JP2005055310A - Calibration method of scanner - Google Patents

Calibration method of scanner Download PDF

Info

Publication number
JP2005055310A
JP2005055310A JP2003286709A JP2003286709A JP2005055310A JP 2005055310 A JP2005055310 A JP 2005055310A JP 2003286709 A JP2003286709 A JP 2003286709A JP 2003286709 A JP2003286709 A JP 2003286709A JP 2005055310 A JP2005055310 A JP 2005055310A
Authority
JP
Japan
Prior art keywords
shape
distance
distance sensor
mirror
deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2003286709A
Other languages
Japanese (ja)
Other versions
JP2005055310A5 (en
Inventor
Hitoshi Wakisako
仁 脇迫
Kazunari Shiraishi
一成 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2003286709A priority Critical patent/JP2005055310A/en
Publication of JP2005055310A publication Critical patent/JP2005055310A/en
Publication of JP2005055310A5 publication Critical patent/JP2005055310A5/ja
Abandoned legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a calibration method of a scanner for identifying the distance from a distance sensor to the rotating axis of a mirror. <P>SOLUTION: An object having a known shape is measured to determine the coordinate position of the surface, and a distance between the distance sensor and the rotating mirror such that the deviation is minimized when this position is approximated to the shape of the object, is determined. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、距離センサと回転ミラーを組み合わせて対象物の形状を計測するスキャナ装置に関し、特にスキャナ装置のキャリブレーション方法に関する。 The present invention relates to a scanner device that measures the shape of an object by combining a distance sensor and a rotating mirror, and more particularly to a calibration method for the scanner device.

対象物の形状を計測する手段として、光の伝搬時間から距離を計測する距離センサと回転ミラーとを組み合わせたスキャナ装置が用いられる。これらは、物体の形状計測や移動ロボットの障害物センサなどに用いられている(例えば、特許文献1や非特許文献1参照)。
このスキャナ装置の構成例を図4に示す。距離センサ1は、レーザパルス光を対象物に照射しその反射光を検出して、照射から検出までの間のレーザパルス光の伝搬時間から対象物との距離を計測するセンサである。この距離センサ単体では対象物上の1点のみしか計測できないため、対象物の形状情報を得るためにレーザ光の進路上にミラー2を設置し、ミラー2を回転させレーザ光3を対象物4上に走査して対象物4の表面上の位置を計測している。
As a means for measuring the shape of an object, a scanner device in which a distance sensor that measures a distance from light propagation time and a rotating mirror is used is used. These are used for object shape measurement, obstacle sensors for mobile robots, and the like (for example, see Patent Document 1 and Non-Patent Document 1).
A configuration example of this scanner device is shown in FIG. The distance sensor 1 is a sensor that irradiates an object with laser pulse light, detects its reflected light, and measures the distance from the object from the propagation time of the laser pulse light from irradiation to detection. Since this distance sensor alone can measure only one point on the object, the mirror 2 is installed on the path of the laser beam to obtain the shape information of the object, the mirror 2 is rotated, and the laser beam 3 is converted to the object 4. The position on the surface of the object 4 is measured by scanning up.

ここでミラー2の回転軸を原点とし、距離センサ1からミラー2までのレーザ光3の進路をX軸とし、X軸に対する鉛直方向をY軸とする2次元の座標系を設定する。レーザ光3の照射方向とY軸とのなす角度をθ、距離センサ1の計測値をR、距離センサ1の先端からミラー2の回転軸までの距離をdとすると、対象物4上のレーザ光3の照射点の座標は   Here, a two-dimensional coordinate system is set in which the rotation axis of the mirror 2 is the origin, the path of the laser light 3 from the distance sensor 1 to the mirror 2 is the X axis, and the vertical direction with respect to the X axis is the Y axis. If the angle between the irradiation direction of the laser beam 3 and the Y axis is θ, the measured value of the distance sensor 1 is R, and the distance from the tip of the distance sensor 1 to the rotation axis of the mirror 2 is d, the laser on the object 4 The coordinates of the irradiation point of light 3 are

((R-d)sinθ,(R-d)cosθ) ・・・(1)           ((R-d) sinθ, (R-d) cosθ) (1)

となる。ミラー2を回転することで、レーザ光3の照射方向θが変化し対象物4の表面上の点の座標が得られるため、対象物4の形状情報が得られる。この情報を利用して形状を計測したり障害物の位置検出を行ったりする。 It becomes. By rotating the mirror 2, the irradiation direction θ of the laser light 3 is changed, and the coordinates of a point on the surface of the object 4 are obtained, so that the shape information of the object 4 is obtained. Using this information, the shape is measured and the position of an obstacle is detected.

