JP2005067363A - Safety pneumatic tire - Google Patents

Safety pneumatic tire Download PDF

Info

Publication number
JP2005067363A
JP2005067363A JP2003299009A JP2003299009A JP2005067363A JP 2005067363 A JP2005067363 A JP 2005067363A JP 2003299009 A JP2003299009 A JP 2003299009A JP 2003299009 A JP2003299009 A JP 2003299009A JP 2005067363 A JP2005067363 A JP 2005067363A
Authority
JP
Japan
Prior art keywords
rubber
fiber
tire
nonwoven fabric
pneumatic tire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003299009A
Other languages
Japanese (ja)
Inventor
Yugo Zuiko
裕吾 隨行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2003299009A priority Critical patent/JP2005067363A/en
Publication of JP2005067363A publication Critical patent/JP2005067363A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Tires In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reinforcing airbag stored type safety pneumatic tire showing an improved low fuel consumption. <P>SOLUTION: This safety pneumatic tire is constituted by a combination of a tubeless tire 1 and an airbag 2 stored inside the tubeless tire, and a reinforcing layer 11 is arranged at least at a top part of the airbag 2. This safety pneumatic tire is characterized in that the reinforcing layer 11 is constituted by either (1) a rubber-nonwoven-fabric composite layer composed of at least one layer rubber-nonwoven fabrics constituted by a fiber (A) with a tensile elastic modulus of 50GPa or more and a fiber (B) with a dry heat shrinkage coefficient of 1.1% or more at 150°C and rubber or (2) a complex layer composed of at least one layer rubber-nonwoven fabrics constituted by a fiber (A) with a tensile elastic modulus of 50 GPa or more and a rubber, and a rubber-nonwoven-fabric composite layer composed of at least one layer rubber-nonwoven fabrics constituted by a nonwoven fabrics composed of the fiber (B) with a dry heat shrinkage coefficient of 1.1% or more at 150°C and rubber. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、パンクその他によって、タイヤの内圧が例えば急激に低下してもなお継続的な走行を可能とした安全空気入りタイヤ、特にチューブレスタイヤと、それに別個に内蔵したチューブ状空気嚢との組み合わせを有する安全空気入りタイヤに関するものである。   The present invention relates to a combination of a safety pneumatic tire, particularly a tubeless tire, and a tube-like air bag separately incorporated therein, which enables continuous running even when the internal pressure of the tire is suddenly reduced due to puncture or the like. The present invention relates to a safety pneumatic tire having

従来、タイヤに適用されるゴム系複合材料の補強材としては、有機繊維コードやスチールコードが知られているが、近年では、不織布を補強材として用いたゴム系複合材料をタイヤに適用することが提案されている。   Conventionally, organic fiber cords and steel cords are known as reinforcing materials for rubber-based composite materials applied to tires. In recent years, rubber-based composite materials using nonwoven fabric as reinforcing materials have been applied to tires. Has been proposed.

一方、空気入りタイヤにパンク等が生じても、修理・補修ができる場所までの相当距離を継続走行できるランフラットタイヤ又は安全タイヤとして、従来から各種のものが研究・開発されており、例えば、補強空気嚢、多重室空気嚢、発泡材又はスポンジ充填空気嚢、折りたたみ空気嚢等のような内蔵された空気嚢自体を工夫したタイヤや、シーラント剤塗布タイヤ、発泡材又はスポンジ充填タイヤ、中子内蔵タイヤ等が知られている。   On the other hand, various types of run-flat tires or safety tires have been researched and developed in the past as a run-flat tire or safety tire that can continue to run a considerable distance to a place where repair or repair can be performed even if puncture occurs in the pneumatic tire. Reinforced air sac, multi-chamber air sac, foamed or sponge-filled air sac, tires with a built-in air sac itself such as a folding air sac, a sealant-coated tire, foam or sponge-filled tire, core Built-in tires are known.

しかしながら、従来のこの種のタイヤは、製造方法や、補助部材の材質等が特殊で作りにくく、且つリムへの装着や取り扱いに難点があることが多かった。例えば、多重室空気嚢を備えるランフラットタイヤでは、該多重室空気嚢の製造が難しく非現実的であり、また、シーラント剤塗布タイヤや発泡材充填タイヤでは、シーラント剤や発泡材の注入方法や材料の開発が難しく、中子内蔵型タイヤでは、該中子のリムへの装着に難点があった。更に、スポンジ充填等のムースタイプの安全タイヤも製造が難しく、また、形状の制御や安定化も困難であった。   However, this type of conventional tire is difficult to manufacture because the manufacturing method and the material of the auxiliary member are special, and there are many difficulties in mounting and handling the rim. For example, in a run flat tire having a multi-chamber air sac, it is difficult and unrealistic to manufacture the multi-chamber air sac, and in a sealant-coated tire or a foam-filled tire, a method for injecting a sealant or foam material, The development of the material is difficult, and the core built-in type tire has a difficulty in mounting the core on the rim. Furthermore, it is difficult to manufacture mousse type safety tires such as sponge filling, and it is also difficult to control and stabilize the shape.

これに対して、補強空気嚢を備える安全タイヤは、構造が簡単であると共に、製造及びリムへの装着が容易で、材質面でも経済的であり、低燃費性能を損なうことがなく、優れた安全性を有する。下記特許文献1には、該補強空気嚢を備える安全タイヤにおいて、空気嚢の補強層として、不織布と該不織布を被覆するゴムとからなるゴム-不織布複合体を適用して、使用する不織布を構成する繊維の長さ及び弾性率/密度を特定の範囲に規定することで、通常走行時及び内圧低下時の耐久性を改善できることが記載されている。また、下記特許文献2には、補強空気嚢を備える安全タイヤにおいて、空気嚢の補強層として、ゴム-不織布複合体を適用して、使用する不織布を構成する繊維の単繊維径及び引張弾性率を特定の範囲に規定することで、タイヤに要求される初期引張弾性率、破壊強度、破壊伸びを満足し、通常走行時及び内圧低下走行時の空気嚢の耐久寿命を効果的に改善できることが記載されている。   On the other hand, the safety tire provided with the reinforced air bag has a simple structure, is easy to manufacture and attach to the rim, is economical in terms of material, and does not impair the fuel efficiency. It has safety. In the following Patent Document 1, in a safety tire provided with the reinforced air sac, a non-woven fabric to be used is configured by applying a rubber-nonwoven fabric composite composed of a non-woven fabric and rubber covering the non-woven fabric as a reinforcing layer of the air sac. It is described that the durability during normal running and when the internal pressure is reduced can be improved by defining the length and elastic modulus / density of the fibers to be in a specific range. Further, in Patent Document 2 below, in a safety tire having a reinforced air sac, a single fiber diameter and a tensile elastic modulus of a fiber constituting the nonwoven fabric to be used by applying a rubber-nonwoven fabric composite as a reinforcing layer of the air sac. By satisfying the specified range, the initial tensile elastic modulus, breaking strength, and breaking elongation required for the tire can be satisfied, and the durable life of the air bag during normal running and reduced internal pressure can be effectively improved. Has been described.

