JP2005051075A - Multilayer circuit board and its manufacturing method - Google Patents

Multilayer circuit board and its manufacturing method Download PDF

Info

Publication number
JP2005051075A
JP2005051075A JP2003282095A JP2003282095A JP2005051075A JP 2005051075 A JP2005051075 A JP 2005051075A JP 2003282095 A JP2003282095 A JP 2003282095A JP 2003282095 A JP2003282095 A JP 2003282095A JP 2005051075 A JP2005051075 A JP 2005051075A
Authority
JP
Japan
Prior art keywords
circuit board
double
prepreg
circuit boards
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003282095A
Other languages
Japanese (ja)
Inventor
Yoji Ueda
洋二 上田
Susumu Matsuoka
進 松岡
Rikiya Okimoto
力也 沖本
Shozo Ochi
正三 越智
Satoru Tomekawa
悟 留河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003282095A priority Critical patent/JP2005051075A/en
Priority to TW94102665A priority patent/TWI267332B/en
Publication of JP2005051075A publication Critical patent/JP2005051075A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Laminated Bodies (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multilayer circuit board of high performance by which the mismatching of impedance is not generated and high frequency waves can be stably driven, and to provide a method for manufacturing the multilayer circuit board. <P>SOLUTION: In the multilayer circuit board, an interval t1 between the layers of a signal line S1 and a ground wire G1 is shorter than an interval t2 between the layers of the signal line S1 and another adjacent signal line G2, and the surface of the layer including the signal line S1 and the surface of the layer including the ground wire G1 are flat, respectively. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、多層回路基板およびその製造方法に関するものである。   The present invention relates to a multilayer circuit board and a manufacturing method thereof.

近年、電子機器の小型、軽量化および高機能化に伴い、多層回路基板に対して、小型、軽量化および高速信号処理化、さらには高密度実装への対応が要求されている。このような要求に対して、回路基板技術は、高多層化、ビアホールの小径化および狭ピッチ化、回路パターンのファイン化技術等を急速に進展させる必要性がある。しかし、従来のスルーホール構造によって絶縁層内の電気接続がなされる多層回路基板では、もはやこれらの要求を満足させることは極めて困難である。   In recent years, as electronic devices have become smaller, lighter, and more functional, multilayer circuit boards are required to be smaller, lighter, faster signal processing, and more capable of high-density mounting. In response to such demands, circuit board technology is required to rapidly advance higher layers, smaller diameters and narrower pitches of via holes, finer circuit pattern technology, and the like. However, it is very difficult to satisfy these requirements in the multilayer circuit board in which the electrical connection in the insulating layer is made by the conventional through-hole structure.

そのために新しい構造を備えた多層回路基板やその製造方法が開発された。その代表例の一つに、従来多層回路基板の絶縁層内接続の主流となっていたスルーホール構造に変わって、導電性ペーストにより絶縁層内の電気接続を確保した完全IVH(Inner Via Hole:インナービアホール)構造を有する回路形成用基板が開発された(例えば、特許文献1参照)。詳細は省略する。   Therefore, a multilayer circuit board having a new structure and a manufacturing method thereof have been developed. One representative example is a complete IVH (Inner Via Hole) in which the electrical connection in the insulating layer is secured by a conductive paste instead of the through-hole structure that has been the mainstream in the insulating layer connection of the conventional multilayer circuit board. A circuit forming substrate having an inner via hole structure has been developed (see, for example, Patent Document 1). Details are omitted.

さらに、高生産性を実現する多層回路基板の製造方法が開発された(例えば、特許文献2参照)。図8(a)〜(c)は、6層回路基板を例とした従来の多層回路基板の作製手順を示している。   Furthermore, a method for manufacturing a multilayer circuit board that realizes high productivity has been developed (see, for example, Patent Document 2). FIGS. 8A to 8C show a procedure for manufacturing a conventional multilayer circuit board using a six-layer circuit board as an example.

図8(a)は、6層回路基板の積層断面図を示す。図8(a)において、1a、1b、1cは、アラミド不織布に熱硬化性エポキシ樹脂を含浸させた複合材からなるアラミド−エポキシシート(以降プリプレグと呼ぶ)であり、レーザなどによって加工された貫通孔にCu粉末と熱硬化型エポキシ樹脂からなる導電ペースト2を充填している。   FIG. 8A shows a cross-sectional view of a six-layer circuit board. In FIG. 8A, 1a, 1b, and 1c are aramid-epoxy sheets (hereinafter referred to as prepregs) made of a composite material in which an aramid nonwoven fabric is impregnated with a thermosetting epoxy resin. The holes are filled with a conductive paste 2 made of Cu powder and a thermosetting epoxy resin.

5a、5bは、両面回路基板であり、これらの両面に形成された回路パターン3は、所定位置に設けられた貫通孔に充填された導電ペースト2によって電気的に接続されている。また、4a、4bはCuなどの金属箔である。   Reference numerals 5a and 5b denote double-sided circuit boards, and circuit patterns 3 formed on both sides thereof are electrically connected by a conductive paste 2 filled in through holes provided at predetermined positions. 4a and 4b are metal foils, such as Cu.

まず、図8(a)に示すように、作業ステージ(図示せず)に、金属箔4b、プリプレグ1c、両面回路基板5b、プリプレグ1b、両面回路基板5a、プリプレグ1a、金属箔4aの順に積層する。それぞれの位置決めには、位置決めパターン(図示せず)を用いて画像認識などによって位置決めして重ねる。   First, as shown in FIG. 8A, a metal foil 4b, a prepreg 1c, a double-sided circuit board 5b, a prepreg 1b, a double-sided circuit board 5a, a prepreg 1a, and a metal foil 4a are stacked in this order on a work stage (not shown). To do. For each positioning, positioning is performed by image recognition or the like using a positioning pattern (not shown).

次に、最上面の金属箔4aの上から、加熱したヒータチップなど(図示せず)で加熱加圧し、プリプレグ1a、1b、1cの樹脂成分を溶融させ、その後の樹脂成分の硬化により、両面回路基板5a、5b、金属箔4a、4bと接着させる。   Next, the top surface of the metal foil 4a is heated and pressed with a heated heater chip or the like (not shown) to melt the resin components of the prepregs 1a, 1b, and 1c, and then the both sides of the resin component are cured by curing. The circuit boards 5a and 5b and the metal foils 4a and 4b are bonded.

次に、熱プレスにて上下両面を加熱加圧することにより、プリプレグ1a、1b、1cが、両面回路基板5a、5bと金属箔4a、4bの全面を接着させる。それとともに、両面回路基板5aの回路パターン3と両面回路基板5bの回路パターン3間、両面回路基板5aの回路パターン3と金属箔4a間、両面回路基板5bの回路パターン3と金属箔4b間は、それぞれ導電性ペースト2によりインナービアホール接続される。   Next, the prepregs 1a, 1b, and 1c adhere the entire surfaces of the double-sided circuit boards 5a and 5b and the metal foils 4a and 4b by heating and pressurizing both the upper and lower surfaces with a hot press. At the same time, between the circuit pattern 3 on the double-sided circuit board 5a and the circuit pattern 3 on the double-sided circuit board 5b, between the circuit pattern 3 on the double-sided circuit board 5a and the metal foil 4a, and between the circuit pattern 3 on the double-sided circuit board 5b and the metal foil 4b. The inner via holes are connected by the conductive paste 2, respectively.

図8(b)に熱プレス後の6層基板の断面図を示す。   FIG. 8B shows a cross-sectional view of the six-layer substrate after hot pressing.

その後、最外層の金属箔4aおよび4bを選択的にエッチングして回路パターン3を形成させることで、一括して6層回路基板が得られる。図8(c)は、エッチング後の6層回路基板の断面図を示している。
特許第2601128号公報 特許第3231537号公報(例えば、請求項2、第7図)
Thereafter, the outermost metal foils 4a and 4b are selectively etched to form the circuit pattern 3, thereby obtaining a six-layer circuit board in a lump. FIG. 8C shows a cross-sectional view of the six-layer circuit board after etching.
Japanese Patent No. 2601128 Japanese Patent No. 3321537 (for example, claim 2, FIG. 7)

しかしながら、上記の従来の製造方法で作製された多層回路基板は次のような課題を有していた。   However, the multilayer circuit board manufactured by the above-described conventional manufacturing method has the following problems.

昨今、多層回路基板に搭載される半導体素子などの電子部品の高周波化に伴い、EMI(電磁的干渉)ノイズが問題とされるようになっている。   In recent years, EMI (electromagnetic interference) noise has become a problem as electronic components such as semiconductor elements mounted on a multilayer circuit board increase in frequency.

このEMIノイズの対策の1つとして、半導体素子などの電子部品を搭載もしくは収容する多層回路基板やパッケージ等のパッケージ用基板では、内部の配線層をベタパターンといわれる広面積の接地導体層で覆ってEMIノイズをシールドするといった対策がある。   As one countermeasure against this EMI noise, in a multilayer circuit board or a package board such as a package on which electronic components such as semiconductor elements are mounted or accommodated, an internal wiring layer is covered with a large-area ground conductor layer called a solid pattern. There is a countermeasure to shield EMI noise.

また、EMIノイズの対策として配線群の上下に広面積の接地導体を配置した場合には、インピーダンスマッチング(例えば50Ω)を考慮して基板の設計および製作をする必要がある。   Further, when a large-area ground conductor is arranged above and below the wiring group as a countermeasure against EMI noise, it is necessary to design and manufacture the substrate in consideration of impedance matching (for example, 50Ω).

インピーダンスマッチングを取る場合は、導体幅、導体厚み、導体層間厚み、導体層間に用いる絶縁材料の誘電率を考慮して多層回路基板の設計および製作をする必要がある。   In the case of impedance matching, it is necessary to design and manufacture a multilayer circuit board in consideration of the conductor width, conductor thickness, conductor interlayer thickness, and dielectric constant of the insulating material used between the conductor layers.