特開2000−75032JP 2000-75032 A オムロン社カタログ セーフティレーザ 形F3G−COMRON catalog Safety Laser F3G-C

式(1)による対象物上の点の計測において、距離センサ1の先端からミラー2の回転軸までの距離dは通常、設計値を用いるが、実際にはスキャナ装置の組み立て時のメカ的な誤差があるため、dが設計値どおりにならず計測に誤差が生じてしまう。この誤差は、移動ロボットで障害物の有無を検出する用途等では問題とならないが、対象物までの距離を正確に求めたい場合や対象物の形状を高精度で計測したい場合には問題となる。
本発明はこのような問題点に鑑みてなされたものであり、距離センサからミラーの回転軸までの距離を同定するキャリブレーション方法を提供するものである。
In the measurement of the point on the object according to the equation (1), the distance d from the tip of the distance sensor 1 to the rotation axis of the mirror 2 is usually a design value, but in actuality, it is mechanical when the scanner device is assembled. Since there is an error, d is not as designed and an error occurs in measurement. This error is not a problem for applications such as detecting the presence or absence of obstacles with a mobile robot, but it is a problem when it is desired to accurately determine the distance to the object or when the shape of the object is to be measured with high accuracy. .
The present invention has been made in view of such problems, and provides a calibration method for identifying a distance from a distance sensor to a rotation axis of a mirror.

上記問題を解決するため、本発明は、次のようにしたのである。
請求項1に記載の発明は、対象物に光を照射し、前記対象物からの反射光を検出してその伝搬時間から前記対象物までの距離を計測する距離センサと、前記距離センサの照射する光の進路上に設置され前記光の進行方向を変更する回転ミラーとを備えたスキャナ装置のキャリブレーション方法において、
形状が既知である対象物に対してスキャンを行い、その際の前記距離センサの計測距離と、前記回転ミラーによる光の照射角度とから前記対象物上の3点以上について計測を行い座標位置を計算し、前記3点以上の計測点を繋いだ線を前記対象物の形状に近似して、前記対象物の形状との偏差を算出し、前記偏差が最小となるように前記距離センサから前記回転ミラーの回転軸までの距離を同定することを特徴とするスキャナ装置のキャリブレーション方法である。
また、請求項2に記載の発明は、前記形状が既知である対象物が平面形状の断面を有した形状であり、前記近似が直線近似となることを特徴とするスキャナ装置のキャリブレーション方法である。
さらに、請求項3に記載の発明は、前記形状が既知である対象物が円弧形状の断面を有した形状であり、前記近似が円近似となることを特徴とするスキャナ装置のキャリブレーション方法である。
In order to solve the above problem, the present invention is as follows.
The invention according to claim 1 irradiates the object with light, detects reflected light from the object and measures the distance from the propagation time to the object, and irradiation of the distance sensor In a method for calibrating a scanner apparatus comprising a rotating mirror that is installed on a path of light to change the traveling direction of the light,
The object having a known shape is scanned, and the coordinate position is measured by measuring three or more points on the object from the measurement distance of the distance sensor at that time and the light irradiation angle by the rotating mirror. Calculating, approximating a line connecting the three or more measurement points to the shape of the object, calculating a deviation from the shape of the object, and from the distance sensor so that the deviation is minimized A scanner apparatus calibration method characterized by identifying a distance to a rotation axis of a rotary mirror.
According to a second aspect of the present invention, there is provided a calibration method for a scanner device, wherein the object whose shape is known is a shape having a planar cross section, and the approximation is a linear approximation. is there.
Further, the invention according to claim 3 is a calibration method for a scanner device, characterized in that the object whose shape is known has a circular cross section, and the approximation is a circular approximation. is there.