特開2002−166711号公報JP 2002-166711 A 特開2003−39912号公報JP 2003-39912 A

しかしながら、昨今、更に低燃費性に優れた安全タイヤが要求されており、従来の補強空気嚢を備える安全タイヤの低燃費性を更に改善する必要がある。   However, recently, there has been a demand for safety tires that are further excellent in fuel efficiency, and there is a need to further improve the fuel efficiency of safety tires that include conventional reinforced air bags.

そこで、本発明の目的は、従来より更に低燃費性を向上させた補強空気嚢内蔵タイプの安全空気入りタイヤを提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a safety pneumatic tire with a built-in reinforced air sac that further improves fuel efficiency compared to the prior art.

本発明者は、上記目的を達成するために鋭意検討した結果、空気嚢の補強層にゴム-不織布複合体を適用した安全タイヤにおいて、引張弾性率が50GPa以上の繊維(A)及び150℃での乾熱収縮率が1.1%以上の繊維(B)からなる不織布を用いるか、繊維(A)からなる不織布と繊維(B)からなる不織布とを用いることで、補強層の剛性が向上するため、ゴム-不織布複合体の積層数を低減してタイヤを軽量化することができ、その結果、タイヤの低燃費性を改善できることを見出し、本発明を完成させるに至った。   As a result of intensive studies to achieve the above object, the present inventor has found that in a safety tire in which a rubber-nonwoven fabric composite is applied to a reinforcing layer of an air sac, a fiber (A) having a tensile modulus of elasticity of 50 GPa or more and 150 ° C. The rigidity of the reinforcing layer is improved by using a non-woven fabric made of fiber (B) having a dry heat shrinkage of 1.1% or more, or using a non-woven fabric made of fiber (A) and a non-woven fabric made of fiber (B). The inventors have found that the number of laminated rubber-nonwoven fabrics can be reduced to reduce the weight of the tire, and as a result, the fuel efficiency of the tire can be improved, and the present invention has been completed.

即ち、本発明の第1の安全空気入りタイヤは、円環状に形成されたトレッド部、該トレッド部の両端からタイヤ半径方向内側に連なる一対のサイドウォール部及び一対のビード部を有するチューブレスタイヤと、該チューブレスタイヤの内側に別個に内蔵されたチューブ状の空気嚢との組み合わせからなり、空気充填状態において前記空気嚢の外径側と前記チューブレスタイヤのクラウン部内壁との間に空間を有し、前記空気嚢の少なくとも頂部に補強層を配置した安全空気入りタイヤにおいて、前記補強層が、引張弾性率が50GPa以上の繊維(A)及び150℃での乾熱収縮率が1.1%以上の繊維(B)からなる不織布と該不織布を被覆するゴムとで構成された少なくとも一層のゴム-不織布複合体層からなることを特徴とする。   That is, a first safety pneumatic tire of the present invention includes a tubeless tire having a tread portion formed in an annular shape, a pair of sidewall portions continuous from the both ends of the tread portion inward in the tire radial direction, and a pair of bead portions. A tube-like air bag separately incorporated inside the tubeless tire, and has a space between the outer diameter side of the air bag and the inner wall of the crown portion of the tubeless tire in an air-filled state. The safety pneumatic tire in which a reinforcing layer is disposed at least on the top of the air sac, wherein the reinforcing layer is a fiber (A) having a tensile elastic modulus of 50 GPa or more and a fiber having a dry heat shrinkage at 150 ° C. of 1.1% or more. It is characterized by comprising at least one rubber-nonwoven fabric composite layer composed of the nonwoven fabric made of (B) and the rubber covering the nonwoven fabric.

また、本発明の第2の安全空気入りタイヤは、円環状に形成されたトレッド部、該トレッド部の両端からタイヤ半径方向内側に連なる一対のサイドウォール部及び一対のビード部を有するチューブレスタイヤと、該チューブレスタイヤの内側に別個に内蔵されたチューブ状の空気嚢との組み合わせからなり、空気充填状態において前記空気嚢の外径側と前記チューブレスタイヤのクラウン部内壁との間に空間を有し、前記空気嚢の少なくとも頂部に補強層を配置した安全空気入りタイヤにおいて、前記補強層が、引張弾性率が50GPa以上の繊維(A)からなる不織布と該不織布を被覆するゴムとで構成された少なくとも一層のゴム-不織布複合体層と、150℃での乾熱収縮率が1.1%以上の繊維(B)からなる不織布と該不織布を被覆するゴムとで構成された少なくとも一層のゴム-不織布複合体層とからなることを特徴とする。   A second safety pneumatic tire according to the present invention includes a tread portion formed in an annular shape, a tubeless tire having a pair of sidewall portions and a pair of bead portions that are continuous from both ends of the tread portion toward the inside in the tire radial direction. A tube-like air bag separately incorporated inside the tubeless tire, and has a space between the outer diameter side of the air bag and the inner wall of the crown portion of the tubeless tire in an air-filled state. In the safety pneumatic tire in which a reinforcing layer is arranged at least on the top of the air bag, the reinforcing layer is composed of a nonwoven fabric made of fibers (A) having a tensile elastic modulus of 50 GPa or more and a rubber covering the nonwoven fabric. It comprises at least one rubber-nonwoven fabric composite layer, a non-woven fabric composed of fibers (B) having a dry heat shrinkage of 1.1% or higher at 150 ° C., and a rubber covering the non-woven fabric. At least one layer of rubber is - characterized by comprising a non-woven composite layer.

本発明の安全空気入りタイヤは、空気充填状態において前記空気嚢の外径側と前記チューブレスタイヤのクラウン部内壁との間に空間を有し、通常走行時は前記空間を維持して走行し、前記チューブレスタイヤの内圧が低下した際には、前記補強層が伸びて、前記チューブレスタイヤの内面に前記空気嚢が密着する形態で走行することができる。ここで、チューブレスタイヤ及び空気嚢に充填する気体としては、通常の或いは酸素分圧を調整した空気の他、窒素、アルゴン、ヘリウム等の不活性ガスを用いることができる。   The safety pneumatic tire of the present invention has a space between the outer diameter side of the air bag and the inner wall of the crown portion of the tubeless tire in an air-filled state, and travels while maintaining the space during normal travel. When the internal pressure of the tubeless tire decreases, the reinforcing layer extends and the air sac can run while being in close contact with the inner surface of the tubeless tire. Here, as the gas filled in the tubeless tire and the air sac, an inert gas such as nitrogen, argon, helium, or the like can be used in addition to air having a normal or adjusted oxygen partial pressure.

本発明の第2の安全空気入りタイヤの好適例においては、前記150℃での乾熱収縮率が1.1%以上の繊維(B)からなる不織布と該不織布を被覆するゴムとで構成されたゴム-不織布複合体層が前記空気嚢の頂部と側部とを被覆する。   In a preferred example of the second safety pneumatic tire of the present invention, a rubber composed of a non-woven fabric composed of fibers (B) having a dry heat shrinkage of 1.1% or more at 150 ° C. and a rubber covering the non-woven fabric. -A nonwoven composite layer covers the top and sides of the air sac.

本発明の安全空気入りタイヤにおいては、前記繊維(A)が、コポリパラフェニレン-3,4'-オキシジフェニレンテレフタルアミド及びポリパラフェニレンテレフタルアミドの少なくともいずれかよりなるのが好ましい。   In the safety pneumatic tire of the present invention, it is preferable that the fiber (A) is composed of at least one of copolyparaphenylene-3,4'-oxydiphenylene terephthalamide and polyparaphenylene terephthalamide.