図9(a)〜(c)は、従来の製造方法で作製された多層回路基板の、任意の導体層3層分の断面図を示している。t1は、図8(a)での積層時に、両面回路基板(図8(a)の5a、5bに相当)を形成する絶縁層の部分を示し、t2、t3、t4は、プリプレグ(図8(a)の1a、1b、1cに相当)の部分を示している。   9A to 9C are cross-sectional views of arbitrary three conductor layers of a multilayer circuit board manufactured by a conventional manufacturing method. t1 indicates a portion of an insulating layer that forms a double-sided circuit board (corresponding to 5a and 5b in FIG. 8A) during lamination in FIG. 8A, and t2, t3, and t4 indicate prepregs (FIG. 8). The part of (a) corresponding to 1a, 1b and 1c) is shown.

図9(a)のS1は、例えば100μm以下の比較的細い線幅の信号線を示し、図9(b)のS2は、例えば5mmと言った比較的太い線幅の信号線を示し、図9(c)のS3は広範囲のベタ層の部分の断面を示している。   S1 in FIG. 9A represents a signal line having a relatively thin line width of, for example, 100 μm or less, and S2 in FIG. 9B represents a signal line having a relatively thick line width of, for example, 5 mm. S3 in 9 (c) shows a cross section of a wide solid layer portion.

t1は、積層時に用いた両面回路基板の絶縁層の厚さであり、熱プレス後もこの厚さは変わらない。t2〜t4は、積層時に用いたプリプレグの熱プレス後の厚さである。なお、熱プレス前においては、t1〜t4は同じ厚さである。   t1 is the thickness of the insulating layer of the double-sided circuit board used at the time of lamination, and this thickness does not change even after hot pressing. t2 to t4 are thicknesses after hot pressing of the prepreg used at the time of lamination. In addition, before heat press, t1-t4 are the same thickness.

図9(a)、(b)に示すように、信号線の設計線幅の違いにより、熱プレス後の各絶縁層の厚さは、t1>t3>t2と言うように絶縁層の厚さにバラツキが生じる。そして、図9(c)はベタ層が入っているためt1≒t4となる。   As shown in FIGS. 9A and 9B, due to the difference in the design line width of the signal line, the thickness of each insulating layer after hot pressing is such that t1> t3> t2. Variation occurs. In FIG. 9C, since a solid layer is included, t1≈t4.

以上説明したように、配線群の配線幅、密度によって、絶縁層の厚さに大きなバラツキが生じる。同様に、銅箔の厚さによっても絶縁層の厚さがバラツキ、そのためインピーダンスのミスマッチングが生じる。インピーダンスのミスマッチングが生じると、ノイズや高周波信号の伝送損失などが発生し、搭載される半導体素子などの電子部品の誤動作を引き起こすという大きな問題点があった。   As described above, the thickness of the insulating layer varies greatly depending on the wiring width and density of the wiring group. Similarly, the thickness of the insulating layer varies depending on the thickness of the copper foil, which causes impedance mismatching. When impedance mismatching occurs, noise and transmission loss of high-frequency signals occur, which causes a serious problem of causing malfunction of electronic components such as mounted semiconductor elements.

そこで本発明は、上記従来の問題点を考慮し、インピーダンスのミスマッチングが生じず、安定して高周波を駆動できる高性能な多層回路基板およびその製造方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a high-performance multilayer circuit board capable of stably driving a high frequency without causing impedance mismatching and a manufacturing method thereof in consideration of the above-described conventional problems.

上述した課題を解決するために、第1の本発明は、
信号線と接地配線の層の間隔は、前記信号線と隣接する他の信号線の層との間隔よりも小さく、かつ、前記信号線を有する層の面と前記接地配線を有する層の面はそれぞれ平坦である多層回路基板である。
In order to solve the above-described problem, the first aspect of the present invention provides:
The distance between the signal line and the ground wiring layer is smaller than the distance between the signal line and another signal line layer adjacent thereto, and the surface of the layer having the signal line and the surface of the layer having the ground wiring are Each is a flat multilayer circuit board.

第2の本発明は、
プリプレグシートの両面に銅箔を加熱加圧した後に前記銅箔をパターンニングした複数の両面回路基板と、他の複数のプリプレグシートとを交互に位置決めして重ねた後、上下の両面を加熱加圧して、前記他の複数のプリプレグシートを硬化させて製作した多層回路基板において、
前記複数の両面回路基板のいずれかの片側の面には前記信号線を有し、もう一方の面には前記接地配線を有する、第1の本発明の多層回路基板である。
The second aspect of the present invention
After the copper foil is heated and pressed on both sides of the prepreg sheet, a plurality of double-sided circuit boards patterned with the copper foil and other prepreg sheets are alternately positioned and stacked, and then the upper and lower sides are heated. In a multilayer circuit board manufactured by curing the other plurality of prepreg sheets,
The multilayer circuit board according to the first aspect of the present invention has the signal line on one side of the plurality of double-sided circuit boards and the ground wiring on the other side.

第3の本発明は、
前記他の複数のプリプレグシートを硬化させて製作した多層回路基板において、
前記他の複数のプリプレグシートの厚さは、前記複数の両面回路基板を形成するプリプレグシートの厚さよりも厚い、第2の本発明の多層回路基板である。
The third aspect of the present invention provides
In the multilayer circuit board produced by curing the other plurality of prepreg sheets,
The thickness of the other plurality of prepreg sheets is the multilayer circuit board according to the second aspect of the present invention, which is thicker than the thickness of the prepreg sheet forming the plurality of double-sided circuit boards.

第4の本発明は、
前記他の複数のプリプレグシートを硬化させて製作した多層回路基板において、
前記他の複数のプリプレグシートの厚さは、前記複数の両面回路基板を形成する前記プリプレグシートの厚さに前記両面回路基板の前記両面の銅箔の厚さを加えた厚さよりも厚い、第2の本発明の多層回路基板である。
The fourth invention relates to
In the multilayer circuit board produced by curing the other plurality of prepreg sheets,
The thickness of the other plurality of prepreg sheets is thicker than the thickness of the prepreg sheet forming the plurality of double-sided circuit boards plus the thickness of the copper foils on both sides of the double-sided circuit boards. 2 is a multilayer circuit board according to the present invention.

第5の本発明は、
前記他の複数のプリプレグシートの樹脂含浸量は、前記複数の両面回路基板を形成する前記プリプレグシートの樹脂含浸量よりも多い、第2乃至第4のいずれかの本発明の多層回路基板である。
The fifth aspect of the present invention relates to
The multilayer circuit board according to any one of the second to fourth aspects, wherein the resin impregnation amount of the other plurality of prepreg sheets is larger than the resin impregnation amount of the prepreg sheet forming the plurality of double-sided circuit boards. .

第6の本発明は、
前記他の複数の両面回路基板を形成する前記プリプレグシートの樹脂含浸量は、45〜70wt%である、第2乃至第5のいずれかの本発明の多層回路基板である。
The sixth invention relates to
The amount of resin impregnation of the prepreg sheet forming the other plurality of double-sided circuit boards is 45 to 70 wt% of the multilayer circuit board according to any one of the second to fifth aspects of the present invention.

第7の本発明は、
前記他の複数のプリプレグシートの樹脂含浸量は、55〜80wt%である、第2乃至第6のいずれかの本発明の多層回路基板である。
The seventh invention relates to
In the multilayer circuit board according to any one of the second to sixth aspects of the present invention, the resin impregnation amount of the other plurality of prepreg sheets is 55 to 80 wt%.

第8の本発明は、
前記他の複数のプリプレグシートの誘電率は、前記複数の両面回路基板を形成する前記プリプレグシートの誘電率よりも高い、第2乃至第7のいずれかの本発明の多層回路基板である。
The eighth invention relates to
The multilayer circuit board according to any one of the second to seventh aspects of the present invention, wherein a dielectric constant of the other plurality of prepreg sheets is higher than a dielectric constant of the prepreg sheet forming the plurality of double-sided circuit boards.

第9の本発明は、
前記他の複数のプリプレグシートの誘電率は、前記複数の両面回路基板を形成する前記プリプレグシートの誘電率よりも低い、第2乃至第7のいずれかの本発明の多層回路基板である。
The ninth invention relates to
The multilayer circuit board according to any one of the second to seventh aspects of the present invention, wherein a dielectric constant of the other plurality of prepreg sheets is lower than a dielectric constant of the prepreg sheet forming the plurality of double-sided circuit boards.

第10の本発明は、
前記他の複数のプリプレグシートおよび前記複数の両面回路基板を形成する前記プリプレグシートは、耐熱性有機繊維あるいは無機繊維の少なくとも一方を主成分とする織布あるいは不織布に熱硬化性樹脂を含浸させて半硬化状態にした複合材である、第2乃至第9のいずれかの本発明の多層回路基板である。
The tenth aspect of the present invention is
The other prepreg sheets and the prepreg sheets forming the plurality of double-sided circuit boards are obtained by impregnating a thermosetting resin into a woven or non-woven fabric mainly composed of at least one of heat-resistant organic fibers or inorganic fibers. The multilayer circuit board according to any one of the second to ninth aspects, which is a composite material in a semi-cured state.

第11の本発明は、
前記熱硬化性樹脂は、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、ポリエステル樹脂、シリコーン樹脂、シアネートエステル樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンオキサイド樹脂、フッ素系樹脂およびメラミン樹脂のうちの少なくとも1種類以上を含む、第10の本発明の多層回路基板である。
The eleventh aspect of the present invention is
The thermosetting resin includes at least one of epoxy resin, phenol resin, polyimide resin, polyester resin, silicone resin, cyanate ester resin, polyphenylene ether resin, polyphenylene oxide resin, fluorine resin, and melamine resin. 10 is a multilayer circuit board according to a tenth aspect of the present invention;

第12の本発明は、
前記他の複数のプリプレグシートおよび前記複数の両面回路基板を形成する前記プリプレグシートは、多孔質である、第2乃至第11のいずれかの本発明の多層回路基板である。
The twelfth aspect of the present invention is
The other prepreg sheet and the prepreg sheet forming the plurality of double-sided circuit boards are porous circuit boards according to any one of the second to eleventh aspects of the present invention, which are porous.

