JP2005060217A - Silica sol and manufacturing method therefor - Google Patents

Silica sol and manufacturing method therefor Download PDF

Info

Publication number
JP2005060217A
JP2005060217A JP2004216371A JP2004216371A JP2005060217A JP 2005060217 A JP2005060217 A JP 2005060217A JP 2004216371 A JP2004216371 A JP 2004216371A JP 2004216371 A JP2004216371 A JP 2004216371A JP 2005060217 A JP2005060217 A JP 2005060217A
Authority
JP
Japan
Prior art keywords
silica sol
water
silica
solvent containing
organic solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004216371A
Other languages
Japanese (ja)
Other versions
JP4566645B2 (en
Inventor
Takahiro Yamakawa
恭弘 山川
Yoshiaki Tomota
好昭 友田
Keiji Toyama
景司 外山
Masatoshi Sakai
正年 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuso Chemical Co Ltd
Original Assignee
Fuso Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuso Chemical Co Ltd filed Critical Fuso Chemical Co Ltd
Priority to JP2004216371A priority Critical patent/JP4566645B2/en
Publication of JP2005060217A publication Critical patent/JP2005060217A/en
Application granted granted Critical
Publication of JP4566645B2 publication Critical patent/JP4566645B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To prepare a silica sol which can be suitably used as a material such as a polishing material for an electronic material and a silicon wafer requiring high purity, which has uniform particle diameters of silica fine particles, and which has excellent long-term storage stability, an increased concentration of the silica fine particles in a reaction solution and excellent productivity, and to provide a manufacturing method therefor. <P>SOLUTION: The method for manufacturing the silica sol is characterized in that an organic solvent containing tetramethoxy silane and a solvent containing an alkali catalyst and water are added to an organic solvent containing an alkali catalyst and water, thereby subjecting the tetramethoxy silane to hydrolysis and polycondensation to manufacture the silica sol. The silica sol has silica fine particles dispersed in water, and has 20 to 1,000 nm average secondary particle size of the silica fine particles, ≤1 ppm metal impurity content, and 10 to 50 wt.% silica concentration. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はシリカゾル及びその製造方法に係り、その目的は高純度であることが要求される電子材料やシリコンウェハーなどの研磨材などの素材として好適に用いることができるとともに、シリカ微粒子の粒子径が揃っており、長期保存安定性に優れ、しかも、反応溶液中のシリカ微粒子の濃度を高濃度化することができ、生産性に優れるシリカゾル及びその製造方法を提供することにある。   The present invention relates to a silica sol and a method for producing the same, and the object thereof can be suitably used as a material such as an abrasive material such as an electronic material or a silicon wafer that is required to have high purity, and the particle size of silica fine particles is An object of the present invention is to provide a silica sol that is excellent in long-term storage stability, can increase the concentration of silica fine particles in a reaction solution, and is excellent in productivity, and a method for producing the same.

従来、シリカゾルの製造方法としては、水ガラスと呼ばれる珪酸ナトリウム溶液を出発原料とする製造方法が知られている(特許文献1参照)。この製造方法では、珪酸ナトリウム溶液を陽イオン交換樹脂で処理して、ナトリウムイオンを始めとするイオンを取り除くことにより出発原料の純度を上昇させた後、シリカゾルの製造に供される。
しかしながら、この製造方法では、イオン交換による高純度化に限界があり、電子材料用途に必要とされるナトリウムなどのアルカリ金属や銅・ニッケル・アルミニウムなどの金属不純物の含有量を1ppmレベル以下に到達することは困難である。
Conventionally, as a method for producing silica sol, a production method using a sodium silicate solution called water glass as a starting material is known (see Patent Document 1). In this production method, a sodium silicate solution is treated with a cation exchange resin to remove ions such as sodium ions, and the purity of the starting material is increased, and then the silica sol is produced.
However, in this manufacturing method, there is a limit to high purity by ion exchange, and the content of alkali metals such as sodium and metal impurities such as copper, nickel, and aluminum required for electronic material applications has reached 1 ppm level or less. It is difficult to do.

高純度シリカゾルを得るその他の方法として正珪酸エチルなどの高純度アルコキシシランの加水分解による方法が知られている(特許文献2乃至4参照)。
しかしながら、従来知られているアルコキシシランの加水分解による製造方法では、反応溶液中のシリカ微粒子の濃度がある一定以上に上昇すると、シリカ微粒子の成長が均一に行なわれず、微細な粒子が混合したゾルが形成される。このために、粒子径の揃ったシリカゾルを得ようとすると、シリカ微粒子の濃度を低下させざるを得ず、生産性の面で問題があった。
As another method for obtaining a high-purity silica sol, a method by hydrolysis of a high-purity alkoxysilane such as normal ethyl silicate is known (see Patent Documents 2 to 4).
However, in the conventionally known production method by hydrolysis of alkoxysilane, if the concentration of silica fine particles in the reaction solution rises above a certain level, silica fine particles are not grown uniformly, and a sol in which fine particles are mixed is used. Is formed. For this reason, when trying to obtain a silica sol having a uniform particle diameter, the concentration of the silica fine particles has to be lowered, which is problematic in terms of productivity.

特開昭61−158810号公報JP 61-158810 A 特開昭63−74911号公報JP-A-63-74911 特開平6−316407号公報JP-A-6-316407 特開平11−60232号公報Japanese Patent Laid-Open No. 11-60232

本発明の解決しようとする課題は、高純度であることが要求される電子材料やシリコンウェハーなどの研磨材などの素材として好適に用いることができるとともに、シリカ微粒子の粒子径が揃っており、長期保存安定性に優れ、しかも、反応溶液中のシリカ微粒子の濃度を高濃度化することができ、生産性に優れるシリカゾル及びその製造方法を提供することである。   The problem to be solved by the present invention can be suitably used as a material such as an abrasive material such as an electronic material or a silicon wafer that is required to have high purity, and the particle size of silica fine particles is uniform, An object of the present invention is to provide a silica sol that is excellent in long-term storage stability, can increase the concentration of silica fine particles in a reaction solution, and is excellent in productivity, and a method for producing the same.

