JP2005043826A - Sound insulating material - Google Patents

Sound insulating material Download PDF

Info

Publication number
JP2005043826A
JP2005043826A JP2003280351A JP2003280351A JP2005043826A JP 2005043826 A JP2005043826 A JP 2005043826A JP 2003280351 A JP2003280351 A JP 2003280351A JP 2003280351 A JP2003280351 A JP 2003280351A JP 2005043826 A JP2005043826 A JP 2005043826A
Authority
JP
Japan
Prior art keywords
sound
layer
insulation layer
sound insulating
absorption layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003280351A
Other languages
Japanese (ja)
Other versions
JP4079851B2 (en
Inventor
Kazuya Horinouchi
一弥 堀之内
Makoto Seki
真琴 瀬木
Hideyuki Hayashi
英之 林
伸治 ▼たか▲倉
Shinji Takakura
Hiroyuki Sadakuni
浩行 定國
Kiyotaka Ida
清孝 井田
Iwao Nohara
岩男 野原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OSAKA FIBRE INDUSTRY
Daisen Industry Co Ltd
Toyota Auto Body Co Ltd
Sekisui Kasei Co Ltd
Original Assignee
OSAKA FIBRE INDUSTRY
Daisen Industry Co Ltd
Sekisui Plastics Co Ltd
Toyota Auto Body Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OSAKA FIBRE INDUSTRY, Daisen Industry Co Ltd, Sekisui Plastics Co Ltd, Toyota Auto Body Co Ltd filed Critical OSAKA FIBRE INDUSTRY
Priority to JP2003280351A priority Critical patent/JP4079851B2/en
Publication of JP2005043826A publication Critical patent/JP2005043826A/en
Application granted granted Critical
Publication of JP4079851B2 publication Critical patent/JP4079851B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sound insulating material with high sound insulating performance and with high degree of freedom of the shape. <P>SOLUTION: The sound insulating material 1 constituted by laminating a sound insulation layer 2 and a sound absorption layer 3, both of the sound insulation layer 2 and the sound absorption layer 3 consist of a foam shaped body, the sound insulation layer 2 is constituted by mutual welding of foam particles on the whole abbreviated surfaces, the sound absorption layer 3 is constituted by mutual dot welding of the foam particles so as to have a void between the foam particles, void ratio of the sound insulating layer 2 is 0 to 5 % and void ratio of the sound absorption layer 3 is 15 to 40 %. In addition, it is desirable to make thickness of the sound absorption layer thicker than that of the sound insulating layer. In addition, when the thickness of the whole sound insulating material is denoted as T, it is desirable that the thickness of the sound insulating layer is 0.1T to 0.45T and the thickness of the sound absorption layer is 0.9T to 0.55T. In addition, the sound insulating material is used so as to be installed so that the sound insulating layer faces the compartment side and the sound absorption layer faces the vehicle body side as a floor flat material for vehicle, which flattens a floor surface of a vehicle body. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、自動車等の各種車両、土木及び建築の分野、家庭用及び産業用機器において、騒音防止、防音対策に使用する防音材に関する。   The present invention relates to a soundproofing material used for noise prevention and soundproofing measures in various vehicles such as automobiles, civil engineering and construction fields, household and industrial equipment.

従来、入射する音を吸収することで防音効果を得る何種類かの吸音材が知られている。
例えば、スチレン改質ポリオレフィン系樹脂発泡体の小片を発泡させて、小片間に空隙が残るように融着した材料が知られており、この材料を吸音材として使用することがある。
また、樹脂発泡粒子からなる多孔質成形体で、多数の樹脂発泡粒子が隣接する粒子表面の一部で面接合している材料が知られており、この材料を吸音材として使用することができる。
また、第1の通気性吸音層、非通気性遮音層、第2の通気性吸音層を順に積層した材料からなる防音材が知られている。
特許第2786393号公報 特許第3268094号公報 特開2001−347899号公報
Conventionally, several types of sound absorbing materials that obtain a soundproofing effect by absorbing incident sound are known.
For example, there is known a material obtained by foaming small pieces of styrene-modified polyolefin resin foam so that voids remain between the small pieces, and this material may be used as a sound absorbing material.
In addition, a porous molded body made of resin foam particles, in which a large number of resin foam particles are surface-bonded at a part of the adjacent particle surface, can be used as a sound absorbing material. .
In addition, a soundproof material made of a material in which a first breathable sound absorbing layer, a non-breathable sound insulating layer, and a second breathable sound absorbing layer are sequentially laminated is known.
Japanese Patent No. 2786393 Japanese Patent No. 3268094 JP 2001-347899 A

しかしながら、従来知られた吸音材で、上述したスチレン改質ポリオレフィン系樹脂発泡体の小片を発泡させた材料や、上記樹脂発泡粒子からなる多孔質成形体はポーラスで通気性があるため、吸音しきれなかった音が透過して、音漏れが生じるおそれがあった。
また、特許文献3にかかる第1、第2の通気性吸音層の間に非通気性遮音層を挟んだ構成にかかる防音材は、構成が複雑である。そのため、単純形状の防音材に適用することができても、複雑形状の防音材として使用することが困難となるおそれがあった。更に、特許文献3にかかる防音材は、ウレタン材、天然繊維材、合成繊維材、フェルト材を通気性吸音層として使用した上で、三層構成を採用しているため、所定の形状に成形するのは容易でないと考えられる。
However, a material obtained by foaming a small piece of the above-mentioned styrene-modified polyolefin resin foam or a porous molded body made of the above resin foam particles is porous and breathable, so that it absorbs sound. There was a risk that sound that could not be transmitted was transmitted and sound leakage occurred.
Further, the soundproofing material according to the configuration in which the non-breathable sound-insulating layer is sandwiched between the first and second breathable sound-absorbing layers according to Patent Document 3 has a complicated structure. Therefore, even if it can be applied to a simple-shaped soundproofing material, it may be difficult to use it as a complex-shaped soundproofing material. Furthermore, the soundproofing material according to Patent Document 3 uses a urethane material, natural fiber material, synthetic fiber material, and felt material as a breathable sound absorbing layer and adopts a three-layer structure, so it is molded into a predetermined shape. It is not easy to do.

本発明は、かかる従来の問題点に鑑みてなされたもので、防音性能が高く、かつ、形状の自由度が高い防音材を提供しようとするものである。   The present invention has been made in view of such conventional problems, and is intended to provide a soundproofing material having high soundproofing performance and high degree of freedom in shape.

本発明は、遮音層と吸音層とを積層してなる防音材であって、
上記遮音層及び上記吸音層は共に発泡成形体からなり、
上記遮音層は、発泡粒子が相互に略全面で融着してなり、
上記吸音層は、発泡粒子間に空隙を有するように発泡粒子が相互に点融着してなり、
上記遮音層の空隙率は0〜5%、上記吸音層の空隙率は15〜40%であることを特徴とする防音材にある(請求項1)。
The present invention is a soundproof material formed by laminating a sound insulation layer and a sound absorption layer,
Both the sound insulation layer and the sound absorption layer are formed of a foam molded article,
The sound insulating layer is formed by fusing the expanded particles to each other on substantially the entire surface,
The sound absorbing layer is formed by fusing the foam particles to each other so as to have voids between the foam particles,
The sound insulation layer has a porosity of 0 to 5%, and the sound absorption layer has a porosity of 15 to 40% (claim 1).

本発明にかかる防音材は積層した遮音層と吸音層とからなる。
遮音層の空隙率は非常に低く、殆どまたは全く通気性がない。そのため、遮音層に入射した音は該遮音層を透過することが殆どなく、ここにおいて反射される。
一方、吸音層は、発泡粒子間に空隙を有し、該空隙は細い通気路を介して相互に連通している。ここで「細い」通気路と表現した意図は、通気路の幅が粒子間空隙の径より小さいことを意味しており、模式図を後述する図3に記載した。
The soundproofing material according to the present invention comprises a laminated sound insulating layer and sound absorbing layer.
The porosity of the sound insulation layer is very low and has little or no breathability. Therefore, the sound incident on the sound insulation layer hardly reflects through the sound insulation layer and is reflected here.
On the other hand, the sound absorbing layer has voids between the foam particles, and the voids communicate with each other through a narrow air passage. The intention expressed here as “thin” air passage means that the width of the air passage is smaller than the diameter of the interparticle void, and a schematic diagram is shown in FIG. 3 described later.