第13の本発明は、
前記熱硬化性樹脂は、フィラーが添加されている、第2乃至第12のいずれかの本発明の多層回路基板である。
The thirteenth aspect of the present invention is
The thermosetting resin is the multilayer circuit board according to any one of the second to twelfth aspects of the present invention, to which a filler is added.

第14の本発明は、
プリプレグシートの両面に銅箔を加熱加圧し、その後に銅箔をパターンニングして複数の両面回路基板を作製する工程と、
前記複数の両面回路基板と、他の複数のプリプレグシートを交互に位置決めして重ねる工程と、
前記複数の両面回路基板と前記他の複数のプリプレグシートを重ね合わせた回路基板群の上下の両面を加熱加圧して、前記他の複数のプリプレグシートを硬化させる工程とを備えた多層回路基板の製造方法であって、
前記他の複数のプリプレグシートを硬化させた後に、前記他の複数のプリプレグシートの厚さは、前記複数の両面回路基板を形成する前記プリプレグシートの厚さよりも厚い、多層回路基板の製造方法である。
The fourteenth aspect of the present invention is
Heating and pressing the copper foil on both sides of the prepreg sheet, and then patterning the copper foil to produce a plurality of double-sided circuit boards;
A step of alternately positioning and stacking the plurality of double-sided circuit boards and the other plurality of prepreg sheets;
A step of curing the plurality of other prepreg sheets by heating and pressing both upper and lower surfaces of the circuit board group in which the plurality of double-sided circuit boards and the other plurality of prepreg sheets are stacked. A manufacturing method comprising:
After curing the other plurality of prepreg sheets, the thickness of the other plurality of prepreg sheets is thicker than the thickness of the prepreg sheet forming the plurality of double-sided circuit boards. is there.

第15の本発明は、
さらに、前記複数の両面回路基板と、前記他の複数のプリプレグシートを交互に位置決めして重ねた後に、前記回路基板群の任意の部位を部分的に加熱加圧して、前記他の複数のプリプレグシートが含有している樹脂を溶融させ、その後硬化させて前記回路基板群を接着する工程を備えた、第14の本発明の多層回路基板の製造方法である。
The fifteenth aspect of the present invention is
Further, after the plurality of double-sided circuit boards and the other plurality of prepreg sheets are alternately positioned and overlapped, an arbitrary part of the circuit board group is partially heated and pressed to obtain the other plurality of prepregs. A method for producing a multilayer circuit board according to a fourteenth aspect of the present invention, comprising the steps of melting a resin contained in a sheet and thereafter curing the resin to bond the circuit board group.

第16の本発明は、
前記複数の両面回路基板と、他の複数のプリプレグシートを交互に位置決めして重ねる工程において、
前記複数の両面回路基板と前記他の複数のプリプレグシートのいずれかを1枚ずつ重ねる度に、重ね合わせた前記複数の両面回路基板と前記他の複数のプリプレグシートで形成された回路基板群の任意の部位を部分的に加熱加圧して、前記他の複数のプリプレグシートが含有している樹脂を溶融させ、その後硬化させて前記回路基板群を接着する、第14の本発明の多層回路基板の製造方法である。
The sixteenth aspect of the present invention
In the step of alternately positioning and overlapping the plurality of double-sided circuit boards and the other plurality of prepreg sheets,
Each time one of the plurality of double-sided circuit boards and the other plurality of prepreg sheets are stacked one by one, the circuit board group formed of the plurality of double-sided circuit boards and the other plurality of prepreg sheets that are superimposed A multilayer circuit board according to the fourteenth aspect of the present invention, in which an arbitrary part is partially heated and pressed to melt the resin contained in the plurality of other prepreg sheets and then cured to bond the circuit board group. It is a manufacturing method.

第17の本発明は、
前記複数の両面回路基板と、他の複数のプリプレグシートを交互に位置決めして重ねる工程において、
最初と最後に銅箔を配置し、前記他の複数のプリプレグシートが前記銅箔に隣接するように配置した、第16の本発明の多層回路基板の製造方法である。
The seventeenth aspect of the present invention provides
In the step of alternately positioning and overlapping the plurality of double-sided circuit boards and the other plurality of prepreg sheets,
It is the manufacturing method of the multilayer circuit board of the 16th aspect of the present invention in which the copper foil is arranged at the beginning and the end, and the other plurality of prepreg sheets are arranged adjacent to the copper foil.

第18の本発明は、
前記複数の両面回路基板に代えて、複数の2層以上の回路パターンを有する回路基板を用いる、第14乃至第17のいずれかの本発明の多層回路基板の製造方法である。
The eighteenth aspect of the present invention is
The method for manufacturing a multilayer circuit board according to any one of the fourteenth to seventeenth aspects of the present invention, wherein a circuit board having a plurality of circuit patterns of two or more layers is used instead of the plurality of double-sided circuit boards.

第19の本発明は、
前記複数の両面回路基板と、他の複数のプリプレグシートを交互に位置決めして重ねる工程を、
2層以上の回路パターンを有する2枚の回路基板の間に、1枚のプリプレグシートを挟んで重ね合わせる工程に置換した、第14乃至第16のいずれかの本発明の多層回路基板の製造方法である。
The nineteenth aspect of the present invention provides
The step of alternately positioning and stacking the plurality of double-sided circuit boards and the other plurality of prepreg sheets,
The method for producing a multilayer circuit board according to any one of the fourteenth to sixteenth aspects of the present invention, wherein the process is replaced with a step of superposing one prepreg sheet between two circuit boards having two or more circuit patterns. It is.

本発明により、インピーダンスのミスマッチングが生じず、安定して高周波を駆動できる高性能な多層回路基板およびその製造方法を提供することができる。   According to the present invention, it is possible to provide a high-performance multilayer circuit board capable of stably driving a high frequency without causing impedance mismatching and a method for manufacturing the same.

以下、本発明の実施の形態について、図を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施の形態1)
図1、図2を用いて本発明の実施の形態1の多層回路基板の作製手順について説明する。
(Embodiment 1)
A manufacturing procedure of the multilayer circuit board according to the first embodiment of the present invention will be described with reference to FIGS.

まず、図1を用いて、8層回路基板作製時に使用する両面回路基板の製造方法を説明する。   First, the manufacturing method of the double-sided circuit board used at the time of 8-layer circuit board manufacture is demonstrated using FIG.

図1(a)は両面回路基板の積層断面図であり、10は、厚さ80μmのガラスクロスに、フィラーを添加したエポキシ樹脂を含浸させた複合材からなるガラス−エポキシシート(以降プリプレグと呼ぶ)である。プリプレグ10の樹脂量は54wt%の物を使用した。プリプレグ10は、レーザなどによって加工されて形成された貫通孔に、Cu粉末と熱硬化型エポキシ樹脂からなる導電ペースト20が充填されている。   FIG. 1A is a cross-sectional view of a double-sided circuit board, and 10 is a glass-epoxy sheet (hereinafter referred to as a prepreg) made of a composite material in which an epoxy resin impregnated with a filler is added to a glass cloth having a thickness of 80 μm. ). The resin amount of the prepreg 10 was 54 wt%. In the prepreg 10, through holes formed by processing with a laser or the like are filled with a conductive paste 20 made of Cu powder and a thermosetting epoxy resin.

そして、プリプレグ10の両面に、厚さ12μmの銅箔40をそれぞれ配置し、熱プレスで両面から加熱加圧(200℃、50kg/cm)する。熱プレス後に、エッチングにて両面の銅箔40から回路パターン30を形成させ、両面回路基板50を完成させる。図1(b)は、作製された両面回路基板50の断面図である。 両面回路基板50の両面に形成された回路パターン30は、プリプレグ10の所定位置に設けられた貫通孔に充填された導電ペースト2によって電気的に接続されている。 And the copper foil 40 of thickness 12 micrometers is each arrange | positioned on both surfaces of the prepreg 10, and it heat-presses (200 degreeC, 50 kg / cm < 2 >) from both surfaces with a hot press. After hot pressing, the circuit pattern 30 is formed from the copper foils 40 on both sides by etching to complete the double-sided circuit board 50. FIG. 1B is a cross-sectional view of the produced double-sided circuit board 50. The circuit patterns 30 formed on both sides of the double-sided circuit board 50 are electrically connected by the conductive paste 2 filled in through holes provided at predetermined positions of the prepreg 10.

次に、図2を用いて、本実施の形態1の8層基板の多層化工程について説明する。   Next, with reference to FIG. 2, the multi-layer process of the eight-layer substrate according to the first embodiment will be described.

図2(a)は、8層基板の積層断面図である。10a、l0b、10c、10dは、いずれも、100μmのガラスクロスに、フィラーを添加したエポキシ樹脂を含浸させた複合材からなるプリプレグである。プリプレグ10a、l0b、10c、10dの樹脂量は60wt%の物を使用した。プリプレグ10a、l0b、10c、10dは、レーザなどによって加工されて形成された貫通孔に、Cu粉末と熱硬化型エポキシ樹脂からなる導電ペースト20が充填されている。   FIG. 2A is a cross-sectional view of an 8-layer substrate. Each of 10a, 10b, 10c, and 10d is a prepreg made of a composite material obtained by impregnating a 100 μm glass cloth with an epoxy resin added with a filler. Resin amounts of prepregs 10a, 10b, 10c, and 10d were 60 wt%. In the prepregs 10a, 10b, 10c, and 10d, through holes formed by processing with a laser or the like are filled with a conductive paste 20 made of Cu powder and a thermosetting epoxy resin.