本発明は上記課題を解決するためになされた発明であって、請求項1に係る発明は、テトラメトキシシランを含む有機溶媒と、アルカリ触媒及び水を含む溶媒とを、アルカリ触媒及び水を含む有機溶媒に添加することによりテトラメトキシシランを加水分解及び重縮合させてシリカゾルを製造することを特徴とするシリカゾルの製造方法に関する。
請求項2に係る発明は、(a)テトラメトキシシランを含む有機溶媒と、アルカリ触媒及び水を含む溶媒とを、アルカリ触媒及び水を含む有機溶媒に添加することによりテトラメトキシシランを加水分解及び重縮合させてシリカゾルを製造する工程、(b)シリカゾルの分散媒を水で置換する工程の(a)及び(b)の各工程を含むことを特徴とするシリカゾルの製造方法に関する。
請求項3に係る発明は、前記有機溶媒がメタノールであることを特徴とする請求項1又は2に記載のシリカゾルの製造方法に関する。
請求項4に係る発明は、前記アルカリ触媒がアンモニアであることを特徴とする請求項1乃至3のいずれかに記載のシリカゾルの製造方法に関する。
請求項5に係る発明は、前記テトラメトキシシランを含む有機溶媒の濃度が30重量%以下であることを特徴とする請求項1乃至4いずれかに記載のシリカゾルの製造方法に関する。
請求項6に係る発明は、前記アルカリ触媒及び水を含む有機溶媒の液温を0〜70℃に維持しながら、前記テトラメトキシシランを含む有機溶媒とアルカリ触媒及び水を含む溶媒とを同時又は交互に30分以上かけて添加することを特徴とする請求項1乃至5のいずれかに記載のシリカゾルの製造方法に関する。
請求項7に係る発明は、シリカ微粒子が水中に分散してなるシリカゾルであって、該シリカ微粒子の平均二次粒子径が20〜1000nm、二次粒子の平均粒子径が一次粒子の平均粒子径の1.5〜3.0倍であり、金属不純物含有量が1ppm以下、シリカ濃度が10〜50重量%であることを特徴とするシリカゾルに関する。
The present invention has been made to solve the above-mentioned problems, and the invention according to claim 1 includes an organic solvent containing tetramethoxysilane, a solvent containing an alkali catalyst and water, an alkali catalyst and water. The present invention relates to a method for producing a silica sol, which is produced by hydrolyzing and polycondensing tetramethoxysilane by adding it to an organic solvent.
The invention according to claim 2 is a method for hydrolyzing tetramethoxysilane by adding (a) an organic solvent containing tetramethoxysilane and a solvent containing an alkali catalyst and water to an organic solvent containing an alkali catalyst and water. The present invention relates to a method for producing a silica sol comprising the steps of producing a silica sol by polycondensation, and (b) steps (a) and (b) of replacing the dispersion medium of the silica sol with water.
The invention according to claim 3 relates to the method for producing a silica sol according to claim 1 or 2, wherein the organic solvent is methanol.
The invention according to claim 4 relates to the method for producing a silica sol according to any one of claims 1 to 3, wherein the alkali catalyst is ammonia.
The invention according to claim 5 relates to a method for producing a silica sol according to any one of claims 1 to 4, wherein the concentration of the organic solvent containing tetramethoxysilane is 30% by weight or less.
In the invention according to claim 6, the organic solvent containing the tetramethoxysilane and the solvent containing the alkali catalyst and water are used simultaneously or while maintaining the liquid temperature of the organic solvent containing the alkali catalyst and water at 0 to 70 ° C. The method for producing a silica sol according to any one of claims 1 to 5, wherein the silica sol is alternately added over 30 minutes.
The invention according to claim 7 is a silica sol in which silica fine particles are dispersed in water, wherein the silica particles have an average secondary particle size of 20 to 1000 nm, and the secondary particles have an average particle size of primary particles. And a metal impurity content of 1 ppm or less and a silica concentration of 10 to 50% by weight.

請求項1及び2に係る発明は、高純度であることが要求される電子材料やシリコンウェハーなどの研磨材などの素材として好適に用いることができるとともに、シリカ微粒子の粒子径が揃っており、長期保存安定性に優れ、しかも、反応溶液中のシリカ微粒子の濃度を高濃度化することができ、生産性に優れるシリカゾルの製造方法を提供することができる。
請求項3に係る発明は、有機溶媒としてメタノールを使用することにより、テトラメトキシシランの加水分解により生じるアルコールと同一種類のアルコールとなり、有機溶媒の回収再利用を容易に行なうことができる。
請求項4に係る発明は、アルカリ触媒としてアンモニアを使用することにより、後工程において極めて容易に除去することができる。
請求項5に係る発明は、テトラメトキシシランを含む有機溶媒やアルカリ触媒及び水を含む有機溶媒との混和性に優れ、粒径の揃った高品質のシリカゾルを製造することができる。
請求項6に係る発明は、凝集やゲル化が生じ難く、粒径の揃った高品質のシリカゲルを製造することができる。
請求項7に係る発明は、高純度であることが要求される電子材料やシリコンウェハーなどの研磨材などの素材として好適に用いることができるとともに、シリカ微粒子の粒子径が揃っており、長期保存安定性に優れ、しかも、反応溶液中のシリカ微粒子の濃度を高濃度化することができるシリカゾルを提供することができる。
The inventions according to claims 1 and 2 can be suitably used as materials such as abrasives such as electronic materials and silicon wafers that are required to have high purity, and the particle diameters of silica fine particles are uniform, A method for producing a silica sol that is excellent in long-term storage stability and that can increase the concentration of silica fine particles in the reaction solution and that is excellent in productivity can be provided.
In the invention according to claim 3, by using methanol as the organic solvent, it becomes the same kind of alcohol as produced by hydrolysis of tetramethoxysilane, and the organic solvent can be easily recovered and reused.
The invention according to claim 4 can be removed very easily in the subsequent step by using ammonia as the alkali catalyst.
The invention according to claim 5 is capable of producing a high-quality silica sol having excellent miscibility with an organic solvent containing tetramethoxysilane and an organic solvent containing an alkali catalyst and water and having a uniform particle size.
The invention according to claim 6 is capable of producing high-quality silica gel having uniform particle diameters that hardly cause aggregation or gelation.
The invention according to claim 7 can be suitably used as a material such as an abrasive material such as an electronic material or a silicon wafer that is required to have high purity, and has a uniform particle size of silica fine particles, and can be stored for a long time. A silica sol that is excellent in stability and that can increase the concentration of silica fine particles in the reaction solution can be provided.

以下、本発明に係るシリカゾル及びその製造方法について詳細に説明する。
本発明に係るシリカゾルの製造方法は、テトラメトキシシランを含む有機溶媒(以下、A液という。)と、アルカリ触媒及び水を含む溶媒(以下、C液という。)とを、アルカリ触媒及び水を含む有機溶媒(以下、B液という。)に添加することによりテトラメトキシシランを加水分解及び重縮合させてシリカゾルを製造することを特徴とする。
Hereinafter, the silica sol and the production method thereof according to the present invention will be described in detail.
The method for producing a silica sol according to the present invention comprises an organic solvent containing tetramethoxysilane (hereinafter referred to as A liquid), a solvent containing an alkali catalyst and water (hereinafter referred to as C liquid), an alkali catalyst and water. A silica sol is produced by hydrolyzing and polycondensing tetramethoxysilane by adding to an organic solvent (hereinafter referred to as “B solution”).

この工程(以下、(a)工程という。)は、ゾルゲル法によって、シリカゾルの調製が行なわれる。ゾルゲル法とは、金属の有機化合物溶液を出発原料として、溶液中の化合物の加水分解・重縮合によって溶液を金属の酸化物、或いは水酸化物の微粒子が溶解したゾルとし、更に反応を進ませてゲル化してできた非晶質ゲルを得る方法であり、本発明では、テトラメトキシシランをアルコール水溶液中で加水分解してシリカゾルを得る。   In this step (hereinafter referred to as (a) step), silica sol is prepared by a sol-gel method. In the sol-gel method, a metal organic compound solution is used as a starting material, and the solution is made into a sol in which fine particles of metal oxide or hydroxide are dissolved by hydrolysis and polycondensation of the compound in the solution, and the reaction proceeds further. In the present invention, tetramethoxysilane is hydrolyzed in an aqueous alcohol solution to obtain a silica sol.

A液は、テトラメトキシシランを有機溶媒に溶解することにより調製される。
有機溶媒としては、親水性の有機溶媒が用いられ、具体的には、メタノール、エタノール、n−プロパノール、イソプロパノール、エチレングリコール、プロピレングリコール、1,4−ブタンジオールなどのアルコール類、アセトン、メチルエチルケトン等のケトン類、酢酸エチル等のエステル類を例示することができる。
特に本発明では、アルコール類を用いることが好ましく、メタノール、エタノール、イソプロパノールを用いることがより好ましい。この理由は、後述する水置換の際に、加熱蒸留により容易に水と置換することができるからである。
さらには、有機溶媒として、テトラメトキシシランの加水分解により生じるアルコールと同一種類のアルコールであるメタノールを使用することがさらに好ましい。有機溶媒としてメタノールを用いることにより、溶媒の回収、再利用を容易に行なうことができる。
有機溶媒は一種を単独で使用することもでき、二種以上の有機溶媒を混合して使用することもできる。
Liquid A is prepared by dissolving tetramethoxysilane in an organic solvent.
As the organic solvent, a hydrophilic organic solvent is used, and specifically, alcohols such as methanol, ethanol, n-propanol, isopropanol, ethylene glycol, propylene glycol, 1,4-butanediol, acetone, methyl ethyl ketone, and the like. And ketones, and esters such as ethyl acetate.
Particularly in the present invention, alcohols are preferably used, and methanol, ethanol, and isopropanol are more preferably used. The reason for this is that water can be easily replaced by heat distillation at the time of water replacement described later.
Furthermore, it is more preferable to use methanol which is the same kind of alcohol as the alcohol generated by hydrolysis of tetramethoxysilane as the organic solvent. By using methanol as the organic solvent, the solvent can be easily recovered and reused.
An organic solvent can also be used individually by 1 type, and 2 or more types of organic solvents can also be mixed and used for it.