後述する図4に示すごとく、消音器の一種として膨張型消音器なるものが知られている。膨張型消音器は、管の太さを、音の進行方向に沿って、細い→太い→細い・・・という具合に部分的に変更した構造を有する。
膨張型消音器において、音の平面波が管の軸方向に進行すると、管の断面積が大きくなるところで音響インピーダンスが変化する。そのため、音の一部は反射、音の一部は進行する。その後、管の断面積が小さくなるところで、進行してきた音の一部が反射される。この反射音と進行する音とが干渉しあって音のエネルギーが減衰する。
本発明にかかる吸音層は、多くの発泡粒子に囲まれて形成された大きな粒子間空隙と、該空隙を相互に連通させる細い通気路とを有し、従って吸音層の内部に上述した膨張型消音器が多数存在する。
As shown in FIG. 4 to be described later, an expansion-type silencer is known as a kind of silencer. The expansion-type silencer has a structure in which the thickness of the tube is partially changed in the order of thin → thick → thin ... along the sound traveling direction.
In the expansion silencer, when a plane wave of sound travels in the axial direction of the tube, the acoustic impedance changes where the cross-sectional area of the tube increases. Therefore, part of the sound is reflected and part of the sound proceeds. Thereafter, when the cross-sectional area of the tube becomes small, a part of the sound that has traveled is reflected. The reflected sound and the traveling sound interfere with each other to attenuate sound energy.
The sound absorbing layer according to the present invention has a large interparticle void formed by being surrounded by many foamed particles and a thin air passage that allows the void to communicate with each other. There are many silencers.

本発明にかかる防音材は、防音材に入射した音が吸音層で吸音され、吸音層で吸音できなかった音は遮音層に入射するが、遮音層において音は吸音層側に反射され、再び吸音層に入射させられる。再度入射した音は更に吸音層で吸音される。このように音は吸音層を何度も行き来させられるため、音のエネルギーの大部分は吸音層で吸収されてしまう。
よって、本発明にかかる防音材の防音効果は非常に高くなる。
更に、本発明にかかる防音材は、発泡粒子を発泡させた発泡成形体からなるため、成形自由度が高く、また成形後の加工も容易である。従って、複雑な形状の防音材を容易に作製することができる。
In the soundproofing material according to the present invention, the sound incident on the soundproofing material is absorbed by the sound absorbing layer, and the sound that could not be absorbed by the sound absorbing layer is incident on the sound insulating layer. It is made incident on the sound absorbing layer. The sound incident again is further absorbed by the sound absorbing layer. In this way, since sound can be moved back and forth through the sound absorbing layer, most of the energy of the sound is absorbed by the sound absorbing layer.
Therefore, the soundproofing effect of the soundproofing material according to the present invention is very high.
Furthermore, since the soundproofing material according to the present invention is composed of a foamed molded body obtained by foaming foamed particles, the degree of freedom in molding is high and processing after molding is easy. Therefore, a soundproof material having a complicated shape can be easily produced.

以上、本発明によれば、防音性能が高く、かつ、形状の自由度が高い防音材を提供することができる。   As described above, according to the present invention, it is possible to provide a soundproofing material having high soundproofing performance and high degree of freedom in shape.

本発明の防音材は、遮音層と吸音層を一体成形して作製することができる。または、別々に遮音層と吸音層とを成形し、その後両者を接着して作製することができる。
一体成形する場合の例について説明する。
まず成形金型の成形空間に遮音層用の未発泡の発泡粒子を入れ、水蒸気等を吹き込み発泡させる。発泡終了後、成形空間を拡大し、吸音層用の未発泡の発泡粒子を導入する。そして水蒸気等を吹き込み発泡させる。吸音層は、発泡する際に遮音層と融着し、一体化した状態で成形される。
別々に成形する場合は、別々の金型でそれぞれ遮音層と吸音層を成形した後、例えば接着剤を用いて接着したり、熱融着で接着する等して両者を一体化、本発明にかかる防音材を得ることができる。
The soundproofing material of the present invention can be produced by integrally molding a sound insulating layer and a sound absorbing layer. Alternatively, the sound insulation layer and the sound absorption layer can be separately formed, and then both can be bonded together.
An example in the case of integral molding will be described.
First, unfoamed foam particles for the sound insulation layer are placed in the molding space of the molding die, and steam or the like is blown to foam. After completion of foaming, the molding space is expanded and unfoamed foam particles for the sound absorbing layer are introduced. Then, steam or the like is blown into the foam. The sound absorbing layer is fused and integrated with the sound insulating layer when foaming.
In the case of molding separately, after forming the sound insulation layer and the sound absorption layer with separate molds, respectively, for example, by using an adhesive or by heat fusion, the both are integrated into the present invention. Such a soundproof material can be obtained.

上記遮音層は、発泡粒子が相互に略全面で融着してなる。概略を後述する図2に記載した。遮音層の空隙率は0〜5%であり、0%は通気性がなく、音が通らないため、理想的である。空隙率が5%を越えると、遮音層を透過する音が多くなり、防音効果が得難くなるおそれがある。   The sound insulation layer is formed by fusing the foamed particles to each other on substantially the entire surface. The outline is shown in FIG. The porosity of the sound insulation layer is 0 to 5%, and 0% is ideal because it has no air permeability and does not allow sound to pass. If the porosity exceeds 5%, the sound transmitted through the sound insulation layer increases, and it may be difficult to obtain a soundproofing effect.

上記吸音層は、概略を後述する図3に記載したように、粒子間空隙と、該粒子間空隙を相互に連通させる細い通気路とを有する。
この構造は発泡粒子が点融着することで形成される。点融着は融着する領域の面積が狭く、点状に近い状態にあることを示している。即ち、発泡粒子の表面全体が、隣接する他の発泡粒子と融着するのではなく、部分的に融着することで、発泡粒子間に大きな空隙が生じる。
そして、この粒子間空隙と通気路は、前述したごとく膨張型消音器として機能する。通気路から入った音が粒子間空隙に入る際、また粒子間空隙から再び通気路に入る際に音響インピーダンスの変化から、音の一部が反射されて、進行する音と干渉しあって、音が減衰する。
As described in FIG. 3, the outline of which will be described later, the sound absorbing layer has an interparticle void and a narrow air passage that allows the interparticle void to communicate with each other.
This structure is formed by the point fusion of the expanded particles. Point fusion indicates that the area of the region to be fused is narrow and is close to a point. That is, the entire surface of the expanded particles is not fused with other adjacent expanded particles, but is partially fused, thereby generating a large gap between the expanded particles.
The interparticle void and the air passage function as an expansion silencer as described above. When sound entering from the air passage enters the interparticle gap, and when entering the air passage again from the interparticle gap, a part of the sound is reflected from the change in acoustic impedance, interfering with the traveling sound, Sound is attenuated.

吸音層の空隙率が15%未満である場合は、十分な吸音効果が得難くなるおそれがある。空隙率が40%を越えると、吸音層が崩壊しやすくなり、荷重がかかることで形が崩れたり、発泡粒子が脱落する等、吸音層の圧縮強度が低く、実用に耐えなくなるおそれがある。   When the porosity of the sound absorbing layer is less than 15%, it may be difficult to obtain a sufficient sound absorbing effect. If the porosity exceeds 40%, the sound absorbing layer is likely to be collapsed, and the compression layer of the sound absorbing layer has a low compressive strength due to a load being applied and the foamed particles fall off.

