JP2005061402A - Compressor and its operation method - Google Patents

Compressor and its operation method Download PDF

Info

Publication number
JP2005061402A
JP2005061402A JP2004222078A JP2004222078A JP2005061402A JP 2005061402 A JP2005061402 A JP 2005061402A JP 2004222078 A JP2004222078 A JP 2004222078A JP 2004222078 A JP2004222078 A JP 2004222078A JP 2005061402 A JP2005061402 A JP 2005061402A
Authority
JP
Japan
Prior art keywords
mvn
gas
temperature
oil
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004222078A
Other languages
Japanese (ja)
Other versions
JP4418321B2 (en
Inventor
Hajime Nakamura
中村  元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2004222078A priority Critical patent/JP4418321B2/en
Publication of JP2005061402A publication Critical patent/JP2005061402A/en
Application granted granted Critical
Publication of JP4418321B2 publication Critical patent/JP4418321B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compressor (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compressor for properly cooling depending on calorie (a temperature, a gas amount) of a gas discharged from a compressor main body to reduce required motive power used for the cooling. <P>SOLUTION: The compressor includes the compressor main body 1 compressing suction gas sucked from a suction flow passage 3, and a discharge flow passage 5 supplying the gas discharged from a discharge port 1b of the compressor main body 1 to a gas supply destination side. The discharge flow passage 5 has a temperature detector 7 detecting a discharged gas temperature, a heat exchanger 6 cooling the discharged gas, and a cooling fan 9 flowing the cooling air against the heat exchanger 6. A computing unit 8 is provided to control the revolution number of the cooling fan 9 so that the discharged gas becomes a predetermined temperature defined in advance. By the constitution, cooling is properly performed depending on the calorie of the gas discharged from the compressor main body 1, so as to reduce the required motive power used for the cooling. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、圧縮機の改善に関し、より詳しくは、圧縮機本体から吐出される圧縮ガスの熱量(温度、ガス量)に応じて、圧縮ガスを適正に冷却し、冷却に要する動力を低減し得るようにした圧縮機に関するものである。   The present invention relates to improvement of a compressor, and more specifically, according to the amount of heat (temperature, gas amount) of compressed gas discharged from the compressor body, the compressed gas is appropriately cooled, and the power required for cooling is reduced. The present invention relates to a compressor obtained.

圧縮機本体から吐出された圧縮ガスを、圧縮ガスが流れる吐出流路に設けられた熱交換器と、この熱交換器に向けて送風するファンによって冷却した後に機外に供給する圧縮機としては、例えば後述する構成になるパッケージ形油冷式圧縮機が公知である。以下、この従来例に係るパッケージ形油冷式圧縮機の概要を、その模式的系統説明図の図6を参照しながら説明する。   As a compressor for supplying compressed gas discharged from the compressor main body to the outside after being cooled by a heat exchanger provided in a discharge flow path through which the compressed gas flows and a fan that blows air toward the heat exchanger For example, a packaged oil-cooled compressor having a configuration described later is known. Hereinafter, an outline of the package type oil-cooled compressor according to this conventional example will be described with reference to FIG. 6 of a schematic system explanatory diagram thereof.

パッケージ形油冷式圧縮機51の場合には、その主要機器類がパッケージ59内に収容されている。このパッケージ59内に収容されている主要機器類は下記のとおりである。
すなわち、吸込フィルタ52aが介装された空気吸入流路52が吸入口に連通し、吸入した空気を圧縮する圧縮機本体53と、この圧縮機本体53を駆動するモータ53aと、前記圧縮機本体53の吐出口から吐出空気流路54を介して吐出された油分含有圧縮空気から油分を分離回収する油分離回収器55と、この油分離回収器55の下部に形成された油溜まり部55aから前記圧縮機本体53に連通し、油溜まり部55aに溜められた油を、オイルクーラ56a、オイルフィルタ56bを介して潤滑油として、前記圧縮機本体53の図示しない軸受、軸封部、および空気を圧縮するロータ室に供給する油供給流路56と、前記油分離回収器55から空気供給先側に連通、すなわち前記油分離回収器55から油分が分離された圧縮空気を空気供給先側に供給する空気供給口58に連通し、アフタークーラ57a、エヤドライヤ57bが介装されてなる空気供給流路57とである(例えば、特許文献1参照。)。
特開2003-154355号公報
In the case of the packaged oil-cooled compressor 51, its main equipment is accommodated in the package 59. The main equipment accommodated in the package 59 is as follows.
That is, an air suction passage 52 in which a suction filter 52a is interposed communicates with the suction port, a compressor main body 53 that compresses the sucked air, a motor 53a that drives the compressor main body 53, and the compressor main body. An oil separation / recovery device 55 that separates and recovers oil from oil-containing compressed air discharged from a discharge port 53 through a discharge air flow path 54, and an oil reservoir 55 a formed at the lower portion of the oil separation / recovery device 55. The oil that is communicated with the compressor main body 53 and stored in the oil reservoir 55a is used as lubricating oil via an oil cooler 56a and an oil filter 56b, and a bearing, a shaft seal portion, and air (not shown) of the compressor main body 53 are used. An oil supply flow path 56 for supplying a rotor chamber for compressing the air and a communication with the air supply destination side from the oil separation and recovery device 55, that is, compressed air from which oil has been separated from the oil separation and recovery device 55 is emptied. Communicates with the air supply port 58 for supplying the supply destination side is aftercooler 57a, Eyadoraiya 57b is formed by interposed air supply passage 57 DOO (e.g., see Patent Document 1.).
JP 2003-154355 A

上記特許文献1においては何ら開示されていないが、アフタークーラのような圧縮ガスの熱交換器、これに付随するファンは、一定の熱量を奪うように構成されている場合が多い。つまり、圧縮機本体から吐出される吐出ガスを、ファンで送風される空気の温度の如何に拘らず、ファンの回転数が一定の場合が多い。ところで、圧縮機本体から吐出される吐出ガスの吐出ガス温度Td(℃)は、下記の(1)式を用いて求めることができる。
Td=Ts×(Pd/Ps)(κ-1)/κ‥‥‥‥‥‥‥‥‥‥‥‥(1)
なお、上記(1)式において、Tsは吸込ガス温度(℃)、Pdは吐出ガス圧力、Psは吸込ガス圧力、κはガスの比熱比である。
Although not disclosed in the above-mentioned Patent Document 1, a compressed gas heat exchanger such as an aftercooler and a fan associated therewith are often configured to take a certain amount of heat. That is, in many cases, the rotation speed of the fan is constant regardless of the temperature of the air blown by the fan as the discharge gas discharged from the compressor body. Incidentally, the discharge gas temperature Td (° C.) of the discharge gas discharged from the compressor main body can be obtained using the following equation (1).
Td = Ts × (Pd / Ps) ( κ −1) / κ …………………………………………………… (1)
In the above equation (1), Ts is the suction gas temperature (° C.), Pd is the discharge gas pressure, Ps is the suction gas pressure, and κ is the specific heat ratio of the gas.

上記(1)式から良く理解されるように、吐出ガス圧力Pdが下がったり、また吸込ガス温度Tsが下がったりすれば、吐出ガス温度Tdも下がる。この吐出ガス温度Tdは、状況によって上下し、吐出ガスの吐出量も変化する。このような温度、吐出量変化に応じて吐出ガスの冷却に必要な冷熱量が変化するから、ファンによる送風量は変更されて然るべきであるにもかかわらず、ファンによる送風量は一定に保持されるように構成されている。このような対応がなされない場合には、吐出ガスの温度を一定の温度、または一定の温度以下に保持することができなくなり、その結果、一定の温度、一定の温度以下のガスの供給を欲するガス供給先の要求に応じられなくなるという不具合が発生する虞がある。
また、ファンの消費電力を浪費することにもなりかねず、省エネルギーの観点からも好ましくない。
As well understood from the above equation (1), when the discharge gas pressure Pd decreases or the suction gas temperature Ts decreases, the discharge gas temperature Td also decreases. The discharge gas temperature Td rises and falls depending on the situation, and the discharge amount of the discharge gas also changes. Since the amount of cooling energy required for cooling the discharge gas changes according to such changes in temperature and discharge amount, the air flow rate by the fan should be changed, but the air flow rate by the fan is kept constant. It is comprised so that. If such a countermeasure is not taken, the temperature of the discharge gas cannot be maintained at a certain temperature or below a certain temperature, and as a result, it is desired to supply a gas at a certain temperature and below a certain temperature. There is a possibility that a problem that the request from the gas supply destination cannot be met may occur.
Further, the power consumption of the fan may be wasted, which is not preferable from the viewpoint of energy saving.

従って、本発明の目的は、圧縮機本体から吐出される吐出ガスの熱量(温度、ガス量)に応じて適正に冷却し、冷却に消費する所要動力の低減を可能ならしめる圧縮機およびその運転方法を提供することである。   Accordingly, an object of the present invention is to appropriately cool the discharge gas discharged from the compressor main body (temperature, gas amount) according to the amount of heat, and to reduce the required power consumed for cooling and its operation. Is to provide a method.

本発明は、上記実情に鑑みてなされたものである。上記の課題を解決するために、第1の本発明の圧縮機は、吸込流路から吸込んだ吸込ガスを圧縮する圧縮機本体を備え、この圧縮機本体の吐出口から吐出された吐出ガスをガス供給先側に供給する吐出流路を備えた圧縮機において、前記吐出流路に吐出ガスの温度を検出するガス温度検出手段を設けると共に、前記吐出ガスを冷却するガス冷却手段を設け、前記ガス温度検出手段で検出される吐出ガスの温度情報に基づいて、吐出ガスが予め定めた所定温度になるように、前記ガス冷却手段を制御する制御手段を設けたものからなる(本発明の請求項1に係る圧縮機)。   The present invention has been made in view of the above circumstances. In order to solve the above problems, a compressor according to a first aspect of the present invention includes a compressor body that compresses a suction gas sucked from a suction passage, and discharge gas discharged from a discharge port of the compressor body. In a compressor provided with a discharge flow path for supplying to a gas supply destination side, the discharge flow path is provided with a gas temperature detection means for detecting the temperature of the discharge gas, and further provided with a gas cooling means for cooling the discharge gas, Based on the temperature information of the discharge gas detected by the gas temperature detection means, a control means for controlling the gas cooling means is provided so that the discharge gas has a predetermined temperature (the claims of the present invention). Compressor according to item 1).

上記第1の本発明の圧縮機において、前記ガス冷却手段は、ファンと、このファンから送風される空気と内部を流れる吐出ガスとが熱交換する空冷式熱交換器とから構成され、前記ガス冷却手段の制御が前記ファンの回転数を変更する制御であるようにすることができる(本発明の請求項2に係る圧縮機)。   In the compressor according to the first aspect of the present invention, the gas cooling means includes a fan, and an air-cooled heat exchanger that exchanges heat between the air blown from the fan and the discharge gas flowing through the fan. The control of the cooling means may be control for changing the rotational speed of the fan (the compressor according to claim 2 of the present invention).

あるいは、上記第1の本発明の圧縮機において、前記ガス冷却手段は、外部から冷却液が導入され、かつその内部を流れる吐出ガスと冷却液が熱交換する液冷式油熱交換器で構成され、前記ガス冷却手段の制御が前記液冷式油熱交換器に導入される冷却液の液量であるようにすることができる(本発明の請求項3に係る圧縮機)。   Alternatively, in the compressor according to the first aspect of the present invention, the gas cooling means is constituted by a liquid-cooled oil heat exchanger in which a coolant is introduced from the outside and heat is exchanged between the discharge gas flowing through the inside and the coolant. Then, the control of the gas cooling means can be set to the amount of the coolant introduced into the liquid-cooled oil heat exchanger (compressor according to claim 3 of the present invention).

