JP2005066599A - Method for electrodialysis and apparatus therefor, method for deionization and apparatus therefor, and method for treating exhaust gas - Google Patents

Method for electrodialysis and apparatus therefor, method for deionization and apparatus therefor, and method for treating exhaust gas Download PDF

Info

Publication number
JP2005066599A
JP2005066599A JP2004309350A JP2004309350A JP2005066599A JP 2005066599 A JP2005066599 A JP 2005066599A JP 2004309350 A JP2004309350 A JP 2004309350A JP 2004309350 A JP2004309350 A JP 2004309350A JP 2005066599 A JP2005066599 A JP 2005066599A
Authority
JP
Japan
Prior art keywords
exchange membrane
anion exchange
chamber
water
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004309350A
Other languages
Japanese (ja)
Inventor
Hirohisa Kubota
裕久 久保田
Keiko Kudo
慶子 工藤
Naoko Takasaki
直子 高崎
Jiyunya Watanabe
純哉 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2004309350A priority Critical patent/JP2005066599A/en
Publication of JP2005066599A publication Critical patent/JP2005066599A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for electrodialysis and an apparatus therefor, both using an industrially excellent ion exchange membrane which is highly heat-resistant and excellent in a rate of a reaction, causes a slight amine odor and scarce elution from a polymer. <P>SOLUTION: The electrodialysis method is characterized in using the electrodialysis apparatus body of a laminated construction comprising desalting chambers and ion thickening chambers having a cation exchange membrane and an anion exchange membrane which contains a repetition unit as a component having a specified chemical structure, a flow passage for first water, that is, water to be treated charged into each desalting chamber and treated water discharged therefrom, a flow passage for second water charged into each ion thickening chamber and discharged therefrom, an anode and a cathode disposed respectively on either side of the electrodialysis apparatus body perpendicularly to the direction of the lamination of the apparatus, and a voltage application means for applying voltage across the anode and cathode to place an electric field to move into the ion thickening chamber dissolved ions in the water to be treated flowing into the desalting chamber. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、陰イオン交換膜に関する。詳しくは陰イオン交換基とスチレン残基との間に化学的に安定なスペーサー基を導入した新規な陰イオン交換膜に関するものである。
本発明の陰イオン交換膜は、例えば、海水濃縮製塩、カン水の製造、ホエー・タンパク質の脱塩、減塩醤油の製造、糖液の精製、通電醗酵、アミノ酸類からの無機酸類、無機塩類の除去、金属イオンの濃縮・除去、放射性イオン/物質の除去、酸・アルカリの製造、電解質の複分解反応、電着塗装浴の浴管理、電気脱イオン用装置用膜、排煙(ガス)脱硫用膜、パーベーパレーション用陰イオン交換膜、電池用隔膜、イオン交換濾過材、合成用陰イオン交換触媒陰イオン交換膜、消臭抗菌用陰イオン交換膜、触媒担持用陰イオン交換膜等に有効に用いられるものである。
The present invention relates to an anion exchange membrane. Specifically, the present invention relates to a novel anion exchange membrane in which a chemically stable spacer group is introduced between an anion exchange group and a styrene residue.
The anion exchange membrane of the present invention includes, for example, seawater-concentrated salt production, canned water production, whey protein desalting, low-salt soy sauce production, sugar solution purification, electrolysis fermentation, inorganic acids from amino acids, inorganic salts Removal of metal ions, concentration and removal of metal ions, removal of radioactive ions / substances, acid / alkali production, electrolyte metathesis reaction, bath management of electrodeposition coating bath, membrane for electrodeionization equipment, flue gas (gas) desulfurization Membrane, pervaporation anion exchange membrane, battery membrane, ion exchange filter material, synthetic anion exchange catalyst anion exchange membrane, deodorizing antibacterial anion exchange membrane, catalyst carrying anion exchange membrane, etc. It is used effectively.

陰イオン交換膜と呼ばれている重合体は、クロロメチル基を有するスチレン‐ジビニルベンゼン共重合体に1級から3級のアミンを導入した弱塩基性陰イオン交換膜、及びアンモニウム基を導入した強塩基性陰イオン交換膜が知られている。その他、ビニル(アルキル)ビリジンの架橋共重合体(ブタジエンが含まれる膜も知られている)である弱塩基性陰イオン交換膜及び、ビニル(アルキル)ピリジン残基をアルキル化した強塩基性陰イオン交換膜が知られている。他に、脂肪族アミン、芳香族アミン誘導体とアルデヒド/ケトン誘導体との縮重合体の均質膜、エチレンイミン(ポリエチレンイミン)−エピクロルヒドリン系膜(強塩基性膜も含む)、ビニルピリジン−エポキシ化合物との架橋重合体、(メタ)アクリルエステル系陰イオン交換膜、その他無機イオン交換膜等も知られている。   A polymer called an anion exchange membrane is a weakly basic anion exchange membrane in which a primary to tertiary amine is introduced into a styrene-divinylbenzene copolymer having a chloromethyl group, and an ammonium group. Strongly basic anion exchange membranes are known. In addition, a weakly basic anion exchange membrane that is a crosslinked copolymer of vinyl (alkyl) pyridine (a membrane containing butadiene is also known), and a strongly basic anion obtained by alkylating a vinyl (alkyl) pyridine residue. Ion exchange membranes are known. In addition, a homogenous film of a condensation polymer of an aliphatic amine, an aromatic amine derivative and an aldehyde / ketone derivative, an ethyleneimine (polyethyleneimine) -epichlorohydrin film (including a strongly basic film), a vinylpyridine-epoxy compound, Cross-linked polymers, (meth) acrylic ester anion exchange membranes, and other inorganic ion exchange membranes are also known.

その他、陰イオン交換繊維や陰イオン交換樹脂を樹脂層に埋め込んだ陰イオン交換膜等も知られている。
工業的に使用されている陰イオン交換膜は、化学的安定性、強度及び製造価格、品質の観点から、重合型均質膜であるスチレン−ジビニルベンゼン、ビニルピリジン−ジビニルベンゼン等のビニル単量体を何らかの方法で膜状の共重合体とし、これらに陰イオン交換基を導入したものである。
In addition, an anion exchange membrane in which an anion exchange fiber or an anion exchange resin is embedded in a resin layer is also known.
Anion exchange membranes used industrially are vinyl monomers such as styrene-divinylbenzene and vinylpyridine-divinylbenzene, which are polymerized homogeneous membranes, from the viewpoints of chemical stability, strength, manufacturing price, and quality. Are made into a film-like copolymer by some method, and an anion exchange group is introduced into them.

イオン交換膜の化学的安定性は、重要な必要条件の一つである。ビニルピリジン系陰イオン交換膜やスチレン系陰イオン交換膜は、濃厚のアルカリ溶液や酸性溶液中、酸化性雰囲気条件下、例えば、溶存酸素、過酸化水素、塩素などにより徐々に分解される。
また、スチレン系陰イオン交換膜やビニルピリジン系陰イオン交換膜では、結晶性が高く、膜が剛直であるため、膜が亀裂破壊しやすく、これを避けるため補強材を添加している。この結果、補強剤の添加により交換容量の低下につながり、交換容量が充分でなかった。
The chemical stability of the ion exchange membrane is one of the important requirements. Vinylpyridine anion exchange membranes and styrene anion exchange membranes are gradually decomposed in concentrated alkaline solutions and acidic solutions under oxidizing atmosphere conditions, for example, dissolved oxygen, hydrogen peroxide, chlorine, and the like.
In addition, since the styrene anion exchange membrane and the vinylpyridine anion exchange membrane have high crystallinity and the membrane is rigid, the membrane is easily cracked and a reinforcing material is added to avoid this. As a result, the addition of the reinforcing agent led to a decrease in the exchange capacity, and the exchange capacity was not sufficient.

スチレン系陰イオン交換膜やビニルピリジン系陰イオン交換膜は、陰イオン交換基の耐熱性に劣るため、長期間使用すると陰イオン交換基の交換容量が低下する。このため、陰イオン交換膜のライフが短いという問題点がある。   Styrene-based anion exchange membranes and vinylpyridine-based anion exchange membranes are inferior in heat resistance of anion exchange groups, so that the exchange capacity of anion exchange groups decreases when used for a long time. For this reason, there exists a problem that the life of an anion exchange membrane is short.

本発明は上記実情に鑑みてなされたものであり、その目的は、耐熱性に優れ、重合体からの溶出が少なく、アミン臭が少なく、反応速度に優れ、交換容量が高い等の問題点が解決された陰イオン交換膜を提供することにある。   The present invention has been made in view of the above circumstances, and its purpose is that it has excellent heat resistance, little elution from the polymer, little amine odor, excellent reaction rate, and high exchange capacity. It is an object of the present invention to provide a solved anion exchange membrane.

本出願人は、ベンゼン環と陰イオン交換基との間に、置換基A(スペーサー基)を導入した強塩基性陰イオン交換体は、耐熱性に優れていることを報告している(特開平4−334491号、特開平7−289921号)。
さらに本発明者らは、上記の目的を達成すべく鋭意検討を重ねた結果、この特定の構造を有する重合体は、耐熱性に優れるばかりでなく、イオン交換基の化学的安定性に優れること、アミンの塩基度が高くなること、反応速度にも優れること、可とう性に優れるため柔軟性を有することに知見し、この重合体をイオン交換膜として用いることにより上記課題を克服することができることを見い出し本発明に到達した。
The present applicant has reported that a strongly basic anion exchanger having a substituent A (spacer group) introduced between a benzene ring and an anion exchange group is excellent in heat resistance (special feature). (Kaihei 4-334491, JP-A-7-289921).
Furthermore, as a result of intensive studies to achieve the above-mentioned object, the inventors of the present invention are not only excellent in heat resistance but also excellent in chemical stability of ion exchange groups. It is known that the basicity of the amine is increased, the reaction rate is excellent, the flexibility is excellent because of excellent flexibility, and the above problem can be overcome by using this polymer as an ion exchange membrane. I found out what I could do and reached the present invention.

即ち、本発明の要旨は、
(1)下記一般式(1)及び/又は一般式(2)
That is, the gist of the present invention is as follows.
(1) The following general formula (1) and / or general formula (2)

Figure 2005066599
Figure 2005066599

Figure 2005066599
(一般式(1)及び/又は一般式(2)中、Aは炭素数3から8の直鎖状、分岐状アルキレン基、又は炭素数4から8のアルコキシメチレン基を表わし、R1、R2、R3は水素原
子、又は炭素数6以下のアルキル基、アルカノール基を表す)
で表される繰り返し単位を構成成分として含有する重合体からなることを特徴とする陰イオン交換膜、
(2)少なくとも一般式(1)及び/又は一般式(2)で表される繰り返し単位を構成成分として含有する重合体からなる陰イオン交換膜と陽イオン交換膜が積層されてなることを特徴とする陰イオン交換膜、
(3)一つの膜内に、陽イオン交換体からなる連続相と、一般式(1)及び/又は一般式(2)で表される繰り返し単位を構成成分として含有する陰イオン交換体からなる連続相を含有することを特徴とする陰イオン交換膜、
(4)一つの膜内に、多孔性担体材料からなる連続相と、少なくとも一般式(1)及び/又は一般式(2)で表される繰り返し単位を構成成分として含有する陰イオン交換膜か
らなる連続相を含有することを特徴とする陰イオン交換膜、
(5)一般式(1)で表される繰り返し単位を構成成分として含有する重合体からなる陰イオン交換膜と、一般式(2)で表される繰り返し単位を構成成分として含有する重合体からなる陰イオン交換膜が積層されてなることを特徴とする陰イオン交換膜、
(6)下記一般式(3)で表される架橋性陰イオン交換体であって、一般式(3)中、
Figure 2005066599
(In General Formula (1) and / or General Formula (2), A represents a linear or branched alkylene group having 3 to 8 carbon atoms or an alkoxymethylene group having 4 to 8 carbon atoms, and R 1 , R 2 and R 3 represent a hydrogen atom, an alkyl group having 6 or less carbon atoms, or an alkanol group)
An anion exchange membrane comprising a polymer containing as a constituent component a repeating unit represented by:
(2) It is characterized in that an anion exchange membrane and a cation exchange membrane made of a polymer containing at least a repeating unit represented by the general formula (1) and / or the general formula (2) as a constituent component are laminated. Anion exchange membrane,
(3) It consists of a continuous phase consisting of a cation exchanger and an anion exchanger containing a repeating unit represented by the general formula (1) and / or the general formula (2) as constituent components in one membrane. An anion exchange membrane characterized by containing a continuous phase;
(4) From an anion exchange membrane containing a continuous phase composed of a porous carrier material and at least a repeating unit represented by the general formula (1) and / or the general formula (2) as constituent components in one membrane An anion exchange membrane characterized by containing a continuous phase,
(5) From an anion exchange membrane made of a polymer containing the repeating unit represented by the general formula (1) as a constituent, and a polymer containing the repeating unit represented by the general formula (2) as a constituent An anion exchange membrane, wherein the anion exchange membrane is laminated,
(6) A crosslinkable anion exchanger represented by the following general formula (3):

Figure 2005066599
(一般式(3)中、Aは炭素数3から8の直鎖状アルキレン基、又は炭素数4から8のアルコキシメチレン基を表し、R1、R2、R3はそれぞれ水素原子、又は炭素数6以下のア
ルキル基、アルカノール基から選ばれる基を表す。)、構成単位Pは全陰イオン交換体中5〜99モル%、構成単位Qは0.1〜50モル%であることを特徴とする陰イオン交換膜、
(7)少なくとも一般式(4)
Figure 2005066599
(In General Formula (3), A represents a linear alkylene group having 3 to 8 carbon atoms or an alkoxymethylene group having 4 to 8 carbon atoms, and R 1 , R 2 and R 3 are each a hydrogen atom or carbon. And a structural unit P is 5 to 99 mol% in the total anion exchanger, and the structural unit Q is 0.1 to 50 mol%. Anion exchange membrane,
(7) At least general formula (4)