また、本発明にかかる遮音層及び吸音層は熱可塑性樹脂からなる発泡成形体から構成することが好ましい。
具体的には、ポリスチレン系樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリオレフィン系樹脂、アクリルニトリル・アクリルゴム・スチレン系樹脂等からなる発泡成形体で構成することが好ましい。あるいは、これらの樹脂を2種類以上混合した混合樹脂からなる発泡成形体で構成することが、好ましい。この中でもポリスチレン樹脂とポリエチレン樹脂との混合樹脂からなる発泡成形体は、強度成形性、融着性の観点から特に好ましい。
Moreover, it is preferable that the sound insulating layer and the sound absorbing layer according to the present invention are formed of a foam molded body made of a thermoplastic resin.
Specifically, it is preferable to form a foam molded body made of polystyrene resin, polyethylene resin, polypropylene resin, polyolefin resin, acrylonitrile / acrylic rubber / styrene resin, or the like. Or it is preferable to comprise with the foaming molding which consists of mixed resin which mixed 2 or more types of these resin. Among these, a foamed molded article made of a mixed resin of a polystyrene resin and a polyethylene resin is particularly preferable from the viewpoints of strength moldability and fusibility.

また、上記遮音層より上記吸音層の厚みを厚くすることが好ましい(請求項2)。
吸音層は音を吸収するため、厚ければ厚いほど好ましい。遮音層は吸音層から入射する音を反射し、音を通さないため、ある程度の厚みを備えていれば本発明の効果を得ることができる。従って、遮音層よりも吸音層を厚くすることが好ましい。
The thickness of the sound absorbing layer is preferably thicker than that of the sound insulating layer.
Since the sound absorbing layer absorbs sound, the thicker the better. Since the sound insulating layer reflects the sound incident from the sound absorbing layer and does not pass the sound, the effect of the present invention can be obtained if it has a certain thickness. Therefore, it is preferable to make the sound absorbing layer thicker than the sound insulating layer.

そして、上記防音材の全体の厚みをTとすると、上記遮音層の厚みは0.1T〜0.45T、上記吸音層の厚みは0.9T〜0.55Tであることが好ましい(請求項3)。
遮音層の厚みが0.1T未満である場合は、遮音層の厚みが薄すぎて、吸音層で吸収しきれなかった音が遮音層を透過して、防音性能が低下するおそれがある。0.45Tより大である場合は、吸音層の厚みが薄くなりすぎて、十分な吸音効果を得ることが困難となり、防音性能が低下するおそれがある。
When the total thickness of the soundproofing material is T, the thickness of the sound insulation layer is preferably 0.1T to 0.45T, and the thickness of the sound absorption layer is preferably 0.9T to 0.55T. ).
When the thickness of the sound insulation layer is less than 0.1 T, the sound insulation layer is too thin, and the sound that cannot be absorbed by the sound absorption layer is transmitted through the sound insulation layer, which may reduce the sound insulation performance. When it is larger than 0.45T, the thickness of the sound absorbing layer becomes too thin, and it becomes difficult to obtain a sufficient sound absorbing effect, and the soundproof performance may be lowered.

また、上記防音材は車体フロア面をフラット化する車両用フロアフラット材として、上記遮音層を車室側、上記吸音層を車体側に向けて設置して用いることが好ましい(請求項4)。   Further, the soundproofing material is preferably used as a vehicle floor flat material for flattening the vehicle body floor surface with the sound insulation layer facing the vehicle compartment and the sound absorbing layer facing the vehicle body.

ここに車両用フロアフラット材とは、後述する図11に示すごとく、車室のフロアにおいて車体の車室側の表面の凹凸をならして、平らなフロア表面を形成する部材である。
従来、車両用フロアフラット材はウレタン系材料で作製することが多かったが、ウレタン系材料は重く、軟らかすぎて踏み心地がよくない。更に、ティビア性能が悪く、衝突安全性に優れているとはいえなかった。
これらの問題を踏まえて、近年は発泡成形体から作製した車両用フロアフラット材が増えてきた。しかしながら、発泡成形体は上記問題を解決することができるが、ウレタン材と比較して防音性に劣るという問題があった。
Here, the vehicle floor flat material is a member which forms a flat floor surface by leveling the surface of the vehicle body on the vehicle compartment side on the vehicle floor as shown in FIG.
Conventionally, a vehicle floor flat material is often made of a urethane-based material, but the urethane-based material is heavy and too soft to be comfortable to step on. Furthermore, the tibia performance was poor and it could not be said that the collision safety was excellent.
In view of these problems, in recent years, the number of vehicle floor flat materials made from foam molded articles has increased. However, the foamed molded product can solve the above-mentioned problem, but has a problem that it is inferior in soundproofing property as compared with the urethane material.

本発明にかかる防音材は、遮音層と吸音層を有する発泡成形体からなる材料である。
そのため、本発明にかかる防音材を車両用フロアフラット材として用いた場合、従来知られた発泡成形体からなるものと比較して、ウレタン系材料のような優れた防音性能を持つと共に、発泡成形体が元来備えている軽量で踏み心地がよく、衝突安全性に優れるという特徴を持つ。
また、上記遮音層を車室側、上記吸音層を車体側に向けて使用するのは、一般的に騒音が車体側から入るためである。これにより、車体側から入る音を吸音層で吸収し、吸収できなかった音を遮音層で遮ることができ、車内に音が入ることを防止することができる。
The soundproofing material according to the present invention is a material made of a foam molded body having a sound insulating layer and a sound absorbing layer.
Therefore, when the soundproofing material according to the present invention is used as a vehicle floor flat material, it has excellent soundproofing performance such as a urethane-based material, compared with a conventionally known foamed molded product, and foam molding. The body is naturally light and comfortable to walk on, and has excellent collision safety.
The reason why the sound insulation layer is used with the vehicle interior side and the sound absorption layer facing the vehicle body side is that noise generally enters from the vehicle body side. Thereby, the sound entering from the vehicle body side can be absorbed by the sound absorbing layer, and the sound that could not be absorbed can be blocked by the sound insulating layer, so that the sound can be prevented from entering the vehicle.

更に、本発明にかかる防音材は、空隙率の異なる複数の発泡成形体を積層して構成されている。発泡成形体は原料となる発泡ビーズ等を金型に導入して発泡成形して作製するため、形状の自由度が非常に高く、複雑な形状であっても成形困難となることはない。
本発明にかかる防音材は、従来技術で示したような三層構成で天然繊維材や合成繊維材、フェルト材等を積層する防音材と比較して、高い成形自由度を備えている。
車両用フロアフラット材は、車室側に面する車体フロアの凹凸を均す部材であるため、下面の形状が複雑であり、この点から本発明にかかる防音材は車両用フロアフラット材に好適である。
Furthermore, the soundproofing material according to the present invention is formed by laminating a plurality of foamed molded products having different porosity. Since the foam molded body is produced by introducing foam beads or the like as a raw material into a mold and foam molding, the degree of freedom of shape is very high, and even a complicated shape does not become difficult to mold.
The soundproofing material according to the present invention has a higher degree of molding freedom than a soundproofing material in which natural fiber materials, synthetic fiber materials, felt materials and the like are laminated in a three-layer structure as shown in the prior art.
Since the vehicle floor flat material is a member that smoothes the unevenness of the vehicle body floor facing the passenger compartment side, the shape of the lower surface is complicated. From this point, the soundproof material according to the present invention is suitable for the vehicle floor flat material. It is.

また、上記防音材は周波数1〜6.3kHzの音を十分に吸収できることが好ましく、例えば、上記各周波数での音の透過損失が30dB以上であることが好ましい。
人間の可聴音域の範囲において、特に周波数1〜6.3kHzの音は自動車等の各種車両において発生しやすい音である。従って、これらの音を遮ることが可能となれば、より車内の快適性を高めることができる。
本発明における防音材は、上記範囲にかかる周波数の音の透過損失が30dB以上であるため、車内の快適性に大きな効力を発揮する。
Moreover, it is preferable that the said soundproofing material can fully absorb the sound of frequency 1-6.3 kHz, for example, it is preferable that the transmission loss of the sound in said each frequency is 30 dB or more.
In the range of human audible sound range, especially the sound with a frequency of 1 to 6.3 kHz is likely to be generated in various vehicles such as automobiles. Therefore, if these sounds can be blocked, the comfort in the vehicle can be further enhanced.
The soundproofing material in the present invention exhibits a great effect on the comfort in the vehicle because the transmission loss of sound having a frequency in the above range is 30 dB or more.