請求項1に記載の発明によると、予め形状の分かった物体を利用することで、距離センサとミラーとの距離を同定することができるため、スキャナ装置の計測精度の向上が実現できる。また請求項2に記載の発明によると、室内の壁などの平面部を利用することで容易にスキャナ装置のキャリブレーションを実施できる。さらに請求項3に記載の発明によると、円柱などを利用することで容易にスキャナ装置のキャリブレーションを実施できる。   According to the first aspect of the present invention, since the distance between the distance sensor and the mirror can be identified by using an object whose shape is known in advance, the measurement accuracy of the scanner device can be improved. According to the second aspect of the invention, the scanner device can be easily calibrated by using a flat portion such as an indoor wall. Furthermore, according to the invention described in claim 3, the scanner apparatus can be easily calibrated by using a cylinder or the like.

以下、本発明の実施の形態について図に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1に本発明の実施例1の処理ブロック図を示す。最初に、壁などの平面形状をスキャナ装置で計測する。このときの距離センサの計測値とミラーの回転角度をメモリに記憶する(処理10)。次に適当な値をdの初期値とし(処理11)、式(1)からレーザ光の照射点の座標X、Yを計算する(処理12)。得られた座標を直線近似しそのときの偏差を求める(処理13)。上記の処理12、13をdの値を増減させながら実行し(処理14、16)、偏差が最小となるdの値を求める(処理15)。求まったdが誤差を含んだ距離センサとミラーの回転軸との実際の距離の推定値である。   FIG. 1 shows a processing block diagram of Embodiment 1 of the present invention. First, a planar shape such as a wall is measured with a scanner device. The measured value of the distance sensor and the rotation angle of the mirror at this time are stored in the memory (processing 10). Next, an appropriate value is set as the initial value of d (process 11), and the coordinates X and Y of the laser beam irradiation point are calculated from the expression (1) (process 12). The obtained coordinates are approximated by a straight line, and the deviation at that time is obtained (processing 13). The above processes 12 and 13 are executed while increasing or decreasing the value of d (processes 14 and 16), and the value of d that minimizes the deviation is determined (process 15). The obtained d is an estimated value of the actual distance between the distance sensor including the error and the rotation axis of the mirror.

図2に実施例1の原理図を示す。距離センサ1とミラー(図示せず)の組合せによって平面対象物5の形状を計測する。距離センサ1と平面対象物5は平行に配置されているとし、ミラーの回転軸は点Bにあるとする。またレーザ光が平面対象物5に対し垂直に照射されたときを照射角度0°とする。
レーザ光は照射角度が−45°のとき30に示すABCの軌跡をたどる。同様に照射角度が0°のときで31に示すABDの軌跡,照射角度45°で32に示すABEの軌跡となる。ここでBDの距離を10m、距離センサから回転ミラーまでの距離ABを1m、照射角度をθとすると、照射角度θと距離センサ1の計測値Rは図5のようになる。
θ、Rおよびdが分かれば式(1)によりXY座標を計算できるが、距離センサ先端からミラーの回転軸までの実際の距離d(図中の線分AB)が設計値と異なっていると誤差が生じる。いま設計上の距離センサの位置を点線で示した1’とし、設計上のdの値を2mとする。この値を式(1)に代入して座標を計算すると、図4における点C’,D’,E’の位置となり実際の位置より短く、しかもこれらを繋いだ線6は、図2で示すように直線とはならない。本発明では、dを変えながら式(1)により座標を計算し、それらを直線近似したときの偏差が最小となるdを求めている。
FIG. 2 shows a principle diagram of the first embodiment. The shape of the planar object 5 is measured by a combination of the distance sensor 1 and a mirror (not shown). Assume that the distance sensor 1 and the planar object 5 are arranged in parallel, and the rotation axis of the mirror is at point B. Further, the irradiation angle is set to 0 ° when the laser beam is irradiated perpendicularly to the planar object 5.
The laser beam follows the ABC trajectory shown at 30 when the irradiation angle is −45 °. Similarly, when the irradiation angle is 0 °, an ABD locus shown by 31 is obtained, and when the irradiation angle is 45 °, an ABE locus shown by 32 is obtained. Here, when the distance of BD is 10 m, the distance AB from the distance sensor to the rotating mirror is 1 m, and the irradiation angle is θ, the irradiation angle θ and the measured value R of the distance sensor 1 are as shown in FIG.
If θ, R, and d are known, the XY coordinates can be calculated by Equation (1). However, if the actual distance d from the tip of the distance sensor to the rotation axis of the mirror (the line segment AB in the figure) is different from the design value. An error occurs. Assume that the position of the designed distance sensor is 1 ′ indicated by a dotted line, and the designed d value is 2 m. When the coordinates are calculated by substituting this value into the equation (1), the positions of the points C ′, D ′, E ′ in FIG. 4 become the positions shorter than the actual positions, and the line 6 connecting them is shown in FIG. It will not be a straight line. In the present invention, coordinates are calculated according to the equation (1) while changing d, and d that minimizes the deviation when they are linearly approximated is obtained.