Figure 2005066599
(一般式(4)中、Aは炭素数3から8の直鎖状、分岐状アルキレン基、又は炭素数4から8のアルコキシメチレン基を表し、Zは塩素、臭素、ヨウ素、水酸基、トシル基、1級〜3級アミン又はアンモニウム基−NR123基を表す。ここでR1、R2、R3はそれぞれ水素原子、又は炭素数6以下のアルキル基、アルカノール基から選ばれる基を表す。)
で表される単量体を含有する溶液を、重合開始剤の存在下、膜状に重合させた後、必要に応じて陰イオン交換基に変換することを特徴とする陰イオン交換膜の製造方法、
(8)両端の電極間に、上記のいずれかに記載の陰イオン交換膜と陽イオン交換膜が少なくとも1組以上挿入され、電場の存在下、イオン性物質、イオン電荷微粒子、着色物質、放射性物質、高分子電解質、アミノ酸、タンパク質を含有する水溶液、有機溶媒、又はその水溶液を接触させることを特徴とする脱塩、処理、濾過、イオン交換、濃縮、分離、反応又は精製方法、
(9)陽イオン交換膜、及び一般式(1)及び/又は一般式(2)で表される繰り返し単位を構成成分として含有する陰イオン交換膜を、脱塩室および塩濃縮室を積層的に形成
した電気透析装置本体と、前記各脱塩室に被処理水を流入し,処理水を排出する第1の液としての被処理水・処理水の流路と、前記塩濃縮室に第2の水液を流入・排出する第2の水液の流路と、前記電気透析装置本体の積層方向に対向して両端側に配置された陽極および陰極と、前記陽極および陰極へ印加して脱塩室に流入された被処理水中の溶存イオンを塩濃縮室に移動させる電界を与える電圧印加手段とを具備することを特徴とする電気透析方法、
(10)陽イオン交換膜、及び一般式(1)及び/又は一般式(2)で表される繰り返し単位を構成成分として含有する陰イオン交換膜を交互に対向して配置し、脱塩室および塩濃縮室を積層的に形成した電気透析装置本体と、前記各脱塩室に被処理水を流入し,処理水を排出する第1の液としての被処理水・処理水の流路と、前記塩濃縮室に第2の水液を流入・排出する第2の水液の流路と、前記電気透析装置本体の積層方向に対向して両端側に配置された陽極および陰極と、前記陽極および陰極へ印加して脱塩室に流入された被処理水中の溶存イオンを塩濃縮室に移動させる電界を与える電圧印加手段とを具備することを特徴とする電気透析装置、
(11)脱塩室内に、陽イオン交換体と陰イオン交換体の混合体を充填したことを特徴とする電気脱イオン装置、
(12)脱塩室内に、陽イオン交換体と陰イオン交換体の混合体を充填したことを特徴とする電気脱イオン方法、
(13)上記(1)及び(2)に記載の陰イオン交換膜を用い、陽極と陰極の間にユニットセルを複数個含む構成の電気透析スタックであって、該ユニットセルは陰イオン交換膜側を陽極に向け陽イオン交換膜側を陰極に向けたバイポーラ膜と陰イオン交換膜と2枚の陽イオン交換膜から成り、4つの流路を構成するものであり、第1の陽イオン交換膜は(2)に記載の陰イオン交換膜側に一定間隔でおかれ、第2の陽イオン交換膜は(2)に記載の陰イオン交換膜側に一定の間隔でおかれ、それぞれ第1、第2の流路を形成し、陰イオン交換膜は第2の陽イオン交換膜と一定の間隔でおかれ、第3の流路を形成し、隣接のユニットセルの第1の陽イオン交換膜は陰イオン交換膜と一定の間隔でおかれ第4の流路を形成することを特徴とする電気透析装置、
(14)上記(1)及び(2)に記載の陰イオン交換膜を用い、電極間に多数の流路を有するユニットセルと陰極と陽極から構成されている電気透析槽を使用し、第1の陽イオン交換膜と(2)に記載の陰イオン交換膜側の間に構成される第1の流路に塩基性溶液を存在させ、第2の陽イオン交換膜と陰イオン交換体側の間に構成される第2の流路にバッファー溶液を存在させ、陰イオン交換膜と第2の陽イオン交換膜の間に構成される第3の流路に酸溶液を存在させ、隣接のユニットセルの第1の陽イオン交換膜と陰イオン交換膜の間に構成される第4の流路に塩溶液を存在させ、陰極と陽極の間に直流電流を通電することを特徴とする電気透析法、
及び、(15)NOx、SOx、HXを含有するガスを水溶液と接触させ、溶解性の亜硫酸塩、重亜硫酸塩、硫酸鉛、ハロゲン化水素塩、硝酸塩、亜硝酸塩の水溶液を形成させ、陽イオン交換膜、及び一般式(1)及び/又は一般式(2)で表される繰り返し単位を構成単位として含有する該陰イオン交換膜からなる電気透析装置で酸及び/又はアルカリを回収することを特徴とする排ガスの処理方法、
に存する。
Figure 2005066599
(In the general formula (4), A represents a linear or branched alkylene group having 3 to 8 carbon atoms or an alkoxymethylene group having 4 to 8 carbon atoms, and Z represents chlorine, bromine, iodine, hydroxyl group or tosyl group. A primary to tertiary amine or an ammonium group —NR 1 R 2 R 3 group, wherein R 1 , R 2 and R 3 are each selected from a hydrogen atom, an alkyl group having 6 or less carbon atoms, and an alkanol group. Represents a group.)
A solution containing a monomer represented by the formula (1) is polymerized into a film in the presence of a polymerization initiator, and then converted to an anion exchange group as necessary. Method,
(8) Between the electrodes at both ends, at least one pair of the anion exchange membrane and the cation exchange membrane according to any of the above is inserted, and in the presence of an electric field, the ionic substance, the ionic charge fine particles, the colored substance, the radioactive substance Desalination, treatment, filtration, ion exchange, concentration, separation, reaction or purification method characterized by contacting a substance, polyelectrolyte, amino acid, protein-containing aqueous solution, organic solvent, or an aqueous solution thereof,
(9) A cation exchange membrane and an anion exchange membrane containing a repeating unit represented by the general formula (1) and / or the general formula (2) as a constituent component are laminated in a desalting chamber and a salt concentration chamber. The main body of the electrodialysis apparatus formed in the above, the flow path of the water to be treated and treated water as the first liquid for flowing the treated water into each desalting chamber and discharging the treated water, A second aqueous liquid flow path for flowing in / out the aqueous liquid, an anode and a cathode disposed on both ends facing the laminating direction of the electrodialyzer body, and applying to the anode and the cathode An electrodialysis method comprising voltage applying means for applying an electric field for moving dissolved ions in the water to be treated flowing into the desalting chamber to the salt concentration chamber,
(10) A cation exchange membrane and an anion exchange membrane containing the repeating unit represented by the general formula (1) and / or the general formula (2) as constituent components are alternately arranged to face each other, and a desalination chamber And a main body of the electrodialysis apparatus in which salt concentration chambers are formed in layers, and a flow path of treated water and treated water as a first liquid for flowing the treated water into each desalting chamber and discharging the treated water, A flow path of the second aqueous liquid for flowing the second aqueous liquid into and out of the salt concentrating chamber, an anode and a cathode disposed on both ends facing the laminating direction of the electrodialyzer body, An electrodialyzer comprising voltage applying means for applying an electric field for moving dissolved ions in the water to be treated flowing into the desalting chamber by being applied to the anode and the cathode, to the salt concentration chamber;
(11) An electrodeionization apparatus characterized by filling a demineralization chamber with a mixture of a cation exchanger and an anion exchanger,
(12) An electrodeionization method characterized by filling a mixture of a cation exchanger and an anion exchanger in a demineralization chamber,
(13) An electrodialysis stack comprising a plurality of unit cells between an anode and a cathode, using the anion exchange membrane according to (1) and (2) above, wherein the unit cell is an anion exchange membrane. It consists of a bipolar membrane, an anion exchange membrane, and two cation exchange membranes, with the side facing the anode and the cation exchange membrane side facing the cathode, and constitutes four channels, the first cation exchange The membrane is placed at a constant interval on the anion exchange membrane side described in (2), and the second cation exchange membrane is placed on the anion exchange membrane side described in (2) at a constant interval. Forming a second flow path, the anion exchange membrane being spaced apart from the second cation exchange membrane to form a third flow path, the first cation exchange of the adjacent unit cell The membrane is spaced apart from the anion exchange membrane to form a fourth flow path. Electrodialysis apparatus,
(14) Using an anion exchange membrane as described in (1) and (2) above, using an electrodialysis tank composed of a unit cell having a large number of channels between electrodes, a cathode and an anode, A basic solution is present in the first flow path formed between the cation exchange membrane of the first cation exchange membrane and the anion exchange membrane side described in (2), and between the second cation exchange membrane and the anion exchanger side The buffer solution is present in the second channel configured in the above, the acid solution is present in the third channel configured between the anion exchange membrane and the second cation exchange membrane, and the adjacent unit cell. An electrodialysis method characterized in that a salt solution is present in a fourth flow path formed between the first cation exchange membrane and the anion exchange membrane, and a direct current is passed between the cathode and the anode. ,
And (15) contacting a gas containing NOx, SOx, HX with an aqueous solution to form an aqueous solution of soluble sulfite, bisulfite, lead sulfate, hydrogen halide, nitrate, nitrite, and cation Recovering acid and / or alkali with an electrodialyzer comprising the exchange membrane and the anion exchange membrane containing the repeating unit represented by the general formula (1) and / or the general formula (2) as a constituent unit; A method of treating exhaust gas,
Exist.

本発明の陰イオン交換膜は、耐熱性に優れているため、高温におけるの使用、製造工程中の高過程でも使用可能で、長期間その機能が維持される。また化学的安定性、耐酸化性にも優れるため、酸化性雰囲気や、高濃度溶液中でも陰イオン交換膜の機能を維持することができる。
さらに本発明のイオン交換膜は、樹脂からの溶出が少なく、反応速度に優れ、補強剤の含有率が低い上、可とう性を有するので工業的に非常に有利に使用できる。
Since the anion exchange membrane of the present invention is excellent in heat resistance, it can be used at a high temperature or in a high process during the production process, and its function is maintained for a long time. Moreover, since it is excellent in chemical stability and oxidation resistance, the function of the anion exchange membrane can be maintained even in an oxidizing atmosphere or in a high concentration solution.
Furthermore, since the ion exchange membrane of the present invention has little elution from the resin, excellent reaction rate, low reinforcing agent content, and flexibility, it can be used industrially very advantageously.

以下、本発明を詳細に説明する。
本発明における陰イオン交換膜が種々の機能性を発現するためには、上記一般式(1)及び(2)の置換基Aは炭素数3から8の直鎖状、又は分岐状アルキレン基、又は炭素数4から8のアルコキシメチレン基で、特に、置換基基Aは炭素数3から8の直鎖状アルキレン基又は炭素数4から8のアルコキシメチレン基であることが好ましい。
Hereinafter, the present invention will be described in detail.
In order for the anion exchange membrane in the present invention to exhibit various functions, the substituent A in the above general formulas (1) and (2) is a linear or branched alkylene group having 3 to 8 carbon atoms, Or it is a C4-C8 alkoxymethylene group, and it is preferable that especially the substituent A is a C3-C8 linear alkylene group or a C4-C8 alkoxymethylene group.

置換基Aがメチレン鎖やエチレン鎖の場合、正電荷を有するアンモニウム基はそのアルキレン鎖を通じてベンゼン環の影響を受けやすく、強塩基性陰イオン交換基の耐熱性が劣ることは知られている。同様に、アルキレン鎖が短い場合、陰イオン交換基のアミンの塩基度は、ベンゼン環の影響を受けるため、本来のアミンの塩基度にならない。これはアニリンより脂肪族アミンの方が塩基度が高いことからも予想される。従って、本発明の陰イオン交換膜は、現在使用されているベンジル型陰イオン交換基の塩基度より高いことが予想される。   When the substituent A is a methylene chain or an ethylene chain, it is known that a positively charged ammonium group is easily affected by the benzene ring through the alkylene chain, and the heat resistance of the strongly basic anion exchange group is inferior. Similarly, when the alkylene chain is short, the basicity of the amine of the anion exchange group is affected by the benzene ring, and thus does not become the basicity of the original amine. This is also expected because aliphatic amines have higher basicity than aniline. Therefore, the anion exchange membrane of the present invention is expected to be higher than the basicity of benzyl type anion exchange groups currently used.

一方、置換基Aの炭素数が請求の範囲を越えた場合、架橋共重合体の構成単位の分子量が大きくなるため、重量あたりの交換容量は低くなり、その結果陰イオン交換膜の電気抵抗が大きくなる。具体的な置換基Aとしては、プロピレン基、ブチレン基、ヘキシレン基、オクチレン基、ブトキシメチレン基、ヘキソキシメチレン基等が挙げられる。
ベンジルアンモニウム型イオン交換膜は、可とう性に劣るため、ポリエチレンやポリプロピレン等の補強剤を添加しなければならない。しかしながら、本発明のポリマーは、置換基A(スペーサー基)を有するため、ポリマー自身可とう性を有することを見い出した。このポリマーの特性を活かし、補強剤の添加量が少なくても膜に成型加工できることがわかった。この結果、イオン交換膜としての抵抗が小さくなる特徴が現れる。
On the other hand, when the number of carbon atoms of the substituent A exceeds the claimed range, the molecular weight of the structural unit of the cross-linked copolymer increases, so the exchange capacity per weight decreases, and as a result, the electrical resistance of the anion exchange membrane decreases. growing. Specific examples of the substituent A include a propylene group, a butylene group, a hexylene group, an octylene group, a butoxymethylene group, and a hexoxymethylene group.
Since the benzylammonium ion exchange membrane is inferior in flexibility, a reinforcing agent such as polyethylene or polypropylene must be added. However, since the polymer of the present invention has a substituent A (spacer group), it has been found that the polymer itself has flexibility. Taking advantage of the characteristics of this polymer, it was found that the film could be molded even with a small amount of reinforcing agent added. As a result, the characteristic that the resistance as an ion exchange membrane becomes small appears.

多くの場合、置換基Aは、製造上、スチレン残基のm位又はp位に導入されることが望ましい。o位に導入された場合でも、ベンゼン環とポリエチレン基による立体的な影響は少ないことが考えられるが、架橋剤との共重合の際の立体障害を考慮するとm位、又はp位であることが好ましい。
一般式(1)のベンゼン環は、イオン交換基を有するアルコキシアルキレン基以外に、アルキル基或いはハロゲン原子で置換されていてもよい。アルキル基としては、メチル基、エチル基等が挙げられ、ハロゲンとしては、フッ素、塩素、臭素、沃素等が挙げられる。
In many cases, it is desirable for the substituent A to be introduced at the m-position or p-position of the styrene residue in production. Even when it is introduced at the o-position, the steric influence by the benzene ring and the polyethylene group is considered to be small, but in consideration of the steric hindrance during the copolymerization with the cross-linking agent, it must be the m-position or p-position. Is preferred.
The benzene ring of the general formula (1) may be substituted with an alkyl group or a halogen atom in addition to the alkoxyalkylene group having an ion exchange group. Examples of the alkyl group include a methyl group and an ethyl group, and examples of the halogen include fluorine, chlorine, bromine and iodine.

陰イオン交換膜は、交換基の分布や膜の構造により、いくつかに分類される。まずは、交換基により均質型と不均質型に分けられる。これは交換基が均一であるか、局在化しているかにより分類される。
更に工業的によく採用されている均質型でも、ゲル型イオン交換膜や、陽イオン交換膜と陰イオン交換膜を接合した構造のバイポーラ膜、多孔性を有する多孔性アニオン膜も知られている。
Anion exchange membranes are classified into several categories depending on the distribution of exchange groups and the membrane structure. First, it is divided into a homogeneous type and a heterogeneous type by the exchange group. This is classified according to whether the exchange group is uniform or localized.
Furthermore, even in the homogeneous type, which is often used industrially, gel-type ion exchange membranes, bipolar membranes with a structure in which a cation exchange membrane and an anion exchange membrane are joined, and porous anion membranes with porosity are also known. .

本発明の陰イオン交換膜の製造方法、及び一般物性は、膜の種類により大きく異なるが、具体的には例えば以下の方法が挙げられる。
ロール成型法:例えば、特開平4−334491号公報、特開平7−289921号公報に記載されている陰イオン交換樹脂、又は陰イオン交換繊維(Cl形)の乾燥球状体、又はその粉砕品を、例えば、ポリエチレンと混合し混合ロールで均一に混合した後、シートとして成形し、0.2mm程度の陰イオン交換膜を製造する方法。
The production method and general physical properties of the anion exchange membrane of the present invention vary greatly depending on the type of membrane, and specific examples include the following methods.
Roll forming method: For example, an anion exchange resin described in JP-A-4-334491, JP-A-7-289921, or a dry sphere of anion-exchange fiber (Cl form), or a pulverized product thereof For example, a method of producing an anion exchange membrane of about 0.2 mm by mixing with polyethylene and mixing uniformly with a mixing roll and then forming as a sheet.

塗布法:例えば、特開平4−334491号公報、特開平7−289921号公報に記載されている陰イオン交換樹脂の乾燥球状体、あるいは陰イオン交換繊維(Cl形)、又
はその粉砕品を、ポリ塩化ビニル粉、及び可塑剤として、フタル酸ジアルキル(例えば、DOP)を加え混和しペースト状にする。このペースト状混合物を綿布に塗布し、20℃で加熱処理し、更に有機溶媒で可塑剤を抽出する。
Coating method: For example, dry spheres of anion exchange resins described in JP-A-4-334491, JP-A-7-289921, anion exchange fibers (Cl form), or pulverized products thereof, As a polyvinyl chloride powder and a plasticizer, dialkyl phthalate (for example, DOP) is added and mixed to form a paste. This pasty mixture is applied to a cotton cloth, heat-treated at 20 ° C., and a plasticizer is extracted with an organic solvent.

含浸膜の後処理法:一般式(4)で表されるモノマーと架橋剤(ジビニルベンゼン)の溶液に、重合開始剤の存在下、薄手の塩化ビニルフィルムに含浸させ、両面をセロハン紙(ポリエステルフィルム)で覆い、両面よりガラス板で圧しながらラジカル重合させる。重合完了後、種々のアミンを反応させ、弱塩基性又は強塩基性の陰イオン交換基を導入し、陰イオン交換膜を製造する方法。   Post-treatment method of impregnated film: A thin vinyl chloride film is impregnated into a solution of the monomer represented by the general formula (4) and a crosslinking agent (divinylbenzene) in the presence of a polymerization initiator, and both sides are covered with cellophane paper (polyester). Film) and radical polymerization while pressing with glass plates from both sides. A method of producing an anion exchange membrane by reacting various amines after the polymerization is completed and introducing a weakly basic or strong basic anion exchange group.