また、上記遮音層の厚みは15〜25mmであることが好ましい(請求項5)。
これにより、防音性能に優れ、軽量な防音材を得ることができる。
遮音層の厚みが15mm未満である場合は、車両用フロアフラット材として必要な圧縮強度を確保できないおそれがある。また、遮音層が25mmを越えた場合は、吸音層の厚みが相対的に薄くなって十分な吸音効果が得られず、防音性能が低下するおそれがある。
The thickness of the sound insulation layer is preferably 15 to 25 mm.
Thereby, it is excellent in soundproofing performance and can obtain a lightweight soundproofing material.
When the thickness of the sound insulation layer is less than 15 mm, there is a possibility that the compressive strength necessary as a vehicle floor flat material cannot be secured. On the other hand, when the sound insulation layer exceeds 25 mm, the sound absorption layer is relatively thin and a sufficient sound absorption effect cannot be obtained, and the sound insulation performance may be deteriorated.

また、上記遮音層または吸音層はポリプロピレン樹脂、ポリエチレン樹脂、ポリスチレン樹脂のいずれかまたはこれらの樹脂を2種類以上混合した混合樹脂からなることが好ましい(請求項6)。
これらの樹脂は、軽量かつ適度に硬くて踏み心地性に優れ、衝突安全性(ティビア性能)に優れているため、車両用のフロアフラット材として用いる防音材として適切である。
The sound insulating layer or sound absorbing layer is preferably made of polypropylene resin, polyethylene resin, polystyrene resin or a mixed resin obtained by mixing two or more of these resins.
Since these resins are light and moderately hard, excellent in stepping comfort, and excellent in collision safety (tibia performance), they are suitable as soundproofing materials used as floor flat materials for vehicles.

(実施例1)
本例にかかる防音材1は、図1に示すごとく、遮音層2と吸音層3とを積層してなる。
上記遮音層2及び上記吸音層3は共に発泡成形体からなり、図2に示すごとく、上記遮音層2は、発泡粒子21が相互に略全面で融着してなる。
図3に示すごとく、上記吸音層3は、複数の発泡粒子31間に形成された粒子間空隙33と、該粒子間空隙33を相互に連通させる細い通気路32とを有すると共に発泡粒子31が相互に点融着してなる。また、上記遮音層2の空隙率は0〜5%、上記吸音層3の空隙率は15〜40%である。
(Example 1)
As shown in FIG. 1, the soundproofing material 1 according to this example is formed by laminating a sound insulating layer 2 and a sound absorbing layer 3.
Both the sound insulating layer 2 and the sound absorbing layer 3 are formed of a foamed molded body, and as shown in FIG. 2, the sound insulating layer 2 is formed by fusing the foam particles 21 to each other on substantially the entire surface.
As shown in FIG. 3, the sound absorbing layer 3 includes an interparticle gap 33 formed between a plurality of foamed particles 31 and a narrow air passage 32 that allows the interparticle gap 33 to communicate with each other. It is a point fusion to each other. The sound insulation layer 2 has a porosity of 0 to 5%, and the sound absorption layer 3 has a porosity of 15 to 40%.

以下詳細に説明する。
この防音材1は、図1に示すごとく、吸音層3と遮音層2とが積層して構成される。
本例の遮音層2は厚さ15mm、吸音層3は35mmで、騒音が吸音層3側から入射するようにして使用する。
遮音層2は、ポリプロピレンからなる発泡ビーズを金型に導入して水蒸気を吹き込んで発泡することにより得た、図2に示すごとく、多数の発泡粒子21が融着した発泡成形体からなる。各発泡粒子21は相互に表面210の略全体で融着し、最密充填構造を呈する。各発泡粒子21は断面が略六角形となって密に詰まり、各発泡粒子21間は隙間がないか僅かの隙間しかない。
This will be described in detail below.
As shown in FIG. 1, the soundproofing material 1 is configured by laminating a sound absorbing layer 3 and a sound insulating layer 2.
The sound insulation layer 2 of this example is 15 mm thick, the sound absorption layer 3 is 35 mm, and is used so that noise enters from the sound absorption layer 3 side.
The sound insulating layer 2 is made of a foamed molded product obtained by introducing foamed beads made of polypropylene into a mold and blowing water vapor to foam, as shown in FIG. The respective expanded particles 21 are fused to each other over substantially the entire surface 210 and exhibit a close-packed structure. Each expanded particle 21 has a substantially hexagonal cross section and is closely packed, and there is no gap between the expanded particles 21 or only a slight gap.

吸音層3は、ポリプロピレンからなる発泡ビーズを金型に導入して水蒸気を吹き込んで発泡させて成形する。図3に示すように、発泡粒子31間は表面310の一部で融着し、粒子相互の間隔が大きく空いている。主として複数の発泡粒子で囲まれた粒子間空隙33と該粒子間空隙33を相互に連通させる通気路32とを有する。
粒子間空隙33と通気路32とが吸音層3における吸音効果を担う。
The sound absorbing layer 3 is molded by introducing foamed beads made of polypropylene into a mold and blowing water vapor into the mold. As shown in FIG. 3, the foam particles 31 are fused at a part of the surface 310, and the distance between the particles is large. It has an interparticle void 33 mainly surrounded by a plurality of foamed particles and an air passage 32 that allows the interparticle void 33 to communicate with each other.
The interparticle voids 33 and the air passages 32 play a sound absorbing effect in the sound absorbing layer 3.

図3の吸音層3にかかる粒子間空隙33と通気路32とは、図4に示すごとき、膨張型消音器4と同様のメカニズムによって吸音を実現する。
即ち、図4に示すごとく、膨張型消音器4は細管42と該細管42より大きな室43とが交互に連結されてなる。膨張型消音器4において、音源41から発せられる音が矢線Oに示すように細管42内を伝わる場合を考える。
細管42から室43に入るところで膨張型消音器4は断面積が大きくなる。細管42内を音の平面波が該細管42の軸方向に沿って矢線Oに示すごとく進行すると、断面積が大きくなるところで音響インピーダンスが変化、音の一部は反射、一部は進行する。
更に音が進行すると、室43から細管42に切り替わるところで、断面積が小さくなるため、進行してきた音の一部がここで反射する。この反射音と進行する音とが干渉しあって減衰する。
The interparticle voids 33 and the air passages 32 applied to the sound absorbing layer 3 in FIG. 3 realize sound absorption by the same mechanism as that of the expansion silencer 4 as shown in FIG.
That is, as shown in FIG. 4, the expansion silencer 4 is configured by alternately connecting narrow tubes 42 and chambers 43 larger than the narrow tubes 42. Consider a case where the sound emitted from the sound source 41 is transmitted through the narrow tube 42 as indicated by the arrow O in the expansion silencer 4.
When the expansion silencer 4 enters the chamber 43 from the narrow tube 42, the cross-sectional area becomes large. When a plane wave of sound travels in the narrow tube 42 as indicated by the arrow O along the axial direction of the narrow tube 42, the acoustic impedance changes, a part of the sound is reflected, and a part of the sound proceeds.
When the sound further advances, the cross-sectional area becomes small at the point where the chamber 43 is switched to the narrow tube 42, so that a part of the sound that has progressed is reflected here. The reflected sound and the traveling sound interfere with each other and attenuate.

つまり、音源41から発した音は矢線Oに沿って細管42を経由し室43に入る。細管42から室43で膨張型消音器4の断面積が大きく変化するため、ここで音が減衰する。
また、細管42と室43とを交互に多数連結させることで、音の経路長を長くして、音が減衰する場所を増やして、吸音性能を高めることができる。
That is, the sound emitted from the sound source 41 enters the chamber 43 along the arrow O via the thin tube 42. Since the cross-sectional area of the expansion silencer 4 varies greatly from the narrow tube 42 to the chamber 43, the sound is attenuated here.
Further, by connecting a large number of the thin tubes 42 and the chambers 43 alternately, the sound path length can be increased, the number of places where the sound is attenuated can be increased, and the sound absorption performance can be enhanced.