両面回路基板50a、50b、50cの回路パターン30は、熱プレス時にプリプレグ10a、10b、10c、10dに食い込む。熱プレス後のプリプレグ10a、10b、10c、10dの厚さは熱プレス前に比べて薄くなるが、この回路パターン30が食い込む影響を受けて、より薄くなる。熱プレス後に、プリプレグ10a、10b、10c、10dの厚さが、両面回路基板50a、50b、50cを形成するプリプレグよりも厚くなるようにするために、積層用プリプレグ10a、10b、10c、10dの樹脂量の割合を多くした。   The circuit pattern 30 of the double-sided circuit boards 50a, 50b, 50c bites into the prepregs 10a, 10b, 10c, 10d at the time of hot pressing. The thicknesses of the prepregs 10a, 10b, 10c, and 10d after the hot pressing are thinner than those before the hot pressing, but are thinner due to the influence of the circuit pattern 30 biting in. In order to make the thickness of the prepregs 10a, 10b, 10c, and 10d thicker than that of the prepregs that form the double-sided circuit boards 50a, 50b, and 50c after the hot pressing, the lamination prepregs 10a, 10b, 10c, and 10d The proportion of the resin amount was increased.

まず、図2(a)に示すように、作業ステージ(図示せず)に、厚さ12μmの金属箔40b、プリプレグ10d、両面回路基板50c、プリプレグ10c、両面回路基板50b、プリプレグl0b、両面回路基板50a、プリプレグ10a、金属箔40aの順に積層する。それぞれの位置決めには、位置決めパターン(図示せず)を用いて画像認識などによって位置決めして重ねる。   First, as shown in FIG. 2A, a metal foil 40b having a thickness of 12 μm, a prepreg 10d, a double-sided circuit board 50c, a prepreg 10c, a double-sided circuit board 50b, a prepreg 10b, and a double-sided circuit are provided on a work stage (not shown). The substrate 50a, the prepreg 10a, and the metal foil 40a are laminated in this order. For each positioning, positioning is performed by image recognition or the like using a positioning pattern (not shown).

次に、最上面の金属箔40aの上から、加熱したヒータチップなど(図示せず)で加熱加圧し、プリプレグ10a、10b、10c、10dの樹脂成分を溶融させ、その後の樹脂成分の硬化により、両面回路基板50a、50b、50c、金属箔40a、40bとを接着させる。   Next, the top metal foil 40a is heated and pressurized with a heated heater chip or the like (not shown) to melt the resin components of the prepregs 10a, 10b, 10c, and 10d, and then the resin component is cured. The double-sided circuit boards 50a, 50b, 50c and the metal foils 40a, 40b are bonded.

なお、上述した多層化積層の手順は次の方法でもよい。   In addition, the following method may be sufficient as the procedure of the multilayered lamination | stacking mentioned above.

まず、図2(a)に示すように、作業ステージ(図示せず)に、金属箔40bを固定し、プリプレグ10dを位置決めして載せる。そして、ヒータチップなど(図示せず)で外周部を加熱加圧してプリプレグ10dの樹脂成分を溶融させ、その後硬化させて金属箔40bに固定させる。次に、両面回路基板50cを位置決めして載せ、ヒータチップなど(図示せず)で外周部を加熱加圧してプリプレグ10dの樹脂成分を溶融させ、その後硬化させてプリプレグ10dと固定させる。同様にこの手順を所望の回数繰り返し、最後に金属箔40aを載せ、ヒータチップなど(図示せず)で外周部を加熱加圧してプリプレグ10aの樹脂成分を溶融させ、その後硬化させて金属箔40aとプリプレグ10aを固定させる。   First, as shown to Fig.2 (a), metal foil 40b is fixed to a work stage (not shown), and the prepreg 10d is positioned and mounted. Then, the outer peripheral portion is heated and pressurized with a heater chip or the like (not shown) to melt the resin component of the prepreg 10d, and then cured and fixed to the metal foil 40b. Next, the double-sided circuit board 50c is positioned and mounted, and the outer peripheral portion is heated and pressurized with a heater chip or the like (not shown) to melt the resin component of the prepreg 10d, and then cured and fixed to the prepreg 10d. Similarly, this procedure is repeated as many times as desired. Finally, the metal foil 40a is placed, and the outer peripheral portion is heated and pressurized with a heater chip or the like (not shown) to melt the resin component of the prepreg 10a, and then cured to cure the metal foil 40a. And the prepreg 10a is fixed.

次に、熱プレスにて、多層化積層した回路基板群の上下両面から加熱加圧(200℃、50kg/cm)する。これにより、プリプレグ10a、10b、10c、10dが、両面回路基板50a、50b、50cと金属箔40a、40bを接着させる。それとともに、両面回路基板50a、50b、50cのそれぞれの回路パターン30と金属箔40a、40b間は、それぞれの間に挟まれたプリプレグ10a、10b、10c、10dの貫通孔に充填されている導電性ペースト2によってインナービア接続される。 Next, heating and pressurization (200 ° C., 50 kg / cm 2 ) is performed from the upper and lower surfaces of the multilayered circuit board group by hot pressing. Thus, the prepregs 10a, 10b, 10c, and 10d bond the double-sided circuit boards 50a, 50b, and 50c and the metal foils 40a and 40b. At the same time, between the circuit patterns 30 of the double-sided circuit boards 50a, 50b, and 50c and the metal foils 40a and 40b, the conductive holes filled in the through holes of the prepregs 10a, 10b, 10c, and 10d sandwiched therebetween. Inner via connection is made by the conductive paste 2.

図2(b)に、熱プレス工程後の回路基板群の断面図を示す。   FIG. 2B shows a cross-sectional view of the circuit board group after the hot pressing process.

図2(b)に示す回路基板群の最外層の金属箔40a、40bを選択的にエッチングして回路パターン30を形成させることで、一括して8層回路基板が得られる。   By selectively etching the outermost metal foils 40a and 40b of the circuit board group shown in FIG. 2B to form the circuit pattern 30, an 8-layer circuit board can be obtained in a lump.

図2(c)は、エッチング後の、作製された8層回路基板の断面図を示している。   FIG. 2 (c) shows a cross-sectional view of the fabricated 8-layer circuit board after etching.

図2(c)の作製された8層回路基板の断面を観察すると、多層化積層時にコアとして用いた両面回路基板50a、50b、50cの絶縁層の厚さt1は、いずれも等しい厚さとなっている。これは、図1で説明したように、プリプレグ10の両面を銅箔40で挟み込み、その上下両面から加熱加圧して、コアとして用いた両面回路基板50a、50b、50cを作製したためである。   When the cross section of the fabricated 8-layer circuit board in FIG. 2C is observed, the thicknesses t1 of the insulating layers of the double-sided circuit boards 50a, 50b, and 50c used as the core at the time of multilayer lamination are all equal. ing. This is because, as described with reference to FIG. 1, both sides of the prepreg 10 are sandwiched between the copper foils 40 and heated and pressed from both the upper and lower sides to produce the double-sided circuit boards 50a, 50b, and 50c used as the core.

一方、プリプレグl0bと10cは、コアとして用いた両面回路基板50a、50b、50cに形成されている回路パターン30により押し込まれるため、これらの厚さt2は、熱プレス後に薄く仕上がる。   On the other hand, since the prepregs 10b and 10c are pushed in by the circuit pattern 30 formed on the double-sided circuit boards 50a, 50b and 50c used as the cores, their thickness t2 is thin after hot pressing.

また、プリプレグ10a、10dは、片側に金属箔40a、40b、もう一方に両面回路基板50a、50cが配置されているため、片側のみ回路パターン30が押し込まれる。従って、熱プレス後のプリプレグ10a、10dの厚さをt3とすると、各絶縁層の厚さの関係は、t1<t2<t3となる。   Moreover, since the metal foils 40a and 40b are arranged on one side and the double-sided circuit boards 50a and 50c are arranged on the other side of the prepregs 10a and 10d, the circuit pattern 30 is pushed only on one side. Therefore, when the thickness of the prepregs 10a and 10d after the hot pressing is t3, the relationship between the thicknesses of the insulating layers is t1 <t2 <t3.

ここで、t1が一番薄いのは、両面回路基板50a、50b、50c作製時に用いたプリプレグ10のガラスクロスの厚さが、多層化積層時に用いたプリプレグ10a、10b、10c、10dのガラスクロスの厚さよりも薄いからである。   Here, t1 is the thinnest because the glass cloth of the prepreg 10 used at the time of manufacturing the double-sided circuit boards 50a, 50b, and 50c is the glass cloth of the prepregs 10a, 10b, 10c, and 10d used at the time of multilayer lamination. This is because it is thinner than the thickness.

次に、上記のt1とt2の厚さの関係について、実際に基板を作製して確認した。   Next, the relationship between the thicknesses of t1 and t2 was actually confirmed by fabricating a substrate.

図3は、以上説明してきた多層回路基板の内層部に、インピーダンスが50Ωとなるように、接地配線G1と接地配線G2の間に信号配線(ストリップライン)S1を形成させた時の断面図である。信号配線S1の長さは30mmとした。t1はコアとして用いた両面回路基板の絶縁層部分の厚さ、t2は多層化積層時に用いたプリプレグの厚さである。両面回路基板作製時に用いるプリプレグのガラスクロスの厚さは、多層化積層時に用いるプリプレグのガラスクロスの厚さよりも薄いものとした。   FIG. 3 is a cross-sectional view when the signal wiring (strip line) S1 is formed between the ground wiring G1 and the ground wiring G2 in the inner layer portion of the multilayer circuit board described above so that the impedance becomes 50Ω. is there. The length of the signal wiring S1 was 30 mm. t1 is the thickness of the insulating layer portion of the double-sided circuit board used as the core, and t2 is the thickness of the prepreg used at the time of multilayer lamination. The thickness of the glass cloth of the prepreg used at the time of double-sided circuit board preparation was made thinner than the thickness of the glass cloth of the prepreg used at the time of multilayer lamination.