A液中のテトラメトキシシランの含有量は特に限定されないが、70重量%以上100重量%未満、より好ましくは85〜95重量%とされる。70重量%未満の場合、初期のB液量が少なすぎて均一に攪拌し難くなる場合がある。100重量%ではB液との混和性に劣り、ゲル状物が生成し易くなる。   The content of tetramethoxysilane in the liquid A is not particularly limited, but is 70% by weight or more and less than 100% by weight, more preferably 85 to 95% by weight. If it is less than 70% by weight, the initial amount of the B liquid may be too small to be uniformly stirred. If it is 100% by weight, the miscibility with the liquid B is inferior, and a gel-like product is easily formed.

B液中に含まれるアルカリ触媒は、アルカリ触媒として従来公知のものを使用することができるが、金属不純物の混入を極力低減するために、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラアミン、アンモニア、尿素、エタノールアミン、テトラメチル水酸化アンモニウムなどを例示することができる。
アルカリ触媒は一種を単独で使用することもでき、二種以上のアルカリ触媒を混合して使用することも可能である。
特に本発明では、触媒作用に優れるとともに、揮発性が高く、後工程で容易に除去することができるアンモニアを使用することが好ましい。
As the alkali catalyst contained in the liquid B, a conventionally known alkali catalyst can be used. In order to reduce the contamination of metal impurities as much as possible, ethylenediamine, diethylenetriamine, triethylenetetraamine, ammonia, urea, ethanol Examples thereof include amines and tetramethylammonium hydroxide.
An alkali catalyst can also be used individually by 1 type, and it is also possible to mix and use 2 or more types of alkali catalysts.
In particular, in the present invention, it is preferable to use ammonia that is excellent in catalytic action, has high volatility, and can be easily removed in a subsequent process.

B液中に含まれる有機溶媒としては、親水性の有機溶媒が用いられ、具体的には、メタノール、エタノール、n−プロパノール、イソプロパノール、エチレングリコール、プロピレングリコール、1,4−ブタンジオールなどのアルコール類、アセトン、メチルエチルケトン等のケトン類、酢酸エチル等のエステル類を例示することができる。
特に本発明では、アルコール類を用いることが好ましく、メタノール、エタノール、イソプロパノールを用いることがより好ましい。この理由は、後述する水置換の際に、加熱蒸留により容易に水と置換することができるからである。
さらには、有機溶媒として、テトラメトキシシランの加水分解により生じるアルコールと同一種類のアルコールであるメタノールを使用することや、A液に含まれるアルコールと同種のアルコールを使用することがさらに好ましい。
有機溶媒は一種を単独で使用することもでき、二種以上の有機溶媒を混合して使用することもできる。
As the organic solvent contained in the B liquid, a hydrophilic organic solvent is used. Specifically, alcohols such as methanol, ethanol, n-propanol, isopropanol, ethylene glycol, propylene glycol, and 1,4-butanediol are used. , Ketones such as acetone and methyl ethyl ketone, and esters such as ethyl acetate.
Particularly in the present invention, alcohols are preferably used, and methanol, ethanol, and isopropanol are more preferably used. The reason for this is that water can be easily replaced by heat distillation at the time of water replacement described later.
Furthermore, as the organic solvent, it is more preferable to use methanol, which is the same kind of alcohol as that generated by hydrolysis of tetramethoxysilane, or to use the same kind of alcohol as the alcohol contained in the liquid A.
An organic solvent can also be used individually by 1 type, and 2 or more types of organic solvents can also be mixed and used for it.

B液に含まれる水は、金属不純物の混入を極力低減するために、純水又は超純水を使用することが好ましい。   The water contained in the liquid B is preferably pure water or ultrapure water in order to reduce metal impurities as much as possible.

C液に含まれるアルカリ触媒としては、アルカリ触媒として従来公知のものを使用することができるが、金属不純物の混入を極力低減するために、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラアミン、アンモニア、尿素、エタノールアミン、テトラメチル水酸化アンモニウムなどを例示することができる。
特に本発明では、触媒作用に優れるとともに、揮発性が高く、後工程で容易に除去することができるアンモニアを使用することが好ましく、B液に含まれるアルカリと同種のアルカリであることが好ましい。
C液には、水が含有される。C液に含まれる水は、金属不純物の混入を極力低減するために、純水又は超純水を使用することが好ましい。
As the alkali catalyst contained in the liquid C, a conventionally known alkali catalyst can be used. In order to reduce the mixing of metal impurities as much as possible, ethylenediamine, diethylenetriamine, triethylenetetraamine, ammonia, urea, ethanol Examples thereof include amines and tetramethylammonium hydroxide.
In particular, in the present invention, it is preferable to use ammonia that is excellent in catalytic action, has high volatility, and can be easily removed in a subsequent process, and is preferably the same type of alkali as the alkali contained in the liquid B.
The liquid C contains water. The water contained in the liquid C is preferably pure water or ultrapure water in order to reduce the mixing of metal impurities as much as possible.

上述したA液とC液とをB液に添加することによりテトラメトキシシランを加水分解及び重縮合させて本発明に係るシリカゾルを製造することができる。
この加水分解・重縮合反応は、減圧下、常圧下、加圧下のいずれの圧力条件下で行なうことも可能である。
A液とC液をB液に添加する際、A液とC液は、それぞれ略一定量を同時または交互にB液に添加するようにする。A液やC液の液量によっても異なるが、A液及びC液の全量をB液に添加する際に要する時間は、好ましくは30分以上、より好ましくは60〜300分程度とされる。
By adding the above-mentioned A liquid and C liquid to B liquid, tetramethoxysilane can be hydrolyzed and polycondensed to produce the silica sol according to the present invention.
This hydrolysis / polycondensation reaction can be carried out under any pressure condition of reduced pressure, normal pressure or increased pressure.
When liquid A and liquid C are added to liquid B, substantially constant amounts of liquid A and liquid C are added to liquid B simultaneously or alternately. Although it depends on the amount of liquid A or liquid C, the time required for adding the total amount of liquid A and liquid C to liquid B is preferably 30 minutes or more, more preferably about 60 to 300 minutes.

A液及びC液をB液に添加する際の液温は特に限定されないが、0〜70℃、好ましくは20〜50℃程度とされる。0℃未満の場合、未反応物が多く残りゲル状物が生成し易くなる場合があり、70℃を超えると、気相で反応が起り、固い粒子が生成し易くなる場合がある。   Although the liquid temperature at the time of adding A liquid and C liquid to B liquid is not specifically limited, it is 0-70 degreeC, Preferably it is about 20-50 degreeC. When the temperature is less than 0 ° C., a large amount of unreacted material may remain and a gel-like material may be easily generated. When the temperature exceeds 70 ° C., a reaction may occur in the gas phase and hard particles may be easily generated.