また、本発明の安全空気入りタイヤにおいては、前記繊維(B)が、ポリエチレンテレフタレート、ポリエチレンナフタレート、6-ナイロン及び6,6-ナイロンの少なくともいずれかよりなるのが好ましい。   In the safety pneumatic tire of the present invention, it is preferable that the fiber (B) is made of at least one of polyethylene terephthalate, polyethylene naphthalate, 6-nylon, and 6,6-nylon.

更に、前記繊維(A)及び前記繊維(B)は、単繊維径が10〜35μmで且つ繊維長が30〜100mmであるのが好ましい。   Furthermore, it is preferable that the fiber (A) and the fiber (B) have a single fiber diameter of 10 to 35 μm and a fiber length of 30 to 100 mm.

本発明によれば、空気嚢の補強層にゴム-不織布複合体を適用した補強空気嚢内臓タイプの安全タイヤにおいて、引張弾性率が50GPa以上の繊維(A)及び150℃での乾熱収縮率が1.1%以上の繊維(B)からなる不織布を用いるか、繊維(A)からなる不織布と繊維(B)からなる不織布とを併用することで、ゴム-不織布複合体の積層数を低減して低燃費性を向上させた安全空気入りタイヤを提供することができる。   According to the present invention, in a reinforced air sac visceral type safety tire in which a rubber-nonwoven composite is applied to the air sac reinforcement layer, the fiber (A) having a tensile elastic modulus of 50 GPa or more and the dry heat shrinkage at 150 ° C. By using a non-woven fabric composed of 1.1% or more of the fiber (B) or using a non-woven fabric composed of the fiber (A) and a non-woven fabric composed of the fiber (B), the number of laminated rubber-nonwoven fabric composites is reduced. A safe pneumatic tire with improved fuel efficiency can be provided.

以下に、本発明を詳細に説明する。従来の空気嚢を内蔵したタイプの安全空気入りタイヤでは、通常走行時に空気嚢の外径が遠心力下でのクリープ変形により大きくなるため、空気嚢がタイヤ内面のインナーライナーと接触して擦れることにより損傷を受け、ランフラット走行性能を確保することができず、また、ランフラット時の撓みを抑制するため、空気嚢の内圧をタイヤの内圧より高めようとすると、タイヤ内面と空気嚢外面との間に十分な間隙を確保することができなかった。これに対し、通常走行時の形状保持性に優れ、且つ内圧低下時にタイヤ内面への拡張が可能な補強層を少なくとも空気嚢の頂部に配置することで、良好なランフラット走行性能を確保することができる。   The present invention is described in detail below. In conventional safety pneumatic tires with a built-in air sac, the outer diameter of the air sac becomes larger due to creep deformation under centrifugal force during normal driving, so the air sac contacts and rubs against the inner liner on the inner surface of the tire In order to prevent the run-flat running performance from being damaged, and to suppress the deflection during the run-flat, if the internal pressure of the air sac is increased above the internal pressure of the tire, the inner surface of the tire and the outer surface of the air sac A sufficient gap could not be secured between the two. On the other hand, a good run-flat running performance is ensured by arranging a reinforcing layer that is excellent in shape retention during normal running and that can be extended to the tire inner surface when the internal pressure is reduced, at least at the top of the air sac. Can do.

ここで、上記空気嚢に配設する補強層に要求される特性としては、(i)通常走行時(100km/h)には、転動により作用する遠心力と、空気嚢とチューブレスタイヤとの内圧差(例えば、チューブレスタイヤ900kPa、空気嚢950kPaの場合は50kPa)により作用する張力とに抗して空気嚢の伸びを抑制できること、(ii)タイヤがパンクし内圧が急速に低下した時(例えば、400kPa以下)には、チューブレスタイヤの内面まで伸長してチューブレスタイヤの撓みを抑制できることが挙げられる。なお、補強層は、弾性域であっても、塑性域であっても破断前にタイヤ内面に内接が可能な伸び特性を有すればよい。   Here, the characteristics required for the reinforcing layer disposed on the air sac are as follows: (i) During normal driving (100 km / h), the centrifugal force acting by rolling, the air sac and the tubeless tire The expansion of the air sac can be suppressed against the tension acting by the internal pressure difference (for example, 50 kPa for the tubeless tire 900 kPa and the air sac 950 kPa), (ii) when the tire is punctured and the internal pressure rapidly decreases (for example, 400 kPa or less) can be extended to the inner surface of the tubeless tire to suppress the deflection of the tubeless tire. In addition, even if it is an elastic region or a plastic region, the reinforcement layer should just have the elongation characteristic which can be inscribed in the tire inner surface before a fracture | rupture.

本発明においては、上記要求特性を満足するために、補強層として、不織布と該不織布を被覆するゴムとからなるゴム-不織布複合体を用い、更に、補強層の剛性をより向上させるために、引張弾性率が50GPa以上の繊維(A)及び150℃での乾熱収縮率が1.1%以上の繊維(B)の混合繊維を用いたゴム-不織布複合体を補強層に適用するか、或いは、繊維(A)を用いたゴム-不織布複合体と繊維(B)を用いたゴム-不織布複合体との両方を補強層に適用する。即ち、本発明の第1の安全空気入りタイヤにおいては、前記補強層が、引張弾性率が50GPa以上の繊維(A)及び150℃での乾熱収縮率が1.1%以上の繊維(B)からなる不織布と該不織布を被覆するゴムとで構成された少なくとも一層のゴム-不織布複合体層からなる。また、本発明の第2の安全空気入りタイヤにおいては、前記補強層が、引張弾性率が50GPa以上の繊維(A)からなる不織布と該不織布を被覆するゴムとで構成された少なくとも一層のゴム-不織布複合体層と、150℃での乾熱収縮率が1.1%以上の繊維(B)からなる不織布と該不織布を被覆するゴムとで構成された少なくとも一層のゴム-不織布複合体層とからなる。ここで、繊維の150℃での乾熱収縮率は、繊維の初期長さ(L0)と、150℃で30分間放置した後の繊維の長さ(L)を測定し、LのL0からの変化率を算出して求める。 In the present invention, in order to satisfy the above required characteristics, as a reinforcing layer, a rubber-nonwoven fabric composite composed of a nonwoven fabric and rubber covering the nonwoven fabric is used, and in order to further improve the rigidity of the reinforcing layer, A rubber-nonwoven fabric composite using a mixed fiber of fibers (A) having a tensile modulus of elasticity of 50 GPa or more and fibers (B) having a dry heat shrinkage rate of 150% or more at 1.1% or more is applied to the reinforcing layer, or Both the rubber-nonwoven fabric composite using the fiber (A) and the rubber-nonwoven fabric composite using the fiber (B) are applied to the reinforcing layer. That is, in the first safety pneumatic tire of the present invention, the reinforcing layer is composed of a fiber (A) having a tensile elastic modulus of 50 GPa or more and a fiber (B) having a dry heat shrinkage at 150 ° C. of 1.1% or more. And a rubber-nonwoven fabric composite layer composed of a non-woven fabric and a rubber covering the non-woven fabric. Further, in the second safety pneumatic tire of the present invention, the reinforcing layer is composed of at least one rubber composed of a nonwoven fabric composed of fibers (A) having a tensile modulus of elasticity of 50 GPa or more and a rubber covering the nonwoven fabric. A non-woven fabric composite layer, and at least one rubber-nonwoven fabric composite layer composed of a non-woven fabric composed of a fiber (B) having a dry heat shrinkage of 1.1% or higher at 150 ° C. and a rubber covering the non-woven fabric Become. Here, the dry heat shrinkage rate at 0.99 ° C. fibers, the initial length of the fibers and (L 0), measured the length of the fibers after leaving at 0.99 ° C. 30 minutes (L), L 0 of L Calculate the rate of change from