Figure 2005066599
(一般式(4)中、官能基Zは塩素、臭素、ヨウ素、水酸基、トシル基、1級〜3級アミン又はアンモニウム基−NR123基を表す)
インターポリマー膜:一般式(1)及び/又は一般式(2)で表される高分子ポリマーとポリビニルアルコールを熱水に溶解し、製膜後、高温で乾燥する。後に硫酸とホルムアルデヒドの処理液で架橋反応し不溶化する。
Figure 2005066599
(In the general formula (4), the functional group Z represents chlorine, bromine, iodine, hydroxyl group, tosyl group, primary to tertiary amine, or ammonium group —NR 1 R 2 R 3 group)
Interpolymer film: The polymer represented by the general formula (1) and / or the general formula (2) and polyvinyl alcohol are dissolved in hot water, dried at a high temperature after film formation. Later, it is insolubilized by a crosslinking reaction with a sulfuric acid and formaldehyde treatment solution.

重合系ポリマーを母体とする陰イオン交換膜:一般式(1)及び/又は一般式(2)で表される重合体をメタノールに溶解し、この溶液にエピクロロヒドリン又は1,ω−ジハロゲノアルカン、1,ω−アルカンチジチオール等を加え、溶液をガラス板上に流延し、架橋重合する。重合後、薄膜を引き離し陰イオン交換膜を得る。
重合膜法:
(1)ハロゲノアルキルスチレンモノマーと架橋性重合単量体(ジビニルベンゼン)の混合溶液に、ラジカル重合開始剤を添加し、窒素ガスで置換した。この中にブタジエン−アクリロニトリル共重合体ゴム(ゼットポール)/スチレン−ブタジエン共重合体(日本合成ゴム製)/塩化ビニル微粉末を添加してもよい。
Anion exchange membrane based on polymerized polymer: Polymer represented by general formula (1) and / or general formula (2) is dissolved in methanol, and epichlorohydrin or 1, ω-disilane is dissolved in this solution. Halogenoalkane, 1, ω-alcanthidithiol and the like are added, and the solution is cast on a glass plate to undergo cross-linking polymerization. After the polymerization, the thin film is separated to obtain an anion exchange membrane.
Polymerized film method:
(1) A radical polymerization initiator was added to a mixed solution of a halogenoalkylstyrene monomer and a crosslinkable polymerization monomer (divinylbenzene), and replaced with nitrogen gas. A butadiene-acrylonitrile copolymer rubber (Zetpol) / styrene-butadiene copolymer (manufactured by Nippon Synthetic Rubber) / vinyl chloride fine powder may be added thereto.

また可塑剤として、フタル酸ジアルキル類(ジオクチルフタル酸、ジブチルフタル酸、リン酸トリブチル類、酸化スチレン類等の可塑剤を、単量体を希釈するため適宜添加してもよい)この溶液をスペーサーを入れたガラス板間(この中に、補強材を添加してもよい。)に挟み、溶液を流し込み、高温で重合し、高分子状膜を得る。次にこの高分子膜にトリメチルアミン水溶液の有機溶媒溶液中で、50℃で8時間反応させ、陰イオン交換膜を製造する。   In addition, dialkyl phthalates as plasticizers (plasticizers such as dioctyl phthalic acid, dibutyl phthalic acid, tributyl phosphate, and styrene oxide may be added as appropriate to dilute the monomer). Is sandwiched between glass plates (a reinforcing material may be added therein), and the solution is poured and polymerized at a high temperature to obtain a polymer film. Next, this polymer membrane is reacted in an organic solvent solution of trimethylamine aqueous solution at 50 ° C. for 8 hours to produce an anion exchange membrane.

(2)トリメチルビニルフェニルアルキルアンモニウムクロライドのメタノール水溶液と架橋性重合単量体(ジビニルベンゼン)を混合し、重合開始剤の存在下、モノマー溶液をガラス板間に流し込み、高温で重合し、陰イオン交換膜を製造する。
(3)(2)のトリメチルビニルフェニルアルキルアンモニウムクロライドの代わりに、N,N−ジメチルアミノアルキルスチレンを用いて、弱塩基性陰イオン交換膜を得ることもできる。また、更にメチル化剤(ヨウ化メチル、硫酸ジメチル)で、ジメチルアミノ基をアミノ化し、強塩基性陰イオン交換膜を得ることも可能である。
(2) Mixing a methanol aqueous solution of trimethylvinylphenylalkylammonium chloride and a crosslinkable polymerization monomer (divinylbenzene), pouring the monomer solution between glass plates in the presence of a polymerization initiator, polymerizing at high temperature, and anion Manufacture exchange membranes.
(3) A weakly basic anion exchange membrane can be obtained by using N, N-dimethylaminoalkylstyrene instead of the trimethylvinylphenylalkylammonium chloride of (2). Further, a strongly basic anion exchange membrane can be obtained by amination of the dimethylamino group with a methylating agent (methyl iodide, dimethyl sulfate).

バイポーラ膜の製法:陽イオン交換膜と陰イオン交換膜を接合/積層した構造の膜も知られている。陽イオン交換膜に上記の方法で製造した陰イオン交換膜を圧延ローラーで接着する方法、イオン交換性接着剤で両膜を接着する方法、重合開始剤の存在下、一般式(4)で表されるモノマーと架橋性重合単量体(ジビニルベンゼン)の溶液をガラス板上にキャストし、その上に陽イオン交換膜を載せ重合接着し、必要に応じアミンを作用させ製膜する方法等が挙げられる。この場合、陽イオン交換膜と陰イオン交換膜との間に、電気的に中性な(多孔性)基材(織布)を挿入してもよい。接合する方法としては、熱融着、圧力による融着が簡便で接合強度も大きい。融着温度は膜素材、補強材強度、イオン交換基の種類によるが、通常、50〜250℃、5Kg〜500Kg/cm2の圧力で均一にプレスするのが好ましい。陽イオン交換膜、陰イオン交換膜とも、膜厚は、通常、0.5μm〜500μmの範囲、更に好ましくは、1μm〜300μmである。両膜厚比は1:1であってもよいが、片方の膜厚が極端に薄いイオン交換膜であってもよい。例えば、陰イオン交換膜層が数μmの膜厚のバイポーラ膜であってもよい。陽イオン交換膜としては、炭化水素系陽イオン交換膜、フッ素系の陽イオン交換膜いずれでも使用することができる。 Production method of bipolar membrane: A membrane having a structure in which a cation exchange membrane and an anion exchange membrane are joined / stacked is also known. A method of adhering an anion exchange membrane produced by the above method to a cation exchange membrane with a rolling roller, a method of adhering both membranes with an ion exchange adhesive, and a general formula (4) in the presence of a polymerization initiator. Cast monomer and crosslinkable polymerization monomer (divinylbenzene) solution on a glass plate, place a cation exchange membrane on it, polymerize and bond it, and if necessary, use an amine to form a film. Can be mentioned. In this case, an electrically neutral (porous) substrate (woven fabric) may be inserted between the cation exchange membrane and the anion exchange membrane. As a method of joining, thermal fusion and fusion by pressure are simple and the joining strength is high. The fusing temperature depends on the membrane material, the strength of the reinforcing material, and the type of ion exchange group, but it is usually preferable to press uniformly at 50 to 250 ° C. and a pressure of 5 kg to 500 kg / cm 2 . The film thickness of both the cation exchange membrane and the anion exchange membrane is usually in the range of 0.5 μm to 500 μm, more preferably 1 μm to 300 μm. The ratio of both film thicknesses may be 1: 1, but an ion exchange membrane in which one of the film thicknesses is extremely thin may be used. For example, the anion exchange membrane layer may be a bipolar membrane having a thickness of several μm. As the cation exchange membrane, either a hydrocarbon cation exchange membrane or a fluorine cation exchange membrane can be used.

多孔性膜:一般式(4)で表される重合性単量体−架橋性単量体(例えばジビニルベンゼン)の溶液中に、NaCl等の無機塩、又はトルエン等の沈殿剤、ポリスチレン等を添加した溶液をキャストし重合する。その後、多孔化剤を抜き出し、必要に応じアミンを反応させ、多孔構造を有する多孔性陰イオン交換膜を製造することができる。その細孔構造は、最頻度半径が通常、100Å〜1mm、更に好ましくは、1000Å〜1mmである。   Porous membrane: An inorganic salt such as NaCl, or a precipitating agent such as toluene, polystyrene or the like in a solution of a polymerizable monomer represented by the general formula (4) -crosslinkable monomer (for example, divinylbenzene). The added solution is cast and polymerized. Thereafter, the porous agent can be extracted and reacted with an amine as necessary to produce a porous anion exchange membrane having a porous structure. The most frequent radius of the pore structure is usually 100 to 1 mm, and more preferably 1000 to 1 mm.

また、ポリエチレンにNaCl等の塩を添加し、加熱ロールし膜状とした後、塩を溶解し、そこに、重合開始剤の存在下、一般式(4)で表されるモノマーと架橋性単量体(例えばジビニルベンゼン)の溶液を含浸させ重合し、必要に応じアミンを反応させ、連続相を有する多孔製膜を製造することができる。また、予め多孔性構造を有するシート/膜に、モノマー溶液を含浸し、架橋重合し交換基
を導入する方法もある。
Further, a salt such as NaCl is added to polyethylene, heated and rolled to form a film, and then the salt is dissolved therein. In the presence of a polymerization initiator, the monomer represented by the general formula (4) and the crosslinkable monomer are dissolved. A porous film having a continuous phase can be produced by impregnating and polymerizing a solution of a monomer (for example, divinylbenzene) and reacting with an amine if necessary. There is also a method in which a sheet / membrane having a porous structure is impregnated with a monomer solution and crosslinked to introduce an exchange group.

ここで一般式(4)としては、以下のものが挙げられる。ハロゲノアルキルスチレン誘導体としては、3−ブロモプロピルスチレン、4−ブロモブチルスチレン、6−ブロモヘキシルスチレン、8−ブロモオクチルスチレン、3−クロロプロピルスチレン、4−クロロブチルスチレン、4−ヨードブチルスチレン、6−ヒドロキシヘキシルスチレン等、アミノアルキルスチレン誘導体としては、N,N−ジメチルアミノブチルスチレン、アミノブチルスチレン、N,N−ジメチルアミノヘキシルスチレン、ハロゲノアルコキシメチルスチレン誘導体としては、ブロモプロピルオキシメチルスチレン、ブロモヘキシルオキシメチルスチレン、クロロブトキシメチルスチレン、アンモニウム塩スチレン誘導体としては、トリメチルビニルフェニルブチルアンモニウムクロライド、トリメチルビニルフェニルブチルアンモニウムブロマイド、トリメチルビニルフェニルヘキシルアンモニウムクロライド、トリメチルビニルベンジルオキシブチルアンモニウムブロマイド等が挙げられる。   Here, examples of the general formula (4) include the following. Examples of the halogenoalkylstyrene derivatives include 3-bromopropylstyrene, 4-bromobutylstyrene, 6-bromohexylstyrene, 8-bromooctylstyrene, 3-chloropropylstyrene, 4-chlorobutylstyrene, 4-iodobutylstyrene, 6 As aminoalkylstyrene derivatives such as -hydroxyhexylstyrene, N, N-dimethylaminobutylstyrene, aminobutylstyrene, N, N-dimethylaminohexylstyrene, and halogenoalkoxymethylstyrene derivatives include bromopropyloxymethylstyrene, bromo Hexyloxymethyl styrene, chlorobutoxymethyl styrene, ammonium salt styrene derivatives include trimethyl vinyl phenyl butyl ammonium chloride, trimethyl vinyl pheny Butylammonium bromide, trimethyl vinyl phenyl hexyl ammonium chloride, trimethyl vinyl benzyloxy-butylammonium bromide, and the like.

これらの前駆体となる一般式(4)で表される単量体は、いくつかの方法で合成することができる。例えば、置換基Aがアルキレン基の場合クロロメチルスチレン(m及びp体の混合物であってもよい)、ハロゲノスチレン(例えば、クロロスチレン、ブロモスチレン)、又はビニルフェネチルクロライドと金属マグネシウムとの反応によって生成したグリニャール試薬を、1、ω−ジハロゲノアルカン(例えば、1、ω−ジブロモアルカン)に反応させ重合体単量体を得る方法が挙げられる。例えば、特開平4−349941号公
報や特開平9−208625号公報の中で製造方法が記載されている。アルコキシメチレン基の場合は、置換基Aがビニルベンジルアルコールと1、ω−ジハロゲノアルカンとの反応により、ハロゲノアルコキシメチルスチレン誘導体を得ることができる。
The monomer represented by the general formula (4) serving as these precursors can be synthesized by several methods. For example, when the substituent A is an alkylene group, by reaction of chloromethylstyrene (which may be a mixture of m and p isomers), halogenostyrene (eg, chlorostyrene, bromostyrene), or vinyl phenethyl chloride with magnesium metal There is a method in which the produced Grignard reagent is reacted with 1, ω-dihalogenoalkane (for example, 1, ω-dibromoalkane) to obtain a polymer monomer. For example, the production method is described in JP-A-4-349994 and JP-A-9-208625. In the case of an alkoxymethylene group, a halogenoalkoxymethylstyrene derivative can be obtained by reacting the substituent A with vinylbenzyl alcohol and a 1, ω-dihalogenoalkane.

末端官能基がハロゲンを有する単量体はアミンでアミノ化、末端官能基がアミンである単量体の場合にはハロゲン化アルキルでアルキル化し、3級アミン又は相当するアンモニウム塩単量体を合成することができる。例えば、特開平7−291882号公報や特開平7−289921号公報の中で、その製造方法が記載されている。
水不溶性の陰イオン交換膜を得るためには、架橋構造は必須成分である。重合型均質イオン交換膜の場合、不飽和性炭化水素含有架橋性単量体(架橋剤)を添加し、重合するため、架橋剤の添加量は陰イオン交換膜の特性を決める重要な要素である。不飽和性炭化水素含有架橋性単量体としては、例えば、ジビニルベンゼン、エチレングリコールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、ポリエチレンビス(メタ)アクリルアミド等が挙げられる。単量体を製造する際、副生するビスビニルビフェニル、1,ω−ジビニルフェニルアルカン、1,ω−ジビニルベンジルオキシアルカン等も該架橋剤として使用できる。
Monomers with halogen at the terminal functional group are aminated with an amine, and alkylated with alkyl halide in the case of a monomer with the terminal functional group being an amine, to synthesize a tertiary amine or a corresponding ammonium salt monomer. can do. For example, the manufacturing method is described in JP-A-7-291882 and JP-A-7-289921.
In order to obtain a water-insoluble anion exchange membrane, a crosslinked structure is an essential component. In the case of a polymerized homogeneous ion exchange membrane, an unsaturated hydrocarbon-containing crosslinkable monomer (crosslinking agent) is added and polymerized, so the addition amount of the crosslinking agent is an important factor that determines the characteristics of the anion exchange membrane. is there. Examples of the unsaturated hydrocarbon-containing crosslinkable monomer include divinylbenzene, ethylene glycol di (meth) acrylate, (poly) ethylene glycol di (meth) acrylate, polyethylene bis (meth) acrylamide, and the like. When the monomer is produced, by-product bisvinylbiphenyl, 1, ω-divinylphenylalkane, 1, ω-divinylbenzyloxyalkane and the like can be used as the crosslinking agent.