本例の吸音層3は粒子間空隙33と通気路32とが膨張型消音器4と類似の構造を呈し、この粒子間空隙33と通気路32を音が通過する時に膨張型消音器4と同じ原理で音が減衰する。
図3に矢線Oで音の進行の一例を記載した。このように通気路32から粒子間空隙33に移る時は、上記膨張型吸音器4と同様に断面積が大きく変化するため、ここで音が反射して、音の減衰が発生し、吸音効果を得るのである。
In the sound absorbing layer 3 of this example, the interparticle gap 33 and the air passage 32 have a structure similar to that of the expansion silencer 4, and when the sound passes through the interparticle gap 33 and the air passage 32, the expansion silencer 4 The sound is attenuated by the same principle.
FIG. 3 shows an example of the progress of the sound with the arrow O. In this way, when moving from the air passage 32 to the interparticle gap 33, the cross-sectional area changes greatly in the same manner as in the expansion type sound absorber 4, so that sound is reflected here, sound attenuation occurs, and the sound absorption effect. To get.

また、上記吸音層3における粒子間空隙33と通気路32が膨張型消音器4と同様の機能を備えていることは、以下に示す測定から分かる。
即ち、図5に示すごとく、一つの室43と、該室43の両端に接続された細管42とからなる単純構造の膨張型消音器49について考える。
細管42は全て径が一様な円筒で断面積がS1である。室43は径が一様な円筒で断面積がS2、音が通過する方向は矢線Oで示され、該矢線Oに沿った室43の長さがLである。
この膨張型消音器49に図面左方から音が入射する。
ここで、音の透過損失TLは、TL(dB)=10log{1+1/4(m−1/m)2sin2kL}(m=S2/S1、k=2πf/c、fは音の周波数、cは音の速度)となる。
そして縦軸に音の透過損失を、横軸に音の周波数(ただし単位をc/4Lとする)を取って線図となしたものを図6に記載する。
このように膨張型消音器49における音の透過損失TLは、周期的にサインカーブの山を繰り返す特性を呈する。
Moreover, it can be seen from the following measurements that the interparticle voids 33 and the air passages 32 in the sound absorbing layer 3 have the same functions as the expansion silencer 4.
That is, as shown in FIG. 5, consider an inflatable silencer 49 having a simple structure comprising one chamber 43 and thin tubes 42 connected to both ends of the chamber 43.
The thin tubes 42 are all cylinders having a uniform diameter and a cross-sectional area of S1. The chamber 43 is a cylinder having a uniform diameter, the cross-sectional area is S2, the direction in which sound passes is indicated by an arrow O, and the length of the chamber 43 along the arrow O is L.
Sound enters the expansion silencer 49 from the left side of the drawing.
Here, sound transmission loss TL is TL (dB) = 10 log {1 + 1/4 (m−1 / m) 2sin2kL} (m = S2 / S1, k = 2πf / c, f is sound frequency, and c is Sound speed).
FIG. 6 shows a diagram in which the vertical axis represents sound transmission loss and the horizontal axis represents sound frequency (where the unit is c / 4L).
Thus, the sound transmission loss TL in the expansion silencer 49 exhibits a characteristic of periodically repeating a sine curve peak.

ついで、遮音層2のみ(50ミリ厚さ)、吸音層3のみ(50ミリ厚さ)、両者を合わせた本例にかかる防音材1(遮音層が20ミリ、吸音層が30ミリ、あわせて50ミリ厚さ)について、それぞれ吸音率をJIS A 1405「管内法による建築材料の垂直入射吸音率の測定方法」で規定された垂直入射吸音率にて測定した。測定結果から図7に示すごとき線図を得た。
図7より明らかであるが、吸音層3の吸音率は1kHz以上の周波数に対し、図6と似た山なりの特性を示しており、吸音層3における吸音のメカニズムが膨張型消音器49と同様であることが分かった。
また、遮音層2は粒子間空隙33と通気路32がないため、吸音率はいずれの周波数においても一様に低かった。そのため、本例の防音材1の吸音率は、吸音層3の特性から来る吸音率に遮音層2の一様な低い吸音率を足した状態となることが、図7より分かった。
Next, only the sound insulating layer 2 (thickness of 50 mm), only the sound absorbing layer 3 (thickness of 50 mm), and the soundproofing material 1 according to this example (20 mm for the sound insulating layer and 30 mm for the sound absorbing layer) 50 mm thickness), the sound absorption coefficient was measured at a normal incident sound absorption coefficient defined in JIS A 1405 “Measurement method of normal incident sound absorption coefficient of building material by pipe method”. A diagram as shown in FIG. 7 was obtained from the measurement results.
As is clear from FIG. 7, the sound absorption rate of the sound absorbing layer 3 shows a mountain-like characteristic similar to FIG. 6 for frequencies of 1 kHz or higher. The sound absorbing mechanism in the sound absorbing layer 3 is the same as that of the expansion silencer 49. It turns out that it is the same.
Further, since the sound insulation layer 2 does not have the interparticle voids 33 and the air passages 32, the sound absorption coefficient was uniformly low at any frequency. Therefore, it was found from FIG. 7 that the sound absorption coefficient of the soundproofing material 1 of this example is in a state where the sound absorption coefficient resulting from the characteristics of the sound absorption layer 3 is added to the uniform low sound absorption coefficient of the sound insulation layer 2.

以下、本例にかかる防音材1の作用効果について説明する。
本例にかかる防音材1は、積層した発泡成形体の遮音層2と吸音層3とからなる。
遮音層2の空隙率は非常に低く、殆どまたは全く通気性がない。そのため、遮音層2に入射した音は該遮音層2を透過することが殆どなく、ここから反射される。
一方、吸音層3は、粒子間空隙33と該粒子間空隙33とを相互に連通させる細い通気路32とを有する。従って、吸音層3の内部に上述した膨張型消音器4、49と同様の構造が多数存在する。
Hereinafter, the effect of the soundproofing material 1 concerning this example is demonstrated.
The soundproofing material 1 according to this example is composed of a sound insulation layer 2 and a sound absorption layer 3 of a laminated foam molded body.
The porosity of the sound insulation layer 2 is very low and has little or no breathability. For this reason, the sound incident on the sound insulation layer 2 hardly passes through the sound insulation layer 2 and is reflected from here.
On the other hand, the sound absorbing layer 3 has an interparticle void 33 and a thin air passage 32 that allows the interparticle void 33 to communicate with each other. Therefore, many structures similar to the expansion silencers 4 and 49 described above exist in the sound absorbing layer 3.

従って、本例にかかる防音材1は、防音材1に入射した音を吸音層3で吸音し、次いで吸音層3で吸音できなかった音が遮音層2に入射するが、遮音層2において音は反射され、再び吸音層3に入射させられる。再度入射した音は吸音層3で更に吸音される。よって、本例にかかる防音材1の防音効果は非常に高くなる。
更に、本例にかかる防音材1は、発泡粒子を発泡させた発泡成形体からなるため、形状の自由度が高く、加工も容易である。
以上、本例によれば、防音性能が高く、形状の自由度が高い防音材を提供することができる。
Therefore, in the soundproofing material 1 according to this example, the sound incident on the soundproofing material 1 is absorbed by the sound absorbing layer 3, and then the sound that could not be absorbed by the sound absorbing layer 3 enters the sound insulating layer 2. Is reflected and is incident on the sound absorbing layer 3 again. The sound incident again is further absorbed by the sound absorbing layer 3. Therefore, the soundproofing effect of the soundproofing material 1 according to this example is very high.
Furthermore, since the soundproofing material 1 according to the present example is formed of a foamed molded body obtained by foaming foamed particles, the degree of freedom in shape is high and processing is easy.
As described above, according to this example, it is possible to provide a soundproofing material having a high soundproofing performance and a high degree of freedom in shape.