なお、本発明の信号線を有する層と隣接する接地配線を有する層とは、本実施の形態1においては、多層回路基板を作製する際のコアとなる両面回路基板の両面の回路パターンを有する面がそれぞれ相当する。図3においては、信号配線S1を有する導体層面が本発明の信号線の層としての一例であり、接地配線G1を有する導体層面が本発明の接地配線の層としての一例となる。そして、接地配線G2を有する導体層面が本発明の隣接する他の信号線の層の一例である。同様に、図2の場合には、例えば、両面回路基板50bの上面の回路パターン30を有する導体層面が、本発明の信号線の層に相当すると考えられる。この場合、両面回路基板50bの下面の回路パターン30を有する導体層面が、本発明の接地配線の層に相当する。そして、プリプレグ10bを介して両面回路基板50bの上面の回路パターン30と対向する、両面回路基板50aの下面の回路パターン30を有する導体層面が、本発明の隣接する他の信号線の層に相当することになる。   In the first embodiment, the layer having the signal line of the present invention and the layer having the ground wiring adjacent to each other have a circuit pattern on both sides of the double-sided circuit board serving as a core when the multilayer circuit board is manufactured. Each surface corresponds to each. In FIG. 3, the conductor layer surface having the signal wiring S1 is an example of the signal line layer of the present invention, and the conductor layer surface having the ground wiring G1 is an example of the ground wiring layer of the present invention. The conductor layer surface having the ground wiring G2 is an example of another adjacent signal line layer of the present invention. Similarly, in the case of FIG. 2, for example, the conductor layer surface having the circuit pattern 30 on the upper surface of the double-sided circuit board 50 b is considered to correspond to the signal line layer of the present invention. In this case, the conductor layer surface having the circuit pattern 30 on the lower surface of the double-sided circuit board 50b corresponds to the layer of the ground wiring of the present invention. The conductor layer surface having the circuit pattern 30 on the lower surface of the double-sided circuit board 50a that faces the circuit pattern 30 on the upper surface of the double-sided circuit board 50b through the prepreg 10b corresponds to the layer of another adjacent signal line of the present invention. Will do.

図3に示した内層部分を含む、同じ仕様の多層回路基板を30枚作製し、それぞれの基板のインピーダンスと絶縁層の厚さt1、t2を測定した。   Thirty multilayer circuit boards having the same specifications including the inner layer portion shown in FIG. 3 were produced, and the impedance of each board and the thicknesses t1 and t2 of the insulating layers were measured.

作製した各基板の各絶縁層の厚さt1、t2を測定した結果、t1のバラツキが最大5μmだったのに対し、t2のバラツキは最大20μmであった。つまり、両面回路基板に用いたプリプレグの厚さのバラツキが、多層化積層時に用いるプリプレグの厚さのバラツキよりも小さくなることを確認できた。また、t1のバラツキの最大5μmという値は非常に小さく、信号配線S1と接地配線G1の距離を一定にできたと言える。   As a result of measuring the thicknesses t1 and t2 of the respective insulating layers of each of the produced substrates, the maximum variation in t1 was 5 μm, whereas the maximum variation in t2 was 20 μm. That is, it was confirmed that the variation in the thickness of the prepreg used for the double-sided circuit board was smaller than the variation in the thickness of the prepreg used in the multilayer lamination. Further, the maximum variation of t1 of 5 μm is very small, and it can be said that the distance between the signal wiring S1 and the ground wiring G1 can be made constant.

また、これらの各基板のインピーダンスを測定してみると、50〜52Ωの範囲であり、バラツキが小さく非常に良好であった。   Further, when the impedance of each of these substrates was measured, it was in the range of 50 to 52Ω, and the variation was very good.

通常、絶縁層間の厚さにバラツキが生じるとインピーダンス値が大きく変わってくる。今回の基板でインピーダンスにバラツキが生じなかったのは、信号配線S1と接地配線G1の距離が一定であったためであると考えられる。   Normally, when the thickness between insulating layers varies, the impedance value changes greatly. The reason why the impedance does not vary in the substrate this time is considered that the distance between the signal wiring S1 and the ground wiring G1 is constant.

次に、上記の実測による結果をさらに検証するため、図4の様なモデルを考え、回路シミュレータADS(アジレントテクノロジー社)でシミュレーションを行った。   Next, in order to further verify the result of the above actual measurement, a model as shown in FIG. 4 was considered and a simulation was performed with a circuit simulator ADS (Agilent Technology).

図4(a)、(b)、(c)は、いずれも多層回路基板の高周波特性評価用部分(ストリップライン構造)の断面図を示しており、図4(a)はt1>t2、図4(b)はt1=t2、図4(c)はt1<t2、としたモデルである。図3の場合と同様に、t1はコアとして用いる両面回路基板の絶縁層部分の厚さ、t2は多層化積層時に用いるプリプレグの厚さを示している。また、図4(d)は、これらのモデルによるシミュレーション結果を示している。   4A, 4B, and 4C are cross-sectional views of the high-frequency characteristic evaluation portion (strip line structure) of the multilayer circuit board, and FIG. 4A shows t1> t2. 4 (b) is a model in which t1 = t2, and FIG. 4 (c) is a model in which t1 <t2. Similar to the case of FIG. 3, t1 indicates the thickness of the insulating layer portion of the double-sided circuit board used as the core, and t2 indicates the thickness of the prepreg used in the multilayer lamination. FIG. 4 (d) shows the simulation results using these models.

このとき、t1は100μm一定とし、t1>t2、t1=t2、t1<t2とt2の値を変えてシミュレーションを行った。   At this time, the simulation was performed by changing t1 to t2, t1 = t2, and t1 <t2 and t2 with t1 being constant at 100 μm.

図4(a)に示すt1>t2の関係の場合、t2に20μmの差が出るとインピーダンスは6.56%変化する。これに対し、図4(c)に示すt1<t2の関係の場合には、同じようにt2に20μmの差が出たときのインピーダンスの変化量は3.24%となり、図4(a)の場合に比べてインピーダンスのバラツキ幅は約1/2となった。   In the case of the relationship of t1> t2 shown in FIG. 4A, the impedance changes by 6.56% when a difference of 20 μm appears in t2. On the other hand, in the case of the relationship of t1 <t2 shown in FIG. 4C, the amount of change in impedance when the difference of 20 μm is similarly generated in t2 is 3.24%, and FIG. Compared to the case, the variation width of the impedance was about ½.

従って、高周波駆動用の多層回路基板は、信号線と接地配線の距離の近い側の導電層間の距離を一定にする事、つまり、信号線と接地配線の距離の近い側の導電層間の絶縁層の厚さを一定にする事で、高性能な基板を提供することができると言える。   Therefore, the multi-layer circuit board for high frequency driving makes the distance between the conductive layers on the side closer to the distance between the signal line and the ground wiring constant, that is, the insulating layer between the conductive layers on the side closer to the distance between the signal line and the ground wiring. It can be said that a high-performance substrate can be provided by making the thickness of the substrate constant.

本実施の形態1の場合、t1はバラツキが小さく均一化できるので、t1<t2の関係を成立させることにより、安定して高周波を駆動する多層回路基板の提供ができる。   In the case of the first embodiment, since t1 has small variations and can be made uniform, a multilayer circuit board that stably drives a high frequency can be provided by establishing the relationship of t1 <t2.

そして、t1を均一化させる場合は、シート状の材料(例えばポリイミドフィルム)の上下に接着剤を塗布した材料で、図2に示す両面回路基板50a、50b、50cを作製するとよい。   And when making t1 uniform, it is good to produce the double-sided circuit boards 50a, 50b, and 50c shown in FIG. 2 with the material which apply | coated the adhesive agent on the upper and lower sides of a sheet-like material (for example, polyimide film).

また、目的によって、図2に示す両面回路基板50a、50b、50cの誘電率を変えることで、さらに高性能な基板を提供できる。図1に示すプリプレグ10に含浸させる熱硬化性樹脂材料の種類により、両面回路基板50a、50b、50cの誘電率を変えることができる。例えば、プリプレグ10に含浸させる熱硬化性樹脂として、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、ポリエステル樹脂、シリコーン樹脂、シアネートエステル樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンオキサイド樹脂、フッ素系樹脂およびメラミン樹脂のうちの少なくとも1種類以上の組み合わせを用いることにより、所望の誘電率を有する両面回路基板50a、50b、50cを作製することができる。   Further, by changing the dielectric constants of the double-sided circuit boards 50a, 50b, and 50c shown in FIG. 2 depending on the purpose, a higher performance board can be provided. Depending on the type of thermosetting resin material impregnated in the prepreg 10 shown in FIG. 1, the dielectric constant of the double-sided circuit boards 50a, 50b, and 50c can be changed. For example, as the thermosetting resin impregnated in the prepreg 10, at least one of an epoxy resin, a phenol resin, a polyimide resin, a polyester resin, a silicone resin, a cyanate ester resin, a polyphenylene ether resin, a polyphenylene oxide resin, a fluorine resin, and a melamine resin By using one or more combinations, the double-sided circuit boards 50a, 50b, and 50c having a desired dielectric constant can be manufactured.

インピーダンスマッチングを重視する多層回路基板には、両面回路基板50a、50b、50cの誘電率を、プリプレグ10a、10b、10c、10dよりも大きくするとよい。   For multilayer circuit boards that place importance on impedance matching, the dielectric constants of the double-sided circuit boards 50a, 50b, and 50c are preferably larger than those of the prepregs 10a, 10b, 10c, and 10d.

信号の伝送速度を重視する多層回路基板には、両面回路基板50a、50b、50cの誘電率を、プリプレグ10a、10b、10c、10dよりも小さくするよい。   For multilayer circuit boards that place importance on signal transmission speed, the dielectric constants of the double-sided circuit boards 50a, 50b, and 50c may be smaller than those of the prepregs 10a, 10b, 10c, and 10d.