以下、偏差の求め方について説明する。
適当なdに対して式(1)によって計算した座標を
Hereinafter, how to obtain the deviation will be described.
The coordinates calculated by equation (1) for the appropriate d

(xi, yi) i = 1,2,…,n ・・・(2)             (Xi, yi) i = 1,2, ..., n (2)

とする。これらの点に直線を当てはめることになるが、ここでは各点から直線までの距離の2乗和が最小となる直線を求め、偏差はそのときの距離の2乗和とした。具体的には、上記座標点の重心の位置を (ax, ay)とする。ax, ayは x座標、y座標の平均値であり And A straight line is applied to these points. Here, a straight line that minimizes the sum of squares of the distance from each point to the straight line is obtained, and the deviation is the sum of squares of the distance at that time. Specifically, the position of the center of gravity of the coordinate point is (ax, ay). ax and ay are the average values of x and y coordinates

ax = Σxi/n ・・・(3)
ay = Σyi/n ・・・(4)
ax = Σxi / n (3)
ay = Σyi / n (4)

となる。ここでΣはiが1からnまでの和である。この重心の位置を原点として新しい座標を(Xi, Yi) i=1,..nとする。この座標変換は、 It becomes. Here, Σ is the sum of i from 1 to n. The new coordinates are (Xi, Yi) i = 1,. This coordinate transformation is

Xi = xi - ax ・・・(5)
Yi = yi - ay ・・・(6)
Xi = xi-ax (5)
Yi = yi-ay (6)

である。このとき、偏差は次の行列の小さい方の固有値となる。 It is. At this time, the deviation is the smaller eigenvalue of the following matrix.

Figure 2005055310
Figure 2005055310

以上の方法により、図2の例でdの値を0〜2mの範囲で変えたときの偏差を計算した結果を図6に示す。なお、この偏差は照射角度θが―45°、0°、45°の時の3点の計測点をもとに計算したものである。
この例で分かるように、d=1mの時に偏差が最も小さくなっており、これによって実際のdの値が推定できる。このように本実施例では、平面形状の対象物に対する計測データから加工誤差や組み立て誤差によって設計値からのズレが生じた距離センサとミラーの回転軸との距離を同定する手法を提供している。
FIG. 6 shows the result of calculating the deviation when the value of d is changed in the range of 0 to 2 m in the example of FIG. 2 by the above method. This deviation is calculated based on three measurement points when the irradiation angle θ is −45 °, 0 °, and 45 °.
As can be seen from this example, when d = 1 m, the deviation is the smallest, so that the actual value of d can be estimated. As described above, the present embodiment provides a method for identifying the distance between the distance sensor in which the deviation from the design value is caused by the processing error or the assembly error from the measurement data for the planar object and the rotation axis of the mirror. .