ポリエチレン性架橋性単量体の含有率が低い場合には、得られる陰イオン交換膜は高膨潤性重合体となり、膜の機械的強度、寸法安定性が悪く、体積あたりの交換容量も低下する。一方、含有率が高い場合には、一般式(1)及び/又は一般式(2)で表される構成成分の含有率が低くなりイオン交換容量が低下したり、膜が破損しやすくなる。従って、本発明の陰イオン交換膜を製造する際のポリエチレン性架橋性単量体の含有率は、重合性単量体に対して、通常、0.1%〜50モル%、好ましくは0.2%〜25モル%の含有率で用いられる。   When the content of the polyethylene crosslinkable monomer is low, the resulting anion exchange membrane becomes a highly swellable polymer, the mechanical strength and dimensional stability of the membrane are poor, and the exchange capacity per volume also decreases. . On the other hand, when the content rate is high, the content rate of the structural component represented by the general formula (1) and / or the general formula (2) is lowered, the ion exchange capacity is lowered, and the membrane is easily damaged. Therefore, the content of the polyethylene crosslinkable monomer in producing the anion exchange membrane of the present invention is usually 0.1% to 50 mol%, preferably 0. 0% with respect to the polymerizable monomer. Used at a content of 2% to 25 mol%.

本発明の陰イオン交換膜の機能を低減させない範囲において、第3の不飽和炭化水素含有単量体を添加することができる。その重合性単量体としては、スチレン、アルキルスチレン、クロロメチルスチレン、ポリアルキルスチレ、(メタ)アクリル酸エステル、(メタ)アクリル酸、アクリロニトリル、ビニリピリジン類等が挙げられる。その添加量は、重合性単量体に対して通常、0%〜80モル%、好ましくは0%〜50モル%で用いられる。上記の単量体の共重合によって得られる陰イオン交換膜はゲル型樹脂、ポーラス型樹脂であってもよい。これらの重合反応において、必要に応じて、上記の各単量体成分に溶解する溶媒を添加していてもよい。   As long as the function of the anion exchange membrane of the present invention is not reduced, a third unsaturated hydrocarbon-containing monomer can be added. Examples of the polymerizable monomer include styrene, alkyl styrene, chloromethyl styrene, polyalkylstyrene, (meth) acrylic acid ester, (meth) acrylic acid, acrylonitrile, and vinylidylpyridines. The addition amount is usually 0% to 80 mol%, preferably 0% to 50 mol%, based on the polymerizable monomer. The anion exchange membrane obtained by copolymerization of the above monomers may be a gel type resin or a porous type resin. In these polymerization reactions, a solvent that dissolves in each of the above monomer components may be added as necessary.

この際の溶媒としては、一般式(4)で表わされる重合性単量体成分の含有率によっても異なるが、この単量体に対して貧溶媒であるトルエン、2−エチルヘキサノール、オクタノール等の有機溶媒を添加し共重合を行った場合には、多孔性構造を有する陰イオン交換膜が得られる。一方、テトラヒドロフラン、1,4−ジオキサン等の良溶媒を添加した場合には、膨潤性の陰イオン交換膜が得られる。   As the solvent at this time, although it varies depending on the content of the polymerizable monomer component represented by the general formula (4), toluene, 2-ethylhexanol, octanol and the like which are poor solvents for this monomer are used. When copolymerization is performed by adding an organic solvent, an anion exchange membrane having a porous structure can be obtained. On the other hand, when a good solvent such as tetrahydrofuran or 1,4-dioxane is added, a swellable anion exchange membrane is obtained.

これら溶媒の種類、添加量等により生成する多孔性担体の物理構造が異なり、これらの溶媒を制御することにより多孔性陰イオン交換膜を得ることができる。
その他、例えば、溶媒として、水、メタノール、エタノール、アセトン等の溶媒、又はこれらの溶媒の混合溶液が使用される。その添加量は、全単量体成分に対して、通常、0%〜200重量%の範囲である。
The physical structure of the porous carrier to be produced differs depending on the type and amount of the solvent, and a porous anion exchange membrane can be obtained by controlling these solvents.
In addition, for example, a solvent such as water, methanol, ethanol, acetone, or a mixed solution of these solvents is used as the solvent. The amount of addition is usually in the range of 0% to 200% by weight with respect to all monomer components.

本発明において、一般式(1)及び/又は一般式(2)の単位を構成する重合性単量体は、全単量体に対して、通常、5%〜99モル%の範囲である。イオン交換容量をできる限り大きくするためには、一般式(1)及び/又は一般式(2)の含有率はできる限り高いことが好ましい。
陰イオン交換膜の有する重量当たりの交換容量は、通常、0.1meq/g〜5.0meq/gの範囲である。meq/gとは乾燥樹脂重量当たりのミリ当量を表わす。更に好ましくは、0.2meq/g〜4.5meq/g、更には0.5meq/g〜3.8meq/gの範囲である。
In this invention, the polymerizable monomer which comprises the unit of General formula (1) and / or General formula (2) is 5 to 99 mol% normally with respect to all the monomers. In order to increase the ion exchange capacity as much as possible, the content of the general formula (1) and / or the general formula (2) is preferably as high as possible.
The exchange capacity per weight of the anion exchange membrane is usually in the range of 0.1 meq / g to 5.0 meq / g. meq / g represents milliequivalents per dry resin weight. More preferably, it is the range of 0.2 meq / g-4.5 meq / g, Furthermore, it is the range of 0.5 meq / g-3.8 meq / g.

重合性単量体を重合するためのラジカル重合開始剤としては、例えば、過酸化ベンゾイル(BPO)、過酸化ラウロイル、t−ブチルハイドロパーオキサイド等の過酸化物系重合開始剤、アゾイソブチロニトリル(AIBN)、2,2'−アゾビス(2,4−ジメチ
ル゛バレロニトリル)(商品名;V−65(和光純薬))、2,2'−アゾビス(2−メ
チルプロピオンアミジン)・二塩酸塩(商品名;V−50;和光純薬、水溶性重合開始剤)等が使用される。重合の際には、製膜しやすくするため、有機溶媒中、水溶液中、又は有機溶媒の水溶液中を添加してもよい。重合開始剤で、高分子膜を製膜する以外に、電離性放射線重合、例えば、ガンマ線(60Co)、電子線を用いて高分子膜を製造することも可能である。この場合、ガラス板等を通じて、重合製膜することも可能である。
Examples of radical polymerization initiators for polymerizing polymerizable monomers include peroxide polymerization initiators such as benzoyl peroxide (BPO), lauroyl peroxide, and t-butyl hydroperoxide, azoisobutyro Nitrile (AIBN), 2,2'-azobis (2,4-dimethyl "valeronitrile) (trade name; V-65 (Wako Pure Chemical Industries)), 2,2'-azobis (2-methylpropionamidine) Hydrochloride (trade name; V-50; Wako Pure Chemical, water-soluble polymerization initiator) and the like are used. In the polymerization, in order to facilitate film formation, an organic solvent, an aqueous solution, or an aqueous solution of an organic solvent may be added. In addition to forming a polymer film with a polymerization initiator, it is also possible to produce a polymer film using ionizing radiation polymerization, for example, gamma rays (60Co) and electron beams. In this case, it is also possible to form a polymer film through a glass plate or the like.

末端官能基としてハロゲンを有するブロモアルキルスチレン、クロロアルキルスチレン誘導体、ブロモアルコキシメチルスチレン誘導体は、通常の溶液ラジカル重合で高分子化が可能である。一方、末端官能基として最初から陰イオン交換基を有するモノマー、例えば、N,N−ジメチルアミノブチルスチレン、トリメチルビニルフェニルブチルアンモニウムハライドやトリメチルビニルベンジルオキシアルキルアンモニウムハライド等の線状ポリマーを得る場合には、相当するモノマーを水、又は水を含む有機溶媒中又は必要に応じて酸性塩として水溶液にして、水溶性重合開始剤又は極性溶媒に溶解する重合開始剤の存在下で重合を行うことが好ましい。   Bromoalkylstyrene, chloroalkylstyrene derivatives, and bromoalkoxymethylstyrene derivatives having halogen as a terminal functional group can be polymerized by ordinary solution radical polymerization. On the other hand, when obtaining a linear polymer such as N, N-dimethylaminobutylstyrene, trimethylvinylphenylbutylammonium halide or trimethylvinylbenzyloxyalkylammonium halide, which has an anion exchange group from the beginning as a terminal functional group. The polymerization may be carried out in the presence of a water-soluble polymerization initiator or a polymerization initiator that is dissolved in a polar solvent by converting the corresponding monomer into water or an organic solvent containing water or, if necessary, an acid salt as an aqueous solution. preferable.

重合開始剤の添加率は、全単量体に対して、通常0.1%〜5重量%である。
重合温度は、重合開始剤の半減期温度、含有率、単量体の重合性等により異なるが、通常は、40℃〜150℃、好ましくは50℃〜100℃で使用される。
重合時間は1時間〜18時間、更に好ましくは、2時間〜10時間である。
陰イオン交換膜の膜厚は、所望の電気抵抗、機械的強度、輸率、耐久性等にもよるが、一般に1〜800μm、更には、1〜500μm、更に好ましくは1〜300μmである。
The addition rate of the polymerization initiator is usually 0.1% to 5% by weight with respect to all monomers.
The polymerization temperature varies depending on the half-life temperature of the polymerization initiator, the content ratio, the polymerizability of the monomer, etc., but is usually 40 ° C to 150 ° C, preferably 50 ° C to 100 ° C.
The polymerization time is 1 hour to 18 hours, more preferably 2 hours to 10 hours.
The thickness of the anion exchange membrane is generally 1 to 800 μm, further 1 to 500 μm, and more preferably 1 to 300 μm, although it depends on the desired electrical resistance, mechanical strength, transport number, durability, and the like.

膜の大きさは、装置により異なるが、通常一辺が0.2cm〜4mの範囲である。更に好ましくは、1cm〜1.5mの範囲である。
膜の補強材となる基材は、例えば、(高密度)ポリエチレン、ポリプロピレン、ブタジエン、ガラス繊維製の織布、不織布、網、フィルム、多孔性フィルムシートのポリ塩化ビニル製/ポリエチレン(網)/ポリプロピレンの布(網)/フィラメントを添加してもよい。基材の厚さは、通常、0.5μm〜800μm、更には2〜500μm、更には5〜300μmの範囲である。重合性組成物への基材への付着方法は、例えば、塗布、含浸、或いは浸せき等の公知の方法が使用でき、基材、形状、重合体組成物の性状、製造法により適宜選択すればよい。
Although the magnitude | size of a film | membrane changes with apparatuses, it is the range whose one side is 0.2 cm-4 m normally. More preferably, it is the range of 1 cm-1.5 m.
The base material used as the reinforcing material of the membrane is, for example, (high density) polyethylene, polypropylene, butadiene, glass fiber woven fabric, nonwoven fabric, net, film, porous film sheet made of polyvinyl chloride / polyethylene (net) / Polypropylene cloth (net) / filament may be added. The thickness of the substrate is usually in the range of 0.5 μm to 800 μm, further 2 to 500 μm, and further 5 to 300 μm. As a method for attaching the polymerizable composition to the substrate, for example, a known method such as coating, impregnation, or dipping can be used, and it can be appropriately selected depending on the substrate, shape, properties of the polymer composition, and production method. Good.

一般式(4)で示される前駆単量体あるいはこれを架橋剤と共重合して得られる架橋共重合体中、及び一般式(5)中で表される官能基Zのアンモニウム基への変換は、公知の技術で行うことができる。   Conversion of the functional group Z represented by the general monomer (4) in the precursor monomer represented by the general formula (4) or the cross-linked copolymer obtained by copolymerizing this with a cross-linking agent and the general formula (5) to an ammonium group Can be performed by a known technique.

Figure 2005066599
例えば、末端官能基Zが、ハロゲン原子の場合、アンモニア(水)、メチルアミン、ジメチルアミン(水溶液)、エチレンジアミン、ジエチレントリアミン、1、3−ジアミノプロパン、1、6−ヘキサメチレンジアミン、ポリアルキレンポリアミン、種々の分子量のポリエチレンイミンを反応させる方法がある。上記の陰イオン交換基を導入する際、樹脂を膨潤させるため溶媒を添加するのが一般的である。用いられる溶媒としては、例えば、水、メタノール、エタノール、プロパノール等のアルコール類、トルエン等の炭化水素類、ジクロロメタン、1,2−ジクロロエタン等の塩素系炭化水素類、ジブチルエーテル、ジオキサン、テトラヒドロフラン等のエーテル類、その他ジメチルホルムアミド、アセトニトリル等の溶媒が単独、又は混合溶液として用いられる。反応温度は、反応様式、官能基の種類、溶媒の等により異なるが、通常は、20℃〜130℃であることが好ましい。末端官能基ZがCl原子である場合には、官能基の脱離性に劣るため、比較的高い温度であることが望ましい。上記のアミンを用いて、アミノ化反応を行う場合、一般的に、アミン分子が嵩高いほど(分子量が大きい程)イオン交換容量が低くなる。
Figure 2005066599
For example, when the terminal functional group Z is a halogen atom, ammonia (water), methylamine, dimethylamine (aqueous solution), ethylenediamine, diethylenetriamine, 1,3-diaminopropane, 1,6-hexamethylenediamine, polyalkylene polyamine, There are methods of reacting polyethyleneimines of various molecular weights. When introducing the above anion exchange group, a solvent is generally added to swell the resin. Examples of the solvent used include water, alcohols such as methanol, ethanol, and propanol, hydrocarbons such as toluene, chlorinated hydrocarbons such as dichloromethane and 1,2-dichloroethane, dibutyl ether, dioxane, and tetrahydrofuran. Ethers, other solvents such as dimethylformamide, acetonitrile and the like are used alone or as a mixed solution. The reaction temperature varies depending on the reaction mode, the type of functional group, the solvent, etc., but it is usually preferably 20 ° C to 130 ° C. When the terminal functional group Z is a Cl atom, the functional group is inferior in detachability, and therefore, it is desirable that the temperature is relatively high. When an amination reaction is carried out using the above amine, generally, the bulk of the amine molecule (the higher the molecular weight), the lower the ion exchange capacity.

イオン交換基を構成するアルキル基は、炭素数1から4のアルキル基、或いはヒドロキシエチル基等のアルカノール基である。置換基R1〜R3は同じであってもよい。この場合も、単位重量当たりの交換容量の低下をできる限り少なくするため、及び耐熱性を維持するため、置換基R1〜R3はメチル基であることが好ましい。
本発明のイオン交換膜は公知の装置、例えば、水槽型電気透析槽や締付(フィルタープレス)型電気透析槽で使用することができる。
The alkyl group constituting the ion exchange group is an alkyl group having 1 to 4 carbon atoms or an alkanol group such as a hydroxyethyl group. The substituents R 1 to R 3 may be the same. Also in this case, the substituents R 1 to R 3 are preferably methyl groups in order to minimize the reduction in exchange capacity per unit weight and to maintain heat resistance.
The ion exchange membrane of the present invention can be used in a known apparatus such as a water tank type electrodialysis tank or a clamping (filter press) type electrodialysis tank.

陰イオン交換膜の使用方法は、陰イオン交換膜の種類により大きく異なる。電気透析の場合には、電極間に陽イオン交換膜と陰イオン交換膜を交互に組み、電場の存在下、電解質を通液し電解質の濃縮・除去、電解質と非電解質の分離が可能となる。同様にAX+BY→AY+BXの電解質の複分解反応も電気透析と電極反応を組み合わせ可能となる。
また、ここ10年来イオン交換膜を用い、一種の電気透析法の原理を応用した電気脱イオン法による脱塩水の製造も知られている。この電気脱イオン装置にも、本発明の陰イオン交換膜を使用することができる。(図−1及び図−2を参考。)図−3で示された該陰イオン交換膜や該バイポーラ膜を用いて、中性塩電解質から水の電気分解により酸とアルカリを製造することが可能である。また排ガス中に含まれるSO2等を、バイポーラ膜を
含む電気透析装置で電気透析することにより、NaCl等の電解質を電気分解し、酸とアルカリを製造することが可能である。
The method of using an anion exchange membrane varies greatly depending on the type of anion exchange membrane. In the case of electrodialysis, a cation exchange membrane and an anion exchange membrane are alternately assembled between electrodes, and in the presence of an electric field, electrolyte can be passed through to concentrate and remove the electrolyte, and to separate the electrolyte and non-electrolyte. . Similarly, the metathesis reaction of the electrolyte of AX + BY → AY + BX can be combined with electrodialysis and electrode reaction.
In addition, production of demineralized water by an electrodeionization method using an ion exchange membrane for the last ten years and applying the principle of a kind of electrodialysis method is also known. The anion exchange membrane of the present invention can also be used for this electrodeionization apparatus. (Refer to Fig. 1 and Fig. 2) Using the anion exchange membrane and the bipolar membrane shown in Fig. 3 to produce acid and alkali by electrolysis of water from a neutral salt electrolyte Is possible. Moreover, by electrodialyzing SO 2 and the like contained in the exhaust gas with an electrodialyzer including a bipolar membrane, it is possible to electrolyze an electrolyte such as NaCl and produce an acid and an alkali.