(実施例2)
本例は、実施例1にかかる防音材の性能試験について試料1〜3を用いて説明する。
試料1は本発明にかかる遮音層と同じ材質からなる。試料2は本発明にかかる吸音層と同じ材質からなる。試料3は、実施例1にかかる防音材と同様の構成である。
試料1〜3はいずれも厚みが50ミリ、大きさは530×530ミリの正方形の板であり、試料1の遮音層はポリプロピレンの発泡成形体、試料2の吸音層はポリスチレンとポリエチレンとの混合樹脂からなる発泡成形体(積水化成品工業株式会社製、ピオセラン)から構成する。
試料3は、実施例1に示したような防音材料であり、試料1にかかる遮音層と、試料2にかかる吸音層とを積層してなり、それぞれ厚さ20ミリと30ミリである。
(Example 2)
In this example, the performance test of the soundproofing material according to Example 1 will be described using Samples 1 to 3.
Sample 1 is made of the same material as the sound insulation layer according to the present invention. Sample 2 is made of the same material as the sound absorbing layer according to the present invention. Sample 3 has the same configuration as the soundproofing material according to the first example.
Samples 1 to 3 are each a square plate having a thickness of 50 mm and a size of 530 × 530 mm, the sound insulation layer of sample 1 is a foamed molded product of polypropylene, and the sound absorption layer of sample 2 is a mixture of polystyrene and polyethylene. It is comprised from the foaming molding (made by Sekisui Plastics Co., Ltd., Piocelan) which consists of resin.
Sample 3 is a soundproof material as shown in Example 1, and is formed by laminating a sound insulating layer according to Sample 1 and a sound absorbing layer according to Sample 2, and has a thickness of 20 mm and 30 mm, respectively.

また試料1〜3にかかる遮音層の空隙率は0%、吸音層の空隙率は21%であった。ここで空隙率は、縦1000ミリ、横1000ミリの内寸法を有する水槽に貯留した水中に遮音層または吸音層を完全に沈めた際の水面の上昇高さhミリを測定し、「(遮音層または吸音層の体積−1000×1000×h)÷遮音層または吸音層の体積×100」より算出した。   Moreover, the porosity of the sound insulation layer concerning Samples 1-3 was 0%, and the porosity of the sound absorption layer was 21%. Here, the porosity is measured by measuring the rising height h mm of the water surface when the sound insulation layer or the sound absorption layer is completely submerged in water stored in a water tank having internal dimensions of 1000 mm in length and 1000 mm in width. The volume of the layer or the sound absorbing layer−1000 × 1000 × h) ÷ the volume of the sound insulating layer or the sound absorbing layer × 100 ”.

これらの試料1〜3の性能試験について説明する。
図8に示すごとく、試料1〜3で中央を仕切った測定槽5を準備する。なお、図8は防音材1で仕切った状態を記載した。
測定槽5の一方の壁面51にスピーカー510を取り付けて、防音材1に向けて音を再生する。壁面51と防音材1を隔てて対向する壁面52に測定器520を配置して、防音材1を透過する音の強度を測定し、スピーカー510の出力と合わせて透過損失を測定する。
測定槽5に試料3の防音材を設置する場合、スピーカー510の側に吸音層3を向けておく。
また、試料1や2についても同様の測定を行う。
The performance test of these samples 1 to 3 will be described.
As shown in FIG. 8, a measurement tank 5 in which the center is divided by samples 1 to 3 is prepared. In addition, FIG. 8 described the state partitioned with the soundproofing material 1.
A speaker 510 is attached to one wall surface 51 of the measurement tank 5 to reproduce sound toward the soundproofing material 1. A measuring device 520 is arranged on the wall surface 52 facing the wall surface 51 and the soundproofing material 1 to measure the intensity of sound transmitted through the soundproofing material 1, and the transmission loss is measured together with the output of the speaker 510.
When the soundproof material of the sample 3 is installed in the measurement tank 5, the sound absorbing layer 3 is directed to the speaker 510 side.
The same measurement is performed for samples 1 and 2.

測定結果を図9に記載した。
同図によれば、遮音層のみからなる試料1、吸音層のみからなる試料2と比較して、実施例1にかかる防音材1は広い周波数帯域において透過損失が高く、優れた防音性能を備えていることが判った。
また、試料3にかかる防音材1は、特に1kHzから8kHzの範囲の防音性能に優れていることが判った。
上記範囲は可聴音域の中でも、車両エンジンノイズ及びロードノイズでよく見られる波長範囲であるため、この点から本例の防音材が車両用防音材用途に優れていることが分かった。
The measurement results are shown in FIG.
According to the figure, the soundproofing material 1 according to Example 1 has a high transmission loss in a wide frequency band and has excellent soundproofing performance as compared with the sample 1 consisting only of the sound insulating layer and the sample 2 consisting only of the sound absorbing layer. I found out.
Moreover, it turned out that the soundproof material 1 concerning the sample 3 is excellent in the soundproof performance especially in the range of 1 kHz to 8 kHz.
Since the above range is a wavelength range often seen in vehicle engine noise and road noise in the audible sound range, it was found that the soundproof material of this example is excellent for use in vehicle soundproof materials.

(実施例3)
本例は、図10、図11に示すごとく、実施例1にかかる防音材を車両用フロアフラット材61として使用し、遮音層611を車室側、吸音層612を車体側に向けて設置して用いることについて説明する。
上記遮音層611を車室側、上記吸音層612を車体側に向けて使用するのは、一般的に騒音が車体側から入るためであり、車体側から入る音を吸音層で吸収し、吸収できなかった音を遮音層で遮ることができ、車室に音が入ることを防止することができる。
(Example 3)
In this example, as shown in FIGS. 10 and 11, the soundproofing material according to Example 1 is used as the vehicle floor flat material 61, and the sound insulating layer 611 is installed with the vehicle interior side and the sound absorbing layer 612 facing the vehicle body side. Will be described.
The reason for using the sound insulation layer 611 toward the vehicle interior and the sound absorption layer 612 toward the vehicle body side is that noise generally enters from the vehicle body side, and the sound entering from the vehicle body side is absorbed and absorbed by the sound absorption layer. The sound that could not be made can be blocked by the sound insulation layer, and the sound can be prevented from entering the passenger compartment.

図10に示すごとく、車両用フロアフラット材61は、車室6のフロアにおいて車体60の車室側の表面の凹凸をならして、平らなフロア表面を形成する部材である。車両用フロアフラット材61の表面にフロアマット等が敷かれて車室のフロアが形成される。
図11に示すごとく、車両用フロアフラット材61は車室側に面する表面は平らで、車体側に面する表面は車体表面の凹凸に沿った凹凸形状を備えている。
車室側の遮音層611は均一な厚みを有し、本例では15ミリである。車体側の吸音層は厚みが不均一である。
As shown in FIG. 10, the vehicle floor flat member 61 is a member that forms a flat floor surface by leveling the surface of the vehicle body 60 on the vehicle interior side on the floor of the vehicle interior 6. A floor mat or the like is laid on the surface of the vehicle floor flat member 61 to form a floor of the passenger compartment.
As shown in FIG. 11, the vehicle floor flat member 61 has a flat surface facing the passenger compartment side, and the surface facing the vehicle body has an uneven shape along the unevenness of the vehicle body surface.
The sound insulation layer 611 on the passenger compartment side has a uniform thickness, which is 15 mm in this example. The sound absorbing layer on the vehicle body side is uneven in thickness.

そして、本例の車両用フロアフラット材61は発泡成形体からなるため、従来使用されていたウレタン系材料にかかる問題点を解決することができた。即ち、ウレタン系材料は重く、軟らかすぎて踏み心地がよくない。更に、ティビア性能が悪く、衝突安全性が優れているとはいえなかった。
本例によれば、軽量で踏み心地に優れ、衝突安全性に優れたフロアフラット材61を得ることができる。その上、本例にかかる車両用フロアフラット材61は防音性に優れている(実施例1や実施例2を参照)。
以上、本例によれば、優れた防音性能を備えると共に、軽量で踏み心地がよく、衝突安全性に優れた車両用フロアフラット材を得ることができる。
And since the floor flat material 61 for vehicles of this example consists of a foaming molding, the problem concerning the urethane type material used conventionally could be solved. That is, the urethane-based material is heavy and too soft to be comfortable to step on. Furthermore, the tibia performance was poor and the collision safety was not excellent.
According to this example, it is possible to obtain a floor flat material 61 that is lightweight, excellent in treading comfort, and excellent in collision safety. In addition, the vehicle floor flat member 61 according to this example is excellent in soundproofing (see Example 1 and Example 2).
As described above, according to this example, it is possible to obtain a floor flat material for a vehicle that has excellent soundproof performance, is lightweight and comfortable to step on, and has excellent collision safety.

