 (en) 2007-03-08 2009-12-15 Ngk Insulators, Ltd. Wavelength conversion devices
JP2009092712A (en) * 2007-10-03 2009-04-30 Sony Corp Method for manufacturing optical functional element, and method for manufacturing lithium tantalate single crystal
JP2009092843A (en) * 2007-10-05 2009-04-30 Ngk Insulators Ltd Manufacturing method for periodic polarization reversal structure
JP2012189850A (en) * 2011-03-11 2012-10-04 Shimadzu Corp Electrode for periodic domain inversion, method for forming periodic domain inversion structure, and periodic domain inversion element
CN112058614A (en) * 2020-09-09 2020-12-11 重庆科技学院 Novel method for dynamically regulating wettability of ionic liquid

Also Published As

Publication number Publication date
JP4400816B2 (en) 2010-01-20

Similar Documents

Publication Publication Date Title
US7453625B2 (en) Method of producing domain inversion parts and optical devices
JP2011514552A (en) Method for polarizing a metal-doped ferroelectric material
JP4721455B2 (en) Method for manufacturing periodically poled structure
JP4400816B2 (en) Method for manufacturing periodically poled structure and optical device
JP5300664B2 (en) Method for manufacturing polarization reversal part
JPWO2008056830A1 (en) Manufacturing method of optical waveguide substrate
JP2010156787A (en) Method for manufacturing optical functional element
JP4372489B2 (en) Method for manufacturing periodically poled structure
KR101363782B1 (en) Device manufacturing method
US7522791B2 (en) Method for fabricating polarization reversal structure and reversal structure
JP2002031826A (en) Method for manufacturing polarization reversal part
JP4639963B2 (en) Manufacturing method of optical wavelength conversion element
JP4067039B2 (en) Method for forming periodically poled structure
JP3946092B2 (en) Method for forming periodically poled structure
JP4646150B2 (en) Method for manufacturing periodically poled structure
JP4974872B2 (en) Method for manufacturing periodically poled structure
JP4642065B2 (en) Method for manufacturing periodic polarization reversal part
JPH08271941A (en) Production of optical device
JP4100937B2 (en) Wavelength conversion element and method of forming periodic domain-inverted structure
JP2002277915A (en) Polarization inversion forming method and light wavelength converting element
JP2016024423A (en) Manufacturing method of wavelength conversion element, and wavelength conversion element
JPH11282036A (en) Production of optical wavelength conversion element
JP5872779B2 (en) Ferroelectric crystal substrate provided with periodic polarization reversal electrode and method of manufacturing periodic polarization reversal element
JP2005258348A (en) Method for manufacturing periodic polarization inversion structure and periodic polarization inversion structure
JP2009092843A (en) Manufacturing method for periodic polarization reversal structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091022

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091022

R150 Certificate of patent or registration of utility model

Ref document number: 4400816

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131106

Year of fee payment: 4

EXPY Cancellation because of completion of term