本発明は、例えば、以下の用途に使用することが可能である。例えば、海水濃縮製塩、カン水の製造、低塩素イオン苛性ソーダ溶液の製造、繊維工業・パルプ工業のボウ硝、ボウ硝−硫酸亜鉛、亜硫酸ソーダの濃縮、ホエー・タンパク質の脱塩、減塩醤油の製造、糖液(例えば、グルコース、蔗糖)の精製、通電醗酵、アミノ酸類からの無機酸類、無機塩類の除去、金属イオンの濃縮・除去、放射性イオン(廃液)の除去、酸・アルカリの製造、複分解反応(例えば、KCl+Na2CO3)、電着塗装浴の浴管理、電気脱イオン用陰イオン交換膜、排煙(ガス)脱硫用膜、パーベーパレーション用陰イオン交換膜、電池用隔膜、(V系)レドックスフロー用電池の隔膜、燃料電池用イオン交換膜、イオン交換濾過材、合成用触媒、消臭抗菌膜等が挙げられる。 The present invention can be used for the following applications, for example. For example, salt production of salt water, manufacture of canned water, manufacture of low chloride ion caustic soda solution, concentration of bow industry, textile industry and pulp industry, concentration of sodium nitrate and sodium sulfate, whey and protein desalination, low salt soy sauce Production, purification of sugar solutions (eg glucose, sucrose), electrolysis fermentation, removal of inorganic acids and inorganic salts from amino acids, concentration and removal of metal ions, removal of radioactive ions (waste liquid), production of acids and alkalis, Metathesis reaction (for example, KCl + Na 2 CO 3 ), bath management of electrodeposition coating bath, anion exchange membrane for electrodeionization, membrane for flue gas (gas) desulfurization, anion exchange membrane for pervaporation, membrane for battery, Examples include (V system) redox flow battery diaphragms, fuel cell ion exchange membranes, ion exchange filter media, synthesis catalysts, and deodorant antibacterial membranes.

具体的な用途や使用方法に関しては、イオン交換膜(小坂勇次郎、清水博著、共立出版(株))の中で記述されている。
本発明の陰イオン交換膜は単独で使用される場合もあるが、強酸性陽イオン交換膜の他、弱塩基性陰イオン交換膜、弱酸性陽イオン交換性、電荷的中性膜、(金属を吸着するための)キレート膜、その他、活性炭膜等の組み合わせて使用することも可能である。
Specific applications and methods of use are described in ion exchange membranes (Yujiro Kosaka, Hiroshi Shimizu, Kyoritsu Shuppan Co., Ltd.).
The anion exchange membrane of the present invention may be used alone, but in addition to a strong acid cation exchange membrane, a weakly basic anion exchange membrane, a weak acid cation exchange membrane, a charge neutral membrane, (metal It is also possible to use a combination of a chelate film (for adsorbing) and other activated carbon films.

本発明の陰イオン交換膜は耐熱性に優れた強塩基性陰イオン交換膜であるため、広い用途が考えられる。例えば、一般の水処理の他、糖液の精製、弱酸性物質の分離・精製、純水製造用が挙げられる。
本発明の陰イオン交換膜は耐熱性に優れているため、高温で陰イオン交換膜を使用する場合にも有利である。更に、本発明の陰イオン交換膜は、後述の実施例から明らかなように、陰イオン交換膜の欠点である樹脂からの溶出が小さく、アミン臭もないという利点があり、高温時のみならず、常温においても利用価値が高い。
Since the anion exchange membrane of the present invention is a strongly basic anion exchange membrane excellent in heat resistance, a wide range of applications can be considered. For example, in addition to general water treatment, purification of sugar solution, separation / purification of weakly acidic substances, and pure water production can be mentioned.
Since the anion exchange membrane of the present invention is excellent in heat resistance, it is advantageous when an anion exchange membrane is used at a high temperature. Furthermore, the anion exchange membrane of the present invention has the advantages that the elution from the resin, which is a drawback of the anion exchange membrane, is small and there is no amine odor, as will be apparent from the examples described later. The utility value is high even at room temperature.

以下に実施例により本発明の態様を更に具体的に説明するが、本発明はその要旨を越えない限り、以下の実施例によって限定されるものではない。
なお、以下の実施例において、中性塩分解容量は、ダイヤイオンマニュアル(三菱化学)に従って測定した。該交換容量は、対イオンがCl形で測定したものである。
陰イオン交換膜の電気抵抗(単位;Ω・cm2 )は、25℃における0.5モルNaCl中で測定した。
The embodiment of the present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to the following examples unless it exceeds the gist.
In the following examples, the neutral salt decomposition capacity was measured according to Diaion Manual (Mitsubishi Chemical). The exchange capacity is measured with the counter ion in Cl form.
The electric resistance (unit: Ω · cm 2) of the anion exchange membrane was measured in 0.5 molar NaCl at 25 ° C.

製造例1
4−(4−ブロモブチル)スチレンの合成
窒素ガス導入管、ジムロー冷却管、枝管付き等圧滴下ロート、攪拌羽根を備えた1000mlの分液ロート型4ツ口フラスコに金属マグネシウム52.5g(2.16グラム原子)、テトラヒドロフラン(THF)360mlを入れ、溶液を30℃に設定した。このフラスコに滴下ロートを用いてp−クロロスチレン251g(1.81モル)のTHF溶液350mlを内温が40℃以上にならないように、2時間かけて滴下し、p−クロロスチレンのグリニャール試薬を得た。
Production Example 1
Synthesis of 4- (4-bromobutyl) styrene 52.5 g (2) of magnesium metal in a 1000 ml separatory funnel four-necked flask equipped with a nitrogen gas inlet tube, a Dimro condenser, an isobaric dropping funnel with a branch tube, and a stirring blade .16 gram atoms) and 360 ml of tetrahydrofuran (THF) were added and the solution was set at 30 ° C. Using a dropping funnel, 350 ml of a THF solution of 251 g (1.81 mol) of p-chlorostyrene was dropped into this flask over 2 hours so that the internal temperature would not exceed 40 ° C., and Grignard reagent of p-chlorostyrene was added. Obtained.

上記の反応器の下に、窒素ガス導入管、ジムロー冷却管、枝管付き等圧滴下ロート、攪拌羽根を備えた2000mlの4ツ口フラスコを連結した。この中へ、1,4−ジブロモブタン1060g(4.91モル、2.71当量/クロロスチレン)、THF600ml、触媒Li2CuCl47.5g(0.034モル、1.9モル%/クロロスチレン)を加え溶液を調製した。このフラスコの溶液中に、上記で調製したp−クロロスチレンのグリニャール試薬を、室温で1時間で滴下した。終了後、溶液を水にあけ、分液し、水相を除去した。有機溶媒を減圧下で留去し、その後大過剰に使用した1,4−ジブロモブタン(b.p.52℃/0.5mmHg)を留去し、最後に目的物である4−(4−ブロモブチル)スチレン(淡黄色透明溶液,bp.115℃/0.2mmHg)を得た。   A 2000 ml four-necked flask equipped with a nitrogen gas introduction tube, a Dimro cooling tube, an isobaric dropping funnel with a branch tube, and a stirring blade was connected to the reactor. To this, 1060 g (4.91 mol, 2.71 equivalents / chlorostyrene) of 1,4-dibromobutane, 600 ml of THF, 47.5 g of catalyst Li2CuCl (0.034 mol, 1.9 mol% / chlorostyrene) were added, and the solution was added. Was prepared. The p-chlorostyrene Grignard reagent prepared above was added dropwise to the flask solution at room temperature over 1 hour. After completion, the solution was poured into water and separated to remove the aqueous phase. The organic solvent was distilled off under reduced pressure, then 1,4-dibromobutane (bp 52 ° C./0.5 mmHg) used in large excess was distilled off, and finally 4- (4- Bromobutyl) styrene (light yellow transparent solution, bp 115 ° C./0.2 mmHg) was obtained.

製造例2
4−(6−ブロモヘキシル)スチレンの合成
製造例1において、1,4−ジブロモブタンの代わりに、1,6−ジブロモヘキサンを使用した以外は、先と同様にモノマーを合成した。真空蒸留で4−(6−ブロモヘキシル)スチレン(淡黄色透明溶液,bp.128℃/0.3mmHg)を単離した。
Production Example 2
Synthesis of 4- (6-bromohexyl) styrene A monomer was synthesized in the same manner as in Example 1 except that 1,6-dibromohexane was used instead of 1,4-dibromobutane in Production Example 1. 4- (6-Bromohexyl) styrene (light yellow transparent solution, bp 128 ° C./0.3 mmHg) was isolated by vacuum distillation.

製造例3
4−(4−ブロモブトキシメチル)スチレンの合成
300mlの4ツ口フラスコに水酸化ナトリウム20g(0.5モル)、水20mlを加え、溶液を撹拌し均一溶液とした。溶液を室温に戻した後、4−ヒドロキシメチルスチレン(m体,及びp体の混合物)13.42g(0.1モル)、1,4−ジブロモブタン32.4g(0.15モル)、n−テトラブチルアンモニウムブロマイド3.22g(0.01モル)をトルエン100mlに溶解し、4ツ口フラスコに入れた。この混合溶液を激しく撹拌しながら、50℃で6時間反応させた。反応後、有機相と水相を分離し、有機相を水洗した。この有機相に硫酸マグネシウムを加え乾燥した後、トルエンを減圧下で留去して得た溶液をDPPH(ジフェニルピクリル−2−ヒドラジル;重合禁止剤)存在下で真空蒸留(沸点112〜117℃/0.6mmHg)して、無色透明溶液を得た。4−(4−ブロモブトキシメチル)スチレンの収量は15.0g、収率は56%であ
った。
Production Example 3
Synthesis of 4- (4-bromobutoxymethyl) styrene 20 g (0.5 mol) of sodium hydroxide and 20 ml of water were added to a 300 ml four-necked flask, and the solution was stirred to obtain a homogeneous solution. After returning the solution to room temperature, 13.42 g (0.1 mol) of 4-hydroxymethylstyrene (mixture of m-form and p-form), 32.4 g (0.15 mol) of 1,4-dibromobutane, n -Tetrabutylammonium bromide 3.22g (0.01 mol) was melt | dissolved in 100 ml of toluene, and it put into the 4 necked flask. The mixed solution was reacted at 50 ° C. for 6 hours with vigorous stirring. After the reaction, the organic phase and the aqueous phase were separated, and the organic phase was washed with water. Magnesium sulfate was added to the organic phase for drying, and then toluene was distilled off under reduced pressure. A solution obtained by vacuum distillation (boiling point 112-117 ° C.) in the presence of DPPH (diphenylpicryl-2-hydrazyl; polymerization inhibitor). /0.6 mmHg) to obtain a colorless transparent solution. The yield of 4- (4-bromobutoxymethyl) styrene was 15.0 g, and the yield was 56%.

製造例4
4−(N,N−ジメチルアミノブチル)スチレンの合成
製造例1で得られた4−(4−ブロモブチル)スチレンに大過剰の50%ジメチルアミン水溶液のメタノール溶液を加え、30℃で5時間反応した。この反応では、生成するモノマーの重合を禁止するため、水溶性重合禁止剤である4−ヒドロキシ−TEMPOをモノマーに対して500ppm添加した。減圧下で過剰のジメチルアミンを除去し、残留したジメチルアミンは塩酸で中和し、トルエンを加え、生成したアンモニウム塩モノマー(N,N−ジメチル−N,N−ビスビニルフェニルブチルアンモニウムブロマイド)を水相から抽出した。トルエン溶液を回収し、薄膜蒸留装置で4−(N,N−ジメチルアミノブチル)スチレンモノマー(沸点110℃/0.4mmHg)を精製した。淡オレンジ色透明溶液(空気中で酸化されやすく、着色しやすいモノマーであった。)
製造例5
トリメチルビニルフェニルブチルアンモニウムクロライドの合成
ジムロー冷却管、攪拌羽根を備えた1Lの4ツ口フラスコに、エタノール500ml、4−(4−ブロモブチル)スチレン40g(0.167モル)、30%トリメチルアミン80g(0.406モル)を溶解し、30℃で5時間反応した。終了後、減圧下でエタノールを留去すると、白色の結晶を得た。この白色の結晶に、メタノールとエタノールの混合溶媒を用いて再結晶するとトリメチルビニルフェニルブチルアンモニウムブロマイドの無色鱗片状晶35gを得た。この結晶を脱塩水50mlに溶解し、完全再生したダイヤイオンPA308 300mlにSV1で通液し、更に100mlの脱塩水で押し出した。このトリメチルビニルフェニルブチルアンモニウム塩の水酸化物の水溶液を、20%塩酸で中和し、塩化物塩とした。この水溶液を減圧下で脱水し白色結晶を得た。この結晶をEtOH−IPA(1:2)混合溶媒を用いて晶析し、無色針状晶18gを得た。
Production Example 4
Synthesis of 4- (N, N-dimethylaminobutyl) styrene Add a large excess of 50% aqueous dimethylamine methanol solution to 4- (4-bromobutyl) styrene obtained in Production Example 1 and react at 30 ° C. for 5 hours. did. In this reaction, 500 ppm of 4-hydroxy-TEMPO, which is a water-soluble polymerization inhibitor, was added to inhibit the polymerization of the produced monomer. Excess dimethylamine was removed under reduced pressure, the remaining dimethylamine was neutralized with hydrochloric acid, toluene was added, and the resulting ammonium salt monomer (N, N-dimethyl-N, N-bisvinylphenylbutylammonium bromide) was removed. Extracted from the aqueous phase. The toluene solution was recovered, and 4- (N, N-dimethylaminobutyl) styrene monomer (boiling point 110 ° C./0.4 mmHg) was purified with a thin-film distillation apparatus. Pale orange transparent solution (It was a monomer that was easily oxidized and colored in air.)
Production Example 5
Synthesis of Trimethylvinylphenylbutylammonium Chloride Into a 1 L 4-neck flask equipped with a Dimro condenser and a stirring blade, 500 ml of ethanol, 40 g (0.167 mol) of 4- (4-bromobutyl) styrene, 80 g of 30% trimethylamine (0 .406 mol) was dissolved and reacted at 30 ° C. for 5 hours. After completion, ethanol was distilled off under reduced pressure to obtain white crystals. The white crystals were recrystallized using a mixed solvent of methanol and ethanol to obtain 35 g of colorless scaly crystals of trimethylvinylphenylbutylammonium bromide. The crystals were dissolved in 50 ml of demineralized water, passed through 300 ml of fully regenerated Diaion PA308 through SV1, and further extruded with 100 ml of demineralized water. This aqueous solution of trimethylvinylphenylbutylammonium hydroxide was neutralized with 20% hydrochloric acid to obtain a chloride salt. This aqueous solution was dehydrated under reduced pressure to obtain white crystals. The crystals were crystallized using an EtOH-IPA (1: 2) mixed solvent to obtain 18 g of colorless needle crystals.

実施例1
300mlのナスフラスコに、4−ブロモブチルスチレン70g、ジビニルベンゼン(ジビニルベンゼン含有率80%)20g、フタル酸ジオクチル10g、重合開始剤として過酸化ベンゾイル1.0gの溶液を調製した。この溶液を窒素ガスでバブリングして、溶存酸素を除去した。次いで、高密度ポリエチレン製の200メッシュのネット上にこの溶液を塗布し、ポリエステルフィルムを剥離剤として被覆した後、80℃で8時間重合した。
Example 1
A solution of 70 g of 4-bromobutylstyrene, 20 g of divinylbenzene (divinylbenzene content 80%), 10 g of dioctyl phthalate, and 1.0 g of benzoyl peroxide as a polymerization initiator was prepared in a 300 ml eggplant flask. This solution was bubbled with nitrogen gas to remove dissolved oxygen. Next, this solution was applied onto a 200-mesh net made of high-density polyethylene, and the polyester film was coated as a release agent, followed by polymerization at 80 ° C. for 8 hours.