A液、B液及びC液それぞれの添加量は特に限定されず、A液、B液及びC液中に含まれるテトラメトキシシランやアルカリ触媒の含有量によって適宜任意に決定されるが、反応液全量(A液+B液+C液)中の水濃度が2〜12mol/L、より好ましくは3〜10mol/Lとなるように調整される。2mol/L未満では未反応物が残り易く、12mol/Lを超える場合、ゲル状物が副生して分散性が悪くなり、好ましくない。
テトラメトキシシランの濃度は0.5〜3.5mol/L、より好ましくは1.5〜2.5mol/Lとなるように調整される。0.5mol/L未満の場合、生産性が悪く、3.5mol/Lを超える場合、シリカ濃度が高くなり過ぎて凝集物が生成し易くなり、好ましくない。
The addition amount of each of the A liquid, the B liquid, and the C liquid is not particularly limited, and is arbitrarily determined as appropriate depending on the content of tetramethoxysilane and the alkali catalyst contained in the A liquid, the B liquid, and the C liquid. It is adjusted so that the water concentration in the total amount (A liquid + B liquid + C liquid) is 2 to 12 mol / L, more preferably 3 to 10 mol / L. If it is less than 2 mol / L, an unreacted product tends to remain, and if it exceeds 12 mol / L, a gel-like product is produced as a by-product, resulting in poor dispersibility.
The concentration of tetramethoxysilane is adjusted to 0.5 to 3.5 mol / L, more preferably 1.5 to 2.5 mol / L. When it is less than 0.5 mol / L, productivity is poor, and when it exceeds 3.5 mol / L, the silica concentration becomes too high, and aggregates are easily generated, which is not preferable.

さらに、本発明では、上述した(a)工程に加えて、以下に説明する(b)工程及び/又は(c)工程を付加することができる。
本発明に係る製造方法の(b)工程は、シリカゾル中の溶媒を水で置換する工程である。
シリカゾル中の溶媒を水で置換する方法は特に限定されないが、シリカゾルの液量を一定量以上に保ちながら、水を滴下して加熱蒸留によって置換する方法を例示することができる。この際、置換操作は液温及び塔頂温が置換する水の沸点に達するまで行なうことが好ましい。また、一定シリカ濃度以下で水置換しないと、未反応物によって増粘、凝集し、ついには沈降性ゲルとなる。さらには、シリカゾルのpHが6.0〜9.0、好ましくはpH7.0〜8.0の中性域となるまで置換を行なうことが好ましい。
シリカゾル中の分散媒を水で置換することによって、シリカゾルのpHを中性域に調整することができるとともに、シリカゾル中に含まれていた未反応物を除去して、長期間安定なシリカゾルを得ることができる。
また、シリカゾルを沈殿・分離、遠心分離によりシリカ微粒子を分離した後に、水に再分散させる方法も例示することができる。
この工程で用いられる水は、金属不純物の混入を極力低減するために、純水又は超純水を用いることが好ましい。
Furthermore, in the present invention, in addition to the above-described step (a), a step (b) and / or a step (c) described below can be added.
Step (b) of the production method according to the present invention is a step of replacing the solvent in the silica sol with water.
The method for replacing the solvent in the silica sol with water is not particularly limited, and examples thereof include a method in which water is dropped and replaced by heating distillation while maintaining the liquid amount of the silica sol at a certain level or more. At this time, the replacement operation is preferably performed until the liquid temperature and the tower top temperature reach the boiling point of the water to be replaced. If the water is not replaced at a certain silica concentration or less, the unreacted material thickens and aggregates, and finally becomes a sedimentable gel. Furthermore, it is preferable to perform substitution until the pH of the silica sol is in the neutral range of 6.0 to 9.0, preferably pH 7.0 to 8.0.
By replacing the dispersion medium in the silica sol with water, the pH of the silica sol can be adjusted to a neutral range, and unreacted substances contained in the silica sol are removed to obtain a silica sol that is stable for a long period of time. be able to.
Further, a method of redispersing in silica after separating silica fine particles by precipitation / separation of silica sol and centrifugal separation can also be exemplified.
The water used in this step is preferably pure water or ultrapure water in order to reduce the mixing of metal impurities as much as possible.

本発明に係る製造方法の(c)工程は、シリカゾルを濃縮する工程である。
シリカゾルや水置換シリカゾルを濃縮する方法は特に限定されず、シリカゾルを濃縮する通常の方法を採用することができ、例えば、加熱濃縮法、膜濃縮法などを例示することができる。
加熱濃縮法によってシリカゾルを濃縮するには、シリカゾルを常圧下、又は減圧下で加熱濃縮すればよい。
膜濃縮法によってシリカゾルを濃縮するには、シリカ微粒子を濾過することができる限外濾過法による膜分離が好ましい。
限外濾過膜の分画分子量は特に限定されないが、生成する粒径に合わせて分画分子量を選別する必要がある。
限外濾過膜を構成する材質は特に限定されないが、ポリスルホン、ポリアクリルニトリル、焼結金属、セラミック、カーボンなどを例示することができる。限外濾過膜の形態は特に限定されないが、スパイラル型、チューブラー型、中空糸型等を例示することができる。
また操作圧力は特に限定されないが、使用する限外濾過膜の使用圧力以下に設定すればよい。
Step (c) of the production method according to the present invention is a step of concentrating silica sol.
The method for concentrating the silica sol or the water-substituted silica sol is not particularly limited, and a normal method for concentrating the silica sol can be employed, and examples thereof include a heat concentration method and a membrane concentration method.
In order to concentrate the silica sol by the heating concentration method, the silica sol may be heated and concentrated under normal pressure or reduced pressure.
In order to concentrate the silica sol by the membrane concentration method, membrane separation by an ultrafiltration method capable of filtering silica fine particles is preferable.
The molecular weight cutoff of the ultrafiltration membrane is not particularly limited, but it is necessary to select the molecular weight cutoff according to the particle size to be generated.
Although the material which comprises an ultrafiltration membrane is not specifically limited, Polysulfone, polyacrylonitrile, a sintered metal, a ceramic, carbon etc. can be illustrated. Although the form of an ultrafiltration membrane is not specifically limited, A spiral type, a tubular type, a hollow fiber type etc. can be illustrated.
The operating pressure is not particularly limited, but may be set to be equal to or lower than the operating pressure of the ultrafiltration membrane to be used.

本発明に係る製造方法では、(b)工程及び(c)工程は、適宜(a)工程と組み合わせることができる。即ち、(a)工程で得られたシリカゾルを濃縮((c)工程)してもよく、(a)工程で得られたシリカゾル中の溶媒を水で置換((b)工程)してもよく、(a)工程で得られたシリカゾルを濃縮((c)工程)した後に、シリカゾル中の溶媒を水で置換((b)工程)してもよく、(a)工程で得られたシリカゾル中の分散媒を水で置換((b)工程)した後に濃縮((c)工程)してもよく、(a)工程で得られたシリカゾルを濃縮((c)工程)した後に、シリカゾル中の溶媒を水で置換((b)工程)し、さらに濃縮((c)工程)しても構わない。   In the production method according to the present invention, the step (b) and the step (c) can be appropriately combined with the step (a). That is, the silica sol obtained in step (a) may be concentrated (step (c)), or the solvent in the silica sol obtained in step (a) may be replaced with water (step (b)). After the silica sol obtained in step (a) is concentrated (step (c)), the solvent in the silica sol may be replaced with water (step (b)), or in the silica sol obtained in step (a). The dispersion medium may be replaced with water (step (b)) and then concentrated (step (c)). After the silica sol obtained in step (a) is concentrated (step (c)), The solvent may be replaced with water (step (b)) and further concentrated (step (c)).