本発明の安全タイヤの空気嚢の補強層においては、補強層の不織布に引張弾性率が50GPa以上の繊維を用いることで、通常走行時に転動により作用する遠心力と、チューブレスタイヤと空気嚢との内圧差により作用する張力とに抗してチューブの伸びを抑制する。引張弾性率が50GPa未満の繊維からなる不織布をゴム-不織布複合体層に用いた場合、空気嚢のクリープ変形を抑制するには、複合体層の積層数を過大にする必要があり、その結果、安全タイヤの重量が増大して、低燃費性能等の通常走行性能が著しく低下してしまう。   In the reinforcing layer of the air sac of the safety tire of the present invention, by using a fiber having a tensile elastic modulus of 50 GPa or more for the nonwoven fabric of the reinforcing layer, a centrifugal force acting by rolling during normal running, a tubeless tire and an air sac The tube is restrained from stretching against the tension acting by the internal pressure difference. When a nonwoven fabric composed of fibers with a tensile modulus of less than 50 GPa is used for the rubber-nonwoven composite layer, it is necessary to increase the number of laminated composite layers in order to suppress creep deformation of the air sac. As a result, the weight of the safety tire increases, and the normal running performance such as the low fuel consumption performance is remarkably lowered.

更に、本発明の安全タイヤの空気嚢の補強層においては、150℃での乾熱収縮率が1.1%以上の繊維を用いることで、加硫後のタイヤにおけるゴムと不織布とからなるゴム-不織布複合体層のたるみを防止して、該複合体が張力を充分発揮できる状態にする。そのため、従来の補強層よりも、使用するゴム-不織布複合体層の積層数を減じて補強層を軽量化することができ、その結果、転がり抵抗が減少してタイヤの低燃費性が向上する。   Furthermore, in the reinforcing layer of the air sac of the safety tire of the present invention, by using fibers having a dry heat shrinkage rate of 150% or higher at 150 ° C., a rubber-nonwoven fabric composed of rubber and nonwoven fabric in the vulcanized tire The sagging of the composite layer is prevented so that the composite can sufficiently exert the tension. Therefore, it is possible to reduce the weight of the reinforcing layer by reducing the number of layers of the rubber-nonwoven fabric composite layer to be used as compared with the conventional reinforcing layer. As a result, the rolling resistance is reduced and the fuel efficiency of the tire is improved. .

上記第1の安全空気入りタイヤにおいては、不織布中の繊維(A)と繊維(B)との質量比は1:0.1〜1:1の範囲が好ましい。繊維(B)の割合が繊維(A)の0.1倍未満では、複合体層のたるみを防止するに至らず、該複合体が張力を充分発揮できず、繊維(B)の割合が繊維(A)の1倍を超えると、複合体の重量あたりの剛性が不十分となり、結果的に積層数が過大となり重量増加の原因となる。また、ゴム-不織布複合体層の層数は少なくとも1層で、好ましくは3〜6層である。   In the first safety pneumatic tire, the mass ratio of the fiber (A) and the fiber (B) in the nonwoven fabric is preferably in the range of 1: 0.1 to 1: 1. When the proportion of the fiber (B) is less than 0.1 times that of the fiber (A), the composite layer cannot be prevented from sagging, and the composite cannot exhibit sufficient tension, and the proportion of the fiber (B) is less than the fiber. If it exceeds 1 times of (A), the rigidity per weight of the composite will be insufficient, resulting in an excessive number of layers and a weight increase. Further, the number of layers of the rubber-nonwoven fabric composite layer is at least one, preferably 3-6.

また、上記第2の安全空気入りタイヤにおいては、繊維(A)を用いたゴム-不織布複合体層の層数は少なくとも1層で、2〜5層であるのが好ましく、一方、繊維(B)を用いたゴム-不織布複合体層の層数は少なくとも1層で、1〜3層であるのが好ましい。なお、繊維(A)を用いた複合体層と繊維(B)を用いた複合体層とのいずれをタイヤ径方向内側に配置してもよく、交互又はランダムに配置してもよい。   In the second safety pneumatic tire, the number of layers of the rubber-nonwoven fabric composite layer using the fiber (A) is preferably at least one and preferably 2 to 5, while the fiber (B The number of layers of the rubber-nonwoven fabric composite layer using) is at least one, preferably 1 to 3. In addition, any of the composite layer using the fibers (A) and the composite layer using the fibers (B) may be disposed on the inner side in the tire radial direction, or may be alternately or randomly disposed.

本発明の安全タイヤにおいては、空気嚢の少なくとも頂部に補強層が配設されている。ここで、上記第2の安全空気入りタイヤにおいては、前記150℃での乾熱収縮率が1.1%以上の繊維(B)からなる不織布と該不織布を被覆するゴムとで構成されたゴム-不織布複合体層が前記空気嚢の頂部と側部とを被覆するのが好ましい。繊維(B)を用いたゴム-不織布複合体層で、空気嚢の頂部に加え側部を被覆することにより、通常走行時の形状保持及びパンク時のより均一な拡張・内接が可能となる。   In the safety tire of the present invention, a reinforcing layer is disposed on at least the top of the air sac. Here, in the second safety pneumatic tire, a rubber-nonwoven fabric composed of a non-woven fabric made of a fiber (B) having a dry heat shrinkage rate of 1.1% or more at 150 ° C. and a rubber covering the non-woven fabric. Preferably, a composite layer covers the top and sides of the air sac. The rubber-nonwoven fabric composite layer using fiber (B) covers the top part of the air sac in addition to the side part, so that shape retention during normal running and more uniform expansion / inscription during puncture are possible. .

上記引張弾性率が50GPa以上の繊維(A)の原料としては、コポリパラフェニレン-3,4'-オキシジフェニレンテレフタルアミド及びポリパラフェニレンテレフタルアミドが挙げられる。これらは、一種単独で用いても、二種を併用してもよい。なお、上記繊維(A)としては、市販品を利用することができ、該市販品としては、帝人(株)製テクノーラ(商標)、デュポン社製ケブラー(商標)等が挙げられる。   Examples of the raw material for the fiber (A) having a tensile elastic modulus of 50 GPa or more include copolyparaphenylene-3,4'-oxydiphenylene terephthalamide and polyparaphenylene terephthalamide. These may be used individually by 1 type, or may use 2 types together. In addition, a commercial item can be utilized as said fiber (A), and Teijin Ltd. Technora (trademark), DuPont Kevlar (trademark) etc. are mentioned as this commercial item.