第2の本発明の圧縮機は、吸込流路から吸込んだ吸込ガスを圧縮する圧縮機本体を備え、この圧縮機本体の吐出口から吐出された油分を含む吐出ガスから油分を分離する油分離回収器が介装され、油分分離後の吐出ガスをガス供給先側に供給する吐出流路を備え、前記油分離回収器から前記圧縮機本体に、油を供給する油供給流路を備えた圧縮機において、前記吐出流路に吐出ガスの温度を検出するガス温度検出手段を設け、前記油供給流路に油を冷却する油冷却手段を設け、前記ガス温度検出手段で検出される吐出ガスの温度情報に基づいて、吐出ガスが予め定めた所定温度になるように、前記油冷却手段を制御する制御手段を設けたものからなる(本発明の請求項5に係る圧縮機)。   A compressor according to a second aspect of the present invention includes a compressor main body that compresses suction gas sucked from a suction flow path, and oil separation that separates oil from discharge gas containing oil discharged from a discharge port of the compressor main body. A recovery device is interposed, and includes a discharge flow path for supplying the discharge gas after oil separation to the gas supply destination side, and an oil supply flow path for supplying oil from the oil separation recovery device to the compressor body. In the compressor, a discharge gas detected by the gas temperature detection means is provided, wherein the discharge flow path is provided with gas temperature detection means for detecting the temperature of the discharge gas, and the oil supply flow path is provided with oil cooling means for cooling the oil. The control means for controlling the oil cooling means is provided so that the discharge gas has a predetermined temperature based on the temperature information (the compressor according to claim 5 of the present invention).

上記第2の本発明の圧縮機において、前記油冷却手段は、ファンと、このファンから送風される空気と内部を流れる油とが熱交換する空冷式熱交換器とから構成され、前記油冷却手段の制御が前記ファンの回転数を変更する制御であるようにすることができる(本発明の請求項6に係る圧縮機)。   In the compressor according to the second aspect of the present invention, the oil cooling means includes a fan, and an air-cooled heat exchanger that exchanges heat between air blown from the fan and oil flowing therein, and the oil cooling unit The control of the means may be control for changing the rotational speed of the fan (compressor according to claim 6 of the present invention).

あるいは、上記第2の本発明の圧縮機において、前記油冷却手段は、外部から冷却液が導入され、かつその内部を流れる油と冷却液が熱交換する液冷式油熱交換器で構成され、前記油冷却手段の制御が前記液冷式油熱交換器に導入される冷却液の液量であるようにすることができる(本発明の請求項7に係る圧縮機)。   Alternatively, in the compressor according to the second aspect of the present invention, the oil cooling means is configured by a liquid-cooled oil heat exchanger in which a coolant is introduced from the outside, and heat is exchanged between the oil flowing in the coolant and the coolant. The control of the oil cooling means may be the amount of the coolant introduced into the liquid-cooled oil heat exchanger (compressor according to claim 7 of the present invention).

第3の本発明の圧縮機は、モータにより回転され、吸込流路から吸込んだ吸込ガスを圧縮する圧縮機本体を備え、この圧縮機本体の吐出口から吐出された油分を含む吐出ガスから油分を分離する油分離回収器が介装され、油分分離後の吐出ガスをガス供給先側に供給する吐出流路を備え、前記油分離回収器から前記圧縮機本体に、油を供給する油供給流路を備えた圧縮機において、前記吐出流路に吐出ガスの温度を検出するガス温度検出手段を設け、前記モータに該モータのコイルの温度を検出するコイル温度検出手段を設け、前記油供給流路に油を冷却する油冷却手段を設け、前記コイルの温度が予め定めた第1の所定温度以上であるときは、コイルの温度情報に基づいてコイルの温度が前記第1の所定温度以下になるように、前記コイルの温度が前記第1の所定温度未満であって、前記吐出ガスの温度が予め定めた第2の所定温度以上である場合には、吐出ガスの温度情報に基づいて吐出ガスの温度が第2の所定温度以下になるように、前記油冷却手段を制御する制御手段を設けたものからなる(本発明の請求項9に係る圧縮機)。   A compressor according to a third aspect of the present invention includes a compressor body that is rotated by a motor and compresses a suction gas sucked from a suction flow path, and an oil content from a discharge gas including an oil content discharged from a discharge port of the compressor body. An oil separation / recovery device for separating the oil is provided, and a discharge passage for supplying the discharge gas after oil separation to the gas supply destination side is provided, and the oil supply for supplying oil from the oil separation / recovery device to the compressor body In the compressor provided with a flow path, gas temperature detection means for detecting the temperature of the discharge gas is provided in the discharge flow path, coil temperature detection means for detecting the temperature of the coil of the motor is provided in the motor, and the oil supply An oil cooling means for cooling oil is provided in the flow path, and when the coil temperature is equal to or higher than a predetermined first predetermined temperature, the coil temperature is equal to or lower than the first predetermined temperature based on coil temperature information. The coil to be When the temperature is less than the first predetermined temperature and the temperature of the discharge gas is equal to or higher than a predetermined second predetermined temperature, the temperature of the discharge gas is determined based on the temperature information of the discharge gas. It comprises what provided the control means which controls the said oil cooling means so that it may become below predetermined temperature (compressor which concerns on Claim 9 of this invention).

上記第1〜3の本発明の圧縮機において、前記吸込流路に全開/全閉される流量調整弁を介装し、前記制御手段において、前記流量調整弁の全開運転のPID演算出力MVn-1を記憶し、全閉運転後の全開運転時にPID演算出力MVnを演算し、このPID演算出力MVnが前記PID演算出力MVn-1を超えないときにはMVn-1を出力して各冷却手段を制御する一方、MVn-1を超えたときにはMVnを出力して各冷却手段を制御するように構成することができる(本発明の請求項4,8,10,11に係る圧縮機)。   In the compressors according to the first to third aspects of the present invention, a flow regulating valve that is fully opened / closed is provided in the suction flow path, and the control means includes a PID calculation output MVn− of the fully opening operation of the flow regulating valve. 1 is stored, and the PID calculation output MVn is calculated during the fully-open operation after the fully-closed operation. When the PID calculation output MVn does not exceed the PID calculation output MVn-1, the MVn-1 is output to control each cooling means. On the other hand, when MVn-1 is exceeded, MVn can be output to control each cooling means (compressors according to claims 4, 8, 10, and 11 of the present invention).

さらに、上記のように演算、制御が為される本発明の圧縮機において、前記MVnが前記MVn-1を超えることがなく、所定の時間以上に亘ってMVn-1が出力されるときには、MVn-1を系の応答時定数以上の時間で減少させ、温度測定値PVが温度設定値SVになった時点で、MVn-1からMVnに切り替えて前記各冷却手段を制御するように構成することができる(本発明の請求項12に係る圧縮機)。   Further, in the compressor of the present invention that is operated and controlled as described above, when MVn-1 does not exceed MVn-1 and MVn-1 is output over a predetermined time, MVn -1 is decreased in a time longer than the response time constant of the system, and when the temperature measurement value PV reaches the temperature set value SV, the cooling means is controlled by switching from MVn-1 to MVn. (The compressor according to claim 12 of the present invention).

また、第1の本発明の圧縮機の運転方法は、モータにより回転され、全開/全閉される流量調整弁が介装されてなる吸込流路から吸込んだ吸込ガスを圧縮する圧縮機本体を備え、ガス冷却手段が介装され、前記圧縮機本体の吐出口から吐出された吐出ガスをガス供給先側に供給する吐出流路を備えた圧縮機の運転方法において、前記流量調整弁の全開運転のPID演算出力MVn-1を記憶し、全閉運転後の全開運転時にPID演算出力MVnを演算し、このPID演算出力MVnが前記PID演算出力MVn-1を超えないときにはMVn-1を出力して前記ガス冷却手段を制御する一方、MVn-1を超えたときにはMVnを出力して前記ガス冷却手段を制御することからなる(本発明の請求項13に係る圧縮機の運転方法)。   The compressor operating method according to the first aspect of the present invention includes a compressor main body that compresses suction gas sucked from a suction flow path that is rotated by a motor and is provided with a flow rate adjusting valve that is fully opened / closed. Provided with a gas cooling means and having a discharge flow path for supplying a discharge gas discharged from a discharge port of the compressor main body to a gas supply destination side. PID calculation output MVn-1 of operation is stored, PID calculation output MVn is calculated at the time of fully open operation after fully closed operation, and MVn-1 is output when this PID calculation output MVn does not exceed the PID calculation output MVn-1 Then, the gas cooling means is controlled, while when MVn-1 is exceeded, MVn is output to control the gas cooling means (compressor operating method according to claim 13 of the present invention).

また、さらに第2の本発明の圧縮機の運転方法は、上記第1の本発明の圧縮機の運転方法において、前記MVnが前記MVn-1を超えることがなく、所定の時間以上に亘ってMVn-1が出力されるときには、MVn-1を系の応答時定数以上の時間で減少させ、温度測定値PVが温度設定値SVになった時点で、MVn-1からMVnに切り替えて前記ガス冷却手段を制御することからなる(本発明の請求項14に係る圧縮機の運転方法)。   Further, the operation method of the compressor of the second aspect of the present invention is the operation method of the compressor of the first aspect of the present invention, wherein the MVn does not exceed the MVn-1 and exceeds a predetermined time. When MVn-1 is output, MVn-1 is decreased in a time longer than the response time constant of the system, and when the measured temperature PV reaches the temperature setting value SV, the gas is switched from MVn-1 to MVn. It comprises controlling the cooling means (compressor operating method according to claim 14 of the present invention).

上記第1の本発明の圧縮機によれば、圧縮機本体から吐出される吐出空気を一定温度に保つのに必要なガス冷却手段を駆動する動力を吐出ガスの熱量に追従させることができるから、必要以上にガス冷却手段を駆動する動力を消費するようなことがない。   According to the compressor of the first aspect of the present invention, the power for driving the gas cooling means necessary to keep the discharge air discharged from the compressor body at a constant temperature can follow the heat quantity of the discharge gas. The power for driving the gas cooling means is not consumed more than necessary.

上記第2の本発明の圧縮機によれば、圧縮機本体から吐出される吐出ガスを一定温度に保つのに必要な油冷却手段を駆動する動力を吐出ガスの熱量に追従させることができるから、必要以上に油冷却手段を駆動する動力を消費するようなことがない。   According to the compressor of the second aspect of the present invention, the power for driving the oil cooling means necessary to keep the discharge gas discharged from the compressor body at a constant temperature can follow the heat quantity of the discharge gas. The power for driving the oil cooling means is not consumed more than necessary.

上記第3の本発明の圧縮機によれば、モータのコイルの温度は第1の設定温度より際立って高い温度のまま維持されることがない。これにより、モータのコイルの温度の上昇でモータが損傷する、圧縮機自体を停止させるというような事態を招くことなく圧縮機の運転を継続することができる。   According to the compressor of the third aspect of the present invention, the temperature of the coil of the motor is not maintained at a temperature significantly higher than the first set temperature. As a result, the operation of the compressor can be continued without causing a situation where the motor is damaged due to a rise in the temperature of the coil of the motor or the compressor itself is stopped.