得られた高分子膜を、30%トリメチルアミン水溶液100gのメタノール溶液300gに浸し、40℃で5時間反応させて、厚さ150μmの陰イオン交換膜を得た。
中性塩分解容量(meq/g) 3.1
水分含有率(%) 26
電気抵抗Ωcm2 (0.5mol−NaCl) 3.8
輸率(電位差法) 0.96
比較例1
実施例1において、4−ブロモブチルスチレンの代わりに、クロロメチルスチレンを用いて重合した以外は、実施例1と同様に、高分子膜を合成した。次いで、同様にアミノ化を行い、陰イオン交換膜を合成した。
The obtained polymer membrane was immersed in 300 g of a methanol solution of 100 g of 30% trimethylamine aqueous solution and reacted at 40 ° C. for 5 hours to obtain an anion exchange membrane having a thickness of 150 μm.
Neutral salt decomposition capacity (meq / g) 3.1
Moisture content (%) 26
Electrical resistance Ωcm 2 (0.5 mol-NaCl) 3.8
Transport number (potential difference method) 0.96
Comparative Example 1
In Example 1, a polymer film was synthesized in the same manner as in Example 1 except that polymerization was performed using chloromethylstyrene instead of 4-bromobutylstyrene. Subsequently, amination was performed in the same manner to synthesize an anion exchange membrane.

実施例2
300mlのナスフラスコに、4−ブロモブチルスチレン80g(このモノマー中には、1,4−ジビニルフェニルブタンが12g含まれている)、ジビニルベンゼン(ジビニルベンゼン含有率90%)5g、重合開始剤としてAIBN0.7gの溶液を調製した。この溶液を窒素ガスでバブリングして、溶存酸素を除去した。次いで、高密度ポリエチレン製の200メッシュのネット上にこの溶液を塗布し、ポリエステルフィルムを剥離剤として被覆した後、70℃で8時間重合した。
Example 2
In a 300 ml eggplant flask, 80 g of 4-bromobutylstyrene (12 g of 1,4-divinylphenylbutane is contained in this monomer), 5 g of divinylbenzene (divinylbenzene content 90%), as a polymerization initiator A solution of 0.7 g AIBN was prepared. This solution was bubbled with nitrogen gas to remove dissolved oxygen. Next, this solution was applied onto a 200-mesh net made of high-density polyethylene, and the polyester film was coated as a release agent, followed by polymerization at 70 ° C. for 8 hours.

得られた高分子膜を、30%トリメチルアミン120gのメタノール溶液250gに浸し、40℃で5時間反応させて、厚さ200μmの陰イオン交換膜を得た。
中性塩分解容量(meq/g) 3.3
水分含有率(%) 34
電気抵抗Ωcm2 (0.5mol−NaCl) 4.6
輸率(電位差法) 0.97
実施例3
300mlのナスフラスコに、4−ブロモブトキシメチルスチレン80g、ジビニルベンゼン(ジビニルベンゼン含有率80%)22g、重合開始剤としてV−65(和光純薬製)0.7gの溶液を調製した。この溶液を窒素ガスでバブリングして、溶存酸素を除去した。次いで、ポリエチレン−ポリプロピレンの100メッシュのネット上にこの溶液を塗布し、ポリエステルフィルムを剥離剤として被覆した後、65℃で10時間重合した。
The obtained polymer membrane was immersed in 250 g of methanol solution of 120 g of 30% trimethylamine and reacted at 40 ° C. for 5 hours to obtain an anion exchange membrane having a thickness of 200 μm.
Neutral salt decomposition capacity (meq / g) 3.3
Moisture content (%) 34
Electrical resistance Ωcm 2 (0.5 mol-NaCl) 4.6
Transport number (potential difference method) 0.97
Example 3
In a 300 ml eggplant flask, 80 g of 4-bromobutoxymethylstyrene, 22 g of divinylbenzene (divinylbenzene content 80%), and 0.7 g of V-65 (manufactured by Wako Pure Chemical Industries) as a polymerization initiator were prepared. This solution was bubbled with nitrogen gas to remove dissolved oxygen. Next, this solution was applied onto a 100-mesh net of polyethylene-polypropylene, and a polyester film was coated as a release agent, followed by polymerization at 65 ° C. for 10 hours.

得られた高分子膜を、30%トリメチルアミン100gのメタノール溶液200gに浸し、40℃で5時間反応させて、厚さ170μmの陰イオン交換膜を得た。
中性塩分解容量(meq/g) 2.9
水分含有率(%) 35
電気抵抗Ωcm2 (0.5mol−NaCl) 5.5
輸率(電位差法) 0.95
実施例4
300mlのナスフラスコに、6−ブロモヘキシルスチレン90g、ジビニルベンゼン(ジビニルベンゼン含有率80%)19g、NBR(Zetpol2010L 日本ゼオン製) 10g、重合開始剤として過酸化ベンゾイル0.6gの溶液を調製した。この溶液を窒素ガスでバブリングして、溶存酸素を除去した。次いで、ポリエチレン−ポリプロピレン混合体の不織布上にこの溶液を塗布し、ポリエステルフィルムを剥離剤として被覆した後、80℃で8時間重合した。得られた高分子膜を、30%トリメチルアミン100gのメタノール溶液200gに浸し、50℃で5時間反応させて、厚さ150μmの陰イオン交換膜を得た。
The obtained polymer membrane was immersed in 200 g of a methanol solution of 100 g of 30% trimethylamine and reacted at 40 ° C. for 5 hours to obtain an anion exchange membrane having a thickness of 170 μm.
Neutral salt decomposition capacity (meq / g) 2.9
Moisture content (%) 35
Electrical resistance Ωcm 2 (0.5 mol-NaCl) 5.5
Transport number (potential difference method) 0.95
Example 4
In a 300 ml eggplant flask, a solution of 90 g of 6-bromohexylstyrene, 19 g of divinylbenzene (divinylbenzene content 80%), 10 g of NBR (Zetpol 2010L manufactured by Nippon Zeon) and 0.6 g of benzoyl peroxide as a polymerization initiator was prepared. This solution was bubbled with nitrogen gas to remove dissolved oxygen. Next, this solution was applied onto a non-woven fabric of a polyethylene-polypropylene mixture, and a polyester film was coated as a release agent, followed by polymerization at 80 ° C. for 8 hours. The obtained polymer membrane was immersed in 200 g of a methanol solution of 100 g of 30% trimethylamine and reacted at 50 ° C. for 5 hours to obtain an anion exchange membrane having a thickness of 150 μm.

中性塩分解容量(meq/g) 2.6
水分含有率(%) 25
電気抵抗Ωcm2 (0.5mol−NaCl) 6.1
輸率(電位差法) 0.95
実施例5
実施例1で得られた高分子膜を、30%トリメチルアミン水溶液の代わりに、50%ジ
メチルアミン水溶液160gのジオキサン溶液300gを用いてアミノ化した以外は、実施例1と同様に行った。厚さ200μmの陰イオン交換膜を得た。
Neutral salt decomposition capacity (meq / g) 2.6
Water content (%) 25
Electrical resistance Ωcm 2 (0.5 mol-NaCl) 6.1
Transport number (potential difference method) 0.95
Example 5
The polymer membrane obtained in Example 1 was prepared in the same manner as in Example 1 except that the polymer film was aminated using 300 g of a dioxane solution of 160 g of a 50% dimethylamine aqueous solution instead of the 30% trimethylamine aqueous solution. An anion exchange membrane having a thickness of 200 μm was obtained.

中性塩分解容量(meq/g) 3.3
水分含有率(%) 21
実施例6
300mlのナスフラスコに、製造例5で得られたトリメチルビニルフェニルブチルアンモニウムクロライド90g、ジビニルベンゼン(ジビニルベンゼン含有率80%)20g、メタノール25g、重合開始剤として2,2'−アゾビス(2−メチルプロピオンア
ミジン)・二塩酸塩(商品名;V−50;和光純薬)0.6gの溶液を調製した。この溶液を窒素ガスでバブリングして、溶存酸素を除去した。次いで、高密度ポリエチレン製の200メッシュのネット上に、この溶液を塗布し、ポリエステルフィルムを剥離剤として被覆した後、70℃で10時間重合した。
Neutral salt decomposition capacity (meq / g) 3.3
Moisture content (%) 21
Example 6
In a 300 ml eggplant flask, 90 g of trimethylvinylphenylbutylammonium chloride obtained in Production Example 5, 20 g of divinylbenzene (divinylbenzene content 80%), 25 g of methanol, 2,2′-azobis (2-methyl) as a polymerization initiator A solution of 0.6 g of propionamidine) dihydrochloride (trade name; V-50; Wako Pure Chemical Industries, Ltd.) was prepared. This solution was bubbled with nitrogen gas to remove dissolved oxygen. Next, this solution was applied onto a 200-mesh net made of high-density polyethylene, and the polyester film was coated as a release agent, followed by polymerization at 70 ° C. for 10 hours.

得られた陰イオン交換膜は、厚さ250μmの陰イオン交換膜を得た。
中性塩分解容量(meq/g) 3.0
水分含有率(%) 35
電気抵抗Ωcm2 (0.5mol−NaCl) 4.7
輸率(電位差法) 0.97
実施例7
ポリエチレン−ポリプロピレン製多孔性シート(空隙率90% 厚さ0.25mm)に、実施例4で使用したモノマーの混合溶液を含浸させ、ガラス板に挟み込んだ。このガラス板を85℃−10時間重合し、高分子膜を得た。更に、30%トリメチルアミン水溶液のメタノール溶液で、末端ブロム基をアミノ化し、陰イオン交換基を導入した。
The obtained anion exchange membrane obtained the 250-micrometer-thick anion exchange membrane.
Neutral salt decomposition capacity (meq / g) 3.0
Moisture content (%) 35
Electrical resistance Ωcm 2 (0.5 mol-NaCl) 4.7
Transport number (potential difference method) 0.97
Example 7
A polyethylene-polypropylene porous sheet (porosity 90%, thickness 0.25 mm) was impregnated with the mixed solution of monomers used in Example 4 and sandwiched between glass plates. This glass plate was polymerized at 85 ° C. for 10 hours to obtain a polymer film. Furthermore, the terminal bromo group was aminated with a 30% aqueous solution of trimethylamine in methanol to introduce an anion exchange group.

中性塩分解容量(meq/g) 2.3
水分含有率(%) 22
電気抵抗Ωcm2 (0.5mol−NaCl) 6.5
輸率(電位差法) 0.94
実施例8
実施例4で得られた陰イオン交換膜を用いて、更にその上に弱塩基性陰イオン交換膜を積層した。
Neutral salt decomposition capacity (meq / g) 2.3
Moisture content (%) 22
Electrical resistance Ωcm 2 (0.5 mol-NaCl) 6.5
Transport number (potential difference method) 0.94
Example 8
Using the anion exchange membrane obtained in Example 4, a weakly basic anion exchange membrane was further laminated thereon.

製造例4で得られたモノマーを用いて、実施例1のブロモブチルスチレンの代わりに、4−(N,N−ジメチルアミノブチル)スチレンを用いた以外は同様に高分子膜を得た。陰イオン交換膜の膜厚は50μmであった。
この弱塩基性陰イオン交換膜と実施例4で得られた強塩基性陰イオン交換膜を、70℃−100Kg/cm2の条件でロールプレスし積層した陰イオン交換膜を製造した。
Using the monomer obtained in Production Example 4, a polymer film was obtained in the same manner except that 4- (N, N-dimethylaminobutyl) styrene was used instead of bromobutylstyrene in Example 1. The film thickness of the anion exchange membrane was 50 μm.
This weakly basic anion exchange membrane and the strongly basic anion exchange membrane obtained in Example 4 were roll-pressed under the conditions of 70 ° C.-100 Kg / cm 2 to produce an anion exchange membrane.

実施例9
スチレン−ジビニルベンゼン共重合体よりなり、ポリプロピレン不織布にて補強した高分子膜を、硫酸でスルホン化した陽イオン交換膜(イオン形はNa形、交換容量3.1meq/g、膜厚150μm)と4−ブロモブチルスチレン−ジビニルベンゼン共重合体をトリメチルアミンでアミノ化した陰イオン交換膜(イオン形はCl形、交換容量3.2meq/g、膜厚110μm)をよく水洗し、乾燥した。この両膜を170℃−100Kg/cm2でロールプレスしバイポーラ膜を製造した。バイポーラ膜は0.5モルNaCl
中に浸せきし、電気透析槽で評価した。
Example 9
A cation exchange membrane (ionic form is Na-type, exchange capacity 3.1 meq / g, film thickness 150 μm) made of a styrene-divinylbenzene copolymer reinforced with a polypropylene nonwoven fabric and sulfonated with sulfuric acid; An anion exchange membrane (an ion form is a Cl form, an exchange capacity of 3.2 meq / g, a film thickness of 110 μm) obtained by amination of a 4-bromobutylstyrene-divinylbenzene copolymer with trimethylamine was thoroughly washed with water and dried. Both the films were roll-pressed at 170 ° C.-100 kg / cm 2 to produce a bipolar film. Bipolar membrane is 0.5M NaCl.
It was immersed in and evaluated in an electrodialysis tank.

図−3で示された電気透析槽において、両極室、中性室に15%Na2SO4水溶液を供給し、アルカリ生成室には生成されるNaOHの濃度が20%となるように脱塩水の流量
を調節して供給するとともに、酸生成室には生成される硫酸水溶液の濃度が10%となるように供給するイオン交換水の量を調整した。60℃にて電流密度10A/dm2の電気
透析を行ったところ、バイポーラ膜による電圧降下は、1.7V、水の解離効率は95%であった。この性能は、半年以上経過した後も変化は見られなかった。
In the electrodialysis tank shown in FIG. 3, 15% Na 2 SO 4 aqueous solution is supplied to the bipolar chamber and the neutral chamber, and the deionized water is supplied to the alkali generation chamber so that the concentration of generated NaOH is 20%. The amount of ion-exchanged water supplied to the acid generation chamber was adjusted so that the concentration of the aqueous sulfuric acid solution generated was 10%. When electrodialysis was conducted at 60 ° C. with a current density of 10 A / dm 2, the voltage drop due to the bipolar membrane was 1.7 V, and the water dissociation efficiency was 95%. This performance did not change after more than half a year.

実施例10
スチレン−ジビニルベンゼン共重合体よりなり、ポリプロピレン不織布にて補強した高分子膜を、硫酸でスルホン化した陽イオン交換膜(イオン形はNa形、交換容量3.1meq/g、膜厚150μm)を用いて、バイポーラ膜を製造した。ガラス板の上に、上記の陽イオン交換膜、高密度ポリエチレン製の150メッシュのネット上に実施例4で示されたモノマー溶液をキャストし、ポリエステルフィルムを剥離剤として被覆した後ガラス板で挟み、80℃で10時間重合した。得られた高分子膜を、30%トリメチルアミンのメタノール溶液に浸し、50℃で5時間反応させて、厚さ270μmのバイポーラ膜を得た。更に、170℃−100Kg/cm2でロールプレスしバイポーラ膜を製造した。6
0℃にて電流密度10A/dm2の電気透析を行ったところ、バイポーラ膜による電圧降
下は、1.5V、水の解離効率は95%であった。この性能は、半年以上経過した
後も変化は見られなかった。
Example 10
A cation exchange membrane (ionic form is Na-type, exchange capacity 3.1 meq / g, film thickness 150 μm) made of styrene-divinylbenzene copolymer and sulfonated with a polymer nonwoven fabric reinforced with polypropylene nonwoven fabric. Used to produce a bipolar membrane. On the glass plate, the monomer solution shown in Example 4 was cast on a 150 mesh net made of the above cation exchange membrane and high-density polyethylene, and the polyester film was coated as a release agent, and then sandwiched between the glass plates. And polymerized at 80 ° C. for 10 hours. The obtained polymer film was immersed in a 30% trimethylamine methanol solution and reacted at 50 ° C. for 5 hours to obtain a bipolar film having a thickness of 270 μm. Further, a bipolar film was produced by roll pressing at 170 ° C.-100 kg / cm 2 . 6
When electrodialysis was performed at 0 ° C. with a current density of 10 A / dm 2 , the voltage drop due to the bipolar membrane was 1.5 V, and the water dissociation efficiency was 95%. This performance did not change after more than half a year.

