JP2005044401A - Recording/reproducing apparatus, and disk cartridge - Google Patents

Recording/reproducing apparatus, and disk cartridge Download PDF

Info

Publication number
JP2005044401A
JP2005044401A JP2003200290A JP2003200290A JP2005044401A JP 2005044401 A JP2005044401 A JP 2005044401A JP 2003200290 A JP2003200290 A JP 2003200290A JP 2003200290 A JP2003200290 A JP 2003200290A JP 2005044401 A JP2005044401 A JP 2005044401A
Authority
JP
Japan
Prior art keywords
disk
recording
stabilizing member
main
auxiliary stabilizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003200290A
Other languages
Japanese (ja)
Inventor
Yasutomo Aman
康知 阿萬
Nobuaki Onaki
伸晃 小名木
Shiyouzou Murata
省蔵 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2003200290A priority Critical patent/JP2005044401A/en
Publication of JP2005044401A publication Critical patent/JP2005044401A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To satisfactorily reduce disk surface vibration at a recording/reproducing position with a simple constitution of a main stabilizing member and an auxiliary stabilizing member that cause Bernouilli effect to act by making aerodynamic action force act on a recording disk without contacting and sliding of the auxiliary stabilizing member with the recording disk. <P>SOLUTION: A main configuration of an action surface which generates the aerodynamic action force to an optical disk 1 in auxiliary stabilization member 6 is made a convex one which is directed to the optical disk 1, and in the state where the optical disk 1 is stabilized, the action surface is adjusted so that the amount of a gap at the time when the action surface and the optical disk 1 move closest to each other is set to at least 1 μm. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、可撓性を有する記録ディスクに対して記録および/または再生処理を行う記録/再生装置、および可撓性を有する記録ディスクを収納するディスクカートリッジに関するものである。
【0002】
【従来の技術】
近年、テレビ放送のデジタル化が始まるなど、大容量のデジタルデータを記録することが情報記録媒体に求められている。例えば、光ディスクの分野においては、記録/再生のために光ディスクに集光される光スポット径を小さくすることが、高密度化のための基本的な方法の一つに挙げられる(以下、光ディスクを代表として説明するが、本発明が対象とする記録/再生装置に用いられる記録ディスクは、相変化メモリ,光磁気メモリ,ホログラムメモリなどのディスク状の記録ディスクで活用するものすべてを対象にし、特に光ディスクに限定するものではない)。
【0003】
このため、光ディスクの高密度化においては、記録/再生のために用いられる光の波長を短く、かつ対物レンズの開口数NAを大きくすることが有効である。光の波長についてはCD(compact disk)では近赤外光の780nm、DVD(digital versatile disk)では赤色光の650nm近傍の波長が用いられている。最近、青紫光の半導体レーザが開発され、今後は400nm近傍のレーザ光が使用されると予想される。
【0004】
また、対物レンズについては、CD用はNA0.5未満であったが、DVD用はNA0.6程度である。今後、さらに開口数(NA)を大きくしてNA0.7以上とすることが求められる。しかし、対物レンズのNAを大きくすること、および光の波長を短くすることは、光を絞るときに収差の影響が大きくなることでもある。したがって、光ディスクのチルトに対するマージンが減ることになる。また、NAを大きくすることによって焦点深度が小さくなるため、フォーカスサーボ精度を上げなくてはならない。
【0005】
さらに、高NAの対物レンズを使用することによって、対物レンズと光ディスクの記録面との距離が小さくなってしまうため、光ディスクの面ぶれを小さくしておかないと、始動時のフォーカスサーボを引き込む直前、対物レンズと光ディスクとが衝突することがあり、ピックアップの故障の原因となる。
【0006】
短波長,高NAの大容量光ディスクとして、例えば非特許文献1に記載されているように、CDと同程度に厚く、かつ剛性の大きい基板に記録膜を成膜し、記録/再生用の光を基板を通さずに、薄いカバー層内を通して記録膜に対して記録/再生する構成のシステムが提案されている。
【0007】
また、特許文献1〜3,非特許文献1には、ベルヌーイの法則による空気力学的作用力を利用して光ディスクにおける面ぶれを安定化させるため、安定化部材に対向させて可撓性を有する光ディスクを回転させる構成の記録/再生装置、あるいは可撓性を有する光ディスクの構成などについての記載がある。
【0008】
【特許文献1】
特開平7−105657号公報
【特許文献2】
特開平10−308059号公報
【特許文献3】
特開2003−115108号公報
【非特許文献1】
オー・プラス・イー(O PLUS E)第20巻,第2号,P.183
【0009】
【非特許文献2】
「オプティカル・リードアウト・オブ・ビデオディスク」 アイイーイーイー・トランザクション・オン・コンシューマー・エレクトロニクス(“OPTICAL READOUT OF VIDEODISC”,IEEE TRANSACTION ON CONSUMER ELECTRONICS),1976年11月、P.304−308
【0010】
【発明が解決しようとする課題】
しかしながら、前記従来の技術において、光ディスクの基板を剛体で形成すると、回転する光ディスクにおける面ぶれ,チルトを小さくするためには、きわめて正確な成形をし、かつ熱変形が生じないように低温で記録膜を成膜しなければならない。このことは、光ディスク製造に係るタクトタイムを長くすることになり、コストを上げる原因となる。
【0011】
また、特許文献1,2に記載されているように可撓性のある光ディスクを安定板上で回転させる方法では、光ディスクと安定化板が接して摺動する危険性が高く、ディスク面あるいは安定化板面が傷ついてしまうという問題がある。この摺動により、発塵を引き起こして、その塵埃などがエラーを発生させる原因となる。
【0012】
特に特許文献1に記載されているように、安定化板側に記録膜が存在する構成であると、摺動により光ディスクの記録膜を損傷して、直接エラーを引き起こすことになる。また、単に平面状の安定化板を用いただけでは、ディスク面ぶれの低減効果にも限界があり、高NAの対物レンズを使用する際に、対物レンズとディスクが衝突する危険性は未だ問題として残されたままである。
【0013】
安定化板を用いる方法の一つとして、非特許文献2に記載されているような方法もあるが、平面上の安定化板を用いるという構成の点では前記技術と同じであり、同様の問題が生じることが予想される。また、この方法においては、「smoothing plates」と称される安定化板とディスクの間に空気力学的な力が働くことが前提となっているが、例えば、ディスクがこの安定化板から離れる方向に反った形状である場合には、この空気力学的な力が有効に作用せず、ディスク面ぶれを制御することはできなくなる。また、この空気力学的な力の発現には、重力によってディスクが垂れる現象も利用しているため、ドライブ装置の縦置きなどには対応することができない。
【0014】
これらの問題を解決するための1つの手段として、本発明者は、特許文献3などにおいて、光ディスクとの対向面が円弧状をなす円柱状の安定化ガイド部材を用い、光ディスクにおける安定化ガイド部材による空気圧の作用による面ぶれが安定する部位におけるディスク回転方向上流側と下流側とに空気圧の作用を生じさせない領域(安定化ガイド部材がない空間部)を設けて、面ぶれを安定化させた部位の前後位置に光ディスクに「逃げ」となる部分を存在させ、面ぶれを安定化させた部位での光ディスクにおける反発力を小さくすることにより、空気力による安定化力の効果を増大させる発明を提案した。
【0015】
特許文献3の発明によれば、可撓性を有する光ディスクの面ぶれを確実に抑制し、高密度の記録を可能にし、また対物レンズとの摺接などの不具合の発生を防ぐことが可能となるが、反面、この実現においては、安定化ガイド部材と記録/再生ヘッドの複雑な位置調整制御が必要となるため、ドライブ制御系の負荷が大きくなるばかりでなく、装置コストがかなり高価なものになってしまう。
【0016】
そこで、このような問題を解決するための1つの手段として、本発明者は、特願2003−19087号にて、記録および/または再生を行う記録/再生手段付近に配設した主安定化部材の他に、主安定化部材とは独立した特定位置に配設することによって、主安定化部材が位置する記録ディスク面において主安定化部材に対向する作用力を発生させ、記録ディスクに対して主安定化部材を大きく押し込まずとも空気力によるディスク面の安定化効果を得る方法を提案した。
【0017】
特願2003−19087号の発明によれば、主安定化部材を一つだけ用いた場合に比べて、主安定化部材の押し込み量が浅い位置において十分な面ぶれ低減効果が得られ、これにより、主安定化部材および記録/再生手段におけるディスク半径方向の動線をディスク基準面に近い範囲に限定することができるため、動作機構の簡略化を図ることができるようになった。
【0018】
しかしながら、補助安定化部材により主安定化部材が位置する記録ディスク面において主安定化部材に対向する作用力を発生させるためには、補助安定化部材のディスクに対する作用力を大きくする必要があり、この作用力の増大は、記録ディスクと補助安定化部材とが接触摺動を引き起こす原因となった。
【0019】
前記作用力を確保するための方法の一つとして、補助安定化部材の記録ディスクに対する押し込み量を大きくする方法が考えられるが、前記押し込み量を大きくするに従って、記録ディスクと補助安定化部材の間に形成されるギャップは小さくなるため、条件によっては、このギャップの狭小化が記録ディスクと補助安定化部材との接触摺動を招く場合があった。
【0020】
本発明の目的は、前記課題を解決し、ベルヌーイ効果を作用させる主安定化部材と補助安定化部材との構成において、補助安定化部材が記録ディスクと接触摺動することなく、空気力学的な作用力を記録ディスクに作用させ、記録/再生位置における良好なディスク面ぶれの低減を実現できる記録/再生装置およびディスクカートリッジを提供することにある。
【0021】
【課題を解決するための手段】
前記目的を達成するため、請求項1に記載の発明は、可撓性を有する記録ディスクを回転させ、ベルヌーイ効果を利用して少なくとも記録/再生位置付近における前記記録ディスクの面ぶれを抑制する主安定化部材と、前記記録ディスクの主たるベルヌーイ効果の作用面とは逆の面において記録および/または再生を行う記録/再生手段とを備え、前記記録ディスクの面内を、前記記録/再生手段が走査する動線に近接し、かつ該記録ディスクの中心付近を通る直線Aによって2つの領域に分け、該領域の少なくとも一方に、空気力学的な作用力を発生させて、前記主安定化部材が位置する前記記録ディスク面において前記主安定化部材に対向する作用力を発生させるように補助安定化部材を配設した記録/再生装置であって、前記補助安定化部材における前記空気力学的な作用力を発生させる作用面の主形状を前記記録ディスクに向かう凸形状とし、かつ前記記録ディスクを安定化した状態において、前記作用面と前記記録ディスクとの最近接時におけるギャップ量が少なくとも1μmになるように前記作用面を調整したことを特徴とし、この構成によって、補助安定化部材による記録ディスクに対する作用力を正圧とすることができ、これにより補助安定化部材と記録ディスクのギャップ量を確保する方向の力を得ることができるようになり、補助安定化部材が記録ディスクと接触摺動することなく、補助安定化部材の記録ディスクに対する空気力学的な力を確実に作用させることができ、主安定化部材が位置する記録ディスク面において主安定化部材に対向する作用力を効率よく発生させることが可能となる。これにより、補助安定化部材と記録ディスクの接触摺動を未然に防ぎ、記録ディスクの信頼性および耐久性を確保することができる。
【0022】
なお、ここでのギャップ量とは、記録ディスクが補助安定化部材に最近接した際の記録ディスクと補助安定化部材間の間隙のことであり、以下においても、ギャップ量とは前記間隙の意にて用いる。
【0023】
請求項2に記載の発明は、請求項1記載の記録/再生装置において、補助安定化部材の作用面の断面積によってギャップ量を調整したことを特徴とし、この構成によって、断面積を大きくすることによりギャップ量を大きくし、また断面積を小さくすることによりギャップ量を小さくすることができる。
【0024】
請求項3に記載の発明は、請求項1記載の記録/再生装置において、補助安定化部材の作用面の形状によってギャップ量を調整したことを特徴とし、この構成によって、作用面形状を記録ディスク面に対して尖った形状とすることによりギャップ量を小さくし、また作用面形状を緩やかな形状とすることによりギャップ量を大きくすることができる。
【0025】
請求項4に記載の発明は、請求項1記載の記録/再生装置において、補助安定化部材の作用面の断面積と該作用面の形状によってギャップ量を調整したことを特徴とし、この構成によって、請求項2,3に係る発明を融合した作用効果が得られる。
【0026】
請求項5に記載の発明は、請求項3または4記載の記録/再生装置において、補助安定化部材の作用面の主形状を球面とし、その曲率半径をパラメータとして作用面の形状を調整したことを特徴とし、この構成によって、曲率半径を大きくすることによりギャップ量を大きくし、また曲率半径を小さくすることによりギャップ量を小さくすることができる。
【0027】
請求項6に記載の発明は、請求項1記載の記録/再生装置において、補助安定化部材の記録ディスク面に対するディスク回転軸方向の配置位置によりギャップ量を調整したことを特徴とし、この構成によって、配置位置を記録ディスク面に押し込む方向にシフトさせることによりギャップ量を小さくし、また逆の方向にシフトさせることによりギャップ量を大きくすることができる。
【0028】
請求項7に記載の発明は、請求項1記載の記録/再生装置において、当該記録/再生装置で使用するディスク仕様範囲、およびディスク回転数の条件範囲を限定した場合において、前記各範囲の中でディスク剛性が最も高く、またディスク回転数が最も低速な条件を基準にして、請求項2〜6いずれか1項記載のギャップ量調整を行うことを特徴とし、この構成によって、ディスク仕様およびディスク回転数の全範囲において、ギャップ量を1μm以上にすることができる。
【0029】
請求項8に記載の発明は、内部に収納された可撓性を有する記録ディスクの回転時、ベルヌーイ効果を利用して少なくとも記録/再生位置付近における前記記録ディスクの面ぶれを抑制する主安定化部材と、前記記録ディスクの面内を、前記記録/再生手段が走査する動線に近接し、かつ該記録ディスクの中心付近を通る直線Aによって2つの領域に分け、該領域の少なくとも一方に、空気力学的な作用力を発生させて、前記主安定化部材が位置する前記記録ディスク面において前記主安定化部材に対向する作用力を発生させる補助安定化部材とが作用する構成のディスクカートリッジであって、前記補助安定化部材における前記空気力学的な作用力を発生させる作用面の主形状を前記記録ディスクに向かう凸形状とし、かつ前記記録ディスクを安定化した状態において、前記作用面と前記記録ディスクとの最近接時におけるギャップ量が少なくとも1μmになるように前記作用面を調整し、該補助安定化部材を固定してディスクカートリッジ内壁に配設したことを特徴とし、この構成によって、記録/再生装置側において補助安定化部材を設置する必要がなくなり、記録/再生装置の簡略化を図ることができる。さらにディスク仕様毎に、適正な補助安定化部材を備えた個別のディスクカートリッジの設計が可能となる。
【0030】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明する。
【0031】
図1は本発明の記録/再生装置の実施形態1を説明するための要部の平面図、図2(a)は図1におけるE−E’線断面図、図2(b)は図1におけるF−F’線断面図、図3は図1における記録/再生装置の正面図であり、1は可撓性を有する記録ディスクである光ディスク、2は光ディスク1の回転中心(中央)部分に装着された光ディスク1を回転させるために保持する一方の保持部材であるハブ、3は他方の保持部材であるチャッキング部をハブ2に嵌合して光ディスク1を回転駆動するスピンドルモータ、4は、光ディスク1の半径方向に移動して光ディスク1に対して光ビームを集光させ、情報の記録/再生処理を行うため光ディスク1に対して光走査(動線R方向)を行う記録/再生手段である光ピックアップである。
【0032】
さらに、5は、正面から見て光ディスク1側(空気力学的な作用面)が円弧状に突出し、図1に示すように、光ピックアップ4の移動に同期してディスク半径方向の光ピックアップ走査動線R方向に移動する主安定化部材であって、主安定化部材5は、ベルヌーイの法則による空気力学的作用力を利用して、光ディスク1における少なくとも光ピックアップ4による記録/再生位置付近の面ぶれを抑制するものである。
【0033】
さらに、6は、主安定化部材5と共に作用して、光ディスク1に対して空気力学的作用力を作用させる補助安定化部材であって、主安定化部材5と補助安定化部材6とは光ディスク1の記録面とは反対側のディスク基板側に配設されている。補助安定化部材6は、正面から見て光ディスク1側(空気力学的な作用面)が円弧状に突出し、ディスク面に向かって凸状となる形状にしてある。
【0034】
また、実施形態1では、光ディスク1の面内を光ピックアップ4が走査するために移動する動線Rと近接し、かつ光ディスク1の中心付近を通る直線(図では動線R上に記載したが、動線R近傍にあるものも含む)Aによって分けた2つの領域S1,S2のうち、光ピックアップ4における光ディスク回転方向の下流側に位置する領域S2に、主安定化部材5とは独立して補助安定化部材6を少なくとも1つ(実施形態1では1つのみを示す)配設している。
【0035】
また、主安定化部材5には、ディスク半径方向の移動制御機構11とディスク回転軸方向の位置制御機構12を具備させ、また各補助安定化部材6には、ディスク回転軸方向の位置制御機構13と、ディスク半径方向とディスク円周方向の傾斜調整手段であるチルト制御機構14を具備させており、移動制御機構11,位置制御機構12および13,チルト制御機構14は、それぞれ各種設定データなどを記憶するメモリ15から制御データを受ける駆動部16により駆動制御される。
【0036】
また、補助安定化部材6のチルト制御機構14のチルト角制御における回転中心は、補助安定化部材6の作用面中心(作用点)21の位置としている。なお、図1〜図3中において、22は補助安定化部材6と光ディスク1の近接領域、23は補助安定化部材6と光ディスク1の近接点を示している。
【0037】
図4は本発明の記録/再生装置の実施形態2を説明するための要部の平面図、図5(a)は図4におけるE−E’線断面図、図5(b)は図4におけるF−F’線断面図である。なお、以下の説明において、既に説明した部材に対応する部材には同一符号を付して詳しい説明は省略する。
【0038】
実施形態2が実施形態1と異なる点は、実施形態1にて説明したのと同様にして分けた2つの領域S1,S2のそれぞれに、主安定化部材5と独立して補助安定化部材6を少なくとも1つずつ(実施形態2では各領域に1つ)を、対称位置に配設した構成である。
【0039】
図6は本発明の記録/再生装置の実施形態3を説明するための要部の平面図、図7(a)は図6におけるE−E’線断面図、図7(b)は図6におけるF−F’線断面図であって、実施形態3が実施形態2と異なる点は、図5(a),(b)と比較して分かるように、図7(a),(b)に示すような補助安定化部材6のディスク円周方向傾きの調整方向である。
【0040】
各実施形態の動作について説明する。
【0041】
前記各実施形態における基本構成である安定化部材と可撓性を有するディスクとの間でベルヌーイの法則による空気力学的な力を発生させて、ディスク面ぶれを抑制するためには、安定化部材とディスク間の釣り合い条件が重要であり、特にディスクの安定化部材に向かう反力が重要なパラメータとなる。この反力はディスクの剛性と、ディスクが回転して平坦化しようとすることによって発生する浮上力によって決定されるため、原理的に、前記釣り合い条件は安定化部材の半径位置,ディスク回転数、およびディスク仕様がパラメータによって左右され、複雑な調整駆動機構が必要になる。
【0042】
この点に関して各種実験を行い考察を行ったところ、任意の安定化部材によりディスク面に空気力学的な力を作用させた際には、該安定化部材におけるディスク回転方向の上下流のほぼ±90度付近のディスク面が、ディスクを理想平面と考えた場合のディスク基準面付近に近づく現象を示した。
【0043】
そこで、任意の安定化部材から±90度ずれた位置のディスク面がディスク基準面付近に近づく現象を、上述した反力として利用して、安定化部材とディスク間の釣り合い条件を調整することを目標とした結果、目標通りディスク面を効率的に安定化させる効果が得られた。
【0044】
しかしながら、任意の安定化部材により、±90度ずれた位置(本発明においは主安定化部材の設置位置)のディスク面をディスク基準面に近づけるためには、前記安定化部材(本発明においは補助安定化部材)のディスクに対する作用力を大きくする必要があり、この作用力の増大のためにディスクと前記安定化部材とを近接(ギャップ量を小さくする)させることが、ディスクと前記安定化部材が接触摺動を引き起こす原因となった。この点に関して、各種実験を行い考察を行ったところ、ディスクと前記安定化部材の最近接時におけるギャップ量が1μm以上となるように、前記安定化部材の作用面の形状因子を調整することにより、前記安定化部材のディスクに対する作用力を大きくしつつも、実効的に接触摺動が生じないようにできることを見出した。
【0045】
そこで、各実施形態では、補助安定化部材(前記説明の安定化部材に相当する部材)6の作用面の形状因子を調整することにより、補助安定化部材6と光ディスク1との間に1μm以上のギャップ量を確実に確保するとともに、補助安定化部材6の光ディスク1に対する作用力を大きくして主安定化部材5に対する光ディスク1の対向力を確保し、記録/再生位置における良好なディスク面ぶれの低減を図ったことが特徴である。
【0046】
実施形態1において、補助安定化部材6の作用面の断面積を大きくするか、作用面の曲率半径を大きくするか、あるいは前記断面積と前記曲率半径の両方を大きくして、補助安定化部材6と光ディスク1との間のギャップ量を1μm以上となるように設定しておくことにより、補助安定化部材6と光ディスク1との間が接触摺動しない状態で、補助安定化部材6によりディスク面に大きな空気力学的な力を作用させ、ディスク面に主安定化部材5に近づく対向力を持たせるという機能を十分に発揮させることができた。これにより、主安定化部材5の設置位置において十分な面ぶれ低減効果が得られた。
【0047】
また、主安定化部材5および光ピックアップ4のディスク半径方向の動線Rを、面ぶれが抑制されたディスク基準面に近い範囲(斜線にて図示した比較的広い領域)H内に位置させることができ、このための調整機構に余裕を持たせることができることになり、調整機構の簡略化を図ることができた。
【0048】
なお、実施形態1の構成は、主安定化部材5のみで装置を構成した場合に、主安定化部材5における下流側のディスク面が主安定化部材5に近接する側に変位するような光ディスク1における一例であり、例えば、光ディスク1の静的な反り形状が光ピックアップ4側に凸状となるような光ディスク1がこれに相当した。この際の補助安定化部材のチルト角の調整は、ディスク半径方向に対し、外周側を光ピックアップに近づける方向、ディスク円周方向に対し、ディスク中心に向かって右回りの方向(補助安定化部材のディスク回転上流側をディスクに近づける方向)が妥当であった。
【0049】
また、例えば、主安定化部材5のみで装置を構成した場合に、主安定化部材5における上流側のディスク面が主安定化部材5に近接する側に変位するような光ディスク1(光ディスク1の静的な反り形状が光ピックアップ4側に凹状となるような光ディスク1がこれに相当)においては、実施形態1を変形してディスク回転方向を逆転させた構成が適用でき、同形態においても、補助安定化部材6の空気力学的な力を光ディスク1に対して適正に作用させることにより、光ディスク1が主安定化部材5に対向する力を効率的に発生させることができ、主安定化部材5の移動位置において十分な面ぶれ低減効果が得られた。この際の補助安定化部材6のチルト角の調整は、ディスク半径方向に対しては外周側を光ピックアップ4に近づける方向、ディスク円周方向に対してはディスク中心に向かって右回りの方向(補助安定化部材のディスク回転下流側をディスクに近づける方向)が妥当であった。
【0050】
実施形態2の構成においても、補助安定化部材6の作用面の断面積を大きくするか、作用面の曲率半径を大きくするか、あるいは前記断面積と前記曲率半径の両方を大きくして、補助安定化部材6と光ディスク1との間のギャップ量を1μm以上となるように設定しておくことにより、補助安定化部材6と光ディスク1との間が接触摺動しない状態で、補助安定化部材6によりディスク面に大きな空気力学的な力を作用させ、ディスク面に主安定化部材5に近づく対向力を持たせるという機能を十分に発揮させることができた。これにより、実施形態1と同様に、主安定化部材5の設置位置において十分な面ぶれ低減効果が得られた。
【0051】
なお、実施形態2の構成は、主安定化部材5のみで装置を構成した場合に、主安定化部材5における下流側のディスク面が主安定化部材5に近接する側に変位するような光ディスク1における一例であり、例えば、光ディスク1の静的な反り形状が光ピックアップ4側に凸状となるような光ディスク1がこれに相当した。この際の両補助安定化部材6のチルト角の調整は、ディスク半径方向に対しては外周側を光ピックアップ4に近づける方向、ディスク円周方向に対してはディスク中心に向かって右回りの方向(補助安定化部材6のディスク回転上流側を光ディスク1に近づける方向)が妥当であった。
【0052】
実施形態3の構成においても、補助安定化部材6の作用面の断面積を大きくするか、作用面の曲率半径を大きくするか、あるいは前記断面積と前記曲率半径の両方を大きくして、補助安定化部材6と光ディスク1との間のギャップ量を1μm以上となるように設定しておくことにより、補助安定化部材6と光ディスク1との間が接触摺動しない状態で、補助安定化部材6によりディスク面に大きな空気力学的な力を作用させ、ディスク面に主安定化部材5に近づく対向力を持たせるという機能を十分に発揮させることができた。これにより、実施形態1と同様に、主安定化部材5の設置位置において十分な面ぶれ低減効果が得られた。
【0053】
なお、実施形態3の構成は、主安定化部材5のみで装置を構成した場合に、主安定化部材5における上流側のディスク面が主安定化部材5に近接する側に変位するような光ディスク1における一例であり、例えば、光ディスク1の静的な反り形状が光ピックアップ4側に凹状となるような光ディスク1がこれに相当した。この際の両補助安定化部材6のチルト角の調整は、ディスク半径方向に対しては外周側を光ピックアップに近づける方向、ディスク円周方向に対してはディスク中心に向かって左回りの方向(補助安定化部材6のディスク回転下流側をディスクに近づける方向)が妥当であった。
【0054】
実施形態1〜3の構成において、主安定化部材5にディスク回転軸方向の位置制御機構、あるいはチルト制御系などを付加して、より高精度の微調整を行うことにより、記録/再生位置における面ぶれを最適化することも可能であった。
【0055】
図8は本発明の記録/再生装置の実施形態3の変形例を説明するための要部の平面図、図9(a)は図8におけるE−E’線断面図、図9(b)は図8におけるF−F’線断面図であって、実施形態3においては、図8,図9に示す変形例のように、光ディスク1のハブ2を、図3に示すスピンドルモータ3のチャッキング部に固定して、各安定化部材5,6側を押して撓ませた場合に光ディスク1において撓みが始まる支点位置(図8ではハブ2の外周)を結んだ周部(図8では円形領域)と直線Aとが交差する2点を通り、かつ該直線Aに垂直な2つの直線、すなわち主安定化部材5に近い側の直線B1と遠い側の直線B2とにより挟まれたディスク面上の領域Cにおいて、主安定化部材5に近い側の直線B1近傍に、補助安定化部材6の作用点21を配置する構成とすることにより、主安定化部材5の移動位置でのディスク面ぶれをより低減させ、前述の効果を十分奏し得た。