また、上記第1〜3の本発明の圧縮機において、前記吸込流路に全開/全閉される流量調整弁を介装し、前記制御手段において、前記流量調整弁の全開運転のPID演算出力MVn-1を記憶し、全閉運転後の全開運転時にPID演算出力MVnを演算し、このPID演算出力MVnが前記PID演算出力MVn-1を超えないときにはMVn-1を出力して各冷却手段を制御する一方、MVn-1を超えたときにはMVnを出力して各冷却手段を制御するように構成することによって、以下の効果を奏することができる。   In the compressors according to the first to third aspects of the present invention, a flow rate adjustment valve that is fully opened / closed is provided in the suction flow path, and the control means outputs a PID calculation output for the fully open operation of the flow rate adjustment valve. MVn-1 is stored, and PID calculation output MVn is calculated at the time of fully open operation after fully closed operation. When this PID calculation output MVn does not exceed the PID calculation output MVn-1, MVn-1 is output and each cooling means On the other hand, when MVn-1 is exceeded, MVn is output to control each cooling means, whereby the following effects can be obtained.

すなわち、上記のような演算、制御が為される本発明の圧縮機、あるいは本発明の圧縮機の運転方法(上記第1の本発明の圧縮機の運転方法)によれば、流量調整弁が全開/全閉を繰り返すが、流量調整弁の全開運転時のPID演算出力MVn-1(例えば冷却ファンの回転数)を記憶し、全閉運転に切り替わった後再度全開運転に切り替わったとき、この切り替わったときのPID演算出力MVn(例えば冷却ファンの回転数)と、記憶している前回のPID演算出力MVn-1とを比較する。そして、PID演算出力MVnが前記PID演算出力MVn-1を超えない場合にはMVn-1を出力し、超える場合にはMVnを出力するように構成されているから、流量調整弁を全閉、全開切り替えしてもオーバーシュートすることなく吐出空気の温度を制御することができる。   That is, according to the compressor of the present invention that is operated and controlled as described above, or the operation method of the compressor of the present invention (the operation method of the compressor of the first present invention), the flow rate adjusting valve is Repeats full open / close, but stores the PID calculation output MVn-1 (for example, the number of rotations of the cooling fan) at the time of full open operation of the flow rate adjustment valve. The PID calculation output MVn (for example, the rotation speed of the cooling fan) at the time of switching is compared with the previous stored PID calculation output MVn-1. When the PID calculation output MVn does not exceed the PID calculation output MVn-1, the MVn-1 is output. When the PID calculation output MVn exceeds the PID calculation output MVn-1, the flow adjustment valve is fully closed. The temperature of the discharge air can be controlled without overshooting even when fully opened.

さらに、上記のように演算、制御が為される本発明の圧縮機において、前記MVnが前記MVn-1を超えることがなく、所定の時間以上に亘ってMVn-1が出力されるときには、MVn-1を系の応答時定数以上の時間で減少させ、温度測定値PVが温度設定値SVになった時点で、MVn-1からMVnに切り替えて前記各冷却手段を制御するように構成することによって、以下の効果を奏することができる。   Further, in the compressor of the present invention that is operated and controlled as described above, when MVn-1 does not exceed MVn-1 and MVn-1 is output over a predetermined time, MVn -1 is decreased in a time longer than the response time constant of the system, and when the temperature measurement value PV reaches the temperature set value SV, the cooling means is controlled by switching from MVn-1 to MVn. The following effects can be obtained.

すなわち、上記のような演算、制御が為される本発明の圧縮機、あるいは本発明の圧縮機の運転方法(上記第2の本発明の圧縮機の運転方法)によれば、PID演算出力MVnがPID演算出力MVn-1をいつでも超えない場合、つまり前回よりも吐出ガスの圧力が低く、かつ冷却風温度が低い場合には、実際にはMVn-1以下の出力で良いにも拘らず常にMVn-1が出力され続けるから吐出ガスが過冷却になる。しかしながら、PID演算出力MVn-1を系の応答時定数以上の時間で減少させ、吐出ガスの温度が安定している状態で温度測定値PVが温度設定値SVとなる時点でMVn-1からMVnに切り替えることにより、吐出ガスの過冷却状態を少なくすることができる。   That is, according to the compressor of the present invention that is operated and controlled as described above, or the operation method of the compressor of the present invention (the operation method of the compressor of the second present invention), the PID operation output MVn. If the pressure does not always exceed the PID calculation output MVn-1, that is, if the discharge gas pressure is lower than the previous time and the cooling air temperature is low, the output is always MVn-1 or less, although it is always possible. Since MVn-1 continues to be output, the discharge gas is supercooled. However, the PID calculation output MVn-1 is decreased in a time longer than the response time constant of the system, and when the temperature measurement value PV becomes the temperature set value SV while the temperature of the discharge gas is stable, MVn-1 to MVn By switching to, the supercooled state of the discharge gas can be reduced.

本発明の形態1に係る圧縮機を、この圧縮機がパッケージ形圧縮機であり、かつ圧縮するガスが空気である場合を例として説明する。図1は、本発明の形態1に係るパッケージ形圧縮機の模式的系統図である。   The compressor according to Embodiment 1 of the present invention will be described by taking as an example a case where the compressor is a package type compressor and the gas to be compressed is air. FIG. 1 is a schematic system diagram of a packaged compressor according to Embodiment 1 of the present invention.

図1に示す符号1は、モータ2で駆動される圧縮機本体であり、この圧縮機本体1の吸込口1aには、吸込空気の流量を調整する流量調整弁4が介装されてなる吸込流路3が連通している。また、圧縮機本体1の吐出口1bから、圧縮されて吐出される図示しない吐出空気(吐出ガス)の供給先側に、吐出空気を冷却する空冷式の熱交換機6が介装されてなる吐出流路5が連通している。この吐出流路5の熱交換機6の下流側に、この熱交換機6で冷却された吐出空気の温度を検出する温度検出器(温度検出手段)7が設けられており、この温度検出器7からの吐出空気の検出温度信号(温度情報)は、前記熱交換機6に冷却風を吹付ける冷却ファン(ガス冷却手段)9の回転数を制御する演算器(制御手段)8に入力されるように構成されている。すなわち、前記演算器8は前記温度検出器7から入力される検出温度信号に対応する温度が予め定めた一定温度を超えると、吐出空気の温度を前記一定温度または一定温度以下にし得る冷却ファン9の回転数を演算し、演算された回転数になるように冷却ファン9を制御するように構成されている。   Reference numeral 1 shown in FIG. 1 denotes a compressor main body driven by a motor 2, and a suction inlet 1 a of the compressor main body 1 is provided with a flow rate adjusting valve 4 for adjusting the flow rate of the intake air. The flow path 3 communicates. Further, a discharge in which an air-cooled heat exchanger 6 for cooling the discharge air is interposed from a discharge port 1b of the compressor body 1 to a supply destination side of discharge air (discharge gas) (not shown) that is compressed and discharged. The flow path 5 communicates. A temperature detector (temperature detection means) 7 for detecting the temperature of the discharge air cooled by the heat exchanger 6 is provided on the downstream side of the heat exchanger 6 in the discharge flow path 5. The detected temperature signal (temperature information) of the discharged air is input to an arithmetic unit (control means) 8 that controls the number of revolutions of a cooling fan (gas cooling means) 9 that blows cooling air to the heat exchanger 6. It is configured. That is, when the temperature corresponding to the detected temperature signal input from the temperature detector 7 exceeds a predetermined temperature, the computing unit 8 can reduce the temperature of the discharge air to the constant temperature or below the predetermined temperature. And the cooling fan 9 is controlled so as to obtain the calculated number of rotations.

前記圧縮機本体1、モータ2、空気吸込流路3の前記吸込空気流量調整弁4を含む圧縮機本体1側部分、空気吐出流路5の上流側部分、熱交換機6、温度検出器7、演算器8および冷却ファン9はパッケージ10内に収容されている。そして、熱交換機6を冷却した後のファン風はパッケージ10の1側面に設けられた放風口10aからパッケージ10外に放風されるように構成されている。なお、演算器8では、温度検出器7で測定される温度測定値PVと、予め定めた一定温度である温度設定値SVを基に、冷却ファン9の回転数を決定する、PID演算によるのが好適である。つまり、この形態1に係る圧縮機では、冷却ファン9を操作部とし、温度検出器7を検出部とし、この温度検出器7での吐出空気の温度に温度設定値SV(目標値)を据えた制御系が構成される。   The compressor body 1 side portion including the compressor body 1, the motor 2, the intake air flow rate adjustment valve 4 of the air suction passage 3, the upstream portion of the air discharge passage 5, the heat exchanger 6, the temperature detector 7, The calculator 8 and the cooling fan 9 are accommodated in the package 10. Then, the fan air after cooling the heat exchanger 6 is configured to be blown out of the package 10 from an air outlet 10 a provided on one side surface of the package 10. Note that the calculator 8 is based on the PID calculation that determines the number of rotations of the cooling fan 9 based on the temperature measurement value PV measured by the temperature detector 7 and the temperature set value SV that is a predetermined constant temperature. Is preferred. That is, in the compressor according to the first embodiment, the cooling fan 9 is used as the operation unit, the temperature detector 7 is used as the detection unit, and the temperature set value SV (target value) is set to the temperature of the discharge air at the temperature detector 7. A control system is configured.

従って、本発明の形態1に係る圧縮機によれば、圧縮機本体1から吐出される吐出空気を一定温度に保つのに必要な冷却ファン9を駆動するファン動力を吐出空気の熱量に追従させることができるから、必要以上にファン動力を消費するようなことがない。また、冷却ファン9の回転数を適正にすることにより、パッケージ10外に漏れる騒音を低減できるという効果も生じる。   Therefore, according to the compressor according to the first embodiment of the present invention, the fan power for driving the cooling fan 9 necessary to keep the discharge air discharged from the compressor body 1 at a constant temperature follows the amount of heat of the discharge air. Because it can, fan power is not consumed more than necessary. In addition, by making the rotation speed of the cooling fan 9 appropriate, there is an effect that noise leaking out of the package 10 can be reduced.

本発明の形態2に係るパッケージ形圧縮機を、その模式的系統図の図2を参照しながら説明する。但し、本発明の形態2が上記形態1と相違するところは吐出空気の冷却手段の構成の相違にあり、これ以外は全く同構成であるから、上記形態1と同一のものに同一符号を付して、その相違する点について説明する。   A package type compressor according to the second embodiment of the present invention will be described with reference to FIG. 2 of a schematic system diagram thereof. However, the difference between the second embodiment of the present invention and the first embodiment is the difference in the configuration of the cooling means for the discharge air, and the other configuration is exactly the same. The differences will be described.

圧縮機本体1の吐出口1bから吐出空気の供給先側に連通する吐出流路5に、水冷式の熱交換機6aが介装されている。この熱交換機6aには、図示しない冷却水供給源から冷却水を供給する冷却水供給流路11が連通すると共に、前記熱交換器6aから吐出空気と熱交換した後の冷却水を図示しない冷却水戻し先に戻す冷却水戻し流路12が連通している。前記冷却水供給流路11には水ポンプ9aが介装されており、この水ポンプ9aの回転数は、温度検出器7からの吐出空気の検出温度信号が入力される演算器8により制御されるように構成されている。すなわち、前記演算器8は前記温度検出器7から入力される検出温度信号に対応する温度が予め定めた一定温度を超えると、吐出空気の温度を前記一定温度または一定温度以下にし得る水ポンプ9aの回転数を演算し、演算された回転数になるように水ポンプ9aを制御するように構成されている。この水ポンプ9aの制御、水ポンプ9aの回転数の演算は、上述の本発明の形態1と同様に、前記演算器8でのPID演算にて為されるのが好適である。   A water-cooled heat exchanger 6a is interposed in the discharge flow path 5 that communicates from the discharge port 1b of the compressor body 1 to the supply destination side of the discharge air. A cooling water supply passage 11 for supplying cooling water from a cooling water supply source (not shown) communicates with the heat exchanger 6a, and cooling water after heat exchange with the discharge air from the heat exchanger 6a is not shown. A cooling water return passage 12 for returning to the water return destination is in communication. The cooling water supply passage 11 is provided with a water pump 9a, and the rotation speed of the water pump 9a is controlled by a calculator 8 to which a detected temperature signal of discharge air from the temperature detector 7 is inputted. It is comprised so that. That is, when the temperature corresponding to the detected temperature signal input from the temperature detector 7 exceeds a predetermined constant temperature, the computing unit 8 can reduce the temperature of the discharge air to the constant temperature or below the constant temperature. And the water pump 9a is controlled so as to obtain the calculated number of rotations. The control of the water pump 9a and the calculation of the rotation speed of the water pump 9a are preferably performed by the PID calculation in the calculator 8 as in the first embodiment of the present invention.