以上説明した製造方法によって得られる本発明に係るシリカゾルに含まれるシリカ微粒子は大きさの揃った球状の微粒子であり、その平均二次粒子径は20〜1000nm、好ましくは20〜300nmである。
本発明に係るシリカゾルに含まれる金属不純物、例えば、Al,Ca,B,Ba,Co,Cr,Cu,Fe,Mg,Mn,Na,Ni,Pb,Sr,Ti,Zn,Zr,U,Thなどの金属不純物の合計の含有量は1ppm以下である。
本発明に係るシリカゾルのシリカ濃度は10〜50重量%、好ましくは30〜50重量%であり、シリカゾルのpHは6.0〜9.0、好ましくはpH7.0〜8.0である。
本発明に係るシリカゾル中のシリカ微粒子は、シリカ濃度が高濃度であっても二次粒子の平均粒子径が一次粒子の平均粒子径の3倍以下、好ましくは1.5〜3.0倍、より好ましくは1.5〜2.5倍であり、シリカ微粒子の凝集やゲル化が生じ難く、長期保存安定性に優れたシリカゾルである。
The silica fine particles contained in the silica sol according to the present invention obtained by the production method described above are spherical fine particles having a uniform size, and the average secondary particle diameter is 20 to 1000 nm, preferably 20 to 300 nm.
Metal impurities contained in the silica sol according to the present invention, for example, Al, Ca, B, Ba, Co, Cr, Cu, Fe, Mg, Mn, Na, Ni, Pb, Sr, Ti, Zn, Zr, U, Th The total content of metal impurities such as is 1 ppm or less.
The silica concentration of the silica sol according to the present invention is 10 to 50% by weight, preferably 30 to 50% by weight, and the pH of the silica sol is 6.0 to 9.0, preferably pH 7.0 to 8.0.
The silica fine particles in the silica sol according to the present invention have a secondary particle average particle size of 3 times or less, preferably 1.5 to 3.0 times the average particle size of the primary particles even when the silica concentration is high. More preferably, it is 1.5 to 2.5 times, and is a silica sol that hardly causes aggregation and gelation of silica fine particles and has excellent long-term storage stability.

以下、本発明を実施例に基づき説明するが、本発明はこれらの実施例に何ら限定されるものではない。
(実施例1;高純度シリカゾルの調製)
純水463.1g、26%アンモニア水104.8g、メタノール4255.0gの混合液に、テトラメトキシシラン(TMOS)3044.4g、メタノール229.4gの混合液および純水643.2g、26%アンモニア水104.8gの混合液を、液温を35℃に保ちつつ150分かけ滴下し、シリカゾルを得た。
このシリカゾルを常圧下、加熱蒸留しつつ、純水を容量を一定に保ちつつ滴下し、塔頂温が100℃に達し且つpHが8以下になったのを確認した時点で純水の滴下を終了し、高純度シリカゾルを得た。
EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited to these Examples at all.
(Example 1: Preparation of high-purity silica sol)
A mixed solution of 463.1 g of pure water, 104.8 g of 26% ammonia water and 4255.0 g of methanol, a mixed solution of tetramethoxysilane (TMOS) 3044.4 g, 229.4 g of methanol, and 643.2 g of pure water, 26% ammonia A mixed solution of 104.8 g of water was dropped over 150 minutes while maintaining the liquid temperature at 35 ° C. to obtain a silica sol.
While the silica sol was distilled under heating at normal pressure, pure water was added dropwise while keeping the volume constant, and when it was confirmed that the tower top temperature reached 100 ° C. and the pH was 8 or less, pure water was added dropwise. When finished, a high-purity silica sol was obtained.

(実施例2;高純度シリカゾルの調製)
純水440.8g、26%アンモニア水135.0g、メタノール3669.0gの混合液に、テトラメトキシシラン3044.4g、メタノール229.2gの混合液および純水621.0g、26%アンモニア水134.9gの混合液を、液温を35℃に保ちつつ150分かけ滴下し、シリカゾルを得た。
このシリカゾルを常圧下にて、容量が4500mlになるまで加熱濃縮を行った。この濃縮液をさらに、常圧下、加熱蒸留しつつ、純水を容量を一定に保ちつつ滴下し、塔頂温が100℃に達し且つpHが8以下になったのを確認した時点で純水の滴下を終了し、高純度シリカゾルを得た。
(Example 2: Preparation of high purity silica sol)
A mixed solution of 440.8 g of pure water, 135.0 g of 26% ammonia water and 3669.0 g of methanol, a mixed solution of 3044.4 g of tetramethoxysilane and 229.2 g of methanol, 621.0 g of pure water, and 134.26% ammonia water. 9 g of the mixed liquid was dropped over 150 minutes while maintaining the liquid temperature at 35 ° C. to obtain silica sol.
This silica sol was heated and concentrated under normal pressure until the volume reached 4500 ml. The concentrated liquid was further distilled under heating under normal pressure while keeping the volume constant, and when it was confirmed that the tower top temperature reached 100 ° C. and the pH was 8 or less, pure water was added. The high-purity silica sol was obtained.

(実施例3;高純度シリカゾルの調製)
反応温度を50℃に変更した以外は実施例1と同様に操作して、高純度シリカゾルを得た。
Example 3 Preparation of high purity silica sol
A high-purity silica sol was obtained in the same manner as in Example 1 except that the reaction temperature was changed to 50 ° C.

(実施例4;高純度シリカゾルの調整)
純水1546.6g、26%アンモニア水340.6g、メタノール8363.2gの混合液に、テトラメトキシシラン6088.0gおよび純水1186.2g、26%アンモニア水340.6gの混合液を、液温を20℃に保ちつつ100分かけ滴下し、シリカゾルを得た。
このシリカゾルを常圧下にて、容量が8250mlになるまで、加熱濃縮を行った。この濃縮液をさらに、常圧下、加熱蒸留しつつ、純水を容量を一定に保ちつつ滴下し、塔頂温が100℃に達し且つpHが8以下になったのを確認した時点で純水の滴下を終了し、高純度シリカゾルを得た。
Example 4 Preparation of high purity silica sol
To a mixed solution of 1546.6 g of pure water, 340.6 g of 26% ammonia water, and 8333.2 g of methanol, a mixed solution of 6088.0 g of tetramethoxysilane, 1186.2 g of pure water, and 340.6 g of 26% ammonia water was Was added dropwise over 100 minutes while maintaining at 20 ° C. to obtain a silica sol.
This silica sol was heated and concentrated under normal pressure until the volume reached 8250 ml. The concentrated liquid was further distilled under heating under normal pressure while keeping the volume constant, and when it was confirmed that the tower top temperature reached 100 ° C. and the pH was 8 or less, pure water was added. The high-purity silica sol was obtained.

(試験例1;物性値の測定)
上記調製した実施例1〜4の高濃度シリカゾル中のシリカ微粒子の比表面積、一次粒子径、二次粒子径、シリカ濃度、金属不純物の濃度を測定した。結果を表1に記載する。
尚、シリカ微粒子の比表面積はBET法により測定した。
一次粒子径は次式1(数1)により算出した。
二次粒子径は光子相関法により測定した。
シリカ濃度はシリカゾルを乾固後、800℃で灼熱し、その残量より算出した。
(Test Example 1: Measurement of physical properties)
The specific surface area, primary particle diameter, secondary particle diameter, silica concentration, and metal impurity concentration of the silica fine particles in the high concentration silica sols of Examples 1 to 4 prepared above were measured. The results are listed in Table 1.
The specific surface area of the silica fine particles was measured by the BET method.
The primary particle size was calculated by the following formula 1 (Equation 1).
The secondary particle size was measured by the photon correlation method.
The silica concentration was calculated from the remaining amount after the silica sol was dried and heated at 800 ° C.