一方、上記150℃での乾熱収縮率が1.1%以上の繊維(B)の原料としては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、6-ナイロン及び6,6-ナイロンが挙げられる。これらは、一種単独で用いても、二種以上を組み合わせて用いてもよい。   On the other hand, examples of the raw material of the fiber (B) having a dry heat shrinkage of 150% at 150 ° C. include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), 6-nylon and 6,6-nylon. . These may be used singly or in combination of two or more.

上記繊維(A)及び繊維(B)は、単繊維径が10〜35μmであるのが好ましい。繊維(A)及び繊維(B)の単繊維径が10μm未満の場合、繊維間の隙間が十分でなく、不織布内部へのゴム浸透が困難となるため、ゴムとの複合体として十分に機能を発現できなくなる。一方、繊維(A)及び繊維(B)の単繊維径が35μmを超える場合、繊維自身の曲げ剛性が過大となってしまうため、不織布として十分な繊維間の交絡を得ることが困難となるため、ゴムとの複合体として十分に機能を発現できなくなる。   The fibers (A) and fibers (B) preferably have a single fiber diameter of 10 to 35 μm. When the single fiber diameter of the fibers (A) and (B) is less than 10 μm, the gap between the fibers is not sufficient, and it is difficult for the rubber to penetrate into the nonwoven fabric. It becomes impossible to express. On the other hand, when the single fiber diameter of the fiber (A) and the fiber (B) exceeds 35 μm, the bending rigidity of the fiber itself becomes excessive, so that it is difficult to obtain sufficient entanglement between the fibers as a nonwoven fabric. , The function cannot be sufficiently expressed as a composite with rubber.

また、上記繊維(A)及び繊維(B)は、繊維長が30〜100mmであるのが好ましい。繊維(A)及び繊維(B)の長さが30mm未満の場合、繊維間の絡み合いが十分でなく、補強層として剛性を保持できなくなる場合があり、100mmを超えると、繊維の末端個数が少なくなり過ぎるため、この場合も繊維間の絡み合いが十分でなく、補強層として剛性を保持できなくなることがある。   The fibers (A) and fibers (B) preferably have a fiber length of 30 to 100 mm. If the length of the fiber (A) and the fiber (B) is less than 30 mm, the entanglement between the fibers may not be sufficient, and rigidity may not be maintained as a reinforcing layer. If the length exceeds 100 mm, the number of fiber ends is small. In this case, too, the entanglement between the fibers is not sufficient, and the rigidity as the reinforcing layer may not be maintained.

上記不織布の目付重量は、30〜120g/m2の範囲、好ましくは40〜80g/m2の範囲内である。目付重量が30g/m2未満では、不織布としてのムラが大きくなり、ゴムとの複合体として均一に剛性を発現できない場合があり、目付重量が120g/m2を超えると、不織布を構成する繊維の径を大きくしても、不織布内部における繊維同士の隙間が十分でなくなり、不織布内部へのゴム浸透性が悪化し、ゴムとの複合体として十分に機能を発現できない場合がある。 Weight per unit area of the nonwoven fabric is in the range of 30 to 120 g / m 2, preferably in the range of 40 and 80 g / m 2. If the weight per unit area is less than 30 g / m 2 , the unevenness of the nonwoven fabric becomes large, and there may be cases where the rigidity cannot be expressed uniformly as a composite with rubber. If the weight per unit area exceeds 120 g / m 2 , the fibers constituting the nonwoven fabric Even if the diameter is increased, the gap between the fibers in the nonwoven fabric is not sufficient, the rubber permeability into the nonwoven fabric is deteriorated, and the function as a composite with rubber may not be sufficiently exhibited.

上記不織布の製造方法としては、特に制限はないが、水流又は針の力で繊維を交絡させる水流絡合法、ニードルパンチ法が好ましい。   Although there is no restriction | limiting in particular as a manufacturing method of the said nonwoven fabric, the hydroentanglement method and the needle punch method which entangle a fiber with the force of a water flow or a needle | hook are preferable.

上記ゴム-不織布複合体のゴム成分としては、特に制限はないが、例えば、天然ゴム、ポリブタジエンゴム、スチレン・ブタジエン共重合体ゴム、イソプレンゴム等が挙げられる。   The rubber component of the rubber-nonwoven fabric composite is not particularly limited, and examples thereof include natural rubber, polybutadiene rubber, styrene / butadiene copolymer rubber, and isoprene rubber.

上記ゴム-不織布複合体は、通常の方法で製造することができる。例えば、不織布に未加硫ゴム組成物を、プレス又はヒートロール等で上下両面又は片面から圧着する方法が挙げられる。このとき、未加硫ゴム組成物は、例えばシート状であるのが好ましく、また、圧着に際して、不織布内部の空気を未加硫ゴム組成物と十分に置換するのが好ましい。更に、不織布に液状の未加硫ゴム組成物を塗布する方法も挙げられる。   The rubber-nonwoven fabric composite can be produced by a usual method. For example, the method of crimping | bonding an unvulcanized rubber composition to a nonwoven fabric from upper and lower surfaces or a single surface with a press or a heat roll etc. is mentioned. At this time, the unvulcanized rubber composition is preferably in the form of a sheet, for example, and it is preferable to sufficiently replace the air inside the nonwoven fabric with the unvulcanized rubber composition during compression bonding. Furthermore, a method of applying a liquid unvulcanized rubber composition to the nonwoven fabric is also included.

次に、図1及び図2に本発明の安全空気入りタイヤとリムとの組立体の一例を示す。図1及び図2に示す組立体は、チューブレスタイヤ1及び該チューブレスタイヤ1の内部に別個に内蔵させた中空円環状の空気嚢2の組み合わせからなる安全空気入りタイヤと、前記チューブレスタイヤ1に対応する規格リム3とからなる。   Next, FIG.1 and FIG.2 shows an example of the assembly of the safety pneumatic tire and rim of the present invention. The assembly shown in FIG. 1 and FIG. 2 corresponds to the tubeless tire 1 and a safety pneumatic tire composed of a combination of a hollow annular air bag 2 separately incorporated in the tubeless tire 1, and the tubeless tire 1. And a standard rim 3 to be used.

チューブレスタイヤ1は、トレッド部4と、その両側に連なる一対のサイドウォール部5及び一対のビード部6と、ビード部6にそれぞれ埋設されたビードコア7間にトロイド状に延在させたカーカス8と、カーカス8のクラウン部でタイヤ半径方向外側に配した少なくとも二枚のベルト層からなるベルト9と、カーカス8の内側に配したインナーライナー10とを具える。   The tubeless tire 1 includes a tread portion 4, a pair of sidewall portions 5 and a pair of bead portions 6 connected to both sides of the tread portion 4, and a carcass 8 extending in a toroid shape between bead cores 7 embedded in the bead portions 6. The belt 9 includes at least two belt layers disposed on the outer side in the tire radial direction at the crown portion of the carcass 8, and the inner liner 10 disposed on the inner side of the carcass 8.