従って、本発明の形態2に係るパッケージ形圧縮機によれば、圧縮機本体1から吐出される吐出空気を一定温度に保つのに必要な冷却水を供給する水ポンプ9aの駆動力を吐出空気の熱量に追従させることができるから、本発明の形態2は上記形態1と同効である。   Therefore, according to the package type compressor according to the second embodiment of the present invention, the driving force of the water pump 9a for supplying the cooling water necessary for maintaining the discharge air discharged from the compressor body 1 at a constant temperature is used as the discharge air. Therefore, the second embodiment of the present invention has the same effect as the first embodiment.

本発明の形態3に係る圧縮機を、この圧縮機がパッケージ形油冷式圧縮機である場合を例として説明する。図3は、パッケージ形油冷式圧縮機の模式的系統図である。   A compressor according to Embodiment 3 of the present invention will be described by taking as an example a case where the compressor is a package type oil-cooled compressor. FIG. 3 is a schematic system diagram of the packaged oil-cooled compressor.

図3に示す符号1は、モータ2で駆動される圧縮機本体であり、この圧縮機本体1の吸込口1aには、吸込空気の流量を調整する流量調整弁4が介装されてなる吸込流路3が連通している。また、圧縮機本体1の吐出口1bから、圧縮されて吐出される図示しない吐出空気の供給先側に、吐出空気に含まれている油分を回収する油分離回収器13が介装されてなる吐出流路5が連通している。この油分離回収器13は、その内部の上部に設けられた油分離エレメント14により油分を除去した吐出空気を吐出空気の供給先側に供給する一方、除去した油分をその内部下部に形成された油溜まり部13に溜めるように構成されている。この油分離回収器13の油溜まり部13から前記圧縮機本体1に、この圧縮機本体1の図示しない圧縮空間、軸封部、軸受部に油溜まり部15に溜まっている油を、冷却油、潤滑油(以下、潤滑油という。)として供給する油供給流路16が連通している。
この油供給流路16には、油分離回収器13側から順に、油フィルタ17、油を冷却する空冷式の熱交換器6bが介装されている。
Reference numeral 1 shown in FIG. 3 denotes a compressor body driven by a motor 2, and a suction port 1 a of the compressor body 1 is provided with a flow rate adjusting valve 4 for adjusting the flow rate of the suction air. The flow path 3 communicates. Further, an oil separation / recovery unit 13 for recovering oil contained in the discharge air is interposed on the supply destination side of discharge air (not shown) that is compressed and discharged from the discharge port 1b of the compressor body 1. The discharge flow path 5 is in communication. This oil separator / collector 13 is configured to supply the discharge air from which oil has been removed by the oil separation element 14 provided in the upper part thereof to the supply destination side of the discharge air, while the removed oil is formed in the lower part of the inside. It is configured to accumulate in the oil reservoir 13. Oil stored in the oil reservoir 15 in the compression space, shaft seal portion, and bearing portion (not shown) of the compressor main body 1 is transferred from the oil reservoir 13 of the oil separator / collector 13 to the compressor main body 1 as cooling oil. , An oil supply passage 16 that is supplied as a lubricating oil (hereinafter referred to as a lubricating oil) communicates.
An oil filter 17 and an air-cooled heat exchanger 6b for cooling the oil are interposed in the oil supply flow path 16 in this order from the oil separator / collector 13 side.

前記油分離回収器13には、油分を含む吐出空気の温度を検出する温度検出器7が設けられており、この温度検出器7からの吐出空気の検出温度信号は、前記熱交換機6bに冷却風を吹付ける冷却ファン(ガス冷却手段)9の回転数を制御する演算器8に入力されるように構成されている。すなわち、前記演算器8は前記温度検出器7から入力される検出温度信号に対応する吐出空気の温度が予め定めた一定温度を超えると、潤滑油の温度を前記吐出空気の温度を一定温度または一定温度以下にし得る冷却ファン9の回転数を演算し、演算された回転数になるように冷却ファン9を制御するように構成されている。この冷却ファン9の制御、冷却ファン9の回転数の演算は、上述の本発明の形態1乃至2と同様に、前記演算器8でのPID演算にて為されるのが好適である。   The oil separator / collector 13 is provided with a temperature detector 7 for detecting the temperature of the discharge air containing oil, and the detected temperature signal of the discharge air from the temperature detector 7 is cooled by the heat exchanger 6b. A cooling fan (gas cooling means) 9 for blowing wind is configured to be input to an arithmetic unit 8 that controls the number of rotations. That is, when the temperature of the discharge air corresponding to the detected temperature signal input from the temperature detector 7 exceeds the predetermined temperature, the computing unit 8 sets the temperature of the lubricant to the temperature of the discharge air or the temperature of the discharge air. The number of rotations of the cooling fan 9 that can be kept below a certain temperature is calculated, and the cooling fan 9 is controlled so as to be the calculated number of rotations. The control of the cooling fan 9 and the calculation of the rotation speed of the cooling fan 9 are preferably performed by the PID calculation in the calculator 8 as in the first and second embodiments of the present invention.

本発明の形態3に係る圧縮機によれば、圧縮機本体1から吐出される吐出空気を一定温度に保つのに必要な冷却ファン9を駆動するファン動力を吐出空気の熱量に追従させることができるから、必要以上にファン動力を消費するようなことがない。また、冷却ファン9の回転数を適正にすることにより、パッケージ10外に漏れる騒音を低減できるという効果も生じる。   According to the compressor according to the third embodiment of the present invention, the fan power for driving the cooling fan 9 necessary to keep the discharge air discharged from the compressor body 1 at a constant temperature can follow the heat amount of the discharge air. Because it can, fan power is not consumed more than necessary. In addition, by making the rotation speed of the cooling fan 9 appropriate, there is an effect that noise leaking out of the package 10 can be reduced.

本発明の形態4に係るパッケージ形油冷式圧縮機を、その模式的系統図の図4を参照しながら説明する。但し、本発明の形態4が上記形態3と相違するところは潤滑油の冷却手段の構成の相違にあり、これ以外は全く同構成であるから、上記形態3と同一のものに同一符号を付して、その相違する点について説明する。   A packaged oil-cooled compressor according to Embodiment 4 of the present invention will be described with reference to FIG. 4 of a schematic system diagram thereof. However, since the fourth embodiment of the present invention differs from the third embodiment in the configuration of the cooling means for the lubricating oil, and the other configuration is exactly the same, the same components as those in the third embodiment are denoted by the same reference numerals. The differences will be described.

油分離回収器13から圧縮機本体1に連通する油供給流路16の油フィルタ17の下流側に、水冷式の熱交換器6cが介装されている。この熱交換機6cには、図示しない冷却水供給源から冷却水を供給する冷却水供給流路11が連通すると共に、前記熱交換器6cから吐出空気と熱交換した後の冷却水を図示しない冷却水戻し先に戻す冷却水戻し流路12が連通している。前記冷却水供給流路11には水ポンプ9aが介装されており、この水ポンプ9aの回転数は、温度検出器7からの吐出空気の検出温度信号が入力される演算器8により制御されるように構成されている。すなわち、前記演算器8は前記温度検出器7から入力される検出温度信号に対応する温度が予め定めた一定温度を超えると、吐出空気の温度を前記一定温度または一定温度以下にし得る水ポンプ9aの回転数を演算し、演算された回転数になるように水ポンプ9aを制御するように構成されている。この水ポンプ9aの制御、水ポンプ9aの回転数の演算は、上述の本発明の形態1乃至3と同様に、前記演算器8でのPID演算にて為されるのが好適である。   A water-cooled heat exchanger 6 c is interposed on the downstream side of the oil filter 17 in the oil supply passage 16 that communicates from the oil separator / collector 13 to the compressor body 1. A cooling water supply passage 11 for supplying cooling water from a cooling water supply source (not shown) communicates with the heat exchanger 6c, and cooling water after heat exchange with the discharge air from the heat exchanger 6c is not shown. A cooling water return passage 12 for returning to the water return destination is in communication. The cooling water supply passage 11 is provided with a water pump 9a, and the rotation speed of the water pump 9a is controlled by a calculator 8 to which a detected temperature signal of discharge air from the temperature detector 7 is inputted. It is comprised so that. That is, when the temperature corresponding to the detected temperature signal input from the temperature detector 7 exceeds a predetermined constant temperature, the computing unit 8 can reduce the temperature of the discharge air to the constant temperature or below the constant temperature. And the water pump 9a is controlled so as to obtain the calculated number of rotations. The control of the water pump 9a and the calculation of the rotation speed of the water pump 9a are preferably performed by the PID calculation in the calculator 8 as in the first to third embodiments of the present invention.

従って、本発明の形態4に係るパッケージ形圧縮機によれば、圧縮機本体1から吐出される吐出空気を一定温度に保つのに必要な冷却水を供給する水ポンプ9aの駆動力を吐出空気の熱量に追従させることができるから、本発明の形態4は上記形態1と同効である。   Therefore, according to the package type compressor according to the fourth embodiment of the present invention, the driving force of the water pump 9a that supplies the cooling water necessary to keep the discharge air discharged from the compressor body 1 at a constant temperature is used as the discharge air. Therefore, the fourth embodiment of the present invention has the same effect as the first embodiment.

本発明の形態5に係るパッケージ形油冷式圧縮機を、その模式的系統図の図5を参照しながら説明する。本発明の形態5が上記形態4と相違するところは、冷却手段の構成の相違によって油供給路の潤滑油だけではなくパッケージの内部の空気も冷やすようにしている点、ひいてはモータも冷やすようにしている点、および演算器に吐出空気の検出温度信号の他に、モータのコイルの検出温度信号を入力するようにした点にある。これら以外は全く同構成であるから、上記形態4と同一のものに同一符号を付して、その相違する点について説明する。   A packaged oil-cooled compressor according to Embodiment 5 of the present invention will be described with reference to FIG. 5 of a schematic system diagram thereof. The fifth embodiment of the present invention differs from the fourth embodiment in that not only the lubricating oil in the oil supply path but also the air inside the package is cooled by the difference in the configuration of the cooling means, and the motor is also cooled. In addition to the detected temperature signal of the discharge air, the detected temperature signal of the motor coil is input to the computing unit. Except for these, the configuration is exactly the same, so the same components as those in the fourth embodiment are denoted by the same reference numerals, and different points will be described.