また、コアとして用いた両面回路基板50a、50b、50cの作製時に用いたプリプレグ10は、樹脂の含浸量が54wt%の物を使用したが、これ以外の樹脂の含浸量の物を用いてもよい。両面回路基板作製時に用いるプリプレグとして、樹脂の含浸量が、45〜70wt%の物を用いるのが好ましい。   In addition, the prepreg 10 used at the time of manufacturing the double-sided circuit boards 50a, 50b, and 50c used as the core was a resin impregnated amount of 54 wt%, but other resin impregnated amounts may be used. Good. As the prepreg used in the production of the double-sided circuit board, it is preferable to use a resin having an impregnation amount of 45 to 70 wt%.

コアとして用いる両面回路基板に用いたプリプレグの樹脂の含浸量が45wt%を下回ると、樹脂が少なすぎて回路埋め込み性が悪化し、白化(基板内部に巣ができる現象)が発生する。白化部があると、部品実装時のリフロー工程で基板がふくれて破壊する恐れがある。また、樹脂の含浸量が70wt%を上回ると、加熱加圧時に樹脂流れが発生し、接続用の導電ペーストが流れ、接続が不安定になってしまう。   When the impregnation amount of the resin of the prepreg used for the double-sided circuit board used as the core is less than 45 wt%, the resin is too small and the circuit embedding property deteriorates, and whitening (a phenomenon in which a nest is formed inside the substrate) occurs. If there is a whitened portion, the substrate may swell up and be destroyed during the reflow process during component mounting. On the other hand, if the impregnation amount of the resin exceeds 70 wt%, a resin flow occurs at the time of heating and pressurization, a conductive paste for connection flows, and the connection becomes unstable.

また、積層多層化時に用いたプリプレグ10a、10b、10c、10dは、樹脂の含浸量が60wt%の物を使用したが、これ以外の樹脂の含浸量の物を用いてもよい。積層多層化時に用いるプリプレグとして、樹脂の含浸量が、55〜80wt%の物を用いるのが好ましい。   Further, as the prepregs 10a, 10b, 10c, and 10d used at the time of multilayering, a resin impregnation amount of 60 wt% is used, but other resin impregnation amounts may be used. It is preferable to use a resin prepreg having a resin impregnation amount of 55 to 80 wt%.

積層多層化時に用いるプリプレグの樹脂の含浸量が55wt%を下回ると、樹脂が少なすぎて回路埋め込み性が悪化し、白化(基板内部に巣ができる現象)が発生してしまう。また、樹脂の含浸量が80wt%を上回ると、加熱加圧時に樹脂流れが発生してしまう。   If the amount of the prepreg resin impregnation used in the multilayer formation is less than 55 wt%, the resin is too small and the circuit embedding property deteriorates, and whitening (a phenomenon in which a nest is formed inside the substrate) occurs. On the other hand, if the impregnation amount of the resin exceeds 80 wt%, a resin flow occurs during heating and pressurization.

また、本実施の形態1においては、プリプレグとして、ガラスクロスにフィラーを添加したエポキシ樹脂を含浸させた複合材を用いたが、耐熱性有機繊維あるいは無機繊維の少なくとも一方を主成分とする織布あるいは不織布に熱硬化性樹脂を含浸させて半硬化状態にした複合材を用いてもよい。また、プリプレグは多孔質であることが望ましい。   In the first embodiment, a composite material in which a glass cloth is impregnated with an epoxy resin added with a filler is used as a prepreg. However, a woven fabric mainly composed of at least one of heat-resistant organic fibers or inorganic fibers. Alternatively, a composite material in which a nonwoven fabric is impregnated with a thermosetting resin to be in a semi-cured state may be used. The prepreg is preferably porous.

また、高周波回路の駆動用多層回路基板の内層に用いる銅箔、つまり図1に示す両面回路基板50の作製時に用いる銅箔40の表面粗さは小さい方がよく、その厚さは薄い方がよい。   Further, the copper foil used for the inner layer of the multilayer circuit board for driving the high-frequency circuit, that is, the copper foil 40 used when producing the double-sided circuit board 50 shown in FIG. Good.

また、図5は、接地配線と接地配線の間に挟まれた2つの信号配線が存在する多層回路基板の内層部分の断面図を示している。このように、接地配線G1、G2間に2つの信号配線S1、S2が有る場合にも、t1<t2の関係となるよう多層回路基板を製作することで、安定して高周波を駆動する多層回路基板を提供できる。このとき、信号配線S1と信号配線S2とは、平行であっても直交していても良い。   FIG. 5 shows a cross-sectional view of the inner layer portion of the multilayer circuit board in which two signal wirings sandwiched between the ground wiring and the ground wiring exist. As described above, even when there are two signal wirings S1 and S2 between the ground wirings G1 and G2, a multilayer circuit that stably drives a high frequency by manufacturing a multilayer circuit board so as to satisfy the relationship of t1 <t2. A substrate can be provided. At this time, the signal wiring S1 and the signal wiring S2 may be parallel or orthogonal.

また、本実施の形態1の多層回路基板の作製では、コアとして両面回路基板を使用したが、その他の層数の基板をコアとして用いても良い。図6は、両面回路基板60a、60b、4層回路基板61、8層回路基板62を用いた場合の多層回路基板の積層断面図を示している。この場合に用いる多層回路基板は、本発明の構造の多層回路基板を使用するのがよい。また、各多層回路基板に用いる材料の誘電率を変えることで、さらに高性能で多機能な回路基板を提供できる。   In the production of the multilayer circuit board according to the first embodiment, the double-sided circuit board is used as the core, but a board having other number of layers may be used as the core. FIG. 6 shows a cross-sectional view of a multilayer circuit board when the double-sided circuit boards 60a and 60b, the 4-layer circuit board 61, and the 8-layer circuit board 62 are used. The multilayer circuit board used in this case is preferably a multilayer circuit board having the structure of the present invention. Further, by changing the dielectric constant of the material used for each multilayer circuit board, it is possible to provide a higher-performance and multifunctional circuit board.

また、多層回路基板を2枚用いてさらに多層化しても良い。図7は、完成された2枚の多層回路基板70a、70bを、プリプレグ10でさらに多層化する場合の積層断面図を示している。このときの多層回路基板は、本発明の構造の多層回路基板を使用するのがよい。また、図7では、多層回路基板70a、70bの片面のみに回路パターン30を形成させているが、両面に回路パターンを形成させた多層回路基板を用いても良い。   Further, two multilayer circuit boards may be used for further multilayering. FIG. 7 is a cross-sectional view showing a case where two completed multilayer circuit boards 70 a and 70 b are further multilayered by the prepreg 10. The multilayer circuit board at this time is preferably a multilayer circuit board having the structure of the present invention. In FIG. 7, the circuit pattern 30 is formed only on one side of the multilayer circuit boards 70a and 70b. However, a multilayer circuit board having circuit patterns formed on both sides may be used.

また、本実施の形態1で用いた回路基板はペースト接続の回路基板であるが、スルーホール構造、ビルドアップ構造などの多層回路基板でもよい。   The circuit board used in the first embodiment is a paste-connected circuit board, but may be a multilayer circuit board such as a through-hole structure or a build-up structure.

以上説明したところから明らかなように、高速高周波の信号を駆動する多層回路基板では、接地配線と信号線間の絶縁層の厚さを均一にする事で高性能な多層回路基板を提供できる。特に接地配線と接地配線にはさまれた信号配線では、基板内において接地配線と信号配線の絶縁層の薄い側の厚さを一定にすることで容易に高性能な基板の提供ができる。すなわち、接地配線と信号配線間の絶縁層の厚さが厚い側のコントロールは考えなくても良く、基板の設計、製作が容易となり、高速高周波駆動用の多層基板が安定して提供できる。   As is apparent from the above description, a multilayer circuit board that drives a high-speed, high-frequency signal can provide a high-performance multilayer circuit board by making the thickness of the insulating layer between the ground wiring and the signal line uniform. In particular, in the signal wiring sandwiched between the ground wiring and the ground wiring, a high-performance substrate can be easily provided by making the thickness of the thin side of the insulating layer of the ground wiring and the signal wiring constant in the substrate. That is, there is no need to consider the control on the side where the insulating layer between the ground wiring and the signal wiring is thick, the design and manufacture of the substrate is facilitated, and a multilayer substrate for high-speed and high-frequency driving can be provided stably.

本発明にかかる多層回路基板およびその製造方法は、インピーダンスのミスマッチングが生じず、安定して高周波を駆動できる高性能な多層回路基板およびその製造方法を提供することができ、多層回路基板およびその製造方法等として有用である。   The multilayer circuit board and the manufacturing method thereof according to the present invention can provide a high-performance multilayer circuit board capable of stably driving a high frequency without causing impedance mismatching, and the manufacturing method thereof. This is useful as a production method.