Figure 2005060217
Figure 2005060217

Figure 2005060217
Figure 2005060217

(試験例2;粒径成長の確認1)
上記実施例1において、A液及びB液をC液に添加する際に、A液及びC液が添加されたB液から少量のサンプルを採取して、形成されたシリカ微粒子の比表面積を測定することで、テトラメトキシシランの添加濃度と形成されたシリカ微粒子の比表面積との関係を測定した。結果を図1に記載する。
(Test Example 2: Confirmation of particle size growth 1)
In Example 1 above, when adding liquid A and liquid B to liquid C, a small sample was taken from liquid B to which liquid A and liquid C were added, and the specific surface area of the formed silica fine particles was measured. Thus, the relationship between the addition concentration of tetramethoxysilane and the specific surface area of the formed silica fine particles was measured. The results are listed in FIG.

(試験例3;粒径成長の確認2)
純水590.6g、26%アンモニア水78.6g、メタノール2311.4gの混合液に、テトラメトキシシラン1217.8g、メタノール330.4g混合液を、液温を20℃に保ちつつ120分かけ滴下し、シリカゾルを得た。
A液及びB液をC液に添加する際に、A液及びC液が添加されたB液から少量のサンプルを採取して、形成されたシリカ微粒子の比表面積を測定することで、テトラメトキシシランの添加濃度と形成されたシリカ微粒子の比表面積との関係を測定した。結果を図2に記載する。
(Test Example 3; Confirmation of particle size growth 2)
A mixed liquid of 590.6 g of pure water, 78.6 g of 26% ammonia water and 2311.4 g of methanol was added dropwise to a mixed liquid of 1217.8 g of tetramethoxysilane and 330.4 g of methanol over 120 minutes while maintaining the liquid temperature at 20 ° C. As a result, silica sol was obtained.
When adding liquid A and liquid B to liquid C, a small sample is taken from liquid B to which liquid A and liquid C have been added, and the specific surface area of the formed silica fine particles is measured. The relationship between the addition concentration of silane and the specific surface area of the formed silica fine particles was measured. The results are shown in FIG.

図1に示されるように、実施例1の場合、テトラメトキシシランの添加濃度が増加するにつれシリカ微粒子の比表面積が小さく(シリカ微粒子の粒子径が大きく)なることが確認された。即ち、実施例1では、テトラメトキシシランの濃度が高くなっても、添加濃度に比例してシリカ微粒子が成長し、安定的に反応が進行することが分かる。
一方、図2に示されるように、比較例1の場合、テトラメトキシシランの添加濃度が高くなると、比表面積の増加が確認された。即ち、比較例1では、反応途中で微細粒子が生成したことが確認され、安定的に反応が進行していないことが分かる。
As shown in FIG. 1, in the case of Example 1, it was confirmed that the specific surface area of the silica fine particles was decreased (the particle diameter of the silica fine particles was increased) as the addition concentration of tetramethoxysilane was increased. That is, in Example 1, even when the concentration of tetramethoxysilane is increased, silica fine particles grow in proportion to the added concentration, and the reaction proceeds stably.
On the other hand, as shown in FIG. 2, in the case of Comparative Example 1, an increase in specific surface area was confirmed when the addition concentration of tetramethoxysilane was increased. That is, in Comparative Example 1, it was confirmed that fine particles were generated during the reaction, and it can be seen that the reaction did not proceed stably.

実施例1のTMOS濃度と比表面積との関係を示すグラフである。3 is a graph showing the relationship between the TMOS concentration and the specific surface area of Example 1. 比較例1のTMOS濃度と比表面積との関係を示すグラフである。6 is a graph showing the relationship between the TMOS concentration and the specific surface area of Comparative Example 1.

Claims (7)

テトラメトキシシランを含む有機溶媒と、アルカリ触媒及び水を含む溶媒とを、アルカリ触媒及び水を含む有機溶媒に添加することによりテトラメトキシシランを加水分解及び重縮合させてシリカゾルを製造することを特徴とするシリカゾルの製造方法。   A silica sol is produced by hydrolyzing and polycondensing tetramethoxysilane by adding an organic solvent containing tetramethoxysilane and a solvent containing an alkali catalyst and water to the organic solvent containing the alkali catalyst and water. A method for producing a silica sol. 以下の(a)及び(b)の各工程を含むことを特徴とするシリカゾルの製造方法。
(a)テトラメトキシシランを含む有機溶媒と、アルカリ触媒及び水を含む溶媒とを、アルカリ触媒及び水を含む有機溶媒に添加することによりテトラメトキシシランを加水分解及び重縮合させてシリカゾルを製造する工程。
(b)シリカゾルの分散媒を水で置換する工程。
The manufacturing method of the silica sol characterized by including each process of the following (a) and (b).
(A) A silica sol is produced by hydrolyzing and polycondensing tetramethoxysilane by adding an organic solvent containing tetramethoxysilane and a solvent containing an alkali catalyst and water to the organic solvent containing the alkali catalyst and water. Process.
(B) A step of replacing the dispersion medium of the silica sol with water.
前記有機溶媒がメタノールであることを特徴とする請求項1又は2に記載のシリカゾルの製造方法。   The method for producing a silica sol according to claim 1 or 2, wherein the organic solvent is methanol. 前記アルカリ触媒がアンモニアであることを特徴とする請求項1乃至3のいずれかに記載のシリカゾルの製造方法。   The method for producing a silica sol according to any one of claims 1 to 3, wherein the alkali catalyst is ammonia. 前記テトラメトキシシランを含む有機溶媒の濃度が30重量%以下であることを特徴とする請求項1乃至4のいずれかに記載のシリカゾルの製造方法。   The method for producing a silica sol according to any one of claims 1 to 4, wherein the concentration of the organic solvent containing tetramethoxysilane is 30% by weight or less. 前記アルカリ触媒及び水を含む有機溶媒の液温を0〜70℃に維持しながら、前記テトラメトキシシランを含む有機溶媒とアルカリ触媒及び水を含む溶媒とを同時又は交互に30分以上かけて添加することを特徴とする請求項1乃至5のいずれかに記載のシリカゾルの製造方法。 While maintaining the liquid temperature of the organic solvent containing the alkali catalyst and water at 0 to 70 ° C., the organic solvent containing the tetramethoxysilane and the solvent containing the alkali catalyst and water are added simultaneously or alternately over 30 minutes or more. The method for producing a silica sol according to any one of claims 1 to 5, wherein: シリカ微粒子が水中に分散してなるシリカゾルであって、該シリカ微粒子の平均二次粒子径が20〜1000nm、二次粒子の平均粒子径が一次粒子の平均粒子径の1.5〜3.0倍であり、金属不純物含有量が1ppm以下、シリカ濃度が10〜50重量%であることを特徴とするシリカゾル。
A silica sol in which silica fine particles are dispersed in water, the average secondary particle size of the silica fine particles is 20 to 1000 nm, and the average particle size of the secondary particles is 1.5 to 3.0 of the average particle size of the primary particles. A silica sol characterized by having a metal impurity content of 1 ppm or less and a silica concentration of 10 to 50% by weight.
JP2004216371A 2003-07-25 2004-07-23 Silica sol and method for producing the same Active JP4566645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004216371A JP4566645B2 (en) 2003-07-25 2004-07-23 Silica sol and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003280474 2003-07-25
JP2004216371A JP4566645B2 (en) 2003-07-25 2004-07-23 Silica sol and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005060217A true JP2005060217A (en) 2005-03-10
JP4566645B2 JP4566645B2 (en) 2010-10-20

Family

ID=34380112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004216371A Active JP4566645B2 (en) 2003-07-25 2004-07-23 Silica sol and method for producing the same

Country Status (1)