すなわち、モータ2にコイルの温度を検出するコイル温度検出器(コイル温度検出手段)18が設けられており、このコイル温度検出器18で検出された検出温度信号が演算器8に入力されるように構成されている。そして、モータのコイルの温度が予め定めた第1の設定温度(第1の所定温度)を超えると、演算器8は、空冷式の熱交換器6bによる潤滑油の冷却よりもモータ2のコイルの冷却を優先して冷却ファン9の制御を行うようになっている。つまり、モータ2のコイルの温度が第1の設定温度以上になると、冷却ファン9の回転数は、コイル温度検出器18からの検出温度信号に基づいて演算され、冷却ファン9はより高速で回転される。本発明の形態5の冷却機構によれば、パッケージ10の内部の空気を冷却することにより、モータ2のコイルを冷却することにもなる。一方、モータ2のコイルの温度が第1の設定温度未満であって、かつ温度検出器7で検出された吐出空気の温度が予め定めた第2の設定温度(第2の所定温度)以上である場合には、冷却ファン9の回転数は吐出空気の温度に基づいて制御される。より具体的には、冷却ファン9の回転数は吐出空気の温度が第2の設定温度以下になるように制御される。このように冷却ファン9の回転数は、コイル温度検出器18からの検出温度信号に基づいて演算したものとするか、温度検出器7で検出された吐出空気の温度に基づいて演算したものとするかは状況に応じて変化する。ただし、いずれの場合であってもその冷却ファン9の回転数は上述の本発明の形態1乃至4と同様に、前記演算器8でのPID演算にて為されるのが好適である。   That is, the motor 2 is provided with a coil temperature detector (coil temperature detecting means) 18 for detecting the coil temperature, and the detected temperature signal detected by the coil temperature detector 18 is input to the calculator 8. It is configured. When the temperature of the motor coil exceeds a predetermined first set temperature (first predetermined temperature), the computing unit 8 causes the coil of the motor 2 to cool more than the cooling of the lubricating oil by the air-cooled heat exchanger 6b. The cooling fan 9 is controlled by giving priority to the cooling of the cooling fan 9. That is, when the coil temperature of the motor 2 becomes equal to or higher than the first set temperature, the rotation speed of the cooling fan 9 is calculated based on the detected temperature signal from the coil temperature detector 18, and the cooling fan 9 rotates at a higher speed. Is done. According to the cooling mechanism of the fifth embodiment of the present invention, the coil of the motor 2 is also cooled by cooling the air inside the package 10. On the other hand, the temperature of the coil of the motor 2 is lower than the first set temperature, and the temperature of the discharge air detected by the temperature detector 7 is equal to or higher than a predetermined second set temperature (second predetermined temperature). In some cases, the rotational speed of the cooling fan 9 is controlled based on the temperature of the discharge air. More specifically, the rotation speed of the cooling fan 9 is controlled so that the temperature of the discharge air is equal to or lower than the second set temperature. Thus, the number of rotations of the cooling fan 9 is calculated based on the detected temperature signal from the coil temperature detector 18 or calculated based on the temperature of the discharge air detected by the temperature detector 7. It depends on the situation. However, in any case, it is preferable that the rotational speed of the cooling fan 9 is determined by the PID calculation in the calculator 8 as in the first to fourth embodiments of the present invention.

モータ2のコイルの温度が設定温度以上になるということは、吐出空気量が大量であるということを意味するが、たとえ温度検出器7で検出される吐出空気の温度が一定温度以内であっても、冷却ファン9の高速回転により吐出空気の温度が下げられることになる。
第1の設定温度はモータ2のコイルの温度がそれ以上の値で長時間運転されるとモータ2が損傷するという不具合が生じる閾値に基づいて設定するのが好ましい。これにより、モータ2のコイルの温度が第1の設定温度より際立って高い温度のまま維持されることがなく、モータ2が損傷したり、圧縮機自体の運転を停止したりせざるを得なくなる事態を招くようなことがない。なお、コイル温度検出器18からの検出温度信号に基づいて冷却ファン9の回転数が演算され、それによって冷却ファン9が回転されている際には、吐出空気の温度が低下する。極端に吐出空気の温度が低下する状態、あるいは吐出空気の温度低下が長時間に亘る状態は、油に水分の凝縮が生じることにつながるので望ましくない。
従って、コイル温度検出器18からの温度検出信号に基づいて冷却ファン9の回転数が演算され、それによって冷却ファン9が回転されている状態はなるべく早期に脱することができるよう、上記の演算の内容を適正化することが好ましい。また、コイルの温度が第1の設定温度未満であって、温度検出器7で検出された吐出空気の温度が予め定めた第2の設定温度以上である場合には、温度検出器7からの検出温度信号に基づいて冷却ファン9の回転数が演算され、それによって冷却ファン9が回転される。これにより、必要以上にファン動力を消費するようなことがない等の効果を奏することについては、上記他の形態に係る圧縮機と同等である。
When the temperature of the coil of the motor 2 is equal to or higher than the set temperature, it means that the amount of discharged air is large, but the temperature of the discharged air detected by the temperature detector 7 is within a certain temperature. However, the temperature of the discharge air is lowered by the high speed rotation of the cooling fan 9.
The first set temperature is preferably set based on a threshold value that causes a problem that the motor 2 is damaged when the coil temperature of the motor 2 is operated for a long time at a temperature higher than that. As a result, the temperature of the coil of the motor 2 is not maintained to be significantly higher than the first set temperature, and the motor 2 is damaged or the operation of the compressor itself must be stopped. There is no such thing as inviting a situation. Note that the number of revolutions of the cooling fan 9 is calculated based on the detected temperature signal from the coil temperature detector 18, and when the cooling fan 9 is thereby rotated, the temperature of the discharge air decreases. A state in which the temperature of the discharge air is extremely lowered or a state in which the temperature drop of the discharge air lasts for a long time is not desirable because it leads to condensation of moisture in the oil.
Therefore, the number of rotations of the cooling fan 9 is calculated based on the temperature detection signal from the coil temperature detector 18, and the above calculation is performed so that the state in which the cooling fan 9 is rotating can be removed as soon as possible. It is preferable to optimize the contents. In addition, when the temperature of the coil is lower than the first set temperature and the temperature of the discharge air detected by the temperature detector 7 is equal to or higher than a predetermined second set temperature, the temperature from the temperature detector 7 The number of rotations of the cooling fan 9 is calculated based on the detected temperature signal, whereby the cooling fan 9 is rotated. Thereby, it is equivalent to the compressor which concerns on the said other form that there exists an effect of not consuming fan motive power more than necessary.

ところで、上記本発明の形態1〜5において、吸込空気量を制御する流量調整弁4としては、その開度が0%から100%まで連続的に変化させ得る方式のものを用いることも可能であるし、またその開度を0%から100%で切り替える方式のもの、すなわち全開もしくは全閉の何れかの状態に切り替える方式のものを用いることも可能である。この場合、流量調整弁4が全閉のときには熱交換器を通過する吐出空気量は0になり、流量調整弁4が全開のときには100%になる。従って、単純なPID演算等の温度制御では追従が困難であって、例えばPID演算をして、0%のときには積分演算をしないようにしたとしても、100%に切り替わったときのオーバーシュートを防止することができない。   By the way, in the said form 1-5 of this invention, it is also possible to use the thing of the system which the opening degree can change continuously from 0% to 100% as the flow regulating valve 4 which controls the amount of intake air. In addition, it is also possible to use a system in which the opening degree is switched from 0% to 100%, that is, a system in which the opening degree is switched to a fully open state or a fully closed state. In this case, the amount of discharge air passing through the heat exchanger is 0 when the flow rate adjustment valve 4 is fully closed, and 100% when the flow rate adjustment valve 4 is fully open. Therefore, it is difficult to follow with temperature control such as simple PID calculation. For example, even if PID calculation is performed and integral calculation is not performed when 0%, overshooting when switching to 100% is prevented. Can not do it.

そのため、本発明に係るパッケージ形圧縮機が空冷式(熱交換器を冷却ファンで冷却する構成。)では、下記のように制御される。なお、上記本発明の形態5においては、この制御は、吐出空気温度が第2の設定温度以下になるように制御する場合に適用されるものであって、モータコイル温度が第1の設定温度以下になるように制御する場合には適用されない。
(a) 流量調整弁4の全開運転時のPID演算出力MVn-1(冷却ファンの回転数)を記憶し、全閉運転に切り替わった後再度全開運転に切り替わったとき、この切り替わったときのPID演算出力MVn(冷却ファンの回転数)と、記憶している前回のPID演算出力MVn-1とを比較する。そして、PID演算出力MVnが前記PID演算出力MVn-1を超えない場合にはMVn-1を出力し、超える場合にはMVnを出力するように構成されている。
これにより、流量調整弁4を全閉、全開切り替えしてもオーバーシュートすることなく吐出空気の温度を制御することができる。
この(a)の制御に加えて、さらに下記の(b)の制御をも行うことがより好ましい。
(b) 全閉運転から全開運転に切り替わった後に相当な時間が経過してもPID演算出力MVnがPID演算出力MVn-1を超えない場合、つまり前回よりも吐出空気の圧力が低いために、吐出空気温度が低くなる結果そのような状況に陥る場合も想定される。
そのため、その状況が所定の時間以上に亘って継続される場合には、PID演算出力MVn-1を、本発明の吐出温度制御系の応答時定数以上の時定数に相当する速度で減少させるようにしている。このようにすれば、吐出空気の温度が安定している状態で温度測定値PVが温度設定値SVと等しくなり、かつMVnとMVn-1が等しくなるか、近い値となる状況が発生する。そのような安定状態となった時点で、MVn-1からMVnに切り替えることになる。このような制御方法をとれば吐出空気温度を予め定めた所定温度に維持する必要以上に大きなPID出力を行うことがなくなるため、吐出空気の過冷却状態も少なくすることができ、パッケージ形圧縮機の省エネルギー運転が可能となる。
Therefore, when the packaged compressor according to the present invention is an air-cooled type (a configuration in which the heat exchanger is cooled by a cooling fan), it is controlled as follows. In the fifth embodiment of the present invention, this control is applied when the discharge air temperature is controlled to be equal to or lower than the second set temperature, and the motor coil temperature is set to the first set temperature. It does not apply when controlling to be as follows.
(A) The PID calculation output MVn-1 (the number of rotations of the cooling fan) when the flow rate adjusting valve 4 is fully opened is stored, and when switching to the fully-closed operation and then switching to the fully-opening operation again, the PID when this switching is performed The calculated output MVn (cooling fan speed) is compared with the previous stored PID calculated output MVn-1. When the PID calculation output MVn does not exceed the PID calculation output MVn-1, MVn-1 is output, and when it exceeds, MVn is output.
As a result, the temperature of the discharge air can be controlled without overshooting even when the flow rate adjustment valve 4 is switched between full open and full open.
In addition to the control (a), it is more preferable to perform the following control (b).
(B) If the PID calculation output MVn does not exceed the PID calculation output MVn-1 even after a considerable time has elapsed after switching from the fully closed operation to the fully open operation, that is, the discharge air pressure is lower than the previous time. It is also assumed that such a situation occurs as a result of the discharge air temperature being lowered.
Therefore, when the situation continues for a predetermined time or longer, the PID calculation output MVn-1 is decreased at a speed corresponding to a time constant equal to or higher than the response time constant of the discharge temperature control system of the present invention. I have to. In this way, a situation occurs in which the temperature measurement value PV is equal to the temperature setting value SV and MVn and MVn-1 are equal or close to each other in a state where the temperature of the discharge air is stable. When such a stable state is reached, the MVn-1 is switched to MVn. By adopting such a control method, the PID output larger than necessary to maintain the discharge air temperature at a predetermined temperature can be prevented, so that the supercooled state of the discharge air can be reduced, and the package type compressor Energy saving operation becomes possible.

この制御演算フローを、図7,8のフローチャートに示す。図7が(a)のみを行った場合、図8が(a)に(b)を加えた場合である。図7,8のフローチャートは、流量調整弁4が全閉から全開に移行したかどうかを判別した後、流量調整弁4が全閉から全開に移行してから、次に流量調整弁4が全開から全閉に移行するまでの処理についてのサブルーチンの形で表している。なお、図8のフローチャートのi、kは整数の変数であり、Imax、Kmaxは適宜設定される定数である。ΔMについては後述する。また、i=i+1、k=k+1という式はi、kを現在の数値から1だけインクリメント(増加)することを意味する。   This control calculation flow is shown in the flowcharts of FIGS. FIG. 7 shows the case where only (a) is performed, and FIG. 8 shows the case where (b) is added to (a). In the flowcharts of FIGS. 7 and 8, after determining whether or not the flow rate adjusting valve 4 has shifted from fully closed to fully opened, the flow rate adjusting valve 4 shifts from fully closed to fully open, and then the flow rate adjusting valve 4 is fully opened. It represents in the form of a subroutine about the processing from the transition to full closure. In the flowchart of FIG. 8, i and k are integer variables, and Imax and Kmax are constants set as appropriate. ΔM will be described later. The expressions i = i + 1 and k = k + 1 mean that i and k are incremented (increased) by 1 from the current numerical value.

上記のように(b)もさらに加えて制御し、かつ吐出温度制御系の応答時定数をも考慮した制御とする理由は下記のとおりである。例えば、図1に示したパッケージ形圧縮機の構成をもとに説明する。すなわち,(a)による制御だけであると、前回より吐出空気の圧力が低ために吐出空気温度が低い状況が継続する場合には、本来出力としてMVnで良いにも拘らず、常にMVn-1が出力され続けるもあり得る。つまり、実際にはMVn-1以下の出力でPV(測定値)=SV(設定値)になるにも拘らず、MVn-1でファンを運転しているときには、PV<SVとなっている。この状況を解消するために、ファンの回転数をMVn-1による制御からMVnによる制御に急に切り替えると、過渡的にPV>SVとなってしまう虞が生じる。過渡的にPV>SVとなる事態を回避するために、PV=SVとなった時点で、MVn-1からMVnに切り替えることができるようMVn-1を徐々に減少させていき、PID演算出力MVnがMVn-1と同一になり、あるいはそれを若干超えた時点(PV=SVとなる。)でMVnを出力するものである。   The reason why the control (b) is further controlled as described above and the control is performed in consideration of the response time constant of the discharge temperature control system is as follows. For example, a description will be given based on the configuration of the package compressor shown in FIG. That is, if only the control according to (a) is performed, if the discharge air temperature continues to be low because the pressure of the discharge air is lower than the previous time, MVn-1 is always used even though the original output may be MVn. May continue to be output. That is, PV <SV when the fan is operated at MVn−1 although the PV (measured value) = SV (set value) at an output of MVn−1 or less in practice. If the rotation speed of the fan is suddenly switched from MVn-1 control to MVn control in order to eliminate this situation, there is a risk that PV> SV will be transiently satisfied. In order to avoid a situation where PV> SV transiently, when PV = SV, MVn-1 is gradually decreased so that MVn-1 can be switched to MVn, and PID calculation output MVn Is the same as MVn-1, or when MVn-1 is slightly exceeded (PV = SV), MVn is output.

以下、具体的な数値を例示して、より具体的に説明する。前回のロード運転中におけるPID演算出力MVn-1=80%のとき、PV=SV=60℃であったと仮定すると、アンロード運転中は当然空気量が減少するために、PVは60℃以下(例えば、40℃。)になる。このときのPID演算出力MVnは、冷えすぎているためファンの回転数を下げようとして80%より下がっていく(例えば、20%。)。次いで、ロード運転に切り替わったとすると、切り替わった直後のPID演算出力MVnは20%の状態(過小)なので、PV>SVという状態を引き起こす。そこで、上記(a)の制御を適用すると、この時点でPID演算出力MVn-1=80%に戻すことになる。しかし、新たなロード運転の状況が、前回のロード運転における状況と全く同じであるとは限らない。つまり、例えばMVn-1=80%でロード運転し、アンロード運転した後、再度ロード運転に切り替わったときは、80%以下の出力(例えば、70%)でPV=SVとなる状況を起こしていることもあり得る。この場合、ファンの70%の回転数でPV=SV=60℃になるにも拘らず、80%の回転数で冷却し続けるのであるから、吐出空気はPV<60℃(例えば、20℃)に低下し、このときのPID演算出力は、PV=60℃の目標に対してPV=20℃であるから、本来のあるべき値の70%に対して過小になる(PIDは積分要素もあるので0%となる。)。このようにして、PID演算出力MVnがMVn-1を超えることがなくなる。   Hereinafter, specific numerical values will be exemplified and described in more detail. Assuming that PV = SV = 60 ° C. when the PID calculation output MVn−1 = 80% during the previous load operation, the air volume naturally decreases during the unload operation, so PV is 60 ° C. or less ( For example, 40 ° C.). Since the PID calculation output MVn at this time is too cold, the PID calculation output MVn falls below 80% (for example, 20%) in an attempt to reduce the fan speed. Next, assuming that the operation is switched to the load operation, the PID calculation output MVn immediately after the switching is 20% (too small), which causes a state of PV> SV. Therefore, when the control (a) is applied, the PID calculation output MVn−1 = 80% is returned at this time. However, the situation of the new road operation is not always the same as the situation in the previous road operation. In other words, for example, when a load operation is performed at MVn-1 = 80%, an unload operation is performed, and then the load operation is switched again, a situation where PV = SV is caused at an output of 80% or less (for example, 70%) It is possible that In this case, although the fan reaches 70% rotation speed, PV = SV = 60 ° C., the cooling continues at 80% rotation speed. Therefore, the discharge air is PV <60 ° C. (for example, 20 ° C.). The PID calculation output at this time is PV = 20 ° C. with respect to the target of PV = 60 ° C., and thus is too small for 70% of the original value (PID also has an integral element) So 0%). In this way, the PID calculation output MVn does not exceed MVn-1.

上記のとおり、PV=SVとなった時点で、MVn-1からMVnに切り替えることができるようにMVn-1を徐々に減少させていき、PID演算出力MVnがMVn-1と同一になった時点(PV=SVとなる。)でMVnを出力する。この場合には、「本発明の吐出温度制御系の応答時定数以上の時定数に相当する速度で減少させる」と説明したように、MVn(ファンの回転数)を変化させたときに、このMVnの変化分がPV(温度変化)に現れる時間(系の時定数)以上に時間を費やしてMVn-1を減少させれば(例えば、MVn-1をステップ状に10%変化させたときに10秒かかってほぼ定常状態になるのが系の特性とすれば、制御演算においては20秒かけてMVn-1を10%変化させる。)、MVn-1が小さくなるに従ってPVがSVに接近して行く。そして、MVn-1が小さくなってきてPVがSVに接近すると、当然MVn-1がMVnに接近して行くこととなる。   As described above, when PV = SV, MVn-1 is gradually decreased so that it can be switched from MVn-1 to MVn, and when the PID calculation output MVn becomes the same as MVn-1. MVn is output at (PV = SV). In this case, when MVn (the number of rotations of the fan) is changed, as described in "Decrease at a speed corresponding to a time constant greater than or equal to the response time constant of the discharge temperature control system of the present invention" If MVn-1 is decreased by spending more time than the time when the change in MVn appears in PV (temperature change) (system time constant) (for example, when MVn-1 is changed stepwise by 10%) If the characteristic of the system is that it takes about 10 seconds to reach a steady state, MVn-1 is changed by 10% over 20 seconds in the control calculation.) As MVn-1 becomes smaller, PV approaches SV. Go. When MVn-1 becomes smaller and PV approaches SV, naturally MVn-1 approaches MVn.

図8のフローチャートにおいて、iがImaxを超えているかどうかの判断は全閉運転から全開運転に切り替わった後に相当な時間が経過してもPID演算出力MVnがPID演算出力MVn-1を超えないかどうかの判断である。また図8のフローチャートにおいて、ΔMは1制御周期当たりのMVn-1の減少量であり、ΔMの大きさは上述のように本発明の吐出温度制御系の応答時定数以上の時定数に相当する速度で減少させるべく設定される。そして、そのMVn-1の減少はkがKmaxを超えるまで、すなわちKmax回ループを回る間継続される。   In the flowchart of FIG. 8, whether or not i exceeds Imax is determined by whether the PID calculation output MVn does not exceed the PID calculation output MVn-1 even if a considerable time has elapsed after switching from the fully closed operation to the fully open operation. It is judgment of whether. In the flowchart of FIG. 8, ΔM is the amount of decrease in MVn−1 per control cycle, and the magnitude of ΔM corresponds to a time constant that is greater than or equal to the response time constant of the discharge temperature control system of the present invention as described above. Set to decrease at speed. Then, the decrease in MVn-1 is continued until k exceeds Kmax, that is, while the loop is repeated Kmax times.

ところで、圧縮機本体の回転数が可変、いわゆる回転数制御の圧縮機の場合は、圧縮機本体の各回転数毎の熱量比のデータを予め演算器に記憶させておき、圧縮機本体の回転数が変わった場合にフィードフォワード動作として、MVnを変えればさらに制御の追従性が向上する。例えば、圧縮機本体の回転数が80%回転数で熱量比を100%とし、60%回転数で熱量比を75%とした場合の例を述べると、圧縮機本体の回転数が80%回転数でMVn=60%であれば、80%回転数から60%回転数に変更されたときに、補正係数として0.75(=75%/100%)を求め、MVn=60×0.75と先行動作させればよい。ここで、MVnは前述のようにPID演算により求められた値である。圧縮機本体の回転数変更直前には制御系が定常的な状態にあったとすれば、その時点のMVnは、それまでの吐出ガス温度の制御偏差積分値に基づいた積分動作から来るもののみとなっている。このフィードフォワード動作としての補正係数の導入により、圧縮機本体の回転数が変更された直後の積分動作の値は強制的に変更される。ただし、それ以後の積分動作については、それ以後の制御偏差の積分値に積分動作ゲインを乗じた値を、その補正係数を乗じることなく、前記の強制的に変更された結果の値に加算して、その加算後の値を積分動作の値とする。   By the way, in the case of a compressor with a variable number of revolutions of the compressor body, that is, a so-called revolution number controlled compressor, the calorific value data for each revolution number of the compressor body is stored in advance in an arithmetic unit, and the compressor body rotation If the MVn is changed as the feedforward operation when the number changes, the control followability is further improved. For example, when the rotation speed of the compressor body is 80% and the heat ratio is 100%, the heat speed ratio is 75% when the rotation speed is 60%, the rotation speed of the compressor body is 80%. If the number is MVn = 60%, 0.75 (= 75% / 100%) is obtained as a correction coefficient when the speed is changed from 80% to 60%, and MVn = 60 × 0.75. And the preceding operation may be performed. Here, MVn is a value obtained by PID calculation as described above. Assuming that the control system is in a steady state immediately before changing the rotation speed of the compressor body, the MVn at that time is only that resulting from the integration operation based on the control deviation integral value of the discharge gas temperature so far. It has become. By introducing the correction coefficient as the feedforward operation, the value of the integral operation immediately after the rotation speed of the compressor body is changed is forcibly changed. However, for the subsequent integral operation, the value obtained by multiplying the integral value of the subsequent control deviation by the integral operation gain is added to the value of the forcibly changed result without multiplying the correction coefficient. Then, the value after the addition is set as the value of the integration operation.

なお、本発明の形態5以降においては、パッケージ形圧縮機が空冷式(熱交換器を冷却ファンで冷却する構成。)である場合を例として説明した。しかしながら、パッケージ形圧縮機が水冷式(熱交換器を水ポンプで供給する冷却水で冷却する構成。)であっても同様であるから。空冷式の圧縮機に限定されるものではない。   In the fifth and subsequent embodiments of the present invention, the case where the package type compressor is an air cooling type (a configuration in which the heat exchanger is cooled by a cooling fan) has been described as an example. However, even if the package type compressor is a water-cooled type (a configuration in which the heat exchanger is cooled by cooling water supplied by a water pump). It is not limited to an air-cooled compressor.

本発明の形態1に係るパッケージ形圧縮機の模式的系統図である。It is a typical systematic diagram of the package type compressor which concerns on Embodiment 1 of this invention. 本発明の形態2に係るパッケージ形圧縮機の模式的系統図である。It is a typical systematic diagram of the package type compressor which concerns on the form 2 of this invention. 本発明の形態3に係るパッケージ形油冷式圧縮機の模式的系統図である。It is a typical systematic diagram of the package type oil cooling type compressor concerning form 3 of the present invention. 本発明の形態4に係るパッケージ形油冷式圧縮機の模式的系統図である。It is a typical systematic diagram of the package type oil-cooled compressor which concerns on form 4 of this invention. 本発明の形態5に係るパッケージ形油冷式圧縮機の模式的系統図である。It is a typical systematic diagram of the package type oil-cooled compressor which concerns on Embodiment 5 of this invention. 従来例に係るパッケージ形油冷式圧縮機の模式的系統説明図である。It is typical system explanatory drawing of the package type oil-cooled compressor which concerns on a prior art example. 本発明において、全開/全閉される流量調整弁を用いたパッケージ形油冷式圧縮機の制御演算フローチャートである。In this invention, it is a control calculation flowchart of the package type oil-cooled compressor using the flow regulating valve fully opened / closed. 本発明において、全開/全閉される流量調整弁を用いたパッケージ形油冷式圧縮機の制御演算フローチャートである。In this invention, it is a control calculation flowchart of the package type oil-cooled compressor using the flow regulating valve fully opened / closed.

符号の説明Explanation of symbols

1…圧縮機本体
2…モータ
3…吸込流路(空気)
4…流量調整弁(吸込空気)
5…吐出流路(空気)
6…熱交換機(ガス冷却手段),6a…熱交換機,6b…熱交換機.6c…熱交換機
7…温度検出器(温度検出手段)
8…演算器(制御手段)
9…冷却ファン(ガス冷却手段),9a…水ポンプ
10…パッケージ、10a…放風口
11…冷却水供給流路
12…冷却水戻し流路
13…油分離回収器
14…油分離エレメント
15…油溜まり部
16…油供給流路
17…油フィルタ
18…コイル温度検出器
DESCRIPTION OF SYMBOLS 1 ... Compressor main body 2 ... Motor 3 ... Suction flow path (air)
4 ... Flow control valve (suction air)
5 ... Discharge flow path (air)
6 ... heat exchanger (gas cooling means), 6a ... heat exchanger, 6b ... heat exchanger. 6c ... heat exchanger 7 ... temperature detector (temperature detection means)
8 ... Calculator (control means)
DESCRIPTION OF SYMBOLS 9 ... Cooling fan (gas cooling means), 9a ... Water pump 10 ... Package, 10a ... Air outlet 11 ... Cooling water supply flow path 12 ... Cooling water return flow path 13 ... Oil separation recovery device 14 ... Oil separation element 15 ... Oil Reservoir 16: Oil supply flow path 17 ... Oil filter 18 ... Coil temperature detector

Claims (14)

吸込流路から吸込んだ吸込ガスを圧縮する圧縮機本体を備え、この圧縮機本体の吐出口から吐出された吐出ガスをガス供給先側に供給する吐出流路を備えた圧縮機において、前記吐出流路に吐出ガスの温度を検出するガス温度検出手段を設けると共に、前記吐出ガスを冷却するガス冷却手段を設け、前記ガス温度検出手段で検出される吐出ガスの温度情報に基づいて、吐出ガスが予め定めた所定温度になるように、前記ガス冷却手段を制御する制御手段を設けたことを特徴とする圧縮機。   A compressor comprising a compressor main body that compresses suction gas sucked from a suction flow passage, and a discharge flow passage that supplies discharge gas discharged from a discharge port of the compressor main body to a gas supply destination side. Gas temperature detection means for detecting the temperature of the discharge gas is provided in the flow path, and gas cooling means for cooling the discharge gas is provided. Based on the temperature information of the discharge gas detected by the gas temperature detection means, the discharge gas A compressor comprising control means for controlling the gas cooling means so that the temperature becomes a predetermined temperature. 前記ガス冷却手段は、ファンと、このファンから送風される空気と内部を流れる吐出ガスとが熱交換する空冷式熱交換器とから構成され、前記ガス冷却手段の制御が前記ファンの回転数を変更する制御であることを特徴とする請求項1に記載の圧縮機。   The gas cooling means includes a fan, and an air-cooled heat exchanger that exchanges heat between the air blown from the fan and the discharge gas flowing through the fan, and the control of the gas cooling means controls the rotational speed of the fan. The compressor according to claim 1, wherein the control is changed. 前記ガス冷却手段は、外部から冷却液が導入され、かつその内部を流れる吐出ガスと冷却液が熱交換する液冷式油熱交換器で構成され、前記ガス冷却手段の制御が前記液冷式油熱交換器に導入される冷却液の液量であることを特徴とする請求項1に記載の圧縮機。   The gas cooling means is composed of a liquid-cooled oil heat exchanger in which a cooling liquid is introduced from the outside and heat is exchanged between the discharge gas flowing inside and the cooling liquid, and the control of the gas cooling means is the liquid-cooling type The compressor according to claim 1, wherein the compressor is an amount of cooling liquid introduced into the oil heat exchanger. 前記吸込流路に全開/全閉される流量調整弁が介装されており、前記制御手段は、前記流量調整弁の全開運転のPID演算出力MVn-1を記憶し、全閉運転後の全開運転時にPID演算出力MVnを演算し、このPID演算出力MVnが前記PID演算出力MVn-1を超えないときにはMVn-1を出力して前記ガス冷却手段を制御する一方、MVn-1を超えたときにはMVnを出力して前記ガス冷却手段を制御するものであることを特徴とする請求項1に記載の圧縮機。   A flow regulating valve that is fully opened / closed is provided in the suction flow path, and the control means stores a PID calculation output MVn-1 of the fully opened operation of the flow regulating valve, and is fully opened after the fully closed operation. A PID calculation output MVn is calculated during operation, and when the PID calculation output MVn does not exceed the PID calculation output MVn-1, MVn-1 is output to control the gas cooling means, whereas when MVn-1 is exceeded. 2. The compressor according to claim 1, wherein the gas cooling means is controlled by outputting MVn. 吸込流路から吸込んだ吸込ガスを圧縮する圧縮機本体を備え、この圧縮機本体の吐出口から吐出された油分を含む吐出ガスから油分を分離する油分離回収器が介装され、油分分離後の吐出ガスをガス供給先側に供給する吐出流路を備え、前記油分離回収器から前記圧縮機本体に、油を供給する油供給流路を備えた圧縮機において、前記吐出流路に吐出ガスの温度を検出するガス温度検出手段を設け、前記油供給流路に油を冷却する油冷却手段を設け、前記ガス温度検出手段で検出される吐出ガスの温度情報に基づいて、吐出ガスが予め定めた所定温度になるように、前記油冷却手段を制御する制御手段を設けたことを特徴とする圧縮機。   A compressor body that compresses the suction gas sucked in from the suction flow path is provided, and an oil separation and recovery device that separates the oil component from the discharge gas including the oil component discharged from the discharge port of the compressor body is interposed. In a compressor having an oil supply channel for supplying oil from the oil separation and recovery device to the compressor body, the discharge gas is discharged into the discharge channel. Gas temperature detection means for detecting the gas temperature is provided, oil cooling means for cooling the oil is provided in the oil supply flow path, and the discharge gas is detected based on the temperature information of the discharge gas detected by the gas temperature detection means. The compressor characterized by providing the control means which controls the said oil cooling means so that it may become predetermined predetermined temperature. 前記油冷却手段は、ファンと、このファンから送風される空気と内部を流れる油とが熱交換する空冷式熱交換器とから構成され、前記油冷却手段の制御が前記ファンの回転数を変更する制御であることを特徴とする請求項5に記載の圧縮機。   The oil cooling means is composed of a fan and an air-cooled heat exchanger that exchanges heat between the air blown from the fan and the oil flowing inside, and the control of the oil cooling means changes the rotation speed of the fan. The compressor according to claim 5, wherein the control is performed. 前記油冷却手段は、外部から冷却液が導入され、かつその内部を流れる油と冷却液が熱交換する液冷式油熱交換器で構成され、前記油冷却手段の制御が前記液冷式油熱交換器に導入される冷却液の液量であることを特徴とする請求項5に記載の圧縮機。   The oil cooling means is composed of a liquid-cooled oil heat exchanger in which a coolant is introduced from the outside and heat exchanges between the oil flowing in the oil and the coolant, and the control of the oil cooling means is controlled by the liquid-cooled oil 6. The compressor according to claim 5, wherein the amount of the coolant introduced into the heat exchanger is the amount of the coolant. 前記吸込流路に全開/全閉される流量調整弁が介装されており、前記制御手段は、前記流量調整弁の全開運転のPID演算出力MVn-1を記憶し、全閉運転後の全開運転時にPID演算出力MVnを演算し、このPID演算出力MVnが前記PID演算出力MVn-1を超えないときにはMVn-1を出力して前記油冷却手段を制御する一方、MVn-1を超えたときにはMVnを出力して前記油冷却手段を制御するものであることを特徴とする請求項5に記載の圧縮機。   A flow regulating valve that is fully opened / closed is provided in the suction flow path, and the control means stores a PID calculation output MVn-1 of the fully opened operation of the flow regulating valve, and is fully opened after the fully closed operation. A PID calculation output MVn is calculated during operation, and when the PID calculation output MVn does not exceed the PID calculation output MVn-1, MVn-1 is output to control the oil cooling means, whereas when MVn-1 is exceeded. 6. The compressor according to claim 5, wherein the oil cooling means is controlled by outputting MVn. モータにより回転され、吸込流路から吸込んだ吸込ガスを圧縮する圧縮機本体を備え、この圧縮機本体の吐出口から吐出された油分を含む吐出ガスから油分を分離する油分離回収器が介装され、油分分離後の吐出ガスをガス供給先側に供給する吐出流路を備え、前記油分離回収器から前記圧縮機本体に、油を供給する油供給流路を備えた圧縮機において、前記吐出流路に吐出ガスの温度を検出するガス温度検出手段を設け、前記モータに該モータのコイルの温度を検出するコイル温度検出手段を設け、前記油供給流路に油を冷却する油冷却手段を設け、前記コイルの温度が予め定めた第1の所定温度以上であるときは、コイルの温度情報に基づいてコイルの温度が前記第1の所定温度以下になるように、前記コイルの温度が前記第1の所定温度未満であって、前記吐出ガスの温度が予め定めた第2の所定温度以上である場合には、吐出ガスの温度情報に基づいて吐出ガスの温度が第2の所定温度以下になるように、前記油冷却手段を制御する制御手段を設けたことを特徴とする圧縮機。   An oil separation and recovery device is provided that includes a compressor body that is rotated by a motor and compresses the suction gas sucked from the suction flow path, and that separates the oil component from the discharge gas including the oil component discharged from the discharge port of the compressor body. A compressor including an oil supply flow path for supplying oil from the oil separation and recovery device to the compressor body, including a discharge flow path for supplying a discharge gas after oil separation to a gas supply destination side, Oil temperature detecting means for detecting the temperature of the discharge gas in the discharge flow path, coil temperature detecting means for detecting the temperature of the coil of the motor in the motor, and oil cooling means for cooling the oil in the oil supply flow path And when the coil temperature is equal to or higher than a predetermined first predetermined temperature, the coil temperature is set so that the coil temperature is equal to or lower than the first predetermined temperature based on the coil temperature information. The first predetermined temperature And when the temperature of the discharge gas is equal to or higher than a predetermined second predetermined temperature, based on the temperature information of the discharge gas, the temperature of the discharge gas is equal to or lower than the second predetermined temperature. A compressor comprising a control means for controlling the oil cooling means. 前記吸込流路に全開/全閉される流量調整弁が介装されており、前記制御手段は、前記吐出ガスの温度情報に基づいて前記吐出ガスの温度が第2の所定温度以下になるように制御する場合に、前記流量調整弁の全開運転のPID演算出力MVn-1を記憶し、全閉運転後の全開運転時にPID演算出力MVnを演算し、このPID演算出力MVnが前記PID演算出力MVn-1を超えないときにはMVn-1を出力して前記油冷却手段を制御する一方、MVn-1を超えたときにはMVnを出力して前記油冷却手段を制御するものであることを特徴とする請求項9に記載の圧縮機。   A flow rate adjusting valve that is fully opened / closed is interposed in the suction flow path, and the control means is configured so that the temperature of the discharge gas becomes a second predetermined temperature or less based on temperature information of the discharge gas. When the control is performed, the PID calculation output MVn-1 of the fully open operation of the flow rate adjusting valve is stored, and the PID calculation output MVn is calculated at the fully open operation after the fully closed operation, and this PID calculation output MVn is the PID calculation output. When MVn-1 is not exceeded, MVn-1 is output to control the oil cooling means, whereas when MVn-1 is exceeded, MVn is output to control the oil cooling means. The compressor according to claim 9. 吸込流路から吸込んだ吸込ガスを圧縮する圧縮機本体と、前記圧縮機本体の吐出口から吐出された吐出ガスをガス供給先側に供給する吐出流路を備えた圧縮機において、前記吸込流路に介装された、全開/全閉される流量調整弁と、前記吐出流路に設けられた、前記吐出ガスの温度を検出するガス温度検出手段と、前記吐出ガスを冷却するために有効な冷却手段と、前記ガス温度検出手段で検出される前記吐出ガスの温度情報に基づいて、前記吐出ガスが予め定めた所定温度になるように、前記冷却手段を制御する制御手段を備え、前記制御手段は、前記流量調整弁の全開運転のPID演算出力MVn-1を記憶し、全閉運転後の全開運転時にPID演算出力MVnを演算し、このPID演算出力MVnが前記PID演算出力MVn-1を超えないときにはMVn-1を出力して前記ガス冷却手段を制御する一方、MVn-1を超えたときにはMVnを出力して前記ガス冷却手段を制御するものであることを特徴とする圧縮機。   In the compressor comprising a compressor main body that compresses the suction gas sucked from the suction flow path, and a discharge flow path that supplies the discharge gas discharged from the discharge port of the compressor main body to the gas supply destination side, the suction flow A flow regulating valve that is fully opened / closed provided in the passage, a gas temperature detecting means for detecting the temperature of the discharge gas provided in the discharge flow path, and effective for cooling the discharge gas And a control means for controlling the cooling means so that the discharge gas has a predetermined temperature based on temperature information of the discharge gas detected by the gas temperature detection means, The control means stores the PID calculation output MVn-1 of the fully open operation of the flow rate adjusting valve, calculates the PID calculation output MVn at the fully open operation after the fully closed operation, and this PID calculation output MVn is the PID calculation output MVn- When not exceeding 1 Compressor, characterized in that while controlling the gas cooling means outputs MVn-1, when exceeded MVn-1 is to control the gas cooling means outputs a MVn is. 前記制御装置が、前記MVnが前記MVn-1を超えることがなく、所定の時間以上に亘って前記MVn-1が出力されるときには、前記MVn-1を系の応答時定数以上の時間で減少させ、温度測定値PVが温度設定値SVになった時点で、前記MVn-1から前記MVnに切り替えるものであることを特徴とする請求項4,8,10または11に記載の圧縮機。   When the MVn-1 does not exceed the MVn-1 and the MVn-1 is output for a predetermined time or more, the controller decreases the MVn-1 by a time longer than the response time constant of the system. The compressor according to claim 4, 8, 10, or 11, wherein the MVn-1 is switched to the MVn when the temperature measurement value PV reaches the temperature set value SV. モータにより回転され、全開/全閉される流量調整弁が介装されてなる吸込流路から吸込んだ吸込ガスを圧縮する圧縮機本体を備え、ガス冷却手段が介装され、前記圧縮機本体の吐出口から吐出された吐出ガスをガス供給先側に供給する吐出流路を備えた圧縮機の運転方法において、前記流量調整弁の全開運転のPID演算出力MVn-1を記憶し、全閉運転後の全開運転時にPID演算出力MVnを演算し、このPID演算出力MVnが前記PID演算出力MVn-1を超えないときにはMVn-1を出力して前記ガス冷却手段を制御する一方、MVn-1を超えたときにはMVnを出力して前記ガス冷却手段を制御することを特徴とする圧縮機の運転方法。   A compressor body that compresses the suction gas sucked from a suction flow path that is rotated by a motor and is provided with a flow rate adjustment valve that is fully opened / closed is provided. In the operation method of the compressor provided with the discharge flow path for supplying the discharge gas discharged from the discharge port to the gas supply destination side, the PID calculation output MVn-1 of the fully opened operation of the flow rate adjusting valve is stored, and the fully closed operation is performed When the PID calculation output MVn is calculated during the subsequent full-open operation and this PID calculation output MVn does not exceed the PID calculation output MVn-1, the MVn-1 is output to control the gas cooling means. When exceeded, MVn is output and the said gas cooling means is controlled, The operating method of the compressor characterized by the above-mentioned. 前記MVnが前記MVn-1を超えることがなく、所定の時間以上に亘ってMVn-1が出力されるときには、MVn-1を系の応答時定数以上の時間で減少させ、温度測定値PVが温度設定値SVになった時点で、MVn-1からMVnに切り替えて前記ガス冷却手段を制御することを特徴とする請求項13に記載の圧縮機の運転方法。