図1に示す組立体においては、空気嚢2の頂部に、その全周に渡ってゴム-不織布複合体層よりなる補強層11が配設されている。補強層11は、引張弾性率が50GPa以上の繊維(A)を用いたゴム-不織布複合体層と150℃での乾熱収縮率が1.1%以上の繊維(B)を用いたゴム-不織布複合体層とから構成されていてもよく、引張弾性率が50GPa以上の繊維(A)と150℃での乾熱収縮率が1.1%以上の繊維(B)との混合繊維を用いたゴム-不織布複合体層から構成されていてもよい。ここで、補強層11におけるゴム-不織布複合体層の層数は1層でも2層以上であってもよい。なお、図1の安全タイヤにおいては、補強層11の幅は、タイヤのトレッド接地幅とほぼ同程度であるが、空気嚢2の頂部を覆う限り特に制限はなく、空気嚢2の側面(チューブレスタイヤ1のサイドウォール部5に対応する領域)を覆ってもよい。   In the assembly shown in FIG. 1, a reinforcing layer 11 made of a rubber-nonwoven fabric composite layer is disposed on the top of the air sac 2 over the entire circumference. The reinforcing layer 11 is composed of a rubber-nonwoven fabric composite layer using fibers (A) having a tensile modulus of 50 GPa or more and a rubber-nonwoven fabric composite using fibers (B) having a dry heat shrinkage rate of 1.1% or more at 150 ° C. A rubber-nonwoven fabric using a mixed fiber of a fiber (A) having a tensile modulus of 50 GPa or more and a fiber (B) having a dry heat shrinkage rate of 1.1% or more at 150 ° C. It may be composed of a composite layer. Here, the number of rubber-nonwoven fabric composite layers in the reinforcing layer 11 may be one or two or more. In the safety tire of FIG. 1, the width of the reinforcing layer 11 is approximately the same as the tread contact width of the tire, but is not particularly limited as long as the top of the air sac 2 is covered. The region corresponding to the sidewall portion 5 of the tire 1 may be covered.

また、図2に示す組立体のように、補強層11を引張弾性率が50GPa以上の繊維(A)を用いたゴム-不織布複合体層11A及び150℃での乾熱収縮率が1.1%以上の繊維(B)を用いたゴム-不織布複合体層11Bから構成して、複合体層11Bを空気嚢2の頂部と側部とを被覆するように配置してもよい。なお、ゴム-不織布複合体層11A及びゴム-不織布複合体層11Bの積層数は、それぞれ1層でも2層以上でもよい。   Further, as in the assembly shown in FIG. 2, the reinforcing layer 11 is a rubber-nonwoven fabric composite layer 11A using fibers (A) having a tensile elastic modulus of 50 GPa or more, and a dry heat shrinkage rate at 150 ° C. of 1.1% or more. The composite layer 11B may be disposed so as to cover the top portion and the side portion of the air bag 2 by using the rubber-nonwoven fabric composite layer 11B using the fiber (B). The number of layers of the rubber-nonwoven fabric composite layer 11A and the rubber-nonwoven fabric composite layer 11B may be one or two or more.

図1及び図2中、12A,12Bは、それぞれチューブレスタイヤ1及び空気嚢2内への空気、不活性ガス等の充填バルブを示す。本発明の安全空気入りタイヤにおいては、チューブレスタイヤ1の内圧P1よりも、空気嚢2の内圧P2を20〜100kPa高く設定するのが好ましい。チューブレスタイヤ1と空気嚢2とにそれぞれ個別に所定内圧を充填した後、荷重負荷転動状態のトレッド部接地領域にて、空気嚢2はタイヤ1のトレッド部内面との間に間隙Sを保持する外周面を有する。従って、通常の走行時には空気嚢2の外周面(補強層11の外周面)がトレッド部内面(インナーライナー10の内面)と擦れ合うことがなく、空気嚢2自体の損傷も、空気嚢2によるトレッド部内面の損傷も生じることはない。 In FIG.1 and FIG.2, 12A, 12B shows filling valves, such as air and an inert gas, into the tubeless tire 1 and the air bag 2, respectively. In the safe pneumatic tire of the present invention, it is preferable to set the internal pressure P 2 of the air bag 2 to be 20 to 100 kPa higher than the internal pressure P 1 of the tubeless tire 1. After the tubeless tire 1 and the air sac 2 are individually filled with a predetermined internal pressure, the air sac 2 holds a gap S between the inner surface of the tread part of the tire 1 in the tread part ground contact region in a load-loaded rolling state. An outer peripheral surface. Accordingly, the outer peripheral surface of the air sac 2 (the outer peripheral surface of the reinforcing layer 11) does not rub against the inner surface of the tread portion (the inner surface of the inner liner 10) during normal travel, and the air sac 2 itself is damaged. There is no damage to the inner surface of the part.

補強層11は、チューブレスタイヤ1のトレッド部4の接地領域において、該チューブレスタイヤ1の内圧が正常な時は、直接空気嚢2の遠心力対抗部材として働き、チューブレスタイヤ1の内圧のみがゲージ圧でゼロとなった時、タイヤ周方向に伸長して、チューブレスタイヤ1の内面に密着する。これにより、空気嚢2が、従来のタイヤチューブの如く機能して、チューブレスタイヤ1のパンク時の撓み変形を小さく抑制しつつ、荷重の支持をチューブレスタイヤ1から肩代わりするので、チューブレスタイヤ1のパンク時においてもチューブレスタイヤ1と空気嚢2との双方が致命的損傷を受けるのを防止できる。そのため、本発明の安全空気入りタイヤを用いれば、所定の距離をランフラット走行することが可能となる。   When the internal pressure of the tubeless tire 1 is normal in the ground contact region of the tread portion 4 of the tubeless tire 1, the reinforcing layer 11 directly acts as a member to counteract the centrifugal force of the air sac 2, and only the internal pressure of the tubeless tire 1 is gauge pressure. When it becomes zero, it extends in the tire circumferential direction and adheres to the inner surface of the tubeless tire 1. As a result, the air bag 2 functions like a conventional tire tube and suppresses bending deformation when the tubeless tire 1 is punctured, while supporting the load from the tubeless tire 1, so that the puncture of the tubeless tire 1 is performed. Even at times, both the tubeless tire 1 and the air bag 2 can be prevented from being fatally damaged. Therefore, if the safety pneumatic tire of the present invention is used, it becomes possible to run flat for a predetermined distance.

以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.

水流交絡法で表1に示す繊維種よりなる不織布A及び不織布Bを作製し、ゴムと複合化して、ゴム-不織布A複合体層及びゴム-不織布B複合体層を作製した。該複合体層を補強層に適用して、サイズ:TBR 315/60R22.5で、図1に示す構造の安全タイヤを作製した。該タイヤに対して、下記の方法で通常走行時差圧保持性と転がり抵抗を評価した。結果を表1に示す。   Non-woven fabric A and non-woven fabric B made of the fiber types shown in Table 1 were prepared by hydroentanglement method and combined with rubber to prepare rubber-nonwoven fabric A composite layer and rubber-nonwoven fabric B composite layer. The composite layer was applied to the reinforcing layer to produce a safety tire having a size of TBR 315 / 60R22.5 and a structure shown in FIG. The tire was evaluated for differential pressure retention during normal running and rolling resistance by the following methods. The results are shown in Table 1.