Country Link
JP (1) JP4566645B2 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006011252A1 (en) * 2004-07-26 2006-02-02 Fuso Chemical Co. Ltd. Silica sol and process for producing the same
JP2007153732A (en) * 2005-11-10 2007-06-21 Tama Kagaku Kogyo Kk Method for producing neutral colloidal silica
JP2007528341A (en) * 2004-03-08 2007-10-11 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Method for producing monodisperse SiO2 particles
JP2008247731A (en) * 2007-03-02 2008-10-16 Nippon Shokubai Co Ltd Silica particle bonded with alcohol, and dispersion of the silica particle
WO2010029994A1 (en) 2008-09-12 2010-03-18 日本バイリーン株式会社 Separator for lithium ion secondary battery, method for manufacture thereof, and lithium ion secondary battery
WO2011004793A1 (en) 2009-07-07 2011-01-13 花王株式会社 Polishing liquid composition for silicon wafers
JP2013151409A (en) * 2011-12-28 2013-08-08 Jgc Catalysts & Chemicals Ltd High purity silica sol and method for producing the same
WO2013157554A1 (en) 2012-04-17 2013-10-24 花王株式会社 Composition for silicon wafer polishing liquid
JP2014122123A (en) * 2012-12-20 2014-07-03 Jgc Catalysts & Chemicals Ltd High purity silica sol, and production method thereof
WO2015060293A1 (en) 2013-10-25 2015-04-30 花王株式会社 Polishing liquid composition for silicon wafers
WO2016117559A1 (en) * 2015-01-19 2016-07-28 株式会社フジミインコーポレーテッド Polishing composition
US9550683B2 (en) 2007-03-27 2017-01-24 Fuso Chemical Co., Ltd. Colloidal silica, and method for production thereof
KR20180034424A (en) 2015-07-31 2018-04-04 가부시키가이샤 후지미인코퍼레이티드 Manufacturing method of silica sol
KR20180051405A (en) 2016-11-07 2018-05-16 닛키 쇼쿠바이카세이 가부시키가이샤 Silica-based polishing particle and abrasive
KR20180063834A (en) 2016-12-02 2018-06-12 닛키 쇼쿠바이카세이 가부시키가이샤 Silica-based polishing particle and abrasive
WO2018179818A1 (en) * 2017-03-30 2018-10-04 株式会社フジミインコーポレーテッド Method for producing silica sol
US10301183B2 (en) 2016-12-28 2019-05-28 Jgc Catalysts And Chemicals Ltd. Silica particle dispersion and production method of the same
KR20190104534A (en) 2017-01-20 2019-09-10 닛키 쇼쿠바이카세이 가부시키가이샤 Silica Particle Dispersions and Methods for Manufacturing the Same
KR20190134609A (en) 2017-03-31 2019-12-04 닛키 쇼쿠바이카세이 가부시키가이샤 Method for producing silica particle dispersion
KR20200087135A (en) 2017-11-16 2020-07-20 닛키 쇼쿠바이카세이 가부시키가이샤 Dispersion of silica particles and method for manufacturing the same
KR20200135772A (en) 2018-03-30 2020-12-03 닛키 쇼쿠바이카세이 가부시키가이샤 Silica particle dispersion, polishing composition, and method for preparing silica particle dispersion
CN112875710A (en) * 2021-01-26 2021-06-01 石家庄优士科电子科技有限公司 Silica sol and preparation method thereof
JP2021116209A (en) * 2020-01-28 2021-08-10 三菱ケミカル株式会社 Method for producing silica particle, method for producing silica sol, polishing method, method for producing semiconductor wafer and method for producing semiconductor device
JP2021147267A (en) * 2020-03-18 2021-09-27 三菱ケミカル株式会社 Method for producing silica particle, method for producing silica sol, polishing process, method for producing semiconductor wafer, and method for producing semiconductor device
US11499070B2 (en) 2015-01-19 2022-11-15 Fujimi Incorporated Modified colloidal silica and method for producing the same, and polishing agent using the same
WO2023248951A1 (en) * 2022-06-20 2023-12-28 三菱ケミカル株式会社 Silica particles, method for producing same, silica sol, polishing composition, polishing method, method for producing semiconductor wafer, and method for producing semiconductor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102556484B1 (en) * 2021-03-11 2023-07-17 한국세라믹기술원 Method of Manufacturing of Aggregate-Silica Sol by controlling aging time

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6374911A (en) * 1986-09-19 1988-04-05 Shin Etsu Chem Co Ltd Production of fine spherical silica
JPH06316407A (en) * 1993-03-03 1994-11-15 Nissan Chem Ind Ltd Production of silica sol
JPH082929A (en) * 1994-06-20 1996-01-09 Shin Etsu Chem Co Ltd Production of high-purity silica glass
JPH09142852A (en) * 1995-11-29 1997-06-03 Mitsubishi Chem Corp Production of both high-purity synthetic quartz glass powder and high-purity synthetic quartz glass molding product
JPH1160232A (en) * 1997-08-11 1999-03-02 Mamoru Iso Production of cocoon-shaped colloidal silica
JP2000330328A (en) * 1999-03-12 2000-11-30 Shin Etsu Chem Co Ltd Toner exterior additive for electrostatic charge image development

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6374911A (en) * 1986-09-19 1988-04-05 Shin Etsu Chem Co Ltd Production of fine spherical silica
JPH06316407A (en) * 1993-03-03 1994-11-15 Nissan Chem Ind Ltd Production of silica sol
JPH082929A (en) * 1994-06-20 1996-01-09 Shin Etsu Chem Co Ltd Production of high-purity silica glass
JPH09142852A (en) * 1995-11-29 1997-06-03 Mitsubishi Chem Corp Production of both high-purity synthetic quartz glass powder and high-purity synthetic quartz glass molding product
JPH1160232A (en) * 1997-08-11 1999-03-02 Mamoru Iso Production of cocoon-shaped colloidal silica
JP2000330328A (en) * 1999-03-12 2000-11-30 Shin Etsu Chem Co Ltd Toner exterior additive for electrostatic charge image development