When MVn-1 does not exceed MVn-1 and MVn-1 is output for a predetermined time or more, MVn-1 is decreased in a time longer than the response time constant of the system, and the measured temperature PV is 14. The operation method of a compressor according to claim 13, wherein the gas cooling means is controlled by switching from MVn-1 to MVn when the temperature set value SV is reached.

JP2004222078A 2003-07-30 2004-07-29 Compressor and operation method thereof Active JP4418321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004222078A JP4418321B2 (en) 2003-07-30 2004-07-29 Compressor and operation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003282910 2003-07-30
JP2004222078A JP4418321B2 (en) 2003-07-30 2004-07-29 Compressor and operation method thereof

Publications (2)

Publication Number Publication Date
JP2005061402A true JP2005061402A (en) 2005-03-10
JP4418321B2 JP4418321B2 (en) 2010-02-17

Family

ID=34380201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004222078A Active JP4418321B2 (en) 2003-07-30 2004-07-29 Compressor and operation method thereof

Country Status (1)

Country Link
JP (1) JP4418321B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007255397A (en) * 2006-03-27 2007-10-04 Mitsubishi Electric Corp Air compressor for vehicle
JP2009121398A (en) * 2007-11-16 2009-06-04 Hitachi Industrial Equipment Systems Co Ltd Oil cooled air compressor
JP2009243767A (en) * 2008-03-31 2009-10-22 Sanden Corp Cold system
CN102192555A (en) * 2010-04-08 2011-09-21 东莞市中日盛达压缩机有限公司 Residual heat recycling system of air compressor
US8246318B2 (en) 2007-06-19 2012-08-21 Hitachi Industrial Equipment Systems Co., Ltd. Water-cooled air compressor
US8425198B2 (en) 2009-03-13 2013-04-23 Hitachi Industrial Equipment Systems Co., Ltd. Air compressor
JP2013108357A (en) * 2011-11-17 2013-06-06 Kobe Steel Ltd Compression apparatus
JP2015096731A (en) * 2014-12-19 2015-05-21 株式会社日立産機システム Oilless compressor and control method for the same
JP2017223235A (en) * 2013-07-31 2017-12-21 株式会社神戸製鋼所 Oil cooling type air compressor and control method therefor
KR20230151536A (en) 2021-03-17 2023-11-01 코벨코 컴프레서 가부시키가이샤 Compressor and its control method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007255397A (en) * 2006-03-27 2007-10-04 Mitsubishi Electric Corp Air compressor for vehicle
US8246318B2 (en) 2007-06-19 2012-08-21 Hitachi Industrial Equipment Systems Co., Ltd. Water-cooled air compressor
JP2009121398A (en) * 2007-11-16 2009-06-04 Hitachi Industrial Equipment Systems Co Ltd Oil cooled air compressor
JP2009243767A (en) * 2008-03-31 2009-10-22 Sanden Corp Cold system
US8425198B2 (en) 2009-03-13 2013-04-23 Hitachi Industrial Equipment Systems Co., Ltd. Air compressor
CN102192555A (en) * 2010-04-08 2011-09-21 东莞市中日盛达压缩机有限公司 Residual heat recycling system of air compressor
JP2013108357A (en) * 2011-11-17 2013-06-06 Kobe Steel Ltd Compression apparatus
KR101359202B1 (en) 2011-11-17 2014-02-06 가부시키가이샤 고베 세이코쇼 Compression apparatus
JP2017223235A (en) * 2013-07-31 2017-12-21 株式会社神戸製鋼所 Oil cooling type air compressor and control method therefor
JP2015096731A (en) * 2014-12-19 2015-05-21 株式会社日立産機システム Oilless compressor and control method for the same
KR20230151536A (en) 2021-03-17 2023-11-01 코벨코 컴프레서 가부시키가이샤 Compressor and its control method

Also Published As

Publication number Publication date
JP4418321B2 (en) 2010-02-17

Similar Documents

Publication Publication Date Title
JP3347103B2 (en) How to run a compressor in steady state
US11614084B2 (en) Gas compressor
JP4627492B2 (en) Oil-cooled screw compressor
US20020021969A1 (en) Compressor, its control device and control method
JP4418321B2 (en) Compressor and operation method thereof
JP2009501290A (en) Oil supply type compressor provided with oil temperature adjusting means
JP2014214704A (en) Oil-cooled compressor
JPH09287580A (en) Screw compressor and operation method thereof
WO2017212623A1 (en) Air compressor
JP5989072B2 (en) Oil-free compressor and control method thereof
US7094037B2 (en) Oil-cooled compressor
JP5084460B2 (en) Oil-cooled air compressor
JP4767133B2 (en) Refrigeration cycle equipment
CN114341495A (en) Compressor, monitoring system and monitoring method of compressor
JP6258422B2 (en) Compressor and control method thereof
JP5506830B2 (en) Screw compressor
CN100383388C (en) Compressor
JP4792383B2 (en) Operation method of screw compressor
JP4795977B2 (en) Compressor operation method
JP2765613B2 (en) heat pump
JP3934600B2 (en) Cooling system
JP3934601B2 (en) Air conditioner
JP5464447B2 (en) Liquid-cooled compressor
JP2002317786A (en) Oil injection type compressor and operating method thereof
JPH11336684A (en) Jacket cooling device for oil-free screw compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091127

R150 Certificate of patent or registration of utility model

Ref document number: 4418321

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131204

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350