【0056】
前記各実施形態は、前記補助安定化部材6を、図10に例示するように、装置本体の筐体30に設けることにより、光ディスクを収納するディスクカートリッジを用いないか、あるいはディスクカートリッジから光ディスクを取り出して駆動する記録/再生装置において実施することができる。
【0057】
また、前記各実施形態における補助安定化部材6は、図11に示すように、ディスクカートリッジ31の内壁に設けることも可能であり、このように構成することにより、記録/再生装置側の構成を簡略化することができる。さらに、この構成においては、ディスクカートリッジ31に補助安定化部材6を個別に設定することができることから、様々なディスク仕様ごとに補助安定部材6を個々に設計可能となり、ディスク仕様のばらつきによる安定化条件のずれを補正することまでもが可能となる。
【0058】
ディスクカートリッジ31としては、例えば図12,図13に示す構成のものを例示することができる。図12,図13において、32は主安定化部材5が挿入され、ディスク半径方向に移動可能にするための第1の通孔部、33は光ピックアップ4およびスピンドルモータ3の一部が挿入され、かつ光ピックアップ4をディスク半径方向に移動可能にするための第2の通孔部である。なお、前記通孔部32,33を開閉するためのシャッタ、あるいはカートリッジ内で光ディスク1を固定するための機構、さらにカートリッジをスピンドルモータ3に設置する際に必要なその他の機構などに関しては図示していない。
【0059】
前記実施形態においては、補助安定化部材を主安定化部材と同じ側に配置する構成例を説明したが、補助安定化部材を主安定化部材とディスクを挟んで逆側に配置しても同様のディスク面ぶれ低減効果が得られる。例えば図14に示す構成を例示することができる。
【0060】
図14において、光ディスク1が収納されたディスクカートリッジ35を記録/再生装置側の筺体30に配設した場合を示しており、補助安定部材6を光ピックアップ4と同じ側に設置している。この構成においては、特に、補助安定化部材6と光ディスク1との接触摺動が記録/再生エラーの発生に直接つながるため、この接触摺動の回避が最重要課題となる。そこで、前記実施形態の構成を採用することにより、確実に補助安定化部材6と光ディスク1との接触摺動を回避し、これに係わる記録/再生エラーの発生を防ぐことができる。
【0061】
なお、上述した実施形態の説明においては、主安定化部材5と補助安定部材6の作用面の断面形状を円状とした場合を説明したが、この他にも様々な形状が考えられる。両安定化部材5,6として光ディスク1に空気力学的な力を発生させる形状であれば、何ら問題はなく採用することができ、特に限定するものではない。また、その作用面形状に関しても、基本的には球面状の形態を代表として説明したが、非球面形状、および空気力学的な力の圧力分布を考慮した特殊な凹凸形状などの様々な形状が考えられ、既述した形状に限るものではない。
【0062】
次に、本発明をより具体的に実施例に基づいて説明する。
【0063】
(実施例1)
実施例1において、図1,図2に示す構成を採用しており、補助安定化部材6は、光ディスク(直径120mm)1に対向する面を曲率半径200mmとした直径40mmの円柱状の形状とし、主安定化部材5は、光ディスク1に対向する面を曲率半径100mmとした直径10mmの円柱状の形状とした。また補助安定化部材6は、主安定化部材5よりもディスク回転方向下流側の90度位置で、ディスク対向面の中心が光ディスク1の半径45mmの位置となるように配置され、さらに補助安定化部材6においては、光ディスク1が安定状態であるときに、補助安定化部材6と光ディスク1との間のギャップ量がほぼ1μm程度になるように既述した調整が行われている。
【0064】
図示していないが、主安定化部材5には、ディスク半径方向の移動機構とディスク回転軸方向の位置制御機構を具備させ、また補助安定化部材6には、ディスク回転軸方向の位置制御機構と、ディスク半径方向とディスク円周方向のチルト制御機構を具備させた。なお、補助安定化部材6のチルト制御機構のチルト角制御における回転中心は、前記補助安定化部材の作用面の中心位置とした。
【0065】
また実施例1では、ディスク基板として120mm,厚さ75μmのポリカーボネイト製シートを用いた場合について説明する。ディスクを準備するにあたっては、まず、前記シートに、熱転写でスタンパのピッチ0.6μm,幅0.3μmのグルーブを転写し、その後、スパッタリングによりシート/Ag反射層 120nm/(ZrO−Y)−SiO 7nm/AgInSbTeGe 10nm/ZnS−SiO 25nm/Si 10nmの順番に成膜した。情報記録領域は内周直径40mmから外周直径118mmまで(半径20mm〜58mm)の範囲に設定した。その後、UV樹脂をスピンコートし、紫外線照射で硬化させて厚さ5μmの透明保護膜を形成した。また、逆側の面には10μm厚のハードコートを施した。なお、ディスク中心部には外形直径30mm,内径直径15mm、厚み0.3mmのハブ2を取り付けた。このディスクの仕上がり状態はハードコート側に僅かに反った形状となった。
【0066】
前記光ディスク1を15m/secのディスク回転数で回転させ、補助安定化部材と主安定化部材を所定位置に配置してディスク面ぶれを安定化し、光ピックアップ4の位置にレーザ変位計を配置してディスク面ぶれを評価した。また、前記補助安定化部材と前記記録ディスクの間の接触を前記補助安定化部材に配置した図示していないAEセンサによって検知し、その接触摺動状態を評価した。ここにおいて、補助安定化部材は、ディスク半径方向に対し、外周部を光ピックアップに近づける方向に1度、ディスク円周方向に対し、ディスク中心に向かって右回りの方向に0.7度傾け、また、ディスク基準面を基準として0.5mm押し込む位置に配置した。なお、ここでのディスク基準面とは、ディスクが理想的に平坦であると仮定した場合の主安定化部材5側のディスク面のことであり、また、この押し込み量を決める補助安定化部材6の基準位置はチルト角制御の中心位置とした。
【0067】
(実施例2)
実施例2では、実施例1の構成を基本として、補助安定化部材6の位置を、主安定化部材5よりもディスク回転方向上流側の90度位置で、ディスク対向面の中心がディスクの半径45mm位置となるような配置に変更した。なお、補助安定化部材6には、光ディスク1が安定状態であるときに、補助安定化部材6と光ディスク1との間のギャップ量がほぼ1μm程度になるように既述した調整が行われている。
【0068】
また、光ディスク1は、実施例1の仕様からハードコートを省いた構成とした。これにより、光ディスク1の仕上がり状態は、透明保護膜側に僅かに反った形状となった。
【0069】
前記光ディスク1を15m/secのディスク回転数で回転させ、補助安定化部材と主安定化部材を所定位置に配置してディスク面振れを安定化し、光ピックアップ4の位置にレーザ変位計を配置してディスク面ぶれを評価した。また、前記補助安定化部材と前記記録ディスクの間の接触を前記補助安定化部材に配置した図示していないAEセンサによって検知し、その接触摺動状態を評価した。ここにおいて、補助安定化部材は、ディスク半径方向に対し、外周部を光ピックアップに近づける方向に2度、ディスク円周方向に対し、ディスク中心に向かって左回りの方向に1度傾け、また、ディスク基準面を基準として1mm押し込む位置に配置した。なお、ここでのディスク基準面とは、ディスクが理想的に平坦であると仮定した場合の主安定化部材5側のディスク面のことであり、また、この押し込み量を決める補助安定化部材6の基準位置はチルト角制御の中心位置とした。
【0070】
(実施例3)
実施例3では、図4,図5に示す構成を採用しており、両補助安定化部材6は、光ディスク(直径120mm)1に対向する面を曲率半径200mmとした直径40mmの円柱状の形状とし、主安定化部材5は、光ディスク1に対向する面を曲率半径100mmとした直径10mmの円柱状の形状とした。また両補助安定化部材6は、主安定化部材5におけるディスク回転方向上下流の90度の両位置で、ディスク対向面の中心が光ディスク1の半径45mmの位置となるように配置した。なお、補助安定化部材6には、光ディスク1が安定状態であるときに、補助安定化部材6と光ディスク1との間のギャップ量がほぼ1μm程度になるように既述した調整が行われている。
【0071】
図示していないが、主安定化部材5には、ディスク半径方向の移動機構とディスク回転軸方向の位置制御機構を具備させ、また両補助安定化部材6には、ディスク回転軸方向の位置制御機構と、ディスク半径方向とディスク円周方向のチルト制御機構を具備させた。なお、補助安定化部材6のチルト制御機構のチルト角制御における回転中心は、前記補助安定化部材の作用面の中心位置とした。
【0072】
光ディスク1は実施例1と同様のものを用いた。
【0073】
前記光ディスク1を15m/secのディスク回転数で回転させ、両補助安定化部材と主安定化部材を所定位置に配置してディスク面ぶれを安定化し、光ピックアップ4の位置にレーザ変位計を配置してディスク面ぶれを評価した。また、前記補助安定化部材と前記記録ディスクの間の接触を前記補助安定化部材に配置した図示していないAEセンサによって検知し、その接触摺動状態を評価した。ここにおいて、両補助安定化部材は、ディスク半径方向に対し、外周部を光ピックアップに近づける方向に0.7度、ディスク円周方向に対し、ディスク中心に向かって右回りの方向に0.4度傾け、また、ディスク基準面を基準として0.3mm押し込む位置に配置した。なお、ここでのディスク基準面とは、ディスクが理想的に平坦であると仮定した場合の主安定化部材5側のディスク面のことであり、また、この押し込み量を決める両補助安定化部材6の基準位置はチルト角制御の中心位置とした。
【0074】
(実施例4)
実施例4では、図6,図7に示す構成を採用しており、両補助安定化部材6は、光ディスク(直径120mm)1に対向する面を曲率半径200mmとした直径40mmの円柱状の形状とし、主安定化部材5は、光ディスク1に対向する面を曲率半径100mmとした直径10mmの円柱状の形状とした。また両補助安定化部材6は、主安定化部材5におけるディスク回転方向上下流の90度の両位置で、ディスク対向面の中心が光ディスク1の半径45mmの位置となるように配置した。なお、補助安定化部材6には、光ディスク1が安定状態であるときに、補助安定化部材6と光ディスク1との間のギャップ量がほぼ1μm程度になるように既述した調整が行われている。
【0075】
図示していないが、主安定化部材5には、ディスク半径方向の移動機構とディスク回転軸方向の位置制御機構を具備させ、また両補助安定化部材6には、ディスク回転軸方向の位置制御機構と、ディスク半径方向とディスク円周方向のチルト制御機構を具備させた。なお、補助安定化部材6のチルト制御機構のチルト角制御における回転中心は、前記補助安定化部材の作用面の中心位置とした。
【0076】
また、光ディスク1は、実施例1の仕様からハードコートを省いた構成とした。これにより、光ディスク1の仕上がり状態は、透明保護膜側に僅かに反った形状となった。
【0077】
前記光ディスク1を15m/secのディスク回転数で回転させ、両補助安定化部材と主安定化部材を所定位置に配置してディスク面ぶれを安定化し、光ピックアップ4の位置にレーザ変位計を配置してディスク面ぶれを評価した。また、前記補助安定化部材と前記記録ディスクの間の接触を前記補助安定化部材に配置した図示していないAEセンサによって検知し、その接触摺動状態を評価した。ここにおいて、両補助安定化部材は、ディスク半径方向に対し、外周部を光ピックアップに近づける方向に1度、ディスク円周方向に対し、ディスク中心に向かって左回りの方向に0.7度傾け、また、ディスク基準面を基準として0.5mm押し込む位置に配置した。なお、ここでのディスク基準面とは、ディスクが理想的に平坦であると仮定した場合の主安定化部材5側のディスク面のことであり、また、この押し込み量を決める両補助安定化部材6の基準位置はチルト角制御の中心位置とした。
【0078】
(実施例5)
実施例5では、図8,図9に示す構成を採用しており、両補助安定化部材6は、光ディスク(直径120mm)1に対向する面を曲率半径200mmとした直径40mmの円柱状の形状とし、主安定化部材5は、光ディスク1に対向する面を曲率半径100mmとした直径10mmの円柱状の形状とした。また両補助安定化部材6は、主安定化部材5におけるディスク回転方向上下流の75度の両位置で、ディスク対向面の中心が光ディスク1の半径45mmの位置となるように配置した。なお、補助安定化部材6には、光ディスク1が安定状態であるときに、補助安定化部材6と光ディスク1との間のギャップ量がほぼ1μm程度になるように既述した調整が行われている。
【0079】
図示していないが、主安定化部材5には、ディスク半径方向の移動機構とディスク回転軸方向の位置制御機構を具備させ、また両補助安定化部材6には、ディスク回転軸方向の位置制御機構と、ディスク半径方向とディスク円周方向のチルト制御機構を具備させた。なお、補助安定化部材6のチルト制御機構のチルト角制御における回転中心は、前記補助安定化部材の作用面の中心位置とした。
【0080】
光ディスク1は実施例1と同様のものを用いた。
【0081】
前記光ディスク1を15m/secのディスク回転数で回転させ、両補助安定化部材と主安定化部材を所定位置に配置してディスク面ぶれを安定化し、光ピックアップ4の位置にレーザ変位計を配置してディスク面ぶれを評価した。また、前記補助安定化部材と前記記録ディスクの間の接触を前記補助安定化部材に配置した図示していないAEセンサによって検知し、その接触摺動状態を評価した。ここにおいて、両補助安定化部材は、ディスク半径方向に対し、外周部を光ピックアップに近づける方向に0.7度、ディスク円周方向に対し、ディスク中心に向かって右回りの方向に0.4度傾け、また、ディスク基準面を基準として0.3mm押し込む位置に配置した。なお、ここでのディスク基準面とは、ディスクが理想的に平坦であると仮定した場合の主安定化部材5側のディスク面のことであり、また、この押し込み量を決める両補助安定化部材6の基準位置はチルト角制御の中心位置とした。
【0082】
(比較例)
本比較例においては、図15〜図17に示す構成を採用しており、両補助安定化部材6は、光ディスク(直径120mm)1に対向する面を曲率半径50mmとした直径15mmの円柱状の形状とし、主安定化部材5は、光ディスク1に対向する面を曲率半径100mmとした直径10mmの円柱状の形状とした。また両補助安定化部材6は、主安定化部材5におけるディスク回転方向上下流の90度の両位置で、ディスク対向面の中心が光ディスク1の半径45mmの位置となるように配置した。図示していないが、主安定化部材5には、ディスク半径方向の移動機構とディスク回転軸方向の位置制御機構を具備させ、また両補助安定化部材6には、ディスク回転軸方向の位置制御機構を具備させた。
【0083】
光ディスク1は実施例1と同様のものを用いた。
【0084】
前記光ディスク1を15m/secのディスク回転数で回転させ、両補助安定化部材と主安定化部材を所定位置に配置してディスク面ぶれを安定化し、光ピックアップ4の位置にレーザ変位計を配置してディスク面ぶれを評価した。また、前記補助安定化部材と前記記録ディスクの間の接触を前記補助安定化部材に配置した図示していないAEセンサによって検知し、その接触摺動状態を評価した。両補助安定化部材は、ディスク基準面を基準として0.5mm押し込む位置に配置した。なお、ここでのディスク基準面とは、ディスクが理想的に平坦であると仮定した場合の主安定化部材5側のディスク面のことであり、また、この押し込み量を決める両補助安定化部材6の基準位置は補助安定化部材の作用面中心とした。
【0085】
そして、各実施例と比較例とにおいて、前記チルト角設定により、補助安定部材6と光ディスク1との近接点23、すなわち空気力学的な力の作用点と、補助安定化部材6の作用面中心21、すなわち補助安定化部材6の空気力学的な力を作用させる適正点を、ほぼ同一の位置に調整し、各補助安定化部材にとって最大限に空気安定化力を発揮できる条件を整えた。
【0086】
前記条件において、半径55mm位置のディスク面ぶれ状態、および補助安定化部材と光ディスクとの摺動の有無を測定した結果、図18に示すように、実施例および比較例ともに、良好なディスク面ぶれ状態であった。しかしながら、図18に示す通り、比較例においては、補助安定化部材6と光ディスク1の間に接触摺動が発生し、記録/再生エラーを引き起こす原因となった。これに対し、全ての本実施例においては、補助安定化部材6による光ディスク1に対する空気力学的な力を作用させて、主安定化部材5の設置位置における面ぶれ安定化条件を確立しつつも接触摺動をなくすことが、前記補助安定化部材6の作用面形状にすることによって実現できた。
【0087】
上述したように本実施形態,本実施例では、ベルヌーイ効果を作用させる主安定化部材と補助安定化部材との構成において、前記補助安定化部材による空気力学的な作用力を適正化して、記録/再生位置における良好なディスク面ぶれの低減を実現可能な記録/再生装置を提供することができる。
【0088】
【発明の効果】
以上説明したように、本発明に係る記録/再生装置およびディスクカートリッジによれば、ベルヌーイ効果を作用させる主安定化部材と補助安定化部材との構成において、補助安定化部材と記録ディスク間の接触摺動のない状態で、補助安定化部材の記録ディスクに対する空気力学的な力を確実に作用させ、主安定化部材が位置する記録ディスク面において主安定化部材に対向する作用力を効率よく発生させることが可能となる。
【図面の簡単な説明】
【図1】本発明の記録/再生装置の実施形態1を説明するための要部の平面図
【図2】(a)は図1におけるE−E’線断面図、(b)は図1におけるF−F線断面図
【図3】図1の実施形態1の正面図
【図4】本発明の記録/再生装置の実施形態2を説明するための要部の平面図
【図5】(a)は図4におけるE−E’線断面図、(b)は図4におけるF−F線断面図
【図6】本発明の記録/再生装置の実施形態3を説明するための要部の平面図
【図7】(a)は図6におけるE−E’線断面図、(b)は図6におけるF−F線断面図
【図8】本発明の記録/再生装置の実施形態3の変形例を説明するための要部の平面図
【図9】(a)は図8におけるE−E’線断面図、(b)は図8におけるF−F線断面図
【図10】本実施形態の記録/再生装置における補助安定化部材の設置例を示す断面図
【図11】本発明の実施形態であるディスクカートリッジを説明するための断面図
【図12】本実施形態のディスクカートリッジの平面図
【図13】図11のディスクカートリッジの横断面図
【図14】本発明の実施形態であるディスクカートリッジの他例を説明するための断面図
【図15】本発明の比較例としての記録/再生装置の要部の平面図
【図16】図15におけるE−E’線断面図
【図17】図15における記録/再生装置の正面図
【図18】本発明の実施例と比較例とにおける特性評価の一覧を示す図
【符号の説明】
1 光ディスク
2 ハブ
3 スピンドルモータ
4 光ピックアップ
5 主安定化部材
6 補助安定化部材
21 補助安定化部材の作用面中心(作用点)
22 補助安定化部材と光ディスクの近接領域
23 補助安定化部材と光ディスクの近接点
30 装置本体の筺体
31,35 ディスクカートリッジ
A 光ピックアップ動線の延長線
B1,B2 ハブの周部を通り直線Aに垂直な直線
R 動線
S1,S2,C 記録ディスクの面内において区分した領域
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a recording / reproducing apparatus that performs recording and / or reproducing processing on a flexible recording disk, and a disk cartridge that houses a flexible recording disk.
[0002]
[Prior art]
In recent years, there has been a demand for information recording media to record large volumes of digital data, such as the start of digitization of television broadcasting. For example, in the field of optical discs, one of the basic methods for increasing the density is to reduce the diameter of the light spot collected on the optical disc for recording / reproduction (hereinafter referred to as an optical disc). As a representative example, the recording disk used in the recording / reproducing apparatus targeted by the present invention is intended for all the disk-shaped recording disks such as phase change memory, magneto-optical memory, hologram memory, etc. Not limited to optical discs).
[0003]
For this reason, in increasing the density of the optical disk, it is effective to shorten the wavelength of light used for recording / reproduction and increase the numerical aperture NA of the objective lens. As for the wavelength of light, a wavelength of near infrared light of 780 nm is used for CD (compact disk), and a wavelength of about 650 nm of red light is used for DVD (digital versatile disk). Recently, a blue-violet semiconductor laser has been developed, and it is expected that a laser beam of around 400 nm will be used in the future.
[0004]
As for the objective lens, it was less than NA0.5 for CD, but it is about NA0.6 for DVD. In the future, it is required to further increase the numerical aperture (NA) to NA or more 0.7. However, increasing the NA of the objective lens and shortening the wavelength of light also increase the influence of aberrations when focusing light. Therefore, the margin for the tilt of the optical disk is reduced. Further, since the depth of focus is reduced by increasing the NA, the focus servo accuracy must be increased.
[0005]
In addition, since the distance between the objective lens and the recording surface of the optical disk is reduced by using a high NA objective lens, the optical disc surface blur must be kept small before the focus servo at the start is pulled. The objective lens and the optical disk may collide, causing a pickup failure.
[0006]
As a short-wavelength, high-NA high-capacity optical disk, for example, as described in Non-Patent Document 1, a recording film is formed on a substrate that is as thick as a CD and has high rigidity, and is used for recording / reproducing light. Has been proposed which records / reproduces data on / from a recording film through a thin cover layer without passing through the substrate.
[0007]
Further, Patent Documents 1 to 3 and Non-Patent Document 1 have flexibility in opposition to a stabilizing member in order to stabilize surface blurring in an optical disk by utilizing aerodynamic action force according to Bernoulli's law. There is a description of a recording / reproducing apparatus configured to rotate an optical disk or a flexible optical disk.
[0008]
[Patent Document 1]
Japanese Patent Laid-Open No. 7-105657 [Patent Document 2]
Japanese Patent Laid-Open No. 10-308059 [Patent Document 3]
JP 2003-115108 A [Non-Patent Document 1]
O PLUS E Vol. 20, No. 2, P.E. 183
[0009]
[Non-Patent Document 2]
“Optical Lead-Out of Video Disc”, “EITA TRANSPORTATION ON CONSUMER ELECTRONICS”, November 1976, P.I. 304-308
[0010]
[Problems to be solved by the invention]
However, in the prior art, when the substrate of the optical disk is formed of a rigid body, in order to reduce surface deflection and tilt in the rotating optical disk, extremely accurate molding is performed and recording is performed at a low temperature so that thermal deformation does not occur. A film must be deposited. This prolongs the tact time associated with optical disc manufacture and increases costs.
[0011]
Further, as described in Patent Documents 1 and 2, the method of rotating a flexible optical disk on a stabilizing plate has a high risk of sliding between the optical disk and the stabilizing plate. There is a problem that the surface of the chemical plate is damaged. This sliding causes dust generation, which causes an error.
[0012]
In particular, as described in Patent Document 1, when the recording film is present on the stabilizing plate side, the recording film of the optical disk is damaged by sliding, and an error is directly caused. Moreover, there is a limit to the effect of reducing the disk surface blurring simply by using a flat stabilizer, and the risk of collision between the objective lens and the disk is still a problem when using a high NA objective lens. It remains.
[0013]