実施例11
装置としては、図−2に示す構造であって、脱イオン室3室、濃縮室2室よりなるものを使用した。脱イオン室は縦580mm、横180mm、厚さ1mmで、ここに、強酸性陽イオン交換樹脂であるダイヤイオンR SK1B(再生形)と、強塩基性陰イオン交換樹脂である特開平4−349941に記載された実施例1の強塩基性アニオン交換樹脂(再生形)を、交換容量で同容量となるよう両イオン交換樹脂を混合し、充填した。濃縮室は縦580mm、横180mm、厚さ2mmで、ここには何も充填していない。陰イオン交換膜は、実施例1で示された陰イオン交換膜、と実施例−8で示された陽イオン交換膜を用い、その寸法は縦580mm、横180mmであった。脱塩される被処理水としては、純水にNaCl20重量%、炭酸水素ナトリウム80重量%の割合からなる混合物を炭酸カルシウム換算で20ppmに相当する量を溶解した電解質溶液を用い、これを40L/hrで、脱イオン室並びに両電極に通水した。濃縮室にも同じ組成の溶液を通水した。上記通水と同時に、両電極室に電極板に直流電流が500mAとなるように印加し、脱イオン室より流出する処理水の比抵抗を測定した。これを3か月間連続運転を行い、試験開始直後と3か月間経過した処理水質、及び強塩基性陰イオン交換樹脂の中性塩分解容量を分析した。この結果を表−1に示した。
Example 11
As the apparatus, a structure shown in FIG. 2 and comprising three deionization chambers and two concentration chambers was used. The deionization chamber has a length of 580 mm, a width of 180 mm, and a thickness of 1 mm. Here, Diaion R SK1B (regenerated type), which is a strongly acidic cation exchange resin, and JP-A-4-349994, which is a strongly basic anion exchange resin. The strongly basic anion exchange resin (regenerated type) described in Example 1 was mixed with both ion exchange resins so as to have the same exchange capacity, and filled. The concentration chamber is 580 mm long, 180 mm wide, and 2 mm thick, and nothing is filled here. As the anion exchange membrane, the anion exchange membrane shown in Example 1 and the cation exchange membrane shown in Example-8 were used, and the dimensions were 580 mm in length and 180 mm in width. As treated water to be desalted, an electrolyte solution in which a mixture of 20% by weight of NaCl and 80% by weight of sodium bicarbonate in pure water was dissolved in an amount corresponding to 20 ppm in terms of calcium carbonate was used. In hr, water was passed through the deionization chamber and both electrodes. A solution having the same composition was also passed through the concentration chamber. Simultaneously with the water flow, a direct current was applied to both electrode chambers so that the direct current was 500 mA, and the specific resistance of the treated water flowing out from the deionization chamber was measured. This was continuously operated for 3 months, and the treated water quality immediately after the start of the test and after 3 months and the neutral salt decomposition capacity of the strongly basic anion exchange resin were analyzed. The results are shown in Table 1.

Figure 2005066599
実施例12 陰イオン交換膜の化学的安定性試験
Cl形で乾燥した陰イオン交換膜10.0gを200mlの25%−NaOH水溶液又は35%−HCl水溶液中に入れ、30℃で2週間静置した。この溶液の試験前後における陰イオン交換膜の化学的安定性をΔTOC(島津製作所TOC−5000で)で評価した。
Figure 2005066599
Example 12 Chemical stability test of anion exchange membrane 10.0 g of anion exchange membrane dried in Cl form was placed in 200 ml of 25% -NaOH aqueous solution or 35% -HCl aqueous solution and allowed to stand at 30 ° C. for 2 weeks. did. The chemical stability of the anion exchange membrane before and after the test of this solution was evaluated by ΔTOC (Shimadzu TOC-5000).

Figure 2005066599
実施例13 陰イオン交換膜の耐熱性試験
上記の実施例で製造した陰イオン交換膜(Cl形)20gに対して、2N−水酸化ナトリウム水溶液を1L通液しOH形に再生した。再生した陰イオン交換膜をガラス製オートクレーブ管に入れ、OH形の樹脂の体積の150mlの脱塩水を加えた。管内の溶存酸素を除去するため、50℃に加温した状態で窒素ガスを0.5時間通じた。
Figure 2005066599
Example 13 Heat Resistance Test of Anion Exchange Membrane 1 L of 2N sodium hydroxide aqueous solution was passed through 20 g of the anion exchange membrane (Cl type) produced in the above Example to regenerate OH form. The regenerated anion exchange membrane was placed in a glass autoclave tube, and 150 ml of demineralized water having a volume of OH-type resin was added. In order to remove the dissolved oxygen in the tube, nitrogen gas was passed for 0.5 hours while heating at 50 ° C.

このオートクレーブ管をオイルバスに浸し、120℃で1ヶ月間静置した。耐熱試験後、4%塩化ナトリウム水溶液を500ml通液し、対イオンをCl形に変換した。試験前後における全交換容量を測定し、交換基の残存率とし、これを陰イオン交換膜の耐熱性の尺度とした。結果を表−3に示した。
表−1より、本発明の陰イオン交換膜は、長期間安定して脱塩水を製造することが可能である。
The autoclave tube was immersed in an oil bath and allowed to stand at 120 ° C. for 1 month. After the heat resistance test, 500 ml of 4% sodium chloride aqueous solution was passed through to convert the counter ion to Cl form. The total exchange capacity before and after the test was measured, and the residual ratio of exchange groups was taken as a measure of the heat resistance of the anion exchange membrane. The results are shown in Table-3.
From Table 1, the anion exchange membrane of this invention can manufacture demineralized water stably for a long period of time.

表−2より、本発明の陰イオン交換膜は、濃厚な酸性、塩基性条件下でも化学的安定性に安定であり、濃厚溶液中でも安定して機能を発現することが可能である。
表−3より、本発明の陰イオン交換膜は、耐熱性にも優れていることがわかる。この結果、高温で使用する環境下でも、長期間使用することができる。
From Table 2, the anion exchange membrane of the present invention is stable in chemical stability even under concentrated acidic and basic conditions, and can stably exhibit functions even in concentrated solutions.
From Table-3, it turns out that the anion exchange membrane of this invention is excellent also in heat resistance. As a result, it can be used for a long time even in an environment where it is used at a high temperature.

Figure 2005066599
Figure 2005066599

本発明の陰イオン交換膜を用いた電気透析装置の模式図である。It is a schematic diagram of the electrodialysis apparatus using the anion exchange membrane of the present invention. 本発明の陰イオン交換膜を用いた電位脱イオン装置の模式図である。It is a schematic diagram of the potential deionization apparatus using the anion exchange membrane of the present invention. 本発明の陰イオン交換膜を用いた電位脱イオン装置の模式図である。It is a schematic diagram of the potential deionization apparatus using the anion exchange membrane of the present invention. 本発明の陰イオン交換膜を用いた電気透析装置の模式図である。It is a schematic diagram of the electrodialysis apparatus using the anion exchange membrane of the present invention.

符号の説明Explanation of symbols

01 電気脱イオン槽本体
02 濃縮室
03 脱イオン室
11 陽イオン交換膜
12 陰イオン交換膜
20 イオン交換体(混床)
21 陽イオン交換体
22 陰イオン交換体
33、34 濃縮液
35 被処理水
36 脱イオン水
41 陽極
42 陽極室
43 陰極
44 陰極室
51 Naイオン
52 Caイオン
53 Hイオン
61 Clイオン
62 SO4 イオン
63 OHイオン
101 電気透析装置本体
102 バイポーラ膜
103、107、111、112 陽イオン交換膜
104、108 陰イオン交換膜
105 アルカリ生成室
106 酸生成室
113 陽極室
114 陰極室
115 陽極
116 陰極
121 処理水
201 電気透析装置本体
202 電解質溶液
203 脱塩水
211 陽イオン交換膜
212 陰イオン交換膜
233 濃縮液
241 陽極
242 陽極室
243 陰極
244 陰極室
246 塩素
247 水素
251 陽極液
252 陰極液
01 Electric deionization tank body 02 Concentration chamber 03 Deionization chamber 11 Cation exchange membrane 12 Anion exchange membrane 20 Ion exchanger (mixed bed)
21 Cation exchanger 22 Anion exchanger 33, 34 Concentrated liquid 35 Water to be treated 36 Deionized water 41 Anode 42 Anode chamber 43 Cathode 44 Cathode chamber 51 Na ion 52 Ca ion 53 H ion 61 Cl ion 62 SO4 ion 63 OH Ion 101 Electrodialyzer main body 102 Bipolar membrane 103, 107, 111, 112 Cation exchange membrane 104, 108 Anion exchange membrane 105 Alkali generation chamber 106 Acid generation chamber 113 Anode chamber 114 Cathode chamber 115 Anode 116 Cathode 121 Treated water 201 Electricity Dialyzer main body 202 Electrolyte solution 203 Demineralized water 211 Cation exchange membrane 212 Anion exchange membrane 233 Concentrated solution 241 Anode 242 Anode chamber 243 Cathode 244 Cathode chamber 246 Chlorine 247 Hydrogen 251 Anode solution 252 Catholyte

Claims (10)

陽イオン交換膜(A)、及び下記一般式(1)及び/又は一般式(2)
Figure 2005066599
Figure 2005066599
(一般式(1)及び/又は一般式(2)中、Aは炭素数3から8の直鎖状、分岐状アルキレン基、又は炭素数4から8のアルコキシメチレン基を表し、R1、R2、R3は水素原子
、又は炭素数6以下のアルキル基、アルカノール基を表す)で表される繰り返し単位を構成成分として含有する重合体を含有する陰イオン交換膜(B1)を、脱塩室および塩濃縮室を積層的に形成した電気透析装置本体と、前記各脱塩室に被処理水を流入し、処理水を排出する第1の液としての被処理水・処理水の流路と、前記塩濃縮室に第2の水液を流入・排出する第2の水液の流路と、前記電気透析装置本体の積層方向に対向して両端側に配置された陽極および陰極と、前記陽極および陰極へ印加して脱塩室に流入された被処理水中の溶存イオンを塩濃縮室に移動させる電界を与える電圧印加手段とを具備することを特徴とする電気透析方法。
Cation exchange membrane (A) and the following general formula (1) and / or general formula (2)
Figure 2005066599
Figure 2005066599
(In General Formula (1) and / or General Formula (2), A represents a linear or branched alkylene group having 3 to 8 carbon atoms, or an alkoxymethylene group having 4 to 8 carbon atoms, and R 1 , R 2 , R 3 represents a hydrogen atom, or a repeating unit represented by a C 6 or less alkyl group or alkanol group), and an anion exchange membrane (B1) containing a polymer containing as a constituent component is desalted. The main body of the electrodialysis apparatus in which the chamber and the salt concentration chamber are formed in layers, and the flow path of the water to be treated and treated water as the first liquid for flowing the treated water into the respective desalting chambers and discharging the treated water A flow path of the second aqueous liquid for flowing the second aqueous liquid into and out of the salt concentration chamber, an anode and a cathode disposed on both ends facing the laminating direction of the electrodialyzer body, Dissolved ions in the water to be treated which are applied to the anode and cathode and flow into the desalting chamber Electrodialysis method characterized by comprising a voltage application means for applying an electric field to move the.
陽イオン交換膜(A)、及び一つの膜内に、請求項1に記載の一般式(1)及び/又は一般式(2)で表される繰り返し単位を構成成分として含有する重合体を含有する陰イオン交換膜と陽イオン交換膜が積層されてなる陰イオン交換膜(B2)を、脱塩室および塩濃縮室を積層的に形成した電気透析装置本体と、前記各脱塩室に被処理水を流入し、処理水を排出する第1の液としての被処理水・処理水の流路と、前記塩濃縮室に第2の水液を流入・排出する第2の水液の流路と、前記電気透析装置本体の積層方向に対向して両端側に配置された陽極および陰極と、前記陽極および陰極へ印加して脱塩室に流入された被処理水中の溶存イオンを塩濃縮室に移動させる電界を与える電圧印加手段とを具備することを特徴とする電気透析方法。   The cation exchange membrane (A) and a polymer containing the repeating unit represented by the general formula (1) and / or the general formula (2) according to claim 1 as a constituent component are contained in one membrane. An anion exchange membrane (B2) formed by laminating an anion exchange membrane and a cation exchange membrane to be laminated on the electrodialyzer main body in which a desalting chamber and a salt concentration chamber are formed in a laminated manner, and the respective desalting chambers. A flow of water to be treated and treated water as a first liquid for inflowing treated water and discharging treated water, and a flow of the second aqueous liquid for inflowing and discharging the second aqueous liquid into the salt concentration chamber Salt, concentration of dissolved ions in the water to be treated which are applied to the anode and the cathode and flowed into the desalting chamber. An electrodialysis method comprising voltage applying means for applying an electric field to be moved to the chamber. 陽イオン交換膜(A)、及び一つの膜内に、陽イオン交換体からなる連続相と、請求項1に記載の一般式(1)及び/又は一般式(2)で表される繰り返し単位を構成成分として含有する陰イオン交換体からなる連続相を含有する陰イオン交換膜(B3)を、脱塩室
および塩濃縮室を積極的に形成した電気透析装置本体と、前記各脱塩室に被処理水を流入し、処理水を排出する第1の液としての被処理水・処理水の流路と、前記塩濃縮室に第2の水液を流入・排出する第2の水液の流路と、前記電気透析装置本体の積層方向に対向して両端側に配置された陽極および陰極と、前記陽極および陰極へ印加して脱塩室に流入された被処理水中の溶存イオンを塩濃縮室に移動させる電界を与える電圧印加手段とを具備することを特徴とする電気透析方法。
The cation exchange membrane (A) and a continuous phase comprising a cation exchanger in one membrane, and the repeating unit represented by the general formula (1) and / or the general formula (2) according to claim 1 An anion exchange membrane (B3) containing a continuous phase comprising an anion exchanger containing as a constituent component, an electrodialyzer main body in which a desalting chamber and a salt concentration chamber are positively formed, and each of the desalting chambers Water to be treated and treated water as a first liquid for flowing treated water into and discharging the treated water, and a second aqueous liquid for flowing the second aqueous liquid into and out of the salt concentration chamber A positive electrode and a negative electrode disposed on both ends facing the laminating direction of the electrodialyzer body, and dissolved ions in the water to be treated which are applied to the positive electrode and the negative electrode and flow into the desalting chamber Electrodialysis characterized by comprising voltage applying means for applying an electric field to be moved to the salt concentration chamber Law.
陽イオン交換膜(A)、一つの膜内に、多孔性担体材料からなる連続相と、請求項1に記載の一般式(1)及び/又は一般式(2)で表される繰り返し単位を構成成分として含有する陰イオン交換膜からなる連続相を含有する陰イオン交換膜(B4)を、脱塩室および塩脳濃縮室を積層的に形成した電気透析装置本体と、前記各脱塩室に被処理水を流入し、処理水を排出する第1の液としての被処理水・処理水の流路と、前記塩濃縮室に第2の水液を流入・排出する第2の水液の流路と、前記電気透析装置本体の積層方向に対向して両端側に配置された陽極および陰極と、前記陽極および陰極へ印加して脱塩室に流入された被処理水中の溶存イオンを塩濃縮室に移動させる電界を与える電圧印加手段とを具備することを特徴とする電気透析方法。   The cation exchange membrane (A), a continuous phase composed of a porous carrier material in one membrane, and the repeating unit represented by the general formula (1) and / or the general formula (2) according to claim 1 An electrodialyzer main body in which an anion exchange membrane (B4) containing a continuous phase comprising an anion exchange membrane contained as a constituent component is formed by laminating a desalting chamber and a salt brain concentrating chamber, and each of the desalting chambers Water to be treated and treated water as a first liquid for flowing treated water into and discharging the treated water, and a second aqueous liquid for flowing the second aqueous liquid into and out of the salt concentration chamber A positive electrode and a negative electrode disposed on both ends facing the laminating direction of the electrodialyzer body, and dissolved ions in the water to be treated which are applied to the positive electrode and the negative electrode and flow into the desalting chamber An electrodialysis method comprising voltage applying means for applying an electric field to be moved to the salt concentration chamber . 陽イオン交換膜(A)、及び請求項1乃至4に記載の陰イオン交換膜(B1)乃至(B4)の何れか1つを交互に対向して配置し、脱塩室および塩濃縮室を積層的に形成した電気透析装置本体と、前記各脱塩室に被処理水を流入し、処理水を排出する第1の液としての被処理水・処理水の流路と、前記塩濃縮室に第2の水液を流入・排出する第2の水液の流路と、前記電気透析装置本体の積層方向に対向して両端側に配置された陽極および陰極と、前記陽極および陰極へ印加して脱塩室に流入された被処理水中の溶存イオンを塩濃縮室に移動させる電界を与える電圧印加手段とを具備することを特徴とする電気透析装置   The cation exchange membrane (A) and any one of the anion exchange membranes (B1) to (B4) according to claims 1 to 4 are alternately arranged to face each other, and a desalting chamber and a salt concentration chamber are provided. The electrodialyzer body formed in a stacked manner, the flow path of treated water and treated water as a first liquid for flowing the treated water into the respective desalting chambers and discharging the treated water, and the salt concentration chamber A second aqueous liquid flow path through which the second aqueous liquid flows in and out, an anode and a cathode disposed on both ends facing the laminating direction of the electrodialyzer body, and application to the anode and the cathode And a voltage applying means for applying an electric field for moving dissolved ions in the water to be treated flowing into the desalting chamber to the salt concentration chamber. 請求項1乃至4の何れか1項に記載の脱塩室内に、陽イオン交換体と陰イオン交換体の混合体を充填したことを特徴とする電気脱イオン方法。   An electrodeionization method comprising filling the demineralization chamber according to any one of claims 1 to 4 with a mixture of a cation exchanger and an anion exchanger. 請求項5に記載の脱塩室内に、陽イオン交換体と陰イオン交換体の混合体を充填したことを特徴とする電気脱イオン装置。   An electrodeionization apparatus, wherein the demineralization chamber according to claim 5 is filled with a mixture of a cation exchanger and an anion exchanger. 請求項1乃至4に記載の陰イオン交換膜(B1)乃至(B4)の何れか1つを用い、電極間に多数の流路を有するユニットセルと陰極と陽極から構成されている電気透析槽を使用し、第1の陽イオン交換膜と請求項2に記載の陰イオン交換膜側の間に構成される第1の流路に塩基性溶液を存在させ、第2の陽イオン交換膜と陰イオン交換体側の間に構成される第2の流路にバッファー溶液を存在させ、陰イオン交換膜と第2の陽イオン交換膜の間に構成される第3の流路に酸溶液を存在させ、隣接のユニットセルの第1の陽イオン交換膜と陰イオン交換膜の間に構成される第4の流路に塩溶液を存在させ、陰極と陽極の間に直流電流を通電することを特徴とする電気透析法。   5. An electrodialysis tank comprising a unit cell having a large number of flow paths between electrodes, a cathode, and an anode, using any one of the anion exchange membranes (B1) to (B4) according to claim 1 A basic solution is present in the first flow path configured between the first cation exchange membrane and the anion exchange membrane side according to claim 2, and the second cation exchange membrane The buffer solution is present in the second channel formed between the anion exchanger side, and the acid solution is present in the third channel configured between the anion exchange membrane and the second cation exchange membrane. A salt solution is present in the fourth flow path formed between the first cation exchange membrane and the anion exchange membrane of the adjacent unit cell, and a direct current is passed between the cathode and the anode. A characteristic electrodialysis method. 請求項1乃至4に記載の陰イオン交換膜(B1)乃至(B4)の何れか1つを用い、陽極と陰極の間にユニットセルを複数個含む構成の電気透析スタックであって、該ユニットセルは陰イオン交換膜側を陽極に向け陽イオン交換膜側を陰極に向けたバイポーラ膜と陰イオン交換膜と2枚の陽イオン交換膜から成り、4つの流路を構成するものであり、第1の陽イオン交換膜は請求項2に記載の陰イオン交換膜側に一定間隔でおかれ、第2の陽イオン交換膜は請求項2に記載の陰イオン交換膜側に一定の間隔でおかれ、それぞれ第1、第2の流路を形成し、陰イオン交換膜は第2の陽イオン交換膜と一定の間隔でおかれ、第3の流路を形成し、隣接のユニットセルの第1の陽イオン交換膜は陰イオン交換膜と一定の間隔でおかれ第4の流路を形成することを特徴とする電気透析装置。   An electrodialysis stack comprising a plurality of unit cells between an anode and a cathode using any one of the anion exchange membranes (B1) to (B4) according to claim 1, wherein the unit The cell consists of a bipolar membrane, an anion exchange membrane, and two cation exchange membranes with the anion exchange membrane side facing the anode and the cation exchange membrane side facing the cathode, and constitutes four flow paths. The first cation exchange membrane is placed at a constant interval on the anion exchange membrane side according to claim 2, and the second cation exchange membrane is placed on the anion exchange membrane side according to claim 2 at a constant interval. The first and second flow paths are formed respectively, and the anion exchange membrane is spaced from the second cation exchange membrane at a constant interval to form the third flow path, and the adjacent unit cell The first cation exchange membrane is spaced apart from the anion exchange membrane to form a fourth channel. Electrodialysis apparatus, characterized by. NOx、SOx、HXのうち、少なくとも1つを含有するガスを水溶液と接触させ、溶解性の亜硫酸塩、重亜硫酸塩、硫酸鉛、ハロゲン化水素塩、硝酸塩又は亜硝酸塩の水溶液を形成させ、陽イオン交換膜、及び請求項1に記載の一般式(1)及び/又は一般式(2)で表される繰り返し単位を構成単位として含有する該陰イオン交換膜からなる電気透析装置で酸及び/又はアルカリを回収することを特徴とする排ガスの処理方法。   A gas containing at least one of NOx, SOx, and HX is brought into contact with an aqueous solution to form an aqueous solution of soluble sulfite, bisulfite, lead sulfate, hydrogen halide, nitrate, or nitrite, and An electrodialyzer comprising an ion exchange membrane and the anion exchange membrane containing the repeating unit represented by the general formula (1) and / or the general formula (2) according to claim 1 as a structural unit. Or the processing method of the waste gas characterized by collect | recovering alkalis.
JP2004309350A 2004-10-25 2004-10-25 Method for electrodialysis and apparatus therefor, method for deionization and apparatus therefor, and method for treating exhaust gas Withdrawn JP2005066599A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004309350A JP2005066599A (en) 2004-10-25 2004-10-25 Method for electrodialysis and apparatus therefor, method for deionization and apparatus therefor, and method for treating exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004309350A JP2005066599A (en) 2004-10-25 2004-10-25 Method for electrodialysis and apparatus therefor, method for deionization and apparatus therefor, and method for treating exhaust gas