(1)通常走行時差圧保持性
上記安全タイヤとリム(サイズ:9.00×22.5)とを所定内圧(チューブレスタイヤ:900kPa、空気嚢:950kPa、チューブレスタイヤと空気嚢との初期差圧:50kPa)でリム組みし、34.81kNの荷重下、周速度60km/時で回転するドラムに押し当てて6万km走行させた後、チューブレスタイヤと空気嚢との差圧を測定し、従来例の安全タイヤの初期差圧からの低下量を100として指数表示した。指数値が大きい程、初期差圧からの低下量が小さく、差圧保持性に優れることを示す。
(1) Maintaining differential pressure during normal driving The above safety tire and rim (size: 9.00 × 22.5) are subjected to predetermined internal pressure (tubeless tire: 900 kPa, air sac: 950 kPa, initial differential pressure between tubeless tire and air sac. : 50kPa), rim assembled, pressed against a drum rotating at a peripheral speed of 60km / h under a load of 34.81kN, and after running 60,000km, the differential pressure between the tubeless tire and air sac was measured. The amount of decrease from the initial differential pressure of the safety tire was expressed as an index with 100 as the amount of decrease. The larger the index value, the smaller the amount of decrease from the initial differential pressure, and the better the differential pressure retention.

(2)転がり抵抗
上記安全タイヤとリム(サイズ:9.00×22.5)とを所定内圧(チューブレスタイヤ:900kPa、空気嚢:950kPa、チューブレスタイヤと空気嚢との初期差圧:50kPa)でリム組みし、34.81kNの荷重下、周速度80km/時で走行させて転がり抵抗を測定し、従来例の安全タイヤの転がり抵抗を100として指数表示した。指数値が大きい程、転がり抵抗が小さく、低燃費性に優れることを示す。
(2) Rolling resistance The safety tire and rim (size: 9.00 × 22.5) are subjected to predetermined internal pressure (tubeless tire: 900 kPa, air sac: 950 kPa, initial differential pressure between the tubeless tire and air sac: 50 kPa). The rolling resistance was measured by assembling the rim and running at a peripheral speed of 80 km / hour under a load of 34.81 kN. The rolling resistance of the conventional safety tire was indicated as 100, and displayed as an index. The larger the index value, the smaller the rolling resistance and the better the fuel efficiency.

Figure 2005067363
Figure 2005067363

表1中、テクノーラ(商標)は、帝人(株)製コポリパラフェニレン-3,4'-オキシジフェニレンテレフタルアミド繊維である。また、150℃乾熱収縮率は、予め初期長さを測定した試料を150℃のオーブンに30分間放置した後、再度試料の長さを測定し、初期長さからの変化率を収縮率として求めた。なお、テクノーラの150℃乾熱収縮率は0.1%である。   In Table 1, Technora (trademark) is a copolyparaphenylene-3,4'-oxydiphenylene terephthalamide fiber manufactured by Teijin Limited. Also, the 150 ° C dry heat shrinkage ratio is determined by measuring the length of the sample again after leaving the sample whose initial length was measured in advance in a 150 ° C oven for 30 minutes, and taking the rate of change from the initial length as the shrinkage rate. Asked. Technora's 150 ° C dry heat shrinkage is 0.1%.

表1から分かるように、空気嚢の補強層として、引張弾性率が50GPa以上の繊維を用いたゴム-不織布A複合体層と150℃での乾熱収縮率が1.1%以上の繊維を用いたゴム-不織布B複合体層とを具える実施例のタイヤは、補強層の補強性が高いため、通常走行時の差圧保持性が改善されていた。また、補強層としてゴム-不織布A複合体層とゴム-不織布B複合体層とを併用することで、補強層の補強性が大きく向上するため、実施例1〜4のタイヤのように通常走行時の差圧保持性を向上させつつゴム-不織布複合体層の総積層数を減らすことができ、その結果、空気嚢の重量及び転がり抵抗を減少させて、低燃費性を改善することができた。   As can be seen from Table 1, a rubber-nonwoven fabric A composite layer using fibers with a tensile modulus of 50 GPa or more and fibers with a dry heat shrinkage at 150 ° C. of 1.1% or more were used as the air sac reinforcement layer. In the tire of the example including the rubber-nonwoven fabric B composite layer, the reinforcing property of the reinforcing layer was high, and thus the differential pressure retention during normal running was improved. Moreover, since the reinforcing property of the reinforcing layer is greatly improved by using the rubber-nonwoven fabric A composite layer and the rubber-nonwoven fabric B composite layer together as the reinforcing layer, the vehicle normally travels like the tires of Examples 1 to 4. The total number of rubber-nonwoven fabric composite layers can be reduced while improving the differential pressure retention at the time, and as a result, the weight and rolling resistance of the air sac can be reduced, and the fuel efficiency can be improved. It was.

本発明の安全空気入りタイヤとリムとの組立体の一例を示す。An example of the assembly of the safety pneumatic tire of this invention and a rim | limb is shown. 本発明の安全空気入りタイヤとリムとの組立体の他の一例を示す。The other example of the assembly of the safety pneumatic tire of this invention and a rim | limb is shown.

符号の説明Explanation of symbols

1 チューブレスタイヤ
2 空気嚢
3 規格リム
4 トレッド部
5 サイドウォール部
6 ビード部
7 ビードコア
8 カーカス
9 ベルト
10 インナーライナー
11 補強層
11A,11B ゴム-不織布複合体層
12A,12B 充填バルブ
1 チューブレスタイヤの内圧
2 空気嚢の内圧
S 間隙
1 tubeless tire 2 air sacs 3 standard rim 4 tread 5 sidewall portion 6 bead portion 7 bead core 8 carcass 9 belt 10 inner liner 11 reinforcement layer 11A, 11B Rubber - nonwoven composite layers 12A, 12B filling valve P 1 of tubeless tires Internal pressure P 2 Internal pressure of air bag S Gap

Claims (6)