図3は本発明の第2実施例の構成を示す図である。ここでは、計測対象物として円柱体6を用いる。ただし、円柱体6の軸方向とミラーの回転軸方向は平行になるようにしておく。実施例1と同様にスキャナ装置で円柱体6を計測し、その結果を円弧で近似すると、距離センサとミラーとの間の距離に誤差が含まれない場合は円となるが、誤差が含まれると円とはならない。そこで、得られた計測データを円近似して、その偏差を指標として、距離センサとミラーの回転軸との距離を同定することができる。   FIG. 3 is a diagram showing the configuration of the second embodiment of the present invention. Here, the cylindrical body 6 is used as the measurement object. However, the axial direction of the cylindrical body 6 and the rotation axis direction of the mirror are made parallel. When the cylindrical body 6 is measured by the scanner device as in the first embodiment and the result is approximated by a circular arc, if the distance between the distance sensor and the mirror does not include an error, a circle is formed, but the error is included. And not a circle. Therefore, the obtained measurement data is approximated by a circle, and the distance between the distance sensor and the rotation axis of the mirror can be identified using the deviation as an index.

このように、平面形状に限らず形状が既知である対象物を計測し、その形状からの偏差を評価値として用いることで、距離センサとミラーの回転軸との実際の距離を同定することができる。この方法により、キャリブレーション用の装置がないような現場でもスキャナ装置の調整等を実施することができる。   In this way, it is possible to identify an actual distance between the distance sensor and the rotation axis of the mirror by measuring an object having a known shape as well as a planar shape and using the deviation from the shape as an evaluation value. it can. By this method, it is possible to adjust the scanner device even at a site where there is no calibration device.

本発明によって容易にスキャナ装置の計測精度を向上することができるので、高精度の計測が要求される用途にも適用できる。   Since the measurement accuracy of the scanner device can be easily improved by the present invention, it can be applied to applications that require high-precision measurement.

本発明の第1実施例の手順を示す処理ブロック図Processing block diagram showing the procedure of the first embodiment of the present invention 本発明の第1実施例を示す説明図Explanatory drawing which shows 1st Example of this invention. 本発明の第2実施例を示す説明図Explanatory drawing which shows 2nd Example of this invention. スキャナ装置の説明図Illustration of the scanner device 本発明の第1実施例でのレーザ光の照射角度θと距離センサの計測値Rの例Example of laser beam irradiation angle θ and distance sensor measurement value R in the first embodiment of the present invention 本発明の第1実施例での偏差の計算結果Calculation result of deviation in the first embodiment of the present invention

符号の説明Explanation of symbols

1 距離センサ
2 回転ミラー
3 レーザ光
4 対象物
5 平面形状の対象物
6 dに誤差があるときの計測形状
7 円柱体の対象物
10〜16 処理ブロック
30 照射角度−45°のレーザ光
31 照射角度0°のレーザ光
32 照射角度45°のレーザ光
DESCRIPTION OF SYMBOLS 1 Distance sensor 2 Rotating mirror 3 Laser beam 4 Object 5 Planar object 6 Measurement shape when d has an error 7 Cylindrical object 10 to 16 Processing block 30 Laser beam 31 with irradiation angle of −45 ° Irradiation Laser light 32 at an angle of 0 ° Laser light at an irradiation angle of 45 °

Claims (3)

対象物に光を照射し、前記対象物からの反射光を検出してその伝搬時間から前記対象物までの距離を計測する距離センサと、前記距離センサの照射する光の進路上に設置され前記光の進行方向を変更する回転ミラーとを備えたスキャナ装置のキャリブレーション方法において、
形状が既知である対象物に対してスキャンを行い、その際の前記距離センサの計測距離と、前記回転ミラーによる光の照射角度とから前記対象物上の3点以上について計測を行って座標位置を計算し、前記3点以上の計測点を繋いだ線を前記対象物の形状に近似して、前記対象物の形状との偏差を算出し、前記偏差が最小となるように前記距離センサから前記回転ミラーの回転軸までの距離を同定することを特徴とするスキャナ装置のキャリブレーション方法。
A distance sensor that irradiates light to the object, detects reflected light from the object and measures the distance from the propagation time to the object, and is installed on the path of the light emitted by the distance sensor In a calibration method of a scanner device comprising a rotating mirror that changes the traveling direction of light,
Coordinate positions are obtained by scanning an object having a known shape and measuring at least three points on the object from the measurement distance of the distance sensor and the light irradiation angle by the rotating mirror. And approximating a line connecting the three or more measurement points to the shape of the object, calculating a deviation from the shape of the object, and from the distance sensor so that the deviation is minimized. A method for calibrating a scanner device, comprising: identifying a distance to a rotation axis of the rotating mirror.
前記形状が既知である対象物が平面形状の断面を有した形状であり、前記近似が直線近似となることを特徴とする請求項1記載のスキャナ装置のキャリブレーション方法。   The scanner apparatus calibration method according to claim 1, wherein the object having a known shape is a shape having a planar cross section, and the approximation is a linear approximation. 前記形状が既知である対象物が円弧形状の断面を有した形状であり、前記近似が円近似となることを特徴とする請求項1記載のスキャナ装置のキャリブレーション方法。   The scanner apparatus calibration method according to claim 1, wherein the object whose shape is known is a shape having an arc-shaped cross section, and the approximation is a circular approximation.
JP2003286709A 2003-08-05 2003-08-05 Calibration method of scanner Abandoned JP2005055310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003286709A JP2005055310A (en) 2003-08-05 2003-08-05 Calibration method of scanner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003286709A JP2005055310A (en) 2003-08-05 2003-08-05 Calibration method of scanner