As one of the methods using the stabilization plate, there is a method as described in Non-Patent Document 2, but it is the same as the above technique in terms of the configuration of using a planar stabilization plate, and the same problem Is expected to occur. In this method, it is assumed that an aerodynamic force acts between a stabilizing plate called “smoothing plates” and the disc. For example, the direction in which the disc is separated from the stabilizing plate. If the shape is warped, the aerodynamic force does not act effectively, and the disc surface blur cannot be controlled. In addition, since the aerodynamic force is generated by utilizing the phenomenon that the disk hangs down due to gravity, it cannot cope with the vertical placement of the drive device.
[0014]
As one means for solving these problems, the present inventor uses a columnar stabilization guide member whose surface facing the optical disc forms an arc shape in Patent Document 3 and the like, and a stabilization guide member in the optical disc. A region where no air pressure action is generated (a space without a stabilizing guide member) is provided on the upstream and downstream sides of the disk rotation direction at the part where the surface shake due to the air pressure action is stable. An invention that increases the effect of the stabilizing force by aerodynamic force by reducing the repulsive force in the optical disc at the portion where the surface blurring is stabilized by making the optical disc have a portion that becomes “escape” before and after the portion. Proposed.
[0015]
According to the invention of Patent Document 3, it is possible to surely suppress surface deflection of a flexible optical disc, enable high-density recording, and prevent occurrence of problems such as sliding contact with an objective lens. On the other hand, this realization requires complicated position adjustment control of the stabilizing guide member and the recording / reproducing head, which not only increases the load on the drive control system, but also significantly increases the device cost. Become.
[0016]
Therefore, as one means for solving such a problem, the present inventor disclosed in Japanese Patent Application No. 2003-19087 a main stabilizing member disposed in the vicinity of recording / reproducing means for performing recording and / or reproduction. In addition, by disposing at a specific position independent of the main stabilizing member, an acting force that opposes the main stabilizing member is generated on the surface of the recording disk on which the main stabilizing member is located, A method was proposed to obtain the effect of stabilizing the disk surface by aerodynamic force without greatly pushing the main stabilizer.
[0017]
According to the invention of Japanese Patent Application No. 2003-19087, compared to the case where only one main stabilizing member is used, a sufficient surface blur reducing effect can be obtained at a position where the pushing amount of the main stabilizing member is shallow. In addition, since the flow line in the disk radial direction in the main stabilizing member and the recording / reproducing means can be limited to a range close to the disk reference plane, the operation mechanism can be simplified.
[0018]
However, in order to generate an acting force that opposes the main stabilizing member on the recording disk surface on which the main stabilizing member is located by the auxiliary stabilizing member, it is necessary to increase the acting force of the auxiliary stabilizing member on the disk. This increase in the acting force has caused the sliding contact between the recording disk and the auxiliary stabilizing member.
[0019]
As one of the methods for securing the acting force, a method of increasing the pushing amount of the auxiliary stabilizing member with respect to the recording disk is conceivable. However, as the pushing amount is increased, the space between the recording disk and the auxiliary stabilizing member is increased. Since the gap formed on the recording medium becomes small, depending on the conditions, the narrowing of the gap may cause the sliding contact between the recording disk and the auxiliary stabilizing member.
[0020]
The object of the present invention is to solve the above-mentioned problems, and in the configuration of the main stabilizing member and the auxiliary stabilizing member that cause the Bernoulli effect to act, the auxiliary stabilizing member does not slide in contact with the recording disk, and is aerodynamic. It is an object of the present invention to provide a recording / reproducing apparatus and a disk cartridge that can apply an acting force to a recording disk to realize good reduction of disk surface blur at a recording / reproducing position.
[0021]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the invention according to claim 1 is characterized in that a flexible recording disk is rotated and the surface fluctuation of the recording disk at least near the recording / reproducing position is suppressed by utilizing the Bernoulli effect. A stabilizing member and recording / reproducing means for performing recording and / or reproduction on a surface opposite to a main working surface of the Bernoulli effect of the recording disk, and the recording / reproducing means is disposed within the surface of the recording disk. The main stabilizing member is divided into two areas by a straight line A that is close to the scanning flow line and passes through the vicinity of the center of the recording disk, and an aerodynamic force is generated in at least one of the areas. A recording / reproducing apparatus provided with an auxiliary stabilizing member so as to generate an acting force opposed to the main stabilizing member on the surface of the recording disk positioned, wherein the auxiliary stabilizing member In a state where the main shape of the working surface for generating the aerodynamic working force in the member is a convex shape toward the recording disk and the recording disk is stabilized, the working surface and the recording disk are The working surface is adjusted so that the gap amount in the recording medium is at least 1 μm. With this configuration, the acting force of the auxiliary stabilizing member on the recording disk can be positive pressure, whereby the auxiliary stabilizing member The force in the direction of securing the gap amount of the recording disk can be obtained, and the aerodynamic force of the auxiliary stabilizing member against the recording disk can be obtained without sliding the auxiliary stabilizing member in contact with the recording disk. The acting force that opposes the main stabilization member on the surface of the recording disk on which the main stabilization member is located can be reliably operated. Can be generated. Thereby, the sliding contact between the auxiliary stabilizing member and the recording disk can be prevented in advance, and the reliability and durability of the recording disk can be ensured.
[0022]
Here, the gap amount is a gap between the recording disk and the auxiliary stabilizing member when the recording disk is closest to the auxiliary stabilizing member. Hereinafter, the gap amount means the gap. Used in.
[0023]
According to a second aspect of the present invention, in the recording / reproducing apparatus according to the first aspect, the gap amount is adjusted by the cross-sectional area of the working surface of the auxiliary stabilizing member, and this structure increases the cross-sectional area. Thus, the gap amount can be increased and the gap amount can be reduced by reducing the cross-sectional area.
[0024]
According to a third aspect of the present invention, in the recording / reproducing apparatus according to the first aspect, the gap amount is adjusted according to the shape of the working surface of the auxiliary stabilizing member. The gap amount can be reduced by making the shape sharp with respect to the surface, and the gap amount can be increased by making the working surface shape gentle.
[0025]
According to a fourth aspect of the present invention, in the recording / reproducing apparatus according to the first aspect, the gap amount is adjusted by the sectional area of the working surface of the auxiliary stabilizing member and the shape of the working surface. The effects obtained by fusing the inventions according to claims 2 and 3 can be obtained.
[0026]
According to a fifth aspect of the present invention, in the recording / reproducing apparatus according to the third or fourth aspect, the main shape of the working surface of the auxiliary stabilizing member is a spherical surface, and the shape of the working surface is adjusted using the radius of curvature as a parameter. With this configuration, the gap amount can be increased by increasing the radius of curvature, and the gap amount can be decreased by decreasing the radius of curvature.
[0027]
According to a sixth aspect of the present invention, in the recording / reproducing apparatus according to the first aspect, the gap amount is adjusted by the position of the auxiliary stabilizing member in the disk rotational axis direction with respect to the recording disk surface. The gap amount can be reduced by shifting the arrangement position in the direction of pushing into the recording disk surface, and the gap amount can be increased by shifting in the reverse direction.
[0028]
According to a seventh aspect of the present invention, in the recording / reproducing apparatus according to the first aspect, when the specification range of the disk used in the recording / reproducing apparatus and the condition range of the number of revolutions of the disk are limited, And adjusting the gap amount according to any one of claims 2 to 6, based on a condition in which the disc rigidity is the highest and the disc rotation speed is the slowest. The gap amount can be 1 μm or more in the entire range of the rotation speed.
[0029]
According to the eighth aspect of the present invention, main stabilization that suppresses at least the recording / reproducing position of the recording disk near the recording / reproducing position by utilizing the Bernoulli effect when the recording disk having flexibility stored therein is rotated. The member and the in-plane of the recording disk are divided into two regions by a straight line A that is close to the flow line scanned by the recording / reproducing means and passes near the center of the recording disk, and at least one of the regions, A disc cartridge configured to generate an aerodynamic force and an auxiliary stabilizing member that generates an acting force opposite to the main stabilizing member on the surface of the recording disk on which the main stabilizing member is located. And the main shape of the working surface for generating the aerodynamic acting force in the auxiliary stabilizing member is a convex shape toward the recording disk, and the recording disk In the stabilized state, the working surface is adjusted so that the gap amount at the closest point between the working surface and the recording disk is at least 1 μm, and the auxiliary stabilizing member is fixed and arranged on the inner wall of the disc cartridge. With this configuration, it is not necessary to install an auxiliary stabilizing member on the recording / reproducing apparatus side, and the recording / reproducing apparatus can be simplified. Furthermore, it becomes possible to design an individual disk cartridge provided with an appropriate auxiliary stabilizing member for each disk specification.
[0030]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0031]
1 is a plan view of an essential part for explaining Embodiment 1 of the recording / reproducing apparatus of the present invention, FIG. 2 (a) is a cross-sectional view taken along the line EE ′ in FIG. 1, and FIG. 2 (b) is FIG. FIG. 3 is a front view of the recording / reproducing apparatus in FIG. 1, 1 is an optical disc that is a flexible recording disc, and 2 is a rotation center (center) portion of the optical disc 1. A hub 3 as a holding member for holding the mounted optical disk 1 for rotation and a spindle motor 4 for rotating the optical disk 1 by fitting a chucking portion as the other holding member into the hub 2. Recording / reproducing means for moving in the radial direction of the optical disc 1 to collect a light beam on the optical disc 1 and optically scanning the optical disc 1 in the direction of flow R in order to perform information recording / reproduction processing This is an optical pickup.
[0032]
Further, reference numeral 5 indicates that the optical disc 1 side (aerodynamic working surface) protrudes in an arc shape when viewed from the front, and the optical pickup scanning movement in the disc radial direction is synchronized with the movement of the optical pickup 4 as shown in FIG. A main stabilizing member that moves in the direction of the line R, and the main stabilizing member 5 uses aerodynamic action force according to Bernoulli's law to at least a surface near the recording / reproducing position by the optical pickup 4 in the optical disc 1. It suppresses blurring.
[0033]
Further, reference numeral 6 denotes an auxiliary stabilizing member that acts together with the main stabilizing member 5 to apply an aerodynamic acting force to the optical disc 1. The main stabilizing member 5 and the auxiliary stabilizing member 6 are optical discs. 1 is disposed on the side of the disk substrate opposite to the recording surface. The auxiliary stabilizing member 6 has a shape in which the optical disc 1 side (aerodynamic acting surface) protrudes in an arc shape when viewed from the front, and is convex toward the disc surface.