円環状に形成されたトレッド部、該トレッド部の両端からタイヤ半径方向内側に連なる一対のサイドウォール部及び一対のビード部を有するチューブレスタイヤと、該チューブレスタイヤの内側に別個に内蔵されたチューブ状の空気嚢との組み合わせからなり、空気充填状態において前記空気嚢の外径側と前記チューブレスタイヤのクラウン部内壁との間に空間を有し、前記空気嚢の少なくとも頂部に補強層を配置した安全空気入りタイヤにおいて、
前記補強層が、引張弾性率が50GPa以上の繊維(A)及び150℃での乾熱収縮率が1.1%以上の繊維(B)からなる不織布と該不織布を被覆するゴムとで構成された少なくとも一層のゴム-不織布複合体層からなることを特徴とする安全空気入りタイヤ。
An annularly formed tread portion, a tubeless tire having a pair of sidewall portions and a pair of bead portions that are continuous from both ends of the tread portion to the inside in the tire radial direction, and a tubular shape that is separately incorporated inside the tubeless tire And a space between the outer diameter side of the air sac and the inner wall of the crown portion of the tubeless tire in an air-filled state, and a reinforcing layer is disposed at least at the top of the air sac In pneumatic tires,
The reinforcing layer is composed of at least a non-woven fabric composed of a fiber (A) having a tensile modulus of elasticity of 50 GPa or more and a fiber (B) having a dry heat shrinkage at 150 ° C. of 1.1% or more and a rubber covering the non-woven fabric. A safety pneumatic tire comprising a single rubber-nonwoven composite layer.
円環状に形成されたトレッド部、該トレッド部の両端からタイヤ半径方向内側に連なる一対のサイドウォール部及び一対のビード部を有するチューブレスタイヤと、該チューブレスタイヤの内側に別個に内蔵されたチューブ状の空気嚢との組み合わせからなり、空気充填状態において前記空気嚢の外径側と前記チューブレスタイヤのクラウン部内壁との間に空間を有し、前記空気嚢の少なくとも頂部に補強層を配置した安全空気入りタイヤにおいて、
前記補強層が、引張弾性率が50GPa以上の繊維(A)からなる不織布と該不織布を被覆するゴムとで構成された少なくとも一層のゴム-不織布複合体層と、150℃での乾熱収縮率が1.1%以上の繊維(B)からなる不織布と該不織布を被覆するゴムとで構成された少なくとも一層のゴム-不織布複合体層とからなることを特徴とする安全空気入りタイヤ。
An annularly formed tread portion, a tubeless tire having a pair of sidewall portions and a pair of bead portions that are continuous from both ends of the tread portion to the inside in the tire radial direction, and a tubular shape that is separately incorporated inside the tubeless tire And a space between the outer diameter side of the air sac and the inner wall of the crown portion of the tubeless tire in an air-filled state, and a reinforcing layer is disposed at least at the top of the air sac In pneumatic tires,
The reinforcing layer has at least one rubber-nonwoven composite layer composed of a nonwoven fabric composed of fibers (A) having a tensile modulus of 50 GPa or more and a rubber covering the nonwoven fabric, and a dry heat shrinkage rate at 150 ° C. A safety pneumatic tire comprising a nonwoven fabric composed of 1.1% or more of the fiber (B) and at least one rubber-nonwoven fabric composite layer composed of a rubber covering the nonwoven fabric.
前記150℃での乾熱収縮率が1.1%以上の繊維(B)からなる不織布と該不織布を被覆するゴムとで構成されたゴム-不織布複合体層が前記空気嚢の頂部と側部とを被覆することを特徴とする請求項2に記載の安全空気入りタイヤ。   A rubber-nonwoven fabric composite layer composed of a nonwoven fabric composed of fibers (B) having a dry heat shrinkage rate of 1.1% or more at 150 ° C. and a rubber coating the nonwoven fabric includes a top portion and a side portion of the air bag. The safety pneumatic tire according to claim 2, wherein the safety pneumatic tire is coated. 前記繊維(A)が、コポリパラフェニレン-3,4'-オキシジフェニレンテレフタルアミド及びポリパラフェニレンテレフタルアミドの少なくともいずれかよりなることを特徴とする請求項1又は2に記載の安全空気入りタイヤ。   The safety pneumatic tire according to claim 1 or 2, wherein the fiber (A) is made of at least one of copolyparaphenylene-3,4'-oxydiphenylene terephthalamide and polyparaphenylene terephthalamide. . 前記繊維(B)が、ポリエチレンテレフタレート、ポリエチレンナフタレート、6-ナイロン及び6,6-ナイロンの少なくともいずれかよりなることを特徴とする請求項1又は2に記載の安全空気入りタイヤ。   The safety pneumatic tire according to claim 1 or 2, wherein the fiber (B) is made of at least one of polyethylene terephthalate, polyethylene naphthalate, 6-nylon, and 6,6-nylon. 前記繊維(A)及び前記繊維(B)は、単繊維径が10〜35μmで且つ繊維長が30〜100mmであることを特徴とする請求項1又は2に記載の安全空気入りタイヤ。   The safety pneumatic tire according to claim 1 or 2, wherein the fiber (A) and the fiber (B) have a single fiber diameter of 10 to 35 µm and a fiber length of 30 to 100 mm.
JP2003299009A 2003-08-22 2003-08-22 Safety pneumatic tire Pending JP2005067363A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003299009A JP2005067363A (en) 2003-08-22 2003-08-22 Safety pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003299009A JP2005067363A (en) 2003-08-22 2003-08-22 Safety pneumatic tire

Publications (1)

Publication Number Publication Date
JP2005067363A true JP2005067363A (en) 2005-03-17

Family

ID=34404345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003299009A Pending JP2005067363A (en) 2003-08-22 2003-08-22 Safety pneumatic tire

Country Status (1)

Country Link
JP (1) JP2005067363A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007004468A1 (en) * 2005-07-06 2007-01-11 Bridgestone Corporation Air bladder for safety tire and safety tire
WO2007049601A1 (en) * 2005-10-25 2007-05-03 Bridgestone Corporation Air bladder for safety tire and safety tire
JP2011025832A (en) * 2009-07-27 2011-02-10 Bridgestone Corp Pneumatic tire
JP2020102427A (en) * 2018-12-25 2020-07-02 帝人株式会社 Coating liquid for separator, manufacturing method of the separator, separator obtained by the manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007004468A1 (en) * 2005-07-06 2007-01-11 Bridgestone Corporation Air bladder for safety tire and safety tire
JP4724716B2 (en) * 2005-07-06 2011-07-13 株式会社ブリヂストン Pneumatic and safety tires for safety tires
WO2007049601A1 (en) * 2005-10-25 2007-05-03 Bridgestone Corporation Air bladder for safety tire and safety tire
JP2011025832A (en) * 2009-07-27 2011-02-10 Bridgestone Corp Pneumatic tire
JP2020102427A (en) * 2018-12-25 2020-07-02 帝人株式会社 Coating liquid for separator, manufacturing method of the separator, separator obtained by the manufacturing method
JP7186603B2 (en) 2018-12-25 2022-12-09 帝人株式会社 Separator coating liquid, separator manufacturing method, and separator obtained by the manufacturing method

Similar Documents

Publication Publication Date Title
US7469734B2 (en) Rubber-fiber composite material and rubber article using the same
JP2008001328A (en) Run flat tire
CN103153651A (en) Pneumatic tire
JP6481614B2 (en) Pneumatic tire
EP1495880B1 (en) Pneumatic tire
JPS62279108A (en) Radial-ply tire for passenger car
JP2005280459A (en) Run flat tire
JPH11227424A (en) Pneumatic safety tire
JP4015745B2 (en) Pneumatic safety tire
JPH11227425A (en) Pneumatic safety tire
JP4257723B2 (en) Tire and rim assembly
JPH11348512A (en) Pneumatic safe tire
JP2005067363A (en) Safety pneumatic tire
JPS5946801B2 (en) pneumatic tire and rim assembly
JP2002172918A (en) Safety pneumatic tire
JP2000006612A (en) Pneumatic tire
JP2007276569A (en) Pneumatic safety tire
JP2004090808A (en) Safety tire
EP3895907A1 (en) Pneumatic radial tire for passenger vehicles
EP3895908A1 (en) Pneumatic radial tire for passenger vehicles
JP2021046129A (en) Pneumatic tire
JP5288543B2 (en) Pneumatic radial tire
JP3971913B2 (en) Pneumatic bladder for safety tire
JP2006021671A (en) Pneumatic radial tire
JP3755050B2 (en) Pneumatic radial tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090630