実施例1における、防音材の説明図。FIG. 3 is an explanatory diagram of a soundproof material in the first embodiment. 実施例1における、遮音層の説明図。FIG. 3 is an explanatory diagram of a sound insulation layer in the first embodiment. 実施例1における、吸音層の説明図。FIG. 3 is an explanatory diagram of a sound absorbing layer in Example 1. 実施例1における、膨張型消音器の原理を示す説明図。FIG. 3 is an explanatory diagram illustrating the principle of the expansion silencer according to the first embodiment. 実施例1における、一つの室と、該室の両端に接続された細管とからなる膨張型消音器を示す説明図。Explanatory drawing which shows the expansion type silencer which consists of one chamber and the thin tube connected to the both ends of this chamber in Example 1. FIG. 実施例1における、膨張型消音器における周波数と透過損失との関係を示す線図。The diagram which shows the relationship between the frequency and transmission loss in an expansion-type silencer in Example 1. FIG. 実施例1における、本例にかかる吸音層、遮音層及び防音材にかかる周波数と吸音率との関係を示す線図。In Example 1, the diagram which shows the relationship between the frequency concerning the sound absorption layer concerning this example, a sound insulation layer, and a soundproof material, and a sound absorption factor. 実施例2における、透過損失の測定方法を示す線図。FIG. 6 is a diagram showing a transmission loss measurement method in Example 2. 実施例2における、試料1〜3における周波数と透過損失との関係を示す線図。FIG. 4 is a diagram showing the relationship between the frequency and transmission loss in Samples 1 to 3 in Example 2. 実施例3における、車室と車両用フロアフラット材を示す説明図。Explanatory drawing which shows the vehicle interior and the floor flat material for vehicles in Example 3. FIG. 実施例3における、車両用フロアフラット材の断面模式図。FIG. 6 is a schematic cross-sectional view of a vehicle floor flat material according to a third embodiment.

符号の説明Explanation of symbols

1 防音材
2 遮音層
3 吸音層
21、31 発泡粒子
32 通気路
33 粒子間空隙
61 車両用フロアフラット材
DESCRIPTION OF SYMBOLS 1 Sound insulation material 2 Sound insulation layer 3 Sound absorption layer 21, 31 Foam particle 32 Air passage 33 Interparticle space | gap 61 Vehicle floor flat material

Claims (6)

遮音層と吸音層とを積層してなる防音材であって、
上記遮音層及び上記吸音層は共に発泡成形体からなり、
上記遮音層は、発泡粒子が相互に略全面で融着してなり、
上記吸音層は、発泡粒子間に空隙を有するように発泡粒子が相互に点融着してなり、
上記遮音層の空隙率は0〜5%、上記吸音層の空隙率は15〜40%であることを特徴とする防音材。
A soundproof material formed by laminating a sound insulation layer and a sound absorption layer,
Both the sound insulation layer and the sound absorption layer are formed of a foam molded article,
The sound insulating layer is formed by fusing the expanded particles to each other on substantially the entire surface,
The sound absorbing layer is formed by fusing the foam particles to each other so as to have voids between the foam particles,
A soundproofing material, wherein the sound insulation layer has a porosity of 0 to 5%, and the sound absorption layer has a porosity of 15 to 40%.
請求項1において、上記遮音層より上記吸音層の厚みを厚くすることを特徴とする防音材。   The soundproof material according to claim 1, wherein the sound absorbing layer is thicker than the sound insulating layer. 請求項2において、上記防音材の全体の厚みをTとすると、上記遮音層の厚みは0.1T〜0.45T、上記吸音層の厚みは0.9T〜0.55Tであることを特徴とする防音材。   The thickness of the sound insulation layer is 0.1T to 0.45T, and the thickness of the sound absorption layer is 0.9T to 0.55T, where T is the total thickness of the soundproof material. Soundproofing material. 請求項1〜3のいずれか1項において、上記防音材は車体フロア面をフラット化する車両用フロアフラット材として、上記遮音層を車室側、上記吸音層を車体側に向けて設置して用いることを特徴とする防音材。   The soundproof material according to any one of claims 1 to 3, wherein the soundproofing material is installed as a vehicle floor flat material for flattening a vehicle body floor surface with the sound insulation layer facing the vehicle compartment and the sound absorption layer facing the vehicle body. A soundproofing material characterized by using. 請求項4において、上記遮音層の厚みは15〜25mmであることを特徴とする防音材。   The soundproof material according to claim 4, wherein the sound insulating layer has a thickness of 15 to 25 mm. 請求項5において、上記遮音層または吸音層はポリプロピレン樹脂、ポリエチレン樹脂、ポリスチレン樹脂のいずれかまたはこれらの樹脂を2種類以上混合した混合樹脂からなることを特徴とする防音材。   6. The soundproofing material according to claim 5, wherein the sound insulating layer or the sound absorbing layer is made of polypropylene resin, polyethylene resin, polystyrene resin or a mixed resin obtained by mixing two or more of these resins.
JP2003280351A 2003-07-25 2003-07-25 Soundproof material Expired - Fee Related JP4079851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003280351A JP4079851B2 (en) 2003-07-25 2003-07-25 Soundproof material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003280351A JP4079851B2 (en) 2003-07-25 2003-07-25 Soundproof material

Publications (2)

Publication Number Publication Date
JP2005043826A true JP2005043826A (en) 2005-02-17
JP4079851B2 JP4079851B2 (en) 2008-04-23

Family

ID=34266205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003280351A Expired - Fee Related JP4079851B2 (en) 2003-07-25 2003-07-25 Soundproof material

Country Status (1)

Country Link
JP (1) JP4079851B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011112860A (en) * 2009-11-26 2011-06-09 Nippon Tokushu Toryo Co Ltd Material and method for insulating sound using water-absorbing resin
WO2013069202A1 (en) * 2011-11-07 2013-05-16 株式会社 静科 Honeycomb panel stacked body manufacturing method and honeycomb panel stacked body
JP2015153569A (en) * 2014-02-13 2015-08-24 パナソニックIpマネジメント株式会社 fuel cell system
WO2018174070A1 (en) * 2017-03-23 2018-09-27 株式会社イノアックコーポレーション Soundproofing material and method for manufacturing same
JP2018159919A (en) * 2017-03-23 2018-10-11 株式会社イノアックコーポレーション Sound-insulating material and its manufacturing method
JP2019001011A (en) * 2017-06-13 2019-01-10 Daisen株式会社 Foam molded body composed of different types of foam molding resin members
JP2020125643A (en) * 2019-02-05 2020-08-20 株式会社カネカ Tire stop for motor vehicle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6727572B2 (en) * 2016-10-28 2020-07-22 Daisen株式会社 Soundproof material consisting of multiple layers