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP01322899A Division JP3942758B2 (en) 1999-01-21 1999-01-21 Anion exchange membrane

Publications (1)

Publication Number Publication Date
JP2005066599A true JP2005066599A (en) 2005-03-17

Family

ID=34420364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004309350A Withdrawn JP2005066599A (en) 2004-10-25 2004-10-25 Method for electrodialysis and apparatus therefor, method for deionization and apparatus therefor, and method for treating exhaust gas

Country Status (1)

Country Link
JP (1) JP2005066599A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1313386C (en) * 2005-05-18 2007-05-02 天津大学 Electromigration unidirectional osmosis method for desalination of water
CN100411713C (en) * 2005-04-21 2008-08-20 天津大学 Regeneration process of pregnant absorbing solution and washing solution for the alkaline desulfurizing procedure of SO2 containing gas
JP2011189320A (en) * 2010-03-16 2011-09-29 Japan Organo Co Ltd Electric type deionized water producing apparatus
WO2011136296A1 (en) * 2010-04-27 2011-11-03 Agcエンジニアリング株式会社 Anion exchange membrane and method for producing same
JP2011224440A (en) * 2010-04-16 2011-11-10 Japan Organo Co Ltd Electrical apparatus for producing deionized water
JP2014504549A (en) * 2011-01-25 2014-02-24 ゼネラル・エレクトリック・カンパニイ Ion species removal system
WO2014164352A1 (en) * 2013-03-11 2014-10-09 BlueCell Energy, LLC Energy generation and storage using electro-separation methods and devices
JP2015527477A (en) * 2012-09-07 2015-09-17 ゼネラル・エレクトリック・カンパニイ Production method of ion exchange membrane
CN107789955A (en) * 2016-09-01 2018-03-13 株式会社东芝 Sour gas retracting device and sour gas recovery method
CN109052800A (en) * 2018-08-16 2018-12-21 天津中科拓新科技有限公司 A kind of sodium sulfate wastewater containing phenol cleans circulation utilization method
CN110776066A (en) * 2019-10-24 2020-02-11 华新绿源(内蒙古)环保产业发展有限公司 System and method for desalting saline electrolyte solution by using rotating magnetic field and ion exchange membrane
CN114477568A (en) * 2020-10-23 2022-05-13 中国石油化工股份有限公司 Method for recycling bromine-containing wastewater

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52124482A (en) * 1976-04-14 1977-10-19 Hitachi Ltd Electrodialysis
JPS5541804A (en) * 1978-09-18 1980-03-24 Tokuyama Soda Co Ltd Amphoteric ion exchanger and preparation thereof
JPS6268824A (en) * 1985-09-21 1987-03-28 Asahi Chem Ind Co Ltd Novel cation exchange membrane, production thereof and electrodialysis using said membrane
JPH04298223A (en) * 1991-03-25 1992-10-22 Tokuyama Soda Co Ltd Separation of nitric acid ion
JPH04349941A (en) * 1990-02-28 1992-12-04 Mitsubishi Kasei Corp Anion exchanger
JPH0549950A (en) * 1991-08-26 1993-03-02 Mitsubishi Kasei Corp Crosslinked anion exchanger for producing medicines and cosmetics
JPH05131193A (en) * 1991-10-17 1993-05-28 Chubu Electric Power Co Inc Drain water treatment facility of exhaust gas desulfurization device
JPH07204457A (en) * 1994-01-19 1995-08-08 Asahi Glass Co Ltd Desulfurization of exhaust gas
JPH07289921A (en) * 1994-03-01 1995-11-07 Mitsubishi Chem Corp Anion exchanger
JPH09208625A (en) * 1996-02-07 1997-08-12 Tohoku Electric Power Co Inc Anion exchanger
JPH1045830A (en) * 1996-07-31 1998-02-17 Mitsubishi Chem Corp Weakly basic anion exchanger and its production

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52124482A (en) * 1976-04-14 1977-10-19 Hitachi Ltd Electrodialysis
JPS5541804A (en) * 1978-09-18 1980-03-24 Tokuyama Soda Co Ltd Amphoteric ion exchanger and preparation thereof
JPS6268824A (en) * 1985-09-21 1987-03-28 Asahi Chem Ind Co Ltd Novel cation exchange membrane, production thereof and electrodialysis using said membrane
JPH04349941A (en) * 1990-02-28 1992-12-04 Mitsubishi Kasei Corp Anion exchanger
JPH04298223A (en) * 1991-03-25 1992-10-22 Tokuyama Soda Co Ltd Separation of nitric acid ion
JPH0549950A (en) * 1991-08-26 1993-03-02 Mitsubishi Kasei Corp Crosslinked anion exchanger for producing medicines and cosmetics
JPH05131193A (en) * 1991-10-17 1993-05-28 Chubu Electric Power Co Inc Drain water treatment facility of exhaust gas desulfurization device
JPH07204457A (en) * 1994-01-19 1995-08-08 Asahi Glass Co Ltd Desulfurization of exhaust gas
JPH07289921A (en) * 1994-03-01 1995-11-07 Mitsubishi Chem Corp Anion exchanger
JPH09208625A (en) * 1996-02-07 1997-08-12 Tohoku Electric Power Co Inc Anion exchanger
JPH1045830A (en) * 1996-07-31 1998-02-17 Mitsubishi Chem Corp Weakly basic anion exchanger and its production

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100411713C (en) * 2005-04-21 2008-08-20 天津大学 Regeneration process of pregnant absorbing solution and washing solution for the alkaline desulfurizing procedure of SO2 containing gas
CN1313386C (en) * 2005-05-18 2007-05-02 天津大学 Electromigration unidirectional osmosis method for desalination of water
JP2011189320A (en) * 2010-03-16 2011-09-29 Japan Organo Co Ltd Electric type deionized water producing apparatus
JP2011224440A (en) * 2010-04-16 2011-11-10 Japan Organo Co Ltd Electrical apparatus for producing deionized water
JP5656201B2 (en) * 2010-04-27 2015-01-21 Agcエンジニアリング株式会社 Anion exchange membrane and method for producing the same
WO2011136296A1 (en) * 2010-04-27 2011-11-03 Agcエンジニアリング株式会社 Anion exchange membrane and method for producing same
JP2014504549A (en) * 2011-01-25 2014-02-24 ゼネラル・エレクトリック・カンパニイ Ion species removal system
JP2015527477A (en) * 2012-09-07 2015-09-17 ゼネラル・エレクトリック・カンパニイ Production method of ion exchange membrane
US10252223B2 (en) 2012-09-07 2019-04-09 Bl Technologies, Inc. Methods for manufacturing ion exchange membranes
WO2014164352A1 (en) * 2013-03-11 2014-10-09 BlueCell Energy, LLC Energy generation and storage using electro-separation methods and devices
CN107789955A (en) * 2016-09-01 2018-03-13 株式会社东芝 Sour gas retracting device and sour gas recovery method
CN107789955B (en) * 2016-09-01 2021-03-23 株式会社东芝 Acid gas recovery device and acid gas recovery method
CN109052800A (en) * 2018-08-16 2018-12-21 天津中科拓新科技有限公司 A kind of sodium sulfate wastewater containing phenol cleans circulation utilization method
CN110776066A (en) * 2019-10-24 2020-02-11 华新绿源(内蒙古)环保产业发展有限公司 System and method for desalting saline electrolyte solution by using rotating magnetic field and ion exchange membrane
CN110776066B (en) * 2019-10-24 2022-10-11 华新绿源(内蒙古)环保产业发展有限公司 System and method for desalting saline electrolyte solution by using rotating magnetic field and ion exchange membrane
CN114477568A (en) * 2020-10-23 2022-05-13 中国石油化工股份有限公司 Method for recycling bromine-containing wastewater

Similar Documents

Publication Publication Date Title
JP3942758B2 (en) Anion exchange membrane
CA2844708C (en) Resilient cation exchange membranes
US5891328A (en) Membrane-frame for processes including electrodialysis
KR100389938B1 (en) Porous ion exchanger and deionized water production method
CN102458618B (en) Ion exchange membrane and manufacture method thereof
EP0870533B1 (en) Apparatus for producing deionized water
US20040122117A1 (en) Composite porous ion-exchanger, method for manufacturing the ion-exchanger, deionization module using the ion-exchaner and electric deionized water manufacturing device
KR20000070555A (en) Electrochemically assisted ion exchange
US7081484B2 (en) Anion exchange membrane, process for its production and solution treating apparatus
JP2005066599A (en) Method for electrodialysis and apparatus therefor, method for deionization and apparatus therefor, and method for treating exhaust gas
KR20150010089A (en) Bipolar ion exchange sheet and method of manufacturing the same
JPH08252579A (en) Porous ion exchanger and production of deionized water
US20230044103A1 (en) Fluorinated-aliphatic hydrocarbon based stable anion- exchange membrane and its method of preparation thereof
WO2018164143A1 (en) Electrodialysis apparatus and reverse electrodialysis apparatus
WO2015005250A1 (en) Electrode and process for producing same, and flow-through capacitor using same
US4806219A (en) Method of double decomposition of neutral salt
WO2022230998A1 (en) Ion exchange membrane, method for manufacturing ion exchange membrane, and ion exchange membrane cell
JP3423765B2 (en) Lamination method of ion exchange membrane
JP2001049009A (en) Heterogeneous multi-layered ion exchange film, method and device for manufacturing deionized water using the same
JP2016155109A (en) Method for removing fluorine ion
JP7361174B1 (en) Efficient method for producing iodine component-containing aqueous solution using anion exchange membrane
EP0556827B1 (en) Method for hydrogen ion-selective electrodialysis
JP2828690B2 (en) Multi-layer anion exchange membrane
JP2003164734A (en) Electric regeneration type deionizer
JP2015020093A (en) Integrated type cell pair, manufacturing method of the same, and electrodialytic stack

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080507