Publications (2)

Publication Number Publication Date
JP2005055310A true JP2005055310A (en) 2005-03-03
JP2005055310A5 JP2005055310A5 (en) 2006-06-15

Family

ID=34365924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003286709A Abandoned JP2005055310A (en) 2003-08-05 2003-08-05 Calibration method of scanner

Country Status (1)

Country Link
JP (1) JP2005055310A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006242833A (en) * 2005-03-04 2006-09-14 Nidec Copal Corp Device for detecting optical angle
JP2010190759A (en) * 2009-02-19 2010-09-02 Denso Wave Inc Laser distance measuring apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006242833A (en) * 2005-03-04 2006-09-14 Nidec Copal Corp Device for detecting optical angle
JP2010190759A (en) * 2009-02-19 2010-09-02 Denso Wave Inc Laser distance measuring apparatus

Similar Documents

Publication Publication Date Title
US10157458B2 (en) Laser projection system and method
US10175049B2 (en) Target recognition and localization methods using a laser sensor for wheeled mobile robots
US6067165A (en) Position calibrating method for optical measuring apparatus
EP3014215B1 (en) Calibration of a contact probe
US20140029018A1 (en) Calibration of laser light section sensors during simultaneous measurement
US11426876B2 (en) Information processing apparatus, information processing method, and program
JP2007071852A (en) Apparatus and method for measuring deep hole
JP6607228B2 (en) Calibration piece, calibration method, shape measurement system, and shape measurement method
US11454498B2 (en) Coordinate measuring system
JP7411648B2 (en) Terahertz measurement device and method of operating the terahertz measurement device
JP2014098690A (en) Calibration apparatus, calibration method, and measurement apparatus
JP4316643B2 (en) Shape measuring device and shape measuring method
JP2013148375A (en) Calibration method, calibrator and program for use in three-dimensional shape measuring apparatus, and three-dimensional shape measuring apparatus
JP6228905B2 (en) Work robot installation status detection method
JP2005055310A (en) Calibration method of scanner
JP5698969B2 (en) Measuring apparatus, position measuring system, measuring method, calibration method, and program
JP2005055311A (en) Calibration method of scanner
JP4835857B2 (en) Calibration method for shape measuring apparatus and shaft for calibration
JP2002310641A (en) Coordinate system calibrating method for three- dimensional shape measuring instrument
JP4494189B2 (en) Accuracy measurement method and calibration method of non-contact image measuring machine
JP6836940B2 (en) How to identify noise data of laser ranging device
JP2001165629A (en) Shape measuring device and shape measuring method
JP2017015572A (en) Shape measurement device
JP3029572B2 (en) Method for measuring cross-sectional contour shape of object to be measured and method for measuring three-dimensional shape
JPH10103937A (en) Optical axis inclination measuring method for laser light and apparatus therefor

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20060410

Free format text: JAPANESE INTERMEDIATE CODE: A523

A621 Written request for application examination

Effective date: 20060410

Free format text: JAPANESE INTERMEDIATE CODE: A621

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20061030