本発明の実施の形態1における両面回路基板の製造方法を示す図The figure which shows the manufacturing method of the double-sided circuit board in Embodiment 1 of this invention. 本発明の実施の形態1における8層回路基板の製造時の断面図Sectional drawing at the time of manufacture of the 8-layer circuit board in Embodiment 1 of this invention 本発明の実施の形態1における多層基板内部の高周波特性評価用部分(ストリップライン構造)の断面図Sectional drawing of the part for high frequency characteristic evaluation (strip line structure) in the multilayer substrate in Embodiment 1 of this invention 本発明の実施の形態1の多層基板内部のシミュレーションにおける高周波特性評価用部分(ストリップライン構造)の断面図Sectional drawing of the part for high frequency characteristic evaluation (strip line structure) in the simulation inside the multilayer substrate of Embodiment 1 of this invention 本発明の実施の形態1における多層基板の、2つの信号配線が接地配線に挟まれた部分の断面図Sectional drawing of the part by which two signal wiring was pinched | interposed into the ground wiring of the multilayer substrate in Embodiment 1 of this invention 本発明の実施の形態1における、多層回路基板を用いた多層回路基板の製造時の断面図Sectional drawing at the time of manufacture of the multilayer circuit board using the multilayer circuit board in Embodiment 1 of this invention 本発明の実施の形態1における、2つの多層回路基板で挟み込む場合の多層回路基板の製造時の断面図Sectional drawing at the time of manufacture of a multilayer circuit board in the case of sandwiching between two multilayer circuit boards in Embodiment 1 of the present invention 従来の6層回路基板の製造時の断面図Sectional view when manufacturing a conventional 6-layer circuit board 従来の多層基板の任意の導体層3層分を示す断面図Sectional drawing which shows 3 layers of arbitrary conductor layers of the conventional multilayer substrate

符号の説明Explanation of symbols

1a、1b、1c アラミド−エポキシシート(プリプレグ)
2 導電ペースト
3 回路パターン
4a、4b 金属箔(銅箔)
5a、5b 両面回路基板
10、10a、10b、10c、10d、10e プリプレグ
20 導電ペースト
30 回路パターン
40a、40b 金属箔
50、50a、50b、50c、60a、60b 両面回路基板
61 4層回路基板
62 8層回路基板
70a、70b 多層回路基板
G1、G2 接地配線
S1、S2、S3 信号配線
1a, 1b, 1c Aramid-epoxy sheet (prepreg)
2 Conductive paste 3 Circuit pattern 4a, 4b Metal foil (copper foil)
5a, 5b Double-sided circuit board 10, 10a, 10b, 10c, 10d, 10e Prepreg 20 Conductive paste 30 Circuit pattern 40a, 40b Metal foil 50, 50a, 50b, 50c, 60a, 60b Double-sided circuit board 61 4-layer circuit board 62 8 Layer circuit board 70a, 70b Multilayer circuit board G1, G2 Ground wiring S1, S2, S3 Signal wiring

Claims (19)

信号線と接地配線の層の間隔は、前記信号線と隣接する他の信号線の層との間隔よりも小さく、かつ、前記信号線を有する層の面と前記接地配線を有する層の面はそれぞれ平坦である多層回路基板。   The distance between the signal line and the ground wiring layer is smaller than the distance between the signal line and another signal line layer adjacent thereto, and the surface of the layer having the signal line and the surface of the layer having the ground wiring are Multi-layer circuit board, each flat. プリプレグシートの両面に銅箔を加熱加圧した後に前記銅箔をパターンニングした複数の両面回路基板と、他の複数のプリプレグシートとを交互に位置決めして重ねた後、上下の両面を加熱加圧して、前記他の複数のプリプレグシートを硬化させて製作した多層回路基板において、
前記複数の両面回路基板のいずれかの片側の面には前記信号線を有し、もう一方の面には前記接地配線を有する、請求項1に記載の多層回路基板。
After the copper foil is heated and pressed on both sides of the prepreg sheet, a plurality of double-sided circuit boards patterned with the copper foil and other prepreg sheets are alternately positioned and stacked, and then the upper and lower sides are heated. In a multilayer circuit board manufactured by curing the other plurality of prepreg sheets,
2. The multilayer circuit board according to claim 1, wherein the signal line is provided on one side of the plurality of double-sided circuit boards, and the ground wiring is provided on the other side.
前記他の複数のプリプレグシートを硬化させて製作した多層回路基板において、
前記他の複数のプリプレグシートの厚さは、前記複数の両面回路基板を形成するプリプレグシートの厚さよりも厚い、請求項2に記載の多層回路基板。
In the multilayer circuit board produced by curing the other plurality of prepreg sheets,
The multilayer circuit board according to claim 2, wherein a thickness of the other plurality of prepreg sheets is thicker than a thickness of a prepreg sheet forming the plurality of double-sided circuit boards.
前記他の複数のプリプレグシートを硬化させて製作した多層回路基板において、
前記他の複数のプリプレグシートの厚さは、前記複数の両面回路基板を形成する前記プリプレグシートの厚さに前記両面回路基板の前記両面の銅箔の厚さを加えた厚さよりも厚い、請求項2に記載の多層回路基板。
In the multilayer circuit board produced by curing the other plurality of prepreg sheets,
The thickness of the other plurality of prepreg sheets is thicker than the thickness of the prepreg sheet forming the plurality of double-sided circuit boards plus the thickness of the copper foils on both sides of the double-sided circuit boards. Item 3. The multilayer circuit board according to Item 2.
前記他の複数のプリプレグシートの樹脂含浸量は、前記複数の両面回路基板を形成する前記プリプレグシートの樹脂含浸量よりも多い、請求項2乃至4のいずれかに記載の多層回路基板。   5. The multilayer circuit board according to claim 2, wherein an amount of resin impregnation of the other plurality of prepreg sheets is larger than an amount of resin impregnation of the prepreg sheet forming the plurality of double-sided circuit boards. 前記他の複数の両面回路基板を形成する前記プリプレグシートの樹脂含浸量は、45〜70wt%である、請求項2乃至5のいずれかに記載の多層回路基板。   The multilayer circuit board according to any one of claims 2 to 5, wherein a resin impregnation amount of the prepreg sheet forming the other plurality of double-sided circuit boards is 45 to 70 wt%. 前記他の複数のプリプレグシートの樹脂含浸量は、55〜80wt%である、請求項2乃至6のいずれかに記載の多層回路基板。   The multilayer circuit board according to claim 2, wherein an amount of resin impregnation of the other plurality of prepreg sheets is 55 to 80 wt%. 前記他の複数のプリプレグシートの誘電率は、前記複数の両面回路基板を形成する前記プリプレグシートの誘電率よりも高い、請求項2乃至7のいずれかに記載の多層回路基板。   The multilayer circuit board according to claim 2, wherein a dielectric constant of the other plurality of prepreg sheets is higher than a dielectric constant of the prepreg sheet forming the plurality of double-sided circuit boards. 前記他の複数のプリプレグシートの誘電率は、前記複数の両面回路基板を形成する前記プリプレグシートの誘電率よりも低い、請求項2乃至7のいずれかに記載の多層回路基板。   The multilayer circuit board according to claim 2, wherein a dielectric constant of the other plurality of prepreg sheets is lower than a dielectric constant of the prepreg sheet forming the plurality of double-sided circuit boards. 前記他の複数のプリプレグシートおよび前記複数の両面回路基板を形成する前記プリプレグシートは、耐熱性有機繊維あるいは無機繊維の少なくとも一方を主成分とする織布あるいは不織布に熱硬化性樹脂を含浸させて半硬化状態にした複合材である、請求項2乃至9のいずれかに記載の多層回路基板。   The other prepreg sheets and the prepreg sheets forming the plurality of double-sided circuit boards are obtained by impregnating a thermosetting resin into a woven or non-woven fabric mainly composed of at least one of heat-resistant organic fibers or inorganic fibers. The multilayer circuit board according to any one of claims 2 to 9, which is a semi-cured composite material. 前記熱硬化性樹脂は、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、ポリエステル樹脂、シリコーン樹脂、シアネートエステル樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンオキサイド樹脂、フッ素系樹脂およびメラミン樹脂のうちの少なくとも1種類以上を含む、請求項10に記載の多層回路基板。   The thermosetting resin includes at least one of epoxy resin, phenol resin, polyimide resin, polyester resin, silicone resin, cyanate ester resin, polyphenylene ether resin, polyphenylene oxide resin, fluorine resin, and melamine resin. The multilayer circuit board according to claim 10. 前記他の複数のプリプレグシートおよび前記複数の両面回路基板を形成する前記プリプレグシートは、多孔質である、請求項2乃至11のいずれかに記載の多層回路基板。 12. The multilayer circuit board according to claim 2, wherein the prepreg sheets forming the other prepreg sheets and the plurality of double-sided circuit boards are porous. 前記熱硬化性樹脂は、フィラーが添加されている、請求項2乃至12のいずれかに記載の多層回路基板。   The multilayer circuit board according to claim 2, wherein a filler is added to the thermosetting resin. プリプレグシートの両面に銅箔を加熱加圧し、その後に銅箔をパターンニングして複数の両面回路基板を作製する工程と、
前記複数の両面回路基板と、他の複数のプリプレグシートを交互に位置決めして重ねる工程と、
前記複数の両面回路基板と前記他の複数のプリプレグシートを重ね合わせた回路基板群の上下の両面を加熱加圧して、前記他の複数のプリプレグシートを硬化させる工程とを備えた多層回路基板の製造方法であって、
前記他の複数のプリプレグシートを硬化させた後に、前記他の複数のプリプレグシートの厚さは、前記複数の両面回路基板を形成する前記プリプレグシートの厚さよりも厚い、多層回路基板の製造方法。
Heating and pressing the copper foil on both sides of the prepreg sheet, and then patterning the copper foil to produce a plurality of double-sided circuit boards;
A step of alternately positioning and stacking the plurality of double-sided circuit boards and the other plurality of prepreg sheets;
A step of curing the plurality of other prepreg sheets by heating and pressing both upper and lower surfaces of the circuit board group in which the plurality of double-sided circuit boards and the other plurality of prepreg sheets are stacked. A manufacturing method comprising:
The method of manufacturing a multilayer circuit board, wherein after the plurality of other prepreg sheets are cured, the thickness of the other plurality of prepreg sheets is thicker than the thickness of the prepreg sheet forming the plurality of double-sided circuit boards.
さらに、前記複数の両面回路基板と、前記他の複数のプリプレグシートを交互に位置決めして重ねた後に、前記回路基板群の任意の部位を部分的に加熱加圧して、前記他の複数のプリプレグシートが含有している樹脂を溶融させ、その後硬化させて前記回路基板群を接着する工程を備えた、請求項14に記載の多層回路基板の製造方法。   Further, after the plurality of double-sided circuit boards and the other plurality of prepreg sheets are alternately positioned and overlapped, an arbitrary part of the circuit board group is partially heated and pressed to obtain the other plurality of prepregs. The manufacturing method of the multilayer circuit board of Claim 14 provided with the process of fuse | melting resin which the sheet | seat contains, and making it harden | cure after that and adhering the said circuit board group. 前記複数の両面回路基板と、他の複数のプリプレグシートを交互に位置決めして重ねる工程において、
前記複数の両面回路基板と前記他の複数のプリプレグシートのいずれかを1枚ずつ重ねる度に、重ね合わせた前記複数の両面回路基板と前記他の複数のプリプレグシートで形成された回路基板群の任意の部位を部分的に加熱加圧して、前記他の複数のプリプレグシートが含有している樹脂を溶融させ、その後硬化させて前記回路基板群を接着する、請求項14に記載の多層回路基板の製造方法。
In the step of alternately positioning and overlapping the plurality of double-sided circuit boards and the other plurality of prepreg sheets,
Each time one of the plurality of double-sided circuit boards and the other plurality of prepreg sheets are stacked one by one, the circuit board group formed of the plurality of double-sided circuit boards and the other plurality of prepreg sheets that are superimposed The multilayer circuit board according to claim 14, wherein an arbitrary part is partially heated and pressed to melt a resin contained in the other plurality of prepreg sheets and then cured to bond the circuit board group. Manufacturing method.
前記複数の両面回路基板と、他の複数のプリプレグシートを交互に位置決めして重ねる工程において、
最初と最後に銅箔を配置し、前記他の複数のプリプレグシートが前記銅箔に隣接するように配置した、請求項16に記載の多層回路基板の製造方法。
In the step of alternately positioning and overlapping the plurality of double-sided circuit boards and the other plurality of prepreg sheets,
The method for producing a multilayer circuit board according to claim 16, wherein a copper foil is disposed at the beginning and the end, and the other plurality of prepreg sheets are disposed adjacent to the copper foil.
前記複数の両面回路基板に代えて、複数の2層以上の回路パターンを有する回路基板を用いる、請求項14乃至請求項17のいずれかに記載の多層回路基板の製造方法。   The method for manufacturing a multilayer circuit board according to any one of claims 14 to 17, wherein a circuit board having a plurality of circuit patterns of two or more layers is used in place of the plurality of double-sided circuit boards. 前記複数の両面回路基板と、他の複数のプリプレグシートを交互に位置決めして重ねる工程を、
2層以上の回路パターンを有する2枚の回路基板の間に、1枚のプリプレグシートを挟んで重ね合わせる工程に置換した、請求項14乃至16のいずれかに記載の多層回路基板の製造方法。
The step of alternately positioning and stacking the plurality of double-sided circuit boards and the other plurality of prepreg sheets,
The method for manufacturing a multilayer circuit board according to any one of claims 14 to 16, wherein the process is replaced with a step of superposing a single prepreg sheet between two circuit boards having two or more circuit patterns.
JP2003282095A 2003-07-29 2003-07-29 Multilayer circuit board and its manufacturing method Pending JP2005051075A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003282095A JP2005051075A (en) 2003-07-29 2003-07-29 Multilayer circuit board and its manufacturing method
TW94102665A TWI267332B (en) 2003-07-29 2005-01-28 Multi-layer circuit board and the manufacturing method of the multi-layer circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003282095A JP2005051075A (en) 2003-07-29 2003-07-29 Multilayer circuit board and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005051075A true JP2005051075A (en) 2005-02-24