[0034]
Further, in the first embodiment, a straight line that is close to the flow line R that moves so that the optical pickup 4 scans in the plane of the optical disk 1 and passes through the vicinity of the center of the optical disk 1 (shown on the flow line R in the figure). Of the two regions S1 and S2 divided by A (including those in the vicinity of the flow line R), the region S2 located downstream of the optical pickup 4 in the optical disc rotation direction is independent of the main stabilizing member 5. Thus, at least one auxiliary stabilizing member 6 (only one is shown in the first embodiment) is provided.
[0035]
The main stabilizing member 5 is provided with a movement control mechanism 11 in the disk radial direction and a position control mechanism 12 in the disk rotation axis direction, and each auxiliary stabilization member 6 has a position control mechanism in the disk rotation axis direction. 13 and a tilt control mechanism 14 which is a tilt adjustment means in the disk radial direction and the disk circumferential direction. The movement control mechanism 11, the position control mechanisms 12 and 13, and the tilt control mechanism 14 are each set of various setting data, etc. Is controlled by a drive unit 16 that receives control data from a memory 15 that stores.
[0036]
The rotation center in the tilt angle control of the tilt control mechanism 14 of the auxiliary stabilizing member 6 is the position of the action surface center (action point) 21 of the auxiliary stabilizing member 6. 1 to 3, reference numeral 22 denotes a proximity region between the auxiliary stabilization member 6 and the optical disc 1, and 23 denotes a proximity point between the auxiliary stabilization member 6 and the optical disc 1.
[0037]
4 is a plan view of an essential part for explaining Embodiment 2 of the recording / reproducing apparatus of the present invention, FIG. 5 (a) is a sectional view taken along line EE ′ in FIG. 4, and FIG. 5 (b) is FIG. FIG. In the following description, members corresponding to those already described are denoted by the same reference numerals, and detailed description thereof is omitted.
[0038]
The difference between the second embodiment and the first embodiment is that the auxiliary stabilizing member 6 is separated from the main stabilizing member 5 in each of the two regions S1 and S2 divided in the same manner as described in the first embodiment. Are arranged in symmetrical positions at least one (one in each region in the second embodiment).
[0039]
FIG. 6 is a plan view of an essential part for explaining Embodiment 3 of the recording / reproducing apparatus of the present invention, FIG. 7A is a cross-sectional view taken along the line EE ′ in FIG. 6, and FIG. FIG. 7 (a), (b) is a cross-sectional view taken along line FF ′ in FIG. 5 and shows that the third embodiment is different from the second embodiment in comparison with FIGS. 5 (a), 5 (b). The adjustment direction of the disc circumferential direction inclination of the auxiliary stabilizing member 6 as shown in FIG.
[0040]
The operation of each embodiment will be described.
[0041]
In order to suppress disc surface blurring by generating aerodynamic force according to Bernoulli's law between a stabilizing member which is a basic configuration in each of the embodiments and a flexible disc, The balance condition between the disk and the disk is important. In particular, the reaction force toward the stabilizing member of the disk is an important parameter. Since this reaction force is determined by the rigidity of the disk and the levitation force generated by the disk rotating and flattening, in principle, the balance condition is the radial position of the stabilizing member, the disk rotation speed, In addition, the disk specification depends on the parameters, and a complicated adjustment drive mechanism is required.
[0042]
As a result of various experiments and considerations regarding this point, when an aerodynamic force is applied to the disk surface by an arbitrary stabilizing member, approximately ± 90 upstream and downstream of the disk rotating direction in the stabilizing member. This shows a phenomenon that the disk surface near the angle approaches the disk reference surface when the disk is considered as an ideal plane.
[0043]
Therefore, the phenomenon that the disk surface at a position shifted by ± 90 degrees from any stabilizing member approaches the disk reference surface is used as the reaction force described above to adjust the balance condition between the stabilizing member and the disk. As a result of the target, the effect of stabilizing the disk surface efficiently as the target was obtained.
[0044]
However, in order to bring the disc surface at a position shifted by ± 90 degrees (in the present invention, the installation position of the main stabilization member) closer to the disc reference plane by an arbitrary stabilizing member, the stabilizing member (in the present invention, It is necessary to increase the acting force of the auxiliary stabilizing member) on the disc. To increase the acting force, the disc and the stabilizing member are brought close to each other (to reduce the gap amount). The member caused contact sliding. In this regard, various experiments were conducted and considerations were made. By adjusting the shape factor of the working surface of the stabilizing member so that the gap amount at the closest point of the disk and the stabilizing member was 1 μm or more. It has been found that it is possible to effectively prevent contact sliding while increasing the acting force of the stabilizing member on the disk.
[0045]
Therefore, in each embodiment, by adjusting the shape factor of the working surface of the auxiliary stabilizing member (member corresponding to the stabilizing member described above) 6, 1 μm or more is provided between the auxiliary stabilizing member 6 and the optical disc 1. Is ensured, and the acting force of the auxiliary stabilizing member 6 with respect to the optical disc 1 is increased to secure the opposing force of the optical disc 1 with respect to the main stabilizing member 5, and good disc surface blurring at the recording / reproducing position is achieved. This is characterized by the reduction of
[0046]
In the first embodiment, the auxiliary stabilizing member 6 is enlarged by increasing the cross-sectional area of the working surface, increasing the radius of curvature of the working surface, or increasing both the cross-sectional area and the radius of curvature. By setting the gap amount between the optical disc 1 and the optical disc 1 to be 1 μm or more, the auxiliary stabilizing member 6 prevents the disc from contacting and sliding between the auxiliary stabilizing member 6 and the optical disc 1. A large aerodynamic force was applied to the surface, and the function of giving the opposing force approaching the main stabilizing member 5 to the disk surface could be sufficiently exhibited. Thereby, a sufficient surface blurring reduction effect was obtained at the installation position of the main stabilization member 5.
[0047]
Further, the flow line R in the disk radial direction of the main stabilizing member 5 and the optical pickup 4 is positioned within a range (a relatively wide area illustrated by oblique lines) H close to the disk reference surface in which surface deflection is suppressed. Therefore, the adjustment mechanism for this purpose can be given a margin, and the adjustment mechanism can be simplified.
[0048]
The configuration of the first embodiment is such that when the apparatus is composed of only the main stabilizing member 5, the disc surface on the downstream side of the main stabilizing member 5 is displaced toward the side close to the main stabilizing member 5. For example, the optical disc 1 in which the static warp shape of the optical disc 1 is convex toward the optical pickup 4 corresponds to this. In this case, the tilt angle of the auxiliary stabilizing member is adjusted in the direction in which the outer peripheral side is brought closer to the optical pickup with respect to the radial direction of the disc, and in the clockwise direction toward the disc center with respect to the disc circumferential direction (auxiliary stabilizing member). The direction in which the upstream side of the disk rotates closer to the disk was appropriate.
[0049]
Further, for example, when the apparatus is configured only by the main stabilization member 5, the optical disc 1 (the optical disc 1 of the optical disc 1) in which the upstream disc surface of the main stabilization member 5 is displaced toward the side close to the main stabilization member 5. In the optical disk 1 in which the static warp shape is concave on the optical pickup 4 side), the configuration in which the disk rotation direction is reversed by modifying the first embodiment can be applied. By appropriately applying the aerodynamic force of the auxiliary stabilizing member 6 to the optical disc 1, it is possible to efficiently generate a force in which the optical disc 1 faces the main stabilizing member 5, and the main stabilizing member. A sufficient surface blur reduction effect was obtained at the moving position of 5. At this time, the tilt angle of the auxiliary stabilizing member 6 is adjusted in a direction in which the outer peripheral side is brought closer to the optical pickup 4 with respect to the radial direction of the disc and in a clockwise direction toward the disc center with respect to the disc circumferential direction ( The direction in which the disk rotation downstream side of the auxiliary stabilizing member approaches the disk was appropriate.
[0050]
Also in the configuration of the second embodiment, the cross-sectional area of the working surface of the auxiliary stabilizing member 6 is increased, the radius of curvature of the working surface is increased, or both the cross-sectional area and the radius of curvature are increased. By setting the gap amount between the stabilizing member 6 and the optical disc 1 to be 1 μm or more, the auxiliary stabilizing member is brought into contact with and does not slide between the auxiliary stabilizing member 6 and the optical disc 1. 6 was able to sufficiently exert the function of applying a large aerodynamic force to the disk surface and giving the disk surface an opposing force approaching the main stabilizing member 5. As a result, as in the first embodiment, a sufficient surface blur reduction effect was obtained at the installation position of the main stabilization member 5.
[0051]
The configuration of the second embodiment is an optical disc in which the disk surface on the downstream side of the main stabilization member 5 is displaced toward the side close to the main stabilization member 5 when the apparatus is configured by only the main stabilization member 5. For example, the optical disc 1 in which the static warp shape of the optical disc 1 is convex toward the optical pickup 4 corresponds to this. At this time, the tilt angles of the auxiliary stabilizing members 6 are adjusted in such a direction that the outer peripheral side is brought closer to the optical pickup 4 with respect to the radial direction of the disc, and a clockwise direction toward the disc center with respect to the disc circumferential direction. (The direction in which the disk rotation upstream side of the auxiliary stabilizing member 6 approaches the optical disk 1) was appropriate.
[0052]
Even in the configuration of the third embodiment, it is possible to increase the cross-sectional area of the working surface of the auxiliary stabilizing member 6, increase the radius of curvature of the working surface, or increase both the cross-sectional area and the radius of curvature. By setting the gap amount between the stabilizing member 6 and the optical disc 1 to be 1 μm or more, the auxiliary stabilizing member is brought into contact with and does not slide between the auxiliary stabilizing member 6 and the optical disc 1. 6 was able to sufficiently exert the function of applying a large aerodynamic force to the disk surface and giving the disk surface an opposing force approaching the main stabilizing member 5. As a result, as in the first embodiment, a sufficient surface blur reduction effect was obtained at the installation position of the main stabilization member 5.
[0053]
The configuration of the third embodiment is an optical disk in which the upstream disk surface of the main stabilization member 5 is displaced to the side close to the main stabilization member 5 when the apparatus is configured by only the main stabilization member 5. For example, the optical disc 1 in which the static warp shape of the optical disc 1 is concave on the optical pickup 4 side corresponds to this. In this case, the tilt angles of the auxiliary stabilizing members 6 are adjusted in a direction in which the outer peripheral side is brought closer to the optical pickup with respect to the disc radial direction and in a counterclockwise direction toward the disc center with respect to the disc circumferential direction ( The direction in which the disk rotation downstream side of the auxiliary stabilizing member 6 approaches the disk was appropriate.
[0054]