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007528341A (en) * 2004-03-08 2007-10-11 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Method for producing monodisperse SiO2 particles
JP4901719B2 (en) * 2004-03-08 2012-03-21 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for producing monodisperse SiO2 particles
WO2006011252A1 (en) * 2004-07-26 2006-02-02 Fuso Chemical Co. Ltd. Silica sol and process for producing the same
JP2007153732A (en) * 2005-11-10 2007-06-21 Tama Kagaku Kogyo Kk Method for producing neutral colloidal silica
JP2008247731A (en) * 2007-03-02 2008-10-16 Nippon Shokubai Co Ltd Silica particle bonded with alcohol, and dispersion of the silica particle
US9550683B2 (en) 2007-03-27 2017-01-24 Fuso Chemical Co., Ltd. Colloidal silica, and method for production thereof
WO2010029994A1 (en) 2008-09-12 2010-03-18 日本バイリーン株式会社 Separator for lithium ion secondary battery, method for manufacture thereof, and lithium ion secondary battery
US8926859B2 (en) 2009-07-07 2015-01-06 Kao Corporation Polishing composition for silicon wafers
WO2011004793A1 (en) 2009-07-07 2011-01-13 花王株式会社 Polishing liquid composition for silicon wafers
TWI681929B (en) * 2011-12-28 2020-01-11 日揮觸媒化成股份有限公司 High purity silica sol and its production method
JP2013151409A (en) * 2011-12-28 2013-08-08 Jgc Catalysts & Chemicals Ltd High purity silica sol and method for producing the same
JP2017036209A (en) * 2011-12-28 2017-02-16 日揮触媒化成株式会社 High purity silica sol, and production method thereof
US9598611B2 (en) 2011-12-28 2017-03-21 Jgc Catalysts And Chemicals Ltd. High purity silica sol and its production method
WO2013157554A1 (en) 2012-04-17 2013-10-24 花王株式会社 Composition for silicon wafer polishing liquid
JP2014122123A (en) * 2012-12-20 2014-07-03 Jgc Catalysts & Chemicals Ltd High purity silica sol, and production method thereof
WO2015060293A1 (en) 2013-10-25 2015-04-30 花王株式会社 Polishing liquid composition for silicon wafers
KR20170105515A (en) * 2015-01-19 2017-09-19 가부시키가이샤 후지미인코퍼레이티드 Polishing composition
US10570322B2 (en) 2015-01-19 2020-02-25 Fujimi Incorporated Polishing composition
TWI763621B (en) * 2015-01-19 2022-05-11 日商福吉米股份有限公司 Manufacturing method of polishing composition
JPWO2016117559A1 (en) * 2015-01-19 2017-10-26 株式会社フジミインコーポレーテッド Polishing composition
WO2016117559A1 (en) * 2015-01-19 2016-07-28 株式会社フジミインコーポレーテッド Polishing composition
US11499070B2 (en) 2015-01-19 2022-11-15 Fujimi Incorporated Modified colloidal silica and method for producing the same, and polishing agent using the same
KR102604533B1 (en) 2015-01-19 2023-11-22 가부시키가이샤 후지미인코퍼레이티드 Polishing composition
US11530335B2 (en) 2015-01-19 2022-12-20 Fujimi Incorporated Modified colloidal silica and method for producing the same, and polishing agent using the same
US11001501B2 (en) 2015-07-31 2021-05-11 Fujimi Incorporated Method for producing silica sol
EP3330223A4 (en) * 2015-07-31 2018-08-01 Fujimi Incorporated Method for producing silica sol
JP7084452B2 (en) 2015-07-31 2022-06-14 株式会社フジミインコーポレーテッド Manufacturing method of silica sol
KR20230162140A (en) 2015-07-31 2023-11-28 가부시키가이샤 후지미인코퍼레이티드 Method for producing silica sol
US10604411B2 (en) 2015-07-31 2020-03-31 Fujimi Incorporated Method for producing silica sol
KR20180034424A (en) 2015-07-31 2018-04-04 가부시키가이샤 후지미인코퍼레이티드 Manufacturing method of silica sol
JP2020189787A (en) * 2015-07-31 2020-11-26 株式会社フジミインコーポレーテッド Method for producing silica sol
US10190023B2 (en) 2016-11-07 2019-01-29 Jgc Catalysts And Chemicals Ltd. Silica-based polishing particle and abrasive
KR20180051405A (en) 2016-11-07 2018-05-16 닛키 쇼쿠바이카세이 가부시키가이샤 Silica-based polishing particle and abrasive
US10184069B2 (en) 2016-12-02 2019-01-22 Jgc Catalysts And Chemicals Ltd. Silica-based polishing particle and abrasive
TWI762528B (en) * 2016-12-02 2022-05-01 日商日揮觸媒化成股份有限公司 Silica-based particles for polishing and abrasives
KR20180063834A (en) 2016-12-02 2018-06-12 닛키 쇼쿠바이카세이 가부시키가이샤 Silica-based polishing particle and abrasive
US10301183B2 (en) 2016-12-28 2019-05-28 Jgc Catalysts And Chemicals Ltd. Silica particle dispersion and production method of the same
KR20190104534A (en) 2017-01-20 2019-09-10 닛키 쇼쿠바이카세이 가부시키가이샤 Silica Particle Dispersions and Methods for Manufacturing the Same
US11254580B2 (en) 2017-01-20 2022-02-22 Jgc Catalysts And Chemicals Ltd. Silica particle liquid dispersion and production method therefor
WO2018179818A1 (en) * 2017-03-30 2018-10-04 株式会社フジミインコーポレーテッド Method for producing silica sol
KR20190134609A (en) 2017-03-31 2019-12-04 닛키 쇼쿠바이카세이 가부시키가이샤 Method for producing silica particle dispersion
US11312634B2 (en) 2017-03-31 2022-04-26 Jgc Catalysts And Chemicals Ltd. Production method for dispersion liquid of silica particle
US11427730B2 (en) 2017-11-16 2022-08-30 Jgc Catalysts And Chemicals Ltd. Dispersion liquid of silica particles and production method therefor
KR20200087135A (en) 2017-11-16 2020-07-20 닛키 쇼쿠바이카세이 가부시키가이샤 Dispersion of silica particles and method for manufacturing the same
US11492513B2 (en) 2018-03-30 2022-11-08 Jgc Catalysts And Chemicals Ltd. Dispersion liquid of silica particles, polishing composition, and method for producing dispersion liquid of silica particles
KR20200135772A (en) 2018-03-30 2020-12-03 닛키 쇼쿠바이카세이 가부시키가이샤 Silica particle dispersion, polishing composition, and method for preparing silica particle dispersion
JP2021116209A (en) * 2020-01-28 2021-08-10 三菱ケミカル株式会社 Method for producing silica particle, method for producing silica sol, polishing method, method for producing semiconductor wafer and method for producing semiconductor device
JP2021147267A (en) * 2020-03-18 2021-09-27 三菱ケミカル株式会社 Method for producing silica particle, method for producing silica sol, polishing process, method for producing semiconductor wafer, and method for producing semiconductor device
CN112875710B (en) * 2021-01-26 2022-07-19 石家庄优士科电子科技有限公司 Silica sol and preparation method thereof
CN112875710A (en) * 2021-01-26 2021-06-01 石家庄优士科电子科技有限公司 Silica sol and preparation method thereof
WO2023248951A1 (en) * 2022-06-20 2023-12-28 三菱ケミカル株式会社 Silica particles, method for producing same, silica sol, polishing composition, polishing method, method for producing semiconductor wafer, and method for producing semiconductor device

Also Published As

Publication number Publication date
JP4566645B2 (en) 2010-10-20

Similar Documents

Publication Publication Date Title
JP4566645B2 (en) Silica sol and method for producing the same
JP4011566B2 (en) Silica sol and method for producing the same
JP5892882B2 (en) Method for producing colloidal silica
KR102633383B1 (en) Method for producing silica sol
JP7084452B2 (en) Manufacturing method of silica sol
WO2006011252A1 (en) Silica sol and process for producing the same
JP2010269985A (en) Sulfonic acid-modified aqueous anionic silica sol and method for producing the same
JP7376670B2 (en) Silica sol manufacturing method
JP2019116396A (en) Silica-based particle dispersion and production method thereof
JP2018108924A (en) Silica particle dispersion and production method thereof
JP5905767B2 (en) Dispersion stabilization method of neutral colloidal silica dispersion and neutral colloidal silica dispersion excellent in dispersion stability
JP7424859B2 (en) Silica fine particle dispersion and its manufacturing method
JP5377134B2 (en) Method for producing colloidal silica
JP2010241642A (en) Colloidal silica
JP2022015206A (en) Apparatus for producing silica particle, method for producing silica particle, method for producing silica sol, method for suppressing intermediate product in silica sol, and polishing method
JP2022036696A (en) Silica sol, method for manufacturing silica sol, polishing composition, polishing method, and method for manufacturing semiconductor device
JP2022100932A (en) Silica fine particle dispersion and method for producing the same
JP2022152370A (en) Method of producing colloidal silica, and colloidal silica
CN113454024A (en) Silica particles and method for producing same, silica sol, polishing composition, polishing method, method for producing semiconductor wafer, and method for producing semiconductor device
JP2020075830A (en) Method for producing silica sol and method for suppressing intermediate products in silica sol
JP2013227177A (en) Colloidal silica and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100625

TRDD Decision of grant or rejection written
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100625

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100714

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100804

R150 Certificate of patent or registration of utility model

Ref document number: 4566645

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250