Family

ID=34267411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003282095A Pending JP2005051075A (en) 2003-07-29 2003-07-29 Multilayer circuit board and its manufacturing method

Country Status (2)

Country Link
JP (1) JP2005051075A (en)
TW (1) TWI267332B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006080073A1 (en) * 2005-01-27 2006-08-03 Matsushita Electric Industrial Co., Ltd. Multi-layer circuit substrate manufacturing method and multi-layer circuit substrate

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103379750B (en) * 2012-04-27 2016-06-01 富葵精密组件(深圳)有限公司 Multilayer circuit board and preparation method thereof
CN103517583B (en) 2012-06-27 2016-09-28 富葵精密组件(深圳)有限公司 Multilayer circuit board and preparation method thereof
CN103517584A (en) * 2012-06-27 2014-01-15 富葵精密组件(深圳)有限公司 Manufacturing method of multilayer circuit board
CN103582320B (en) * 2012-07-19 2017-05-10 富葵精密组件(深圳)有限公司 Multilayer circuit board and manufacturing method thereof
CN103687306A (en) * 2012-09-05 2014-03-26 北大方正集团有限公司 Printed circuit board and manufacturing method thereof
TWI666749B (en) * 2014-02-19 2019-07-21 矽品精密工業股份有限公司 Package substrate and package structure
JP2015226034A (en) * 2014-05-30 2015-12-14 京セラサーキットソリューションズ株式会社 Wiring board
JP6991014B2 (en) * 2017-08-29 2022-01-12 キオクシア株式会社 Semiconductor device
CN113395817B (en) * 2020-03-13 2023-03-24 重庆达方电子有限公司 Thin film circuit board

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02277286A (en) * 1989-04-19 1990-11-13 Hitachi Ltd Multilayer printed board
JPH0485991A (en) * 1990-07-27 1992-03-18 Fujitsu Ltd Controlling method for lamination of multilayer printed circuit board
JPH06177548A (en) * 1992-12-07 1994-06-24 Hitachi Ltd Printed wiring board
JPH1168314A (en) * 1997-08-21 1999-03-09 Matsushita Electric Ind Co Ltd Mobile object communication equipment
JPH11163539A (en) * 1997-11-25 1999-06-18 Kyocera Corp Multilayer wiring board
JP2001007481A (en) * 1999-05-26 2001-01-12 Samsung Electro Mech Co Ltd Printed circuit board for lamb bus
JP2001044636A (en) * 1999-07-28 2001-02-16 Toshiba Corp Printed wiring board and electronic equipment incorporating the board therein
JP2001144452A (en) * 1999-11-15 2001-05-25 Nec Corp Multilayered printed board
JP2002076644A (en) * 2000-08-28 2002-03-15 Matsushita Electric Works Ltd Multilayer printed wiring board
JP2002141675A (en) * 2000-11-01 2002-05-17 Pfu Ltd Printed wiring board
JP2003086950A (en) * 2001-07-06 2003-03-20 Matsushita Electric Works Ltd Printed wiring board
JP2003152336A (en) * 2001-11-15 2003-05-23 Nec Toppan Circuit Solutions Toyama Inc Method of manufacturing multilayer printed wiring board

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02277286A (en) * 1989-04-19 1990-11-13 Hitachi Ltd Multilayer printed board
JPH0485991A (en) * 1990-07-27 1992-03-18 Fujitsu Ltd Controlling method for lamination of multilayer printed circuit board
JPH06177548A (en) * 1992-12-07 1994-06-24 Hitachi Ltd Printed wiring board
JPH1168314A (en) * 1997-08-21 1999-03-09 Matsushita Electric Ind Co Ltd Mobile object communication equipment
JPH11163539A (en) * 1997-11-25 1999-06-18 Kyocera Corp Multilayer wiring board
JP2001007481A (en) * 1999-05-26 2001-01-12 Samsung Electro Mech Co Ltd Printed circuit board for lamb bus
JP2001044636A (en) * 1999-07-28 2001-02-16 Toshiba Corp Printed wiring board and electronic equipment incorporating the board therein
JP2001144452A (en) * 1999-11-15 2001-05-25 Nec Corp Multilayered printed board
JP2002076644A (en) * 2000-08-28 2002-03-15 Matsushita Electric Works Ltd Multilayer printed wiring board
JP2002141675A (en) * 2000-11-01 2002-05-17 Pfu Ltd Printed wiring board
JP2003086950A (en) * 2001-07-06 2003-03-20 Matsushita Electric Works Ltd Printed wiring board
JP2003152336A (en) * 2001-11-15 2003-05-23 Nec Toppan Circuit Solutions Toyama Inc Method of manufacturing multilayer printed wiring board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006080073A1 (en) * 2005-01-27 2006-08-03 Matsushita Electric Industrial Co., Ltd. Multi-layer circuit substrate manufacturing method and multi-layer circuit substrate

Also Published As

Publication number Publication date
TW200628040A (en) 2006-08-01
TWI267332B (en) 2006-11-21

Similar Documents

Publication Publication Date Title
JP4819033B2 (en) Multilayer circuit board manufacturing method
KR101116079B1 (en) Method for manufacturing multilayer printed circuit board and multilayer printed circuit board
WO1997048260A1 (en) One-sided circuit board for multi-layer printed wiring board, multi-layer printed wiring board, and method for its production
JP2011159855A (en) Partially multilayer printed circuit board, and method of manufacturing the same
JP3492467B2 (en) Single-sided circuit board for multilayer printed wiring board, multilayer printed wiring board and method of manufacturing the same
JP2005051075A (en) Multilayer circuit board and its manufacturing method
US20170006699A1 (en) Multilayer circuit board, semiconductor apparatus, and method of manufacturing multilayer circuit board
JPH0936551A (en) Single-sided circuit board for multilayer printed wiring board use, multilayer printed wiring board and manufacture thereof
JP3879158B2 (en) Multilayer printed wiring board and manufacturing method thereof
JP4363947B2 (en) Multilayer wiring circuit board and method for manufacturing the same
JP2011187854A (en) Multilayer printed wiring board and method of manufacturing the same
KR101138542B1 (en) Manufactory method for multi-layer printed circuit board
JP3705370B2 (en) Manufacturing method of multilayer printed wiring board
JPH08316598A (en) Printed wiring board and production thereof
JP4899409B2 (en) Multilayer printed wiring board and manufacturing method thereof
JP3230727B2 (en) Multilayer printed wiring board and method of manufacturing the same
JPH1041635A (en) Single-sided circuit board for multilayer printed wiring board, its manufacture, and multilayer printed wiring board
KR101097504B1 (en) The method for preparing multi layered circuit board
JP3695844B2 (en) Manufacturing method of multilayer printed wiring board
JP2002151813A (en) Printing wiring board and its manufacturing method
JP2001298274A (en) Electronic circuit arrangement
JP3645780B2 (en) Build-up multilayer printed wiring board and manufacturing method thereof
JP3588888B2 (en) Method for manufacturing multilayer printed wiring board
JP2005044988A (en) Method for manufacturing circuit board
JPH11289165A (en) Multilayer wiring board and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081226

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090519

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091110