In the configurations of the first to third embodiments, a position control mechanism in the direction of the disk rotation axis or a tilt control system is added to the main stabilizing member 5 to perform fine adjustment with higher accuracy, so that the recording / reproducing position can be adjusted. It was also possible to optimize the surface blur.
[0055]
FIG. 8 is a plan view of an essential part for explaining a modification of Embodiment 3 of the recording / reproducing apparatus of the present invention, FIG. 9A is a cross-sectional view taken along the line EE ′ in FIG. 8, and FIG. FIG. 8 is a cross-sectional view taken along the line FF ′ in FIG. 8. In the third embodiment, the hub 2 of the optical disc 1 is connected to the chuck of the spindle motor 3 shown in FIG. 3 as in the modified examples shown in FIGS. A peripheral portion (circular region in FIG. 8) connecting the fulcrum positions (the outer periphery of the hub 2 in FIG. 8) where the optical disc 1 starts to bend when the stabilizing members 5 and 6 are pushed and bent on the king portion. ) And a straight line A passing through two points intersecting and perpendicular to the straight line A, that is, on a disc surface sandwiched between a straight line B1 closer to the main stabilizing member 5 and a straight line B2 farther from the main stabilizing member 5. In the region C, the auxiliary stabilizing member 6 is located near the straight line B1 on the side close to the main stabilizing member 5. With the structure disposing the use point 21, to further reduce the disk surface vibration at the movement position of the main stabilizing member 5, was obtained exerts sufficient effect described above.
[0056]
In each of the above embodiments, the auxiliary stabilizing member 6 is provided in the housing 30 of the apparatus main body as illustrated in FIG. 10, so that a disk cartridge for storing the optical disk is not used or the optical disk is removed from the disk cartridge. The present invention can be implemented in a recording / reproducing apparatus that is taken out and driven.
[0057]
Further, as shown in FIG. 11, the auxiliary stabilizing member 6 in each of the above embodiments can be provided on the inner wall of the disc cartridge 31. With this configuration, the configuration on the recording / reproducing apparatus side is configured. It can be simplified. Further, in this configuration, since the auxiliary stabilizing member 6 can be individually set in the disk cartridge 31, the auxiliary stabilizing member 6 can be individually designed for each of various disk specifications, and stabilization due to variations in disk specifications. It is also possible to correct the deviation of conditions.
[0058]
Examples of the disk cartridge 31 include those shown in FIGS. 12 and 13, reference numeral 32 denotes a first through hole for allowing the main stabilizing member 5 to be inserted, and movement in the radial direction of the disk. Reference numeral 33 denotes an optical pickup 4 and a part of the spindle motor 3 are inserted. And a second through-hole for enabling the optical pickup 4 to move in the radial direction of the disk. A shutter for opening and closing the through holes 32 and 33, a mechanism for fixing the optical disc 1 in the cartridge, and other mechanisms necessary for installing the cartridge in the spindle motor 3 are illustrated. Not.
[0059]
In the above embodiment, the configuration example in which the auxiliary stabilizing member is disposed on the same side as the main stabilizing member has been described. However, the auxiliary stabilizing member may be disposed on the opposite side of the main stabilizing member and the disk. The disc surface shake reduction effect can be obtained. For example, the structure shown in FIG. 14 can be illustrated.
[0060]
FIG. 14 shows a case where the disk cartridge 35 in which the optical disk 1 is stored is disposed in the housing 30 on the recording / reproducing apparatus side, and the auxiliary stabilizing member 6 is installed on the same side as the optical pickup 4. In this configuration, since the contact sliding between the auxiliary stabilizing member 6 and the optical disc 1 directly leads to the occurrence of a recording / reproducing error, the avoidance of this contact sliding is the most important issue. Therefore, by adopting the configuration of the above-described embodiment, it is possible to surely avoid the sliding contact between the auxiliary stabilizing member 6 and the optical disc 1 and to prevent the occurrence of recording / reproducing errors related thereto.
[0061]
In the description of the above-described embodiment, the case where the cross-sectional shapes of the action surfaces of the main stabilizing member 5 and the auxiliary stabilizing member 6 are circular has been described, but various other shapes can be considered. As long as it is a shape that generates an aerodynamic force on the optical disc 1 as both the stabilizing members 5 and 6, it can be adopted without any problem and is not particularly limited. In addition, regarding the shape of the working surface, basically, the spherical shape has been described as a representative, but there are various shapes such as an aspheric shape and a special uneven shape considering the pressure distribution of aerodynamic force. It is conceivable and is not limited to the shapes already described.
[0062]
Next, the present invention will be described more specifically based on examples.
[0063]
(Example 1)
In the first embodiment, the configuration shown in FIGS. 1 and 2 is adopted, and the auxiliary stabilizing member 6 has a columnar shape with a diameter of 40 mm and a surface facing the optical disk (diameter 120 mm) 1 having a curvature radius of 200 mm. The main stabilizing member 5 has a cylindrical shape with a diameter of 10 mm and a surface facing the optical disk 1 with a radius of curvature of 100 mm. The auxiliary stabilizing member 6 is disposed at a 90 degree position downstream of the main stabilizing member 5 in the disk rotation direction, and the center of the disk facing surface is positioned at a radius of 45 mm of the optical disk 1. In the member 6, the adjustment described above is performed so that the gap amount between the auxiliary stabilizing member 6 and the optical disc 1 is approximately 1 μm when the optical disc 1 is in a stable state.
[0064]
Although not shown, the main stabilization member 5 is provided with a moving mechanism in the disk radial direction and a position control mechanism in the disk rotation axis direction, and the auxiliary stabilization member 6 is provided with a position control mechanism in the disk rotation axis direction. And a tilt control mechanism in the disc radial direction and the disc circumferential direction. The rotation center in the tilt angle control of the tilt control mechanism of the auxiliary stabilizing member 6 is the center position of the working surface of the auxiliary stabilizing member.
[0065]
In Example 1, a case where a polycarbonate sheet having a thickness of 120 mm and a thickness of 75 μm is used as a disk substrate will be described. In preparing the disk, first, a groove having a stamper pitch of 0.6 μm and a width of 0.3 μm is transferred to the sheet by thermal transfer, and then the sheet / Ag reflective layer 120 nm / (ZrO 2 —Y 2 O by sputtering. 3) it was formed in the order of -SiO 2 7nm / AgInSbTeGe 10nm / ZnS -SiO 2 25nm / Si 3 N 4 10nm. The information recording area was set in a range from an inner diameter of 40 mm to an outer diameter of 118 mm (radius 20 mm to 58 mm). Thereafter, a UV resin was spin-coated and cured by ultraviolet irradiation to form a transparent protective film having a thickness of 5 μm. Further, a hard coat having a thickness of 10 μm was applied to the opposite surface. A hub 2 having an outer diameter of 30 mm, an inner diameter of 15 mm, and a thickness of 0.3 mm was attached to the center of the disk. The finished state of the disk was slightly warped to the hard coat side.
[0066]
The optical disk 1 is rotated at a disk rotational speed of 15 m / sec, the auxiliary stabilizing member and the main stabilizing member are arranged at predetermined positions to stabilize the disk surface shake, and a laser displacement meter is arranged at the position of the optical pickup 4. The disc surface blur was evaluated. Further, contact between the auxiliary stabilizing member and the recording disk was detected by an AE sensor (not shown) arranged on the auxiliary stabilizing member, and the contact sliding state was evaluated. Here, the auxiliary stabilizing member is tilted by 1 degree in the direction in which the outer peripheral portion is brought close to the optical pickup with respect to the disk radial direction, and 0.7 degrees in the clockwise direction toward the disk center with respect to the disk circumferential direction, Further, it was arranged at a position where the disk reference surface was pushed in by 0.5 mm. The disk reference surface here is a disk surface on the side of the main stabilizing member 5 when the disk is assumed to be ideally flat, and the auxiliary stabilizing member 6 that determines the pushing amount. The reference position was the center position for tilt angle control.
[0067]
(Example 2)
In the second embodiment, based on the configuration of the first embodiment, the auxiliary stabilizing member 6 is positioned 90 degrees upstream of the main stabilizing member 5 in the disk rotation direction, and the center of the disk facing surface is the radius of the disk. The arrangement was changed to be 45 mm. The auxiliary stabilizing member 6 is adjusted as described above so that the gap amount between the auxiliary stabilizing member 6 and the optical disc 1 is about 1 μm when the optical disc 1 is in a stable state. Yes.
[0068]
Further, the optical disk 1 has a configuration in which the hard coat is omitted from the specification of the first embodiment. As a result, the finished state of the optical disc 1 was slightly warped toward the transparent protective film side.
[0069]
The optical disk 1 is rotated at a disk rotational speed of 15 m / sec, the auxiliary stabilizing member and the main stabilizing member are arranged at predetermined positions to stabilize the disk surface vibration, and a laser displacement meter is arranged at the position of the optical pickup 4. The disc surface blur was evaluated. Further, contact between the auxiliary stabilizing member and the recording disk was detected by an AE sensor (not shown) arranged on the auxiliary stabilizing member, and the contact sliding state was evaluated. Here, the auxiliary stabilizing member is tilted 2 degrees in the direction in which the outer peripheral portion is brought closer to the optical pickup with respect to the disk radial direction, and 1 degree in the counterclockwise direction toward the disk center with respect to the disk circumferential direction. The disc was placed at a position where it was pushed in by 1 mm from the reference plane. The disk reference surface here is a disk surface on the side of the main stabilizing member 5 when the disk is assumed to be ideally flat, and the auxiliary stabilizing member 6 that determines the pushing amount. The reference position was the center position for tilt angle control.
[0070]
(Example 3)
In Example 3, the configuration shown in FIGS. 4 and 5 is adopted, and both auxiliary stabilizing members 6 have a columnar shape with a diameter of 40 mm and a surface facing the optical disk (diameter 120 mm) 1 having a curvature radius of 200 mm. The main stabilizing member 5 has a cylindrical shape with a diameter of 10 mm and a surface facing the optical disc 1 with a radius of curvature of 100 mm. Both auxiliary stabilizing members 6 are arranged so that the center of the disk facing surface is at a position of a radius of 45 mm of the optical disk 1 at both positions of 90 degrees upstream and downstream in the disk rotation direction of the main stabilizing member 5. The auxiliary stabilizing member 6 is adjusted as described above so that the gap amount between the auxiliary stabilizing member 6 and the optical disc 1 is about 1 μm when the optical disc 1 is in a stable state. Yes.
[0071]
Although not shown, the main stabilizing member 5 is provided with a moving mechanism in the disk radial direction and a position control mechanism in the disk rotating shaft direction, and both auxiliary stabilizing members 6 have position control in the disk rotating shaft direction. And a tilt control mechanism in the disk radial direction and the disk circumferential direction. The rotation center in the tilt angle control of the tilt control mechanism of the auxiliary stabilizing member 6 is the center position of the working surface of the auxiliary stabilizing member.
[0072]
The same optical disk 1 as in Example 1 was used.
[0073]
The optical disk 1 is rotated at a disk rotational speed of 15 m / sec, both auxiliary stabilizing members and the main stabilizing member are arranged at predetermined positions to stabilize the disk surface shake, and a laser displacement meter is arranged at the position of the optical pickup 4 Then, the disc surface shake was evaluated. Further, contact between the auxiliary stabilizing member and the recording disk was detected by an AE sensor (not shown) arranged on the auxiliary stabilizing member, and the contact sliding state was evaluated. Here, both auxiliary stabilizing members are 0.7 degrees in the direction in which the outer peripheral portion is brought closer to the optical pickup with respect to the disk radial direction, and 0.4 in the clockwise direction toward the disk center with respect to the disk circumferential direction. It was arranged at a position where it was tilted by 0.3 mm and the disk reference surface was pushed 0.3 mm. Here, the disk reference surface is a disk surface on the side of the main stabilizing member 5 when the disk is assumed to be ideally flat, and both auxiliary stabilizing members that determine the pushing amount. The reference position 6 was the center position for tilt angle control.
[0074]
(Example 4)
In Example 4, the configuration shown in FIGS. 6 and 7 is adopted, and both auxiliary stabilizing members 6 have a cylindrical shape with a diameter of 40 mm and a surface facing the optical disc (diameter 120 mm) 1 having a curvature radius of 200 mm. The main stabilizing member 5 has a cylindrical shape with a diameter of 10 mm and a surface facing the optical disc 1 with a radius of curvature of 100 mm. Both auxiliary stabilizing members 6 are arranged so that the center of the disk facing surface is at a position of a radius of 45 mm of the optical disk 1 at both positions of 90 degrees upstream and downstream in the disk rotation direction of the main stabilizing member 5. The auxiliary stabilizing member 6 is adjusted as described above so that the gap amount between the auxiliary stabilizing member 6 and the optical disc 1 is about 1 μm when the optical disc 1 is in a stable state. Yes.
[0075]
Although not shown, the main stabilizing member 5 is provided with a moving mechanism in the disk radial direction and a position control mechanism in the disk rotating shaft direction, and both auxiliary stabilizing members 6 have position control in the disk rotating shaft direction. And a tilt control mechanism in the disk radial direction and the disk circumferential direction. The rotation center in the tilt angle control of the tilt control mechanism of the auxiliary stabilizing member 6 is the center position of the working surface of the auxiliary stabilizing member.
[0076]
Further, the optical disk 1 has a configuration in which the hard coat is omitted from the specification of the first embodiment. As a result, the finished state of the optical disc 1 was slightly warped toward the transparent protective film side.
[0077]
The optical disk 1 is rotated at a disk rotational speed of 15 m / sec, both auxiliary stabilizing members and the main stabilizing member are arranged at predetermined positions to stabilize the disk surface shake, and a laser displacement meter is arranged at the position of the optical pickup 4 Then, the disc surface shake was evaluated. Further, contact between the auxiliary stabilizing member and the recording disk was detected by an AE sensor (not shown) arranged on the auxiliary stabilizing member, and the contact sliding state was evaluated. Here, both auxiliary stabilizing members are tilted by 1 degree in the direction in which the outer peripheral portion is brought closer to the optical pickup with respect to the disk radial direction, and 0.7 degrees in the counterclockwise direction toward the disk center with respect to the disk circumferential direction. In addition, it was arranged at a position where the disc reference surface was pushed in by 0.5 mm. Here, the disk reference surface is a disk surface on the side of the main stabilizing member 5 when the disk is assumed to be ideally flat, and both auxiliary stabilizing members that determine the pushing amount. The reference position 6 was the center position for tilt angle control.
[0078]
(Example 5)
In Example 5, the configuration shown in FIGS. 8 and 9 is adopted, and both auxiliary stabilizing members 6 have a columnar shape with a diameter of 40 mm and a surface facing the optical disk (diameter 120 mm) 1 having a curvature radius of 200 mm. The main stabilizing member 5 has a cylindrical shape with a diameter of 10 mm and a surface facing the optical disc 1 with a radius of curvature of 100 mm. Both auxiliary stabilizing members 6 are arranged so that the center of the disk facing surface is at a position of a radius of 45 mm of the optical disk 1 at both positions at 75 degrees upstream and downstream in the disk rotation direction of the main stabilizing member 5. The auxiliary stabilizing member 6 is adjusted as described above so that the gap amount between the auxiliary stabilizing member 6 and the optical disc 1 is about 1 μm when the optical disc 1 is in a stable state. Yes.
[0079]
Although not shown, the main stabilizing member 5 is provided with a moving mechanism in the disk radial direction and a position control mechanism in the disk rotating shaft direction, and both auxiliary stabilizing members 6 have position control in the disk rotating shaft direction. And a tilt control mechanism in the disk radial direction and the disk circumferential direction. The rotation center in the tilt angle control of the tilt control mechanism of the auxiliary stabilizing member 6 is the center position of the working surface of the auxiliary stabilizing member.
[0080]
The same optical disk 1 as in Example 1 was used.
[0081]
The optical disk 1 is rotated at a disk rotational speed of 15 m / sec, both auxiliary stabilizing members and the main stabilizing member are arranged at predetermined positions to stabilize the disk surface shake, and a laser displacement meter is arranged at the position of the optical pickup 4 Then, the disc surface shake was evaluated. Further, contact between the auxiliary stabilizing member and the recording disk was detected by an AE sensor (not shown) arranged on the auxiliary stabilizing member, and the contact sliding state was evaluated. Here, both auxiliary stabilizing members are 0.7 degrees in the direction in which the outer peripheral portion is brought closer to the optical pickup with respect to the disk radial direction, and 0.4 in the clockwise direction toward the disk center with respect to the disk circumferential direction. It was arranged at a position where it was tilted by 0.3 mm and the disk reference surface was pushed 0.3 mm. Here, the disk reference surface is a disk surface on the side of the main stabilizing member 5 when the disk is assumed to be ideally flat, and both auxiliary stabilizing members that determine the pushing amount. The reference position 6 was the center position for tilt angle control.
[0082]
(Comparative example)
In this comparative example, the configuration shown in FIG. 15 to FIG. 17 is adopted, and both auxiliary stabilizing members 6 have a cylindrical shape with a diameter of 15 mm with a curvature radius of 50 mm on the surface facing the optical disc (diameter 120 mm) 1. The main stabilizing member 5 has a cylindrical shape with a diameter of 10 mm and a surface facing the optical disc 1 with a radius of curvature of 100 mm. Both auxiliary stabilizing members 6 are arranged so that the center of the disk facing surface is at a position of a radius of 45 mm of the optical disk 1 at both positions of 90 degrees upstream and downstream in the disk rotation direction of the main stabilizing member 5. Although not shown, the main stabilizing member 5 is provided with a moving mechanism in the disk radial direction and a position control mechanism in the disk rotating shaft direction, and both auxiliary stabilizing members 6 have position control in the disk rotating shaft direction. A mechanism was provided.
[0083]
The same optical disk 1 as in Example 1 was used.
[0084]
The optical disk 1 is rotated at a disk rotational speed of 15 m / sec, both auxiliary stabilizing members and the main stabilizing member are arranged at predetermined positions to stabilize the disk surface shake, and a laser displacement meter is arranged at the position of the optical pickup 4 Then, the disc surface shake was evaluated. Further, contact between the auxiliary stabilizing member and the recording disk was detected by an AE sensor (not shown) arranged on the auxiliary stabilizing member, and the contact sliding state was evaluated. Both auxiliary stabilizing members were arranged at a position where the disk reference surface was pushed in by 0.5 mm. Here, the disk reference surface is a disk surface on the side of the main stabilizing member 5 when the disk is assumed to be ideally flat, and both auxiliary stabilizing members that determine the pushing amount. The reference position of 6 is the center of the working surface of the auxiliary stabilizing member.
[0085]
In each of the examples and comparative examples, the proximity angle 23 between the auxiliary stabilizing member 6 and the optical disc 1, that is, the point of action of the aerodynamic force and the center of the working surface of the auxiliary stabilizing member 6 by the tilt angle setting. 21, that is, the appropriate point at which the aerodynamic force of the auxiliary stabilizing member 6 is applied is adjusted to substantially the same position, and conditions for maximizing the air stabilizing force for each auxiliary stabilizing member are prepared.
[0086]
Under the above conditions, the disc surface shake state at a radius of 55 mm and the presence or absence of sliding between the auxiliary stabilizing member and the optical disc were measured. As a result, as shown in FIG. It was in a state. However, as shown in FIG. 18, in the comparative example, contact sliding occurred between the auxiliary stabilizing member 6 and the optical disc 1, causing a recording / reproducing error. On the other hand, in all of the present embodiments, the aerodynamic force applied to the optical disk 1 by the auxiliary stabilizing member 6 is applied to establish the surface shake stabilization condition at the installation position of the main stabilizing member 5. It was possible to eliminate the contact sliding by making the auxiliary stabilizing member 6 have a working surface shape.
[0087]
As described above, in the present embodiment and this example, in the configuration of the main stabilizing member and the auxiliary stabilizing member that cause the Bernoulli effect, the aerodynamic acting force by the auxiliary stabilizing member is optimized, and recording is performed. It is possible to provide a recording / reproducing apparatus capable of realizing good disk surface fluctuation reduction at the reproducing position.
[0088]
【The invention's effect】
As described above, according to the recording / reproducing apparatus and the disk cartridge of the present invention, in the configuration of the main stabilizing member and the auxiliary stabilizing member that cause the Bernoulli effect, the contact between the auxiliary stabilizing member and the recording disk. In the absence of sliding, the aerodynamic force of the auxiliary stabilizing member against the recording disk is reliably applied, and the acting force that opposes the main stabilizing member is efficiently generated on the surface of the recording disk on which the main stabilizing member is located. It becomes possible to make it.
[Brief description of the drawings]
FIG. 1 is a plan view of an essential part for explaining Embodiment 1 of a recording / reproducing apparatus of the present invention. FIG. 2 (a) is a cross-sectional view taken along line EE ′ in FIG. 1, and FIG. FIG. 3 is a front view of the first embodiment of FIG. 1. FIG. 4 is a plan view of the main part for explaining the second embodiment of the recording / reproducing apparatus of the present invention. 4A is a cross-sectional view taken along line EE ′ in FIG. 4, and FIG. 6B is a cross-sectional view taken along line FF in FIG. 4. FIG. 6 is a diagram illustrating a main part for explaining Embodiment 3 of the recording / reproducing apparatus of the present invention. FIG. 7A is a cross-sectional view taken along line EE ′ in FIG. 6, and FIG. 8B is a cross-sectional view taken along line FF in FIG. 6. FIG. 8 is a diagram of a third embodiment of the recording / reproducing apparatus of the present invention. FIG. 9A is a cross-sectional view taken along line EE ′ in FIG. 8, and FIG. 9B is a cross-sectional view taken along line FF in FIG. 8. FIG. Form recording / playback FIG. 11 is a sectional view for explaining a disk cartridge according to an embodiment of the present invention. FIG. 12 is a plan view of the disk cartridge according to the embodiment. 11 is a cross-sectional view of the disk cartridge of FIG. 11. FIG. 14 is a cross-sectional view for explaining another example of the disk cartridge according to the embodiment of the invention. FIG. 15 is a schematic diagram of a recording / reproducing apparatus as a comparative example of the invention. FIG. 16 is a cross-sectional view taken along line EE ′ in FIG. 15. FIG. 17 is a front view of the recording / reproducing apparatus in FIG. 15.FIG. 18 is a list of characteristic evaluations in the embodiment of the present invention and the comparative example. Figure [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Optical disk 2 Hub 3 Spindle motor 4 Optical pick-up 5 Main stabilization member 6 Auxiliary stabilization member 21 Center of action surface (action point) of an auxiliary stabilization member
22 Auxiliary Stabilizing Member and Optical Disc Proximity Area 23 Auxiliary Stabilizing Member and Optical Disc Proximity Point 30 Main Body Housing 31 and 35 Disk Cartridge A Line of Optical Pickup Flow Lines B1 and B2 Vertical straight line R Flow line S1, S2, C Area divided in the plane of the recording disk

Claims (8)

可撓性を有する記録ディスクを回転させ、ベルヌーイ効果を利用して少なくとも記録/再生位置付近における前記記録ディスクの面ぶれを抑制する主安定化部材と、前記記録ディスクの主たるベルヌーイ効果の作用面とは逆の面において記録および/または再生を行う記録/再生手段とを備え、
前記記録ディスクの面内を、前記記録/再生手段が走査する動線に近接し、かつ該記録ディスクの中心付近を通る直線Aによって2つの領域に分け、該領域の少なくとも一方に、空気力学的な作用力を発生させて、前記主安定化部材が位置する前記記録ディスク面において前記主安定化部材に対向する作用力を発生させるように補助安定化部材を配設した記録/再生装置であって、
前記補助安定化部材における前記空気力学的な作用力を発生させる作用面の主形状を前記記録ディスクに向かう凸形状とし、かつ前記記録ディスクを安定化した状態において、前記作用面と前記記録ディスクとの最近接時におけるギャップ量が少なくとも1μmになるように前記作用面を調整したことを特徴とする記録/再生装置。
A main stabilizing member that rotates a recording disk having flexibility and uses the Bernoulli effect to suppress surface blurring of the recording disk at least in the vicinity of the recording / reproducing position; and a working surface of the main Bernoulli effect of the recording disk; Comprises recording / reproducing means for recording and / or reproducing on the opposite side,
The surface of the recording disk is divided into two areas by a straight line A that is close to the flow line that the recording / reproducing means scans and passes through the vicinity of the center of the recording disk. A recording / reproducing apparatus in which an auxiliary stabilizing member is disposed so as to generate a large acting force and generate an acting force opposite to the main stabilizing member on the surface of the recording disk on which the main stabilizing member is located. And
In the state where the main shape of the working surface for generating the aerodynamic acting force in the auxiliary stabilizing member is a convex shape toward the recording disk, and the recording disk is stabilized, the working surface, the recording disk, The recording / reproducing apparatus is characterized in that the working surface is adjusted so that the gap amount at the closest point is at least 1 μm.
前記補助安定化部材の作用面の断面積によって前記ギャップ量を調整したことを特徴とする請求項1記載の記録/再生装置。The recording / reproducing apparatus according to claim 1, wherein the gap amount is adjusted by a cross-sectional area of the working surface of the auxiliary stabilizing member. 前記補助安定化部材の作用面の形状によって前記ギャップ量を調整したことを特徴とする請求項1記載の記録/再生装置。2. The recording / reproducing apparatus according to claim 1, wherein the gap amount is adjusted according to a shape of a working surface of the auxiliary stabilizing member. 前記補助安定化部材の作用面の断面積と該作用面の形状によって前記ギャップ量を調整したことを特徴とする請求項1記載の記録/再生装置。2. The recording / reproducing apparatus according to claim 1, wherein the gap amount is adjusted by a cross-sectional area of a working surface of the auxiliary stabilizing member and a shape of the working surface. 前記補助安定化部材の作用面の主形状を球面とし、その曲率半径をパラメータとして前記作用面の形状を調整したことを特徴とする請求項3または4記載の記録/再生装置。5. The recording / reproducing apparatus according to claim 3, wherein the main shape of the working surface of the auxiliary stabilizing member is a spherical surface, and the shape of the working surface is adjusted using the radius of curvature as a parameter. 前記補助安定化部材の前記記録ディスク面に対するディスク回転軸方向の配置位置により前記ギャップ量を調整したことを特徴とする請求項1記載の記録/再生装置。2. The recording / reproducing apparatus according to claim 1, wherein the gap amount is adjusted according to an arrangement position of the auxiliary stabilizing member in a disc rotation axis direction with respect to the recording disc surface. 当該記録/再生装置で使用するディスク仕様範囲、およびディスク回転数の条件範囲を限定した場合において、前記各範囲の中でディスク剛性が最も高く、またディスク回転数が最も低速な条件を基準にして、請求項2〜6いずれか1項記載のギャップ量調整を行うことを特徴とする請求項1記載の記録/再生装置。When the specification range of the disk used in the recording / reproducing apparatus and the condition range of the disk rotation speed are limited, the disk rigidity is the highest and the disk rotation speed is the lowest in each of the ranges. 7. The recording / reproducing apparatus according to claim 1, wherein the gap amount adjustment according to any one of claims 2 to 6 is performed. 内部に収納された可撓性を有する記録ディスクの回転時、ベルヌーイ効果を利用して少なくとも記録/再生位置付近における前記記録ディスクの面ぶれを抑制する主安定化部材と、前記記録ディスクの面内を、前記記録/再生手段が走査する動線に近接し、かつ該記録ディスクの中心付近を通る直線Aによって2つの領域に分け、該領域の少なくとも一方に、空気力学的な作用力を発生させて、前記主安定化部材が位置する前記記録ディスク面において前記主安定化部材に対向する作用力を発生させる補助安定化部材とが作用する構成のディスクカートリッジであって、
前記補助安定化部材における前記空気力学的な作用力を発生させる作用面の主形状を前記記録ディスクに向かう凸形状とし、かつ前記記録ディスクを安定化した状態において、前記作用面と前記記録ディスクとの最近接時におけるギャップ量が少なくとも1μmになるように前記作用面を調整し、該補助安定化部材を固定してディスクカートリッジ内壁に配設したことを特徴とするディスクカートリッジ。
A main stabilizing member that suppresses the wobbling of the recording disk at least in the vicinity of the recording / reproducing position by utilizing the Bernoulli effect during rotation of the flexible recording disk housed therein; and an in-plane of the recording disk Is divided into two areas by a straight line A that is close to the flow line scanned by the recording / reproducing means and passes near the center of the recording disk, and generates an aerodynamic force in at least one of the areas. A disk cartridge having a configuration in which an auxiliary stabilizing member that generates an acting force facing the main stabilizing member acts on the recording disk surface on which the main stabilizing member is located,
In the state where the main shape of the working surface for generating the aerodynamic acting force in the auxiliary stabilizing member is a convex shape toward the recording disk, and the recording disk is stabilized, the working surface, the recording disk, A disk cartridge characterized in that the working surface is adjusted so that the gap amount at the closest point is at least 1 μm, and the auxiliary stabilizing member is fixed and disposed on the inner wall of the disk cartridge.
JP2003200290A 2003-07-23 2003-07-23 Recording/reproducing apparatus, and disk cartridge Pending JP2005044401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003200290A JP2005044401A (en) 2003-07-23 2003-07-23 Recording/reproducing apparatus, and disk cartridge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003200290A JP2005044401A (en) 2003-07-23 2003-07-23 Recording/reproducing apparatus, and disk cartridge

Publications (1)

Publication Number Publication Date
JP2005044401A true JP2005044401A (en) 2005-02-17

Family

ID=34260748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003200290A Pending JP2005044401A (en) 2003-07-23 2003-07-23 Recording/reproducing apparatus, and disk cartridge

Country Status (1)

Country Link
JP (1) JP2005044401A (en)

Similar Documents

Publication Publication Date Title
US20070058500A1 (en) Disk drive system employing effective disk surface stabilization mechanism
US7823172B2 (en) Disk apparatus with curved stabilizing member
JP4021453B2 (en) Thin optical disk recording / reproducing apparatus
JP2006107699A (en) Recording/reproducing apparatus, driving method thereof and disk cartridge
JP2006107698A (en) Recording/reproducing apparatus and driving method therefor
JP4199059B2 (en) Recording / reproducing apparatus and stabilization adjustment method
JP2005044401A (en) Recording/reproducing apparatus, and disk cartridge
JP4123464B2 (en) Optical recording / reproducing apparatus control method and optical recording / reproducing apparatus
JP4223381B2 (en) Recording / reproducing apparatus and disk cartridge
JP4181074B2 (en) Recording / reproducing apparatus and disk cartridge
JP4035318B2 (en) Optical disk device
JP4180058B2 (en) Recording disk drive device and recording disk cartridge
JP4087639B2 (en) Optical disc drive stabilization device and optical disc device
JP2006107704A (en) Recording/reproducing apparatus and disk cartridge
JP2005018957A (en) Recording/reproducing device, and disk cartridge
JP2005050404A (en) Recording and reproducing device and its control adjusting method
JP2005032402A (en) Recording/reproducing apparatus and disk cartridge
JP4108436B2 (en) optical disk
JP4181053B2 (en) Recording / playback device
JP5524545B2 (en) Flexible disk system and method for manufacturing flexible disk
JP4145514B2 (en) Optical disk drive device control method, optical disk drive device, optical recording / reproducing device control method, and optical recording / reproducing device
JP2003022651A (en) Optical disk drive, optical information recorder and optical information reproducing device
JP2006139894A (en) Recording/playing-back device and disk cartridge
JP4166630B2 (en) Optical information recording apparatus and optical information reproducing apparatus
JP4133405B2 (en) Optical disc drive stabilization device and optical information recording / reproducing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060417

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20080410

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A02 Decision of refusal

Effective date: 20080715

Free format text: JAPANESE INTERMEDIATE CODE: A02