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03212539A (en) * 1990-01-12 1991-09-18 Noda Corp Building board
JPH04193776A (en) * 1990-10-24 1992-07-13 Nippon Concrete Ind Co Ltd Inorganic acoustic material and its manufacture
JPH04266942A (en) * 1991-02-21 1992-09-22 Hattori Yoshihei Porous material and sound-absorbing panel
JPH04278341A (en) * 1991-03-06 1992-10-02 Nippon Tokushu Toryo Co Ltd Soundproof material of reinforced dash part and manufacture thereof
JPH04345834A (en) * 1991-05-22 1992-12-01 Bridgestone Corp Manufacture of soundproof material
JPH0558229A (en) * 1991-08-28 1993-03-09 Bridgestone Corp Soundproofing member for automobile
JP2786393B2 (en) * 1993-09-10 1998-08-13 三菱化学ビーエーエスエフ株式会社 Styrene-modified polyolefin resin foam molding
JP2000052371A (en) * 1998-08-05 2000-02-22 Idemitsu Petrochem Co Ltd Sound absorbing and insulating material and its preparation
JP2000230431A (en) * 1999-02-09 2000-08-22 Tokai Rubber Ind Ltd Soundproof cover
JP2001138771A (en) * 1999-11-11 2001-05-22 Tokai Chem Ind Ltd Soundproof member for dash panel
JP2001163684A (en) * 1999-12-07 2001-06-19 Taisei Corp Sound absorbing body and sound absorbing/sound insulating structure using the sound absorbing body
JP2001347899A (en) * 2000-06-05 2001-12-18 Toyoda Spinning & Weaving Co Ltd Soundproofing material
JP2002046203A (en) * 2000-05-26 2002-02-12 Yachiyo Shoji:Kk Sound insulating fiber sheet
JP3268094B2 (en) * 1993-12-13 2002-03-25 旭化成株式会社 Sound absorber and method of construction
JP2003081028A (en) * 2001-09-10 2003-03-19 Kasai Kogyo Co Ltd Insulator for automobile
JP2003216158A (en) * 2002-01-18 2003-07-30 Kasai Kogyo Co Ltd Soundproofing material for vehicle
JP2003237492A (en) * 2002-02-13 2003-08-27 Nissan Motor Co Ltd Interior material for vehicle
JP2003337588A (en) * 2002-05-21 2003-11-28 Idemitsu Petrochem Co Ltd Sound absorbing body and sound absorbing structure
JP2004042649A (en) * 2002-07-05 2004-02-12 Kobe Steel Ltd Expanded resin laminated soundproof sheet and its manufacturing process

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03212539A (en) * 1990-01-12 1991-09-18 Noda Corp Building board
JPH04193776A (en) * 1990-10-24 1992-07-13 Nippon Concrete Ind Co Ltd Inorganic acoustic material and its manufacture
JPH04266942A (en) * 1991-02-21 1992-09-22 Hattori Yoshihei Porous material and sound-absorbing panel
JPH04278341A (en) * 1991-03-06 1992-10-02 Nippon Tokushu Toryo Co Ltd Soundproof material of reinforced dash part and manufacture thereof
JPH04345834A (en) * 1991-05-22 1992-12-01 Bridgestone Corp Manufacture of soundproof material
JPH0558229A (en) * 1991-08-28 1993-03-09 Bridgestone Corp Soundproofing member for automobile
JP2786393B2 (en) * 1993-09-10 1998-08-13 三菱化学ビーエーエスエフ株式会社 Styrene-modified polyolefin resin foam molding
JP3268094B2 (en) * 1993-12-13 2002-03-25 旭化成株式会社 Sound absorber and method of construction
JP2000052371A (en) * 1998-08-05 2000-02-22 Idemitsu Petrochem Co Ltd Sound absorbing and insulating material and its preparation
JP2000230431A (en) * 1999-02-09 2000-08-22 Tokai Rubber Ind Ltd Soundproof cover
JP2001138771A (en) * 1999-11-11 2001-05-22 Tokai Chem Ind Ltd Soundproof member for dash panel
JP2001163684A (en) * 1999-12-07 2001-06-19 Taisei Corp Sound absorbing body and sound absorbing/sound insulating structure using the sound absorbing body
JP2002046203A (en) * 2000-05-26 2002-02-12 Yachiyo Shoji:Kk Sound insulating fiber sheet
JP2001347899A (en) * 2000-06-05 2001-12-18 Toyoda Spinning & Weaving Co Ltd Soundproofing material
JP2003081028A (en) * 2001-09-10 2003-03-19 Kasai Kogyo Co Ltd Insulator for automobile
JP2003216158A (en) * 2002-01-18 2003-07-30 Kasai Kogyo Co Ltd Soundproofing material for vehicle
JP2003237492A (en) * 2002-02-13 2003-08-27 Nissan Motor Co Ltd Interior material for vehicle
JP2003337588A (en) * 2002-05-21 2003-11-28 Idemitsu Petrochem Co Ltd Sound absorbing body and sound absorbing structure
JP2004042649A (en) * 2002-07-05 2004-02-12 Kobe Steel Ltd Expanded resin laminated soundproof sheet and its manufacturing process

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011112860A (en) * 2009-11-26 2011-06-09 Nippon Tokushu Toryo Co Ltd Material and method for insulating sound using water-absorbing resin
WO2013069202A1 (en) * 2011-11-07 2013-05-16 株式会社 静科 Honeycomb panel stacked body manufacturing method and honeycomb panel stacked body
JP2013097345A (en) * 2011-11-07 2013-05-20 Shizuka Co Ltd Method for manufacturing honeycomb panel laminate, and honeycomb panel laminate
CN103733251A (en) * 2011-11-07 2014-04-16 株式会社静科 Honeycomb panel stacked body manufacturing method and honeycomb panel stacked body
US9284728B2 (en) 2011-11-07 2016-03-15 Shizuka Co., Ltd. Honeycomb panel stacked body manufacturing method and honeycomb panel stacked body
JP2015153569A (en) * 2014-02-13 2015-08-24 パナソニックIpマネジメント株式会社 fuel cell system
WO2018174070A1 (en) * 2017-03-23 2018-09-27 株式会社イノアックコーポレーション Soundproofing material and method for manufacturing same
JP2018159919A (en) * 2017-03-23 2018-10-11 株式会社イノアックコーポレーション Sound-insulating material and its manufacturing method
JP7105073B2 (en) 2017-03-23 2022-07-22 株式会社イノアックコーポレーション Soundproof structure
US11532294B2 (en) 2017-03-23 2022-12-20 Inoac Corporation Soundproof member and production method thereof
US11970120B1 (en) 2017-03-23 2024-04-30 Inoac Corporation Soundproof member and production method thereof
JP2019001011A (en) * 2017-06-13 2019-01-10 Daisen株式会社 Foam molded body composed of different types of foam molding resin members
JP2020125643A (en) * 2019-02-05 2020-08-20 株式会社カネカ Tire stop for motor vehicle
JP7161420B2 (en) 2019-02-05 2022-10-26 株式会社カネカ car tire chock

Also Published As

Publication number Publication date
JP4079851B2 (en) 2008-04-23

Similar Documents

Publication Publication Date Title
Zhu et al. Recent Advances in the Sound Insulation Properties of Bio-based Materials.
ES2542886T3 (en) Car interior molding part for sound insulation and absorption
Rastegar et al. Sound-absorbing porous materials: a review on polyurethane-based foams
KR100645824B1 (en) The sound-absorbing panel
JP2009034998A (en) Ultralight trim composite
RU2744359C2 (en) Method of manufacture of an absorbent soundproofing element and absorbent soundproofing element of automobile panelling
JP4079851B2 (en) Soundproof material
JP7326649B2 (en) automotive sound insulation
CN106042468A (en) Broad-band noise insulation honeycomb plate
US11505137B2 (en) Sound absorption member, vehicle component, and automobile
CN1754201B (en) Sound-absorbing structure using thin film
JP2007502748A (en) Noise reduction components such as vehicle floor panels
Paul et al. Acoustic behaviour of textile structures
KR200399170Y1 (en) A noise supresser
Jonza et al. Acoustically Absorbing Lightweight Thermoplastic Honeycomb Panels
KR20200074227A (en) Method for manufacturing vibration damping and/or sound dampening material
KR20070010256A (en) A noise supresser
JP4019820B2 (en) Sound absorbing structure
IT202000003769A1 (en) METAMATERIAL-BASED SOUND INSULATION DEVICE
WO2019021478A1 (en) Soundproof structure, vehicle component, and automobile
WO2019026294A1 (en) Sound absorbing member, vehicle component, and automobile
JP4727608B2 (en) Intake silencer and silencer method
JP6727572B2 (en) Soundproof material consisting of multiple layers
JPWO2019021477A1 (en) Sound absorbing member, vehicle parts and automobile
JP6944057B2 (en) Laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees