JP2005035306A - Apparatus for molding heat-resistant container - Google Patents

Apparatus for molding heat-resistant container Download PDF

Info

Publication number
JP2005035306A
JP2005035306A JP2004284438A JP2004284438A JP2005035306A JP 2005035306 A JP2005035306 A JP 2005035306A JP 2004284438 A JP2004284438 A JP 2004284438A JP 2004284438 A JP2004284438 A JP 2004284438A JP 2005035306 A JP2005035306 A JP 2005035306A
Authority
JP
Japan
Prior art keywords
preform
molding
heat
molded product
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004284438A
Other languages
Japanese (ja)
Inventor
Minoru Takada
実 高田
Koichi Sato
晃一 佐藤
Kazuyuki Yokobayashi
和幸 横林
Kazuya Kitamura
和也 北村
Atsushi Sakurai
篤志 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissei ASB Machine Co Ltd
Original Assignee
Nissei ASB Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissei ASB Machine Co Ltd filed Critical Nissei ASB Machine Co Ltd
Priority to JP2004284438A priority Critical patent/JP2005035306A/en
Publication of JP2005035306A publication Critical patent/JP2005035306A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for molding a low-cost and compact heat-resistant container which can reliably increas the crystallinity and reduce the residual stress of a container to be filled with a heat-sterilized hot content such as fruit juice and in a short time and can inhibit its thermal deformation by improving the shape stability at the time of a high temperature. <P>SOLUTION: This apparatus has a preform molding part 302 for injection-molding a preform; a heat-resistant container molding part 304 for molding a heat-resistant container by blow-molding the preform; and a conveyance line 306 for conveying the preform unloaded from the preform molding part 302 to the heat-resistant molding part 304. The conveyance line 306 is equipped with a cooling means 334 for cooling the preform at least upstream. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、耐熱容器の成形装置に関し、特に、ポリエチレンテレフタレート(以下、PETと称す。)等の合成樹脂を成形して得られる耐熱容器の成形装置に関する。   The present invention relates to a heat-resistant container molding apparatus, and more particularly to a heat-resistant container molding apparatus obtained by molding a synthetic resin such as polyethylene terephthalate (hereinafter referred to as PET).

一般に、二軸延伸ブロー容器と称される合成樹脂製の薄肉の包装容器は、射出あるいは押出し成形によって得られた延伸適温のプリフォームを金型内に位置させ、容器の長手方向に相当する縦方向に延伸させるとともに、内部に吹き込んだ気体の圧力によって横方向に膨張させることで得られる。   In general, a thin packaging container made of a synthetic resin called a biaxial stretch blow container has a stretch suitable temperature preform obtained by injection or extrusion molding positioned in a mold, and is a longitudinal direction corresponding to the longitudinal direction of the container. It is obtained by stretching in the direction and expanding in the lateral direction by the pressure of the gas blown into the inside.

ところで、前述した容器に用いられる材質の選択によっては、内部に例えば加熱殺菌された果汁飲料等の高温状態の内容物を充填した場合に、容器が変形するという問題があった。   By the way, depending on selection of the material used for the container described above, there is a problem that the container is deformed when the inside is filled with a high-temperature content such as a heat-sterilized fruit juice drink.

そこで、従来では、例えばプリフォームの温調後に実行されるブロー成形工程を一次と二次とに分け、一次ブロー成形で容器の形態を有する一次成形品を形成し、その一次成形品を熱処理により収縮させたのち、二次ブロー成形を行い最終容器の形態を得るようにしている(例えば、特許文献1参照)。   Therefore, conventionally, for example, the blow molding process executed after temperature control of the preform is divided into primary and secondary, and a primary molded product having a container shape is formed by primary blow molding, and the primary molded product is subjected to heat treatment. After shrinking, secondary blow molding is performed to obtain the final container form (see, for example, Patent Document 1).

この成形方法によると、二次ブロー成形前の熱処理によって機械的強度を向上させた耐熱容器が得られる。
特開平3−205124号公報
According to this molding method, a heat-resistant container having improved mechanical strength can be obtained by heat treatment before secondary blow molding.
JP-A-3-205124

前述の耐熱容器の成形方法によると、二次ブロー成形前に実行される熱処理工程において、一次ブロー成形工程で生じている歪み、すなわち延伸時の残留応力が除去され、かつ配向された壁部の高結晶化度が得られ、これにより、市場で厳しい温度条件下におかれる成形品の耐熱性を向上させることができる。   According to the above-described method for forming a heat-resistant container, in the heat treatment step performed before the secondary blow molding, distortion generated in the primary blow molding step, that is, residual stress at the time of stretching is removed, and the oriented wall portion is removed. A high degree of crystallinity can be obtained, thereby improving the heat resistance of a molded product that is subjected to severe temperature conditions in the market.

そして、このような耐熱容器を得るためには、一次成形品の配向された壁部の結晶化度が高められる程度に一次成形品の温度を上昇させることが必要である。   And in order to obtain such a heat-resistant container, it is necessary to raise the temperature of a primary molded product to such an extent that the crystallinity degree of the oriented wall part of a primary molded product is raised.

しかし、前述の成形方法においては、成形品に対して雰囲気中での放射伝熱しか行われないため、成形品の温度上昇が円滑に行われなかった。   However, in the above-described molding method, only the radiant heat transfer in the atmosphere is performed on the molded product, and thus the temperature of the molded product is not increased smoothly.

従って、成形品が十分な耐熱性を有するために必要な結晶化度が得られる温度に達するまでの時間が長くなるため、成形品の加熱時間を長くするか、搬送時間を長くするかしなければならず、成形サイクルが長くなったり、加熱のための搬送経路を含めた容器の成形装置が大型になってしまうおそれがあった。   Therefore, since it takes a long time to reach a temperature at which the necessary crystallinity can be obtained because the molded product has sufficient heat resistance, it may be necessary to lengthen the heating time of the molded product or increase the conveying time. Therefore, there is a possibility that the molding cycle becomes long or the container molding apparatus including the conveyance path for heating becomes large.

本発明は、前述の問題点に着目してなされたもので、その目的は、果汁飲料等の加熱殺菌された高温の内容物を充填する容器の高結晶化度および低残留応力化を確実かつ短時間で達成でき、高温時の形状安定性を向上させて熱変形を防止することができる低コストかつコンパクトな耐熱容器の成形装置を提供することにある。   The present invention has been made paying attention to the above-mentioned problems, and its purpose is to ensure high crystallinity and low residual stress of containers filled with high-temperature sterilized contents such as fruit juice beverages. It is an object of the present invention to provide a low-cost and compact heat-resistant container molding apparatus that can be achieved in a short time, can improve shape stability at high temperatures, and can prevent thermal deformation.

前記目的を達成するため、請求項1記載の耐熱容器の成形装置は、プリフォームを射出成形するためのプリフォーム成形部と、
前記プリフォームをブロー成形して耐熱容器を成形するための耐熱容器成形部と、
前記プリフォーム成形部から前記耐熱容器成形部へとプリフォームを搬送するための搬送ラインとを備え、
前記搬送ラインは、少なくとも上流側に、前記プリフォームを冷却するための冷却手段を備えることを特徴としている。
In order to achieve the object, a heat-resistant container molding apparatus according to claim 1 includes a preform molding unit for injection molding a preform,
A heat-resistant container molding part for blow-molding the preform to form a heat-resistant container;
A transport line for transporting the preform from the preform molding section to the heat-resistant container molding section,
The conveyance line includes a cooling means for cooling the preform at least on the upstream side.

本発明によれば、プリフォーム成形部から取り出されたプリフォームを搬送ラインによって耐熱容器成形部へと搬送して、耐熱容器成形部でプリフォームをブロー成形し耐熱容器を成形するようにしており、この搬送ラインによる搬送途中において少なくとも上流側で冷却手段によりプリフォームを強制的に冷却することで、搬送途中におけるプリフォームのくっつきを防止し、しかも、短い搬送距離で十分な冷却を行うことができる。   According to the present invention, the preform taken out from the preform molding unit is conveyed to the heat-resistant container molding unit by the conveyance line, and the preform is blow-molded by the heat-resistant container molding unit to mold the heat-resistant container. The preform is forcibly cooled by the cooling means at least upstream in the middle of the conveyance by the conveyance line to prevent the preform from sticking in the middle of the conveyance, and sufficient cooling can be performed with a short conveyance distance. it can.

請求項2記載の発明は、請求項1において、
前記搬送ラインは、プリフォームを自転させながら搬送する自転搬送手段を備えることを特徴としている。
The invention according to claim 2 is the invention according to claim 1,
The said conveyance line is equipped with the autorotation conveyance means which conveys preform, rotating.

本発明によれば、搬送ラインにおいて自転搬送手段よりプリフォームを自転させながら搬送することで、円周方向でムラなく冷却することができる。   According to the present invention, it is possible to cool in the circumferential direction without unevenness by transporting the preform while rotating the preform from the rotating transport means in the transport line.

請求項3記載の発明は、請求項2において、
前記自転搬送手段は、プリフォームを同時成形個数ずつ間欠搬送する上流側の間欠自転搬送手段と、この間欠自転搬送手段により搬送されたプリフォームを連続して搬送する下流側の連続自転搬送手段とから構成されていることを特徴としている。
Invention of Claim 3 is set in Claim 2,
The rotation conveyance means includes an upstream intermittent rotation conveyance means that intermittently conveys preforms by the number of simultaneous moldings, and a downstream continuous rotation conveyance means that continuously conveys the preform conveyed by the intermittent rotation conveyance means; It is characterized by comprising.

本発明によれば、自転搬送手段を構成する上流側の間欠自転搬送手段によって同時成形個数ずつ成形されたプリフォームを成形時のプリフォーム間のピッチを維持しながらプリフォームのくっつきを防止して間欠搬送し、下流側においては連続自転搬送手段によってプリフォームを連続して搬送することで、プリフォームを密着搬送することができ、搬送の無駄をなくしてプリフォームのストック量を確保することができる。   According to the present invention, it is possible to prevent the preforms from sticking together while maintaining the pitch between the preforms at the time of molding the preforms formed by the simultaneous molding number by the upstream intermittent rotation conveyance unit constituting the rotation conveyance unit. By carrying out intermittent conveyance and conveying the preform continuously by the continuous rotation conveying means on the downstream side, the preform can be conveyed in close contact, and the stock amount of the preform can be secured without waste of conveyance. it can.

請求項4記載の発明は、請求項1において、
前記搬送ラインは、プリフォームをブロー成形温度よりも充分に低い温度まで冷却可能に搬送距離および搬送時間が設定されていることを特徴としている。
Invention of Claim 4 in Claim 1,
The conveyance line is characterized in that a conveyance distance and a conveyance time are set so that the preform can be cooled to a temperature sufficiently lower than the blow molding temperature.

本発明によれば、搬送ラインによるプリフォームの搬送時にプリフォームをブロー成形温度よりも十分に低い温度まで冷却することで、射出成形時のプリフォームの熱履歴の影響がブロー成形時に生じないようにすることができる。   According to the present invention, the preform is cooled to a temperature sufficiently lower than the blow molding temperature during the conveyance of the preform by the conveyance line, so that the influence of the thermal history of the preform during the injection molding does not occur during the blow molding. Can be.

以下、本発明の好適な実施の形態について、図面を参照して詳細に説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described in detail with reference to the drawings.

図1は、本発明の実施の一形態に係る耐熱容器の成形装置を示す図である。   FIG. 1 is a diagram illustrating a heat-resistant container molding apparatus according to an embodiment of the present invention.

この耐熱容器の成形装置は、他に設けた射出成形機を用いて成形されたプリフォームを加熱し、ブロー成形するものである。   This heat-resistant container molding apparatus heats a preform molded using an injection molding machine provided elsewhere and blow-molds it.

また、この耐熱容器の成形装置は、ループ状に形成された搬送手段200に沿って、受取・取出部202と、第1〜第4の加熱部204,206,208,210と、一次成形部212と、熱処理部214と、最終成形部216とが配設されている。   The heat-resistant container molding apparatus includes a receiving / extracting unit 202, first to fourth heating units 204, 206, 208, 210, and a primary molding unit along a conveying means 200 formed in a loop shape. 212, a heat treatment part 214, and a final molding part 216 are arranged.

搬送手段200は、この耐熱容器の成形装置における同時成形個数(本実施の形態においては4個)ずつ受取・取出部202で受け取ったプリフォーム、一次成形部212で成形された一次成形品、最終成形部216にて成形された最終成形品等の各成形品を受取・取出部202から第1〜第4の加熱部204,206,208,210、一次成形部212、熱処理部214、最終成形部216へと間欠搬送するもので、ほぼ長方形の搬送経路を形成し、その搬送経路に沿って、一対の搬送レール218が配設されている。この搬送レール218には、多数の搬送部材220が同時成形個数である4個毎に所定のピッチで8箇所に係合されている。   The conveying means 200 includes a preform received by the receiving / extracting unit 202 for each simultaneous molding number (four in the present embodiment) in this heat-resistant container molding apparatus, a primary molded product molded by the primary molding unit 212, and a final product. Each molded product such as a final molded product molded by the molding unit 216 is received from the receiving / extracting unit 202, the first to fourth heating units 204, 206, 208, 210, the primary molding unit 212, the heat treatment unit 214, and the final molding. It is intermittently transported to the section 216, forms a substantially rectangular transport path, and a pair of transport rails 218 are arranged along the transport path. A large number of conveying members 220 are engaged with the conveying rail 218 at eight positions at a predetermined pitch for every four conveying members 220 that are simultaneously formed.

この搬送部材220は、図2に示すように、固定部222と、載置台224とからなり、固定部222がカムフォロア226を介し搬送レール218に対し係合すると共に、角部4箇所に配設された搬送用スプロケット228に巻回された搬送チェーン230と係合し、この搬送チェーン230の駆動により移動可能にされている。   As shown in FIG. 2, the transport member 220 includes a fixed portion 222 and a mounting table 224. The fixed portion 222 engages with the transport rail 218 via the cam follower 226, and is disposed at four corners. The transfer chain 230 is engaged with the transfer chain 230 wound around the transfer sprocket 228 and is movable by driving the transfer chain 230.

載置台224は、固定部222に対し回転可能に取付けられ、上面にはプリフォーム232のネック234内に差し込まれてプリフォーム232を倒立状態で支持する搬送用ピン236が突出されている。また、載置台224には、自転用スプロケット238が設けられ、この自転用スプロケット238により載置台224が自転し、載置台224上に支持したプリフォーム232を自転させるようになっている。   The mounting table 224 is rotatably attached to the fixed portion 222, and a transfer pin 236 that is inserted into the neck 234 of the preform 232 and supports the preform 232 in an inverted state is projected on the upper surface. Further, the mounting table 224 is provided with a rotation sprocket 238, and the mounting table 224 rotates by the rotation sprocket 238, and the preform 232 supported on the mounting table 224 is rotated.

そして、前述のようなほぼ長方形の搬送経路を形成する搬送手段200に対し、その搬送経路の長辺の一辺に、その搬送方向一直線上に、一次成形部212,熱処理部214および最終成形部216を配置し、最終成形部216と隣接する搬送経路の短辺の一辺に受取・取出部202を配設し、さらに、残りの搬送経路の長辺の他辺に第1〜第3の加熱部204,206,208を配設し、残りの他の短辺に第4の加熱部210を配設している。   The primary molding unit 212, the heat treatment unit 214, and the final molding unit 216 are arranged on one side of the long side of the conveyance path with respect to the conveyance unit 200 that forms a substantially rectangular conveyance path as described above. The receiving / extracting unit 202 is disposed on one side of the short side of the conveyance path adjacent to the final molding unit 216, and the first to third heating units are disposed on the other side of the long side of the remaining conveyance path. 204, 206, 208 are disposed, and the fourth heating unit 210 is disposed on the other short side.

一次成形部212は、第1〜第4の加熱部204,206,208,210を経て加熱されたプリフォーム232をブロー成形して一次成形品を成形するもので、割型で構成された一次ブロー成形型240,240を有し、この一次ブロー成形型240,240を型締め機構242にて型締め、型開可能にしている。   The primary molding unit 212 is a unit that blow-molds the preform 232 heated through the first to fourth heating units 204, 206, 208, and 210 to mold a primary molded product, and is composed of a split mold. Blow molds 240 and 240 are provided, and the primary blow molds 240 and 240 are clamped by a mold clamping mechanism 242 so that the mold can be opened.

この型締め機構242には、一次ブロー成形型240,240を取付ける一対の型締め板244a,244bと、一方の型締め板244aに隣接して配置された可動板248と、一方の型締め板244aを貫通してスライド可能に支持し、両端部で他方の型締め板244aと可動板248とを連結固定する4本のタイロッド250と、可動板248に取付けられ、ピストンロッド252,252が一方の型締め板244bに連結固定された一対の型締め駆動シリンダ246,246とを備え、型締め駆動シリンダ246,246のピストンロッド252,252が一方の型締め板244aを型締め、型開方向に移動させ、その反力より可動板248が移動し、その移動に伴ってタイロッド250を介し他方の型締め板244bが型締め、型開方向に移動させる牽引式のものとされている。   The mold clamping mechanism 242 includes a pair of mold clamping plates 244a and 244b for mounting the primary blow molding molds 240 and 240, a movable plate 248 disposed adjacent to one mold clamping plate 244a, and one mold clamping plate. The four tie rods 250 that slidably support through the 244a and connect and fix the other mold clamping plate 244a and the movable plate 248 at both ends, are attached to the movable plate 248, and the piston rods 252 and 252 have one And a pair of mold clamping drive cylinders 246 and 246 connected and fixed to the mold clamping plate 244b, and the piston rods 252 and 252 of the mold clamping drive cylinders 246 and 246 clamp one mold clamping plate 244a, and the mold opening direction The movable plate 248 is moved by the reaction force, and the other mold clamping plate 244b is clamped and opened through the tie rod 250 along with the movement. It is those of the towed moving countercurrent.

熱処理部214は、一次成形部212によりブロー成形された一次成形品に熱処理を加えて一次ブロー成形時に生じた延伸時の残留応力などの歪みを除去して成形品の耐熱性を向上させるもので、割型で構成される熱処理型254,254を有し、この熱処理型254,254を型締め機構242により型締め、型開可能にしている。また、熱処理型254,254は、前述の一次ブロー成形型240,240とほぼ同一の形状とされ、かつ、熱処理型254,254を熱処理温度まで加熱する加熱機構(図示せず)を有するものとされている。この熱処理部214においては、一次成形品を熱処理型254,254内で内部から加圧しつつ熱処理型254,254の内面に接触させて熱処理することにより、熱処理時間を短縮化して成形サイクルを短縮化できるようにしている。なお、型締め機構242は、一次ブロー成形型240,240の型締め機構と同一のものが採用されている。   The heat treatment section 214 improves the heat resistance of the molded article by removing the distortion such as the residual stress at the time of stretching generated during the primary blow molding by applying a heat treatment to the primary molded article blow molded by the primary molding section 212. The heat treatment molds 254 and 254 are formed of split molds, and the heat treatment molds 254 and 254 are clamped by the mold clamping mechanism 242 so that the mold can be opened. The heat treatment molds 254 and 254 have substantially the same shape as the primary blow molds 240 and 240 described above, and have a heating mechanism (not shown) for heating the heat treatment molds 254 and 254 to the heat treatment temperature. Has been. In this heat treatment part 214, the primary molded product is pressed from the inside in the heat treatment molds 254 and 254 and is contacted with the inner surface of the heat treatment molds 254 and 254 for heat treatment, thereby shortening the heat treatment time and shortening the molding cycle. I can do it. The mold clamping mechanism 242 is the same as the mold clamping mechanism of the primary blow molding molds 240 and 240.

最終成形部216は、熱処理部214で熱処理された一次成形品をブロー成形して最終成形品の形状に成形するもので、割型から構成される最終ブロー成形型256,256を有し、この最終ブロー成形型256,256を型締め機構242により型締め、型開可能にしている。また、この最終成形部216においては、加熱機構により最終ブロー成形型256,256を加熱し、この加熱した最終ブロー成形型256,256内でブロー成形することにより、最終ブロー成形時における歪みを加熱された最終ブロー成形型256,256によって熱処理をおこなうことで取り除くことができ、熱安定性を向上させて耐熱性を高めることができる。なお、型締め機構242は、一次ブロー成形240および熱処理型254の型締め機構と同様のものが採用されている。   The final molding part 216 is a blow molding of the primary molded product heat-treated in the heat treatment unit 214 to form the final molded product, and has final blow molding dies 256 and 256 composed of split molds. The final blow molds 256 and 256 are clamped by a mold clamping mechanism 242 so that the mold can be opened. In the final molding part 216, the final blow molding dies 256 and 256 are heated by a heating mechanism, and the blow molding is performed in the heated final blow molding dies 256 and 256, thereby heating distortion at the time of final blow molding. The final blow molds 256 and 256 can be removed by performing a heat treatment, improving thermal stability and improving heat resistance. Note that the mold clamping mechanism 242 is the same as the mold clamping mechanism of the primary blow molding 240 and the heat treatment mold 254.

このように、型締め、型開のための割型の移動ストロークを必要とする一次成形部212,熱処理部214および最終成形部216を搬送手段200におけるほぼ長方形の搬送経路の長辺の一辺にその搬送方向一直線上に配置することにより、これらを向かい合う位置に配置した場合などのように搬送手段200の対向する直線部分の間隔が不必要に広くなってしまうのを防止し、直線部分の間隔を最小限にして省スペースを実現することができる。   In this way, the primary molding unit 212, the heat treatment unit 214, and the final molding unit 216 that require a split mold moving stroke for mold clamping and mold opening are arranged on one side of the long side of the substantially rectangular conveyance path in the conveyance unit 200. By arranging them in a straight line in the conveying direction, it is possible to prevent the distance between the linear parts facing the conveying means 200 from becoming unnecessarily wide as in the case where they are arranged at opposite positions. It is possible to realize space saving by minimizing the above.

受取・取出部202には、射出成形されたプリフォーム232を外部から受け取って、図2に示すように、搬送手段200の搬送部材220上に受け渡すと共に、最終成形部216によって成形された最終成形品を外部に取り出すもので、適宜の受取・取出装置(図示せず)が配設されるようになっている。また、この受取・取出部202には、搬送手段200のほぼ長方形をなす搬送経路の長辺の一辺に一次成形部212,熱処理部214および最終成形部216を配置することにより、その型締め機構242の移動ストローク分だけ短辺が長くなるのを利用して、その短辺の一辺に配置することにより、搬送経路の有効利用を図り、より一層の省スペースを実現するものである。   The receiving / extracting unit 202 receives the preform 232 that has been injection-molded from the outside, and delivers the preform 232 onto the conveying member 220 of the conveying unit 200 as shown in FIG. The molded product is taken out to the outside, and an appropriate receiving / extracting device (not shown) is arranged. Further, in the receiving / extracting unit 202, a primary molding unit 212, a heat treatment unit 214 and a final molding unit 216 are arranged on one side of the long side of the conveyance path that forms a substantially rectangular shape of the conveyance unit 200, so that a mold clamping mechanism is provided. By utilizing the fact that the short side becomes longer by the movement stroke of 242 and arranging it on one side of the short side, the transport path is effectively used, and further space saving is realized.

また、このように一次成形部212、熱処理部214および最終成形部216を隣り合わせることで、一次成形品の熱処理時における熱を維持した状態で、直ちに最終ブロー成形を行うことができ、熱損失のない良好なブロー成形を行うことができる。   In addition, by adjoining the primary molding part 212, the heat treatment part 214, and the final molding part 216 in this manner, the final blow molding can be performed immediately while maintaining the heat during the heat treatment of the primary molded product, resulting in heat loss. It is possible to perform a good blow molding without any problem.

第1〜第4の加熱部204,206,208,210は、受取・取出部202で受け取ったプリフォーム232をブロー成形適温まで加熱するもので、各々の加熱部204,206,208,210は、搬送経路の外側に配置されたヒータ装置258とこのヒータ装置258と対向して搬送経路の内側位置に配置された反射板260とから構成されている。   The first to fourth heating units 204, 206, 208, and 210 heat the preform 232 received by the receiving / extracting unit 202 to an appropriate temperature for blow molding, and the respective heating units 204, 206, 208, and 210 are The heater device 258 is disposed outside the transport path, and the reflector 260 is disposed at the inner position of the transport path so as to face the heater device 258.

ヒータ装置258は、図示せぬが、搬送方向に亘って配置されたヒータを上下複数段に配置して構成され、反射板260は、間欠搬送された同時成形個数である4個のプリフォーム232と対応した位置でプリフォーム232の軸方向に沿って配設された状態となっている。   Although not shown, the heater device 258 is configured by arranging heaters arranged in the conveying direction in a plurality of upper and lower stages, and the reflector 260 has four preforms 232 that are the number of simultaneous moldings intermittently conveyed. Are arranged along the axial direction of the preform 232 at a position corresponding to.

さらに、第1〜第4の加熱部204,206,208,210にわたって、スプロケット262に巻回された自転用チェーン264とからなるプリフォーム自転用の回転機構266が設けられ、自転用チェーン264が前述の搬送部材220の載置台224に設けられた自転用スプロケット238と係合し、この自転用チェーン264によって載置台224が自転することで、プリフォーム232が自転するようになっている。   Further, a rotation mechanism 266 for rotating the preform, which includes the rotation chain 264 wound around the sprocket 262, is provided over the first to fourth heating units 204, 206, 208, 210, and the rotation chain 264 is The preform 232 is rotated by engaging with the rotation sprocket 238 provided on the mounting table 224 of the conveying member 220 and rotating the mounting table 224 by the rotation chain 264.

このように、搬送手段200により間欠搬送されたプリフォーム232を、第1〜第4の加熱部204,206,208,210の停止位置で、回転機構266により自転させることで、プリフォーム232の周方向での温度ムラをなくし、均一に加熱昇温させることができる。   As described above, the preform 232 intermittently conveyed by the conveying means 200 is rotated by the rotation mechanism 266 at the stop positions of the first to fourth heating units 204, 206, 208, and 210, so that the preform 232 is rotated. The temperature unevenness in the circumferential direction can be eliminated, and the temperature can be uniformly heated.

また、第4の加熱部210は、受取・取出部202と対向する搬送経路の他の短辺に配置され、型締め機構242を有する一次成形部212,熱処理部214および最終成形部216を長辺の一辺に配置したことにより短辺の距離が長くなるのを利用して、搬送経路を有効に活用し、より一層の省スペース化を可能にしている。   The fourth heating unit 210 is disposed on the other short side of the conveyance path facing the receiving / extracting unit 202, and the primary molding unit 212 having the clamping mechanism 242, the heat treatment unit 214, and the final molding unit 216 are long. By utilizing the fact that the distance of the short side becomes longer due to the arrangement on one side of the side, it is possible to effectively utilize the transport path and further save space.

この実施の形態によれば、受取・取出部202で搬送手段200の搬送部材220に受け渡されたプリフォーム232が搬送手段200の間欠搬送によって第1の加熱部204,第2の加熱部206,第3の加熱部208,第4の加熱部210へと搬送され、かつ、回転機構266によってプリフォーム232が自転しながら加熱され、この第4の加熱部210を経過したプリフォーム232が一次成形部212によってブロー成形されて一次成形品の形状に形成され、次いで熱処理部214で熱処理された後、最終ブロー成形部216で最終成形品の形状にブロー成形され、この最終成形品が最終成形部216から受取・取出部202へと搬送されて外部に取り出されることとなる。   According to this embodiment, the preform 232 delivered to the transport member 220 of the transport unit 200 by the receiving / extracting unit 202 is transferred to the first heating unit 204 and the second heating unit 206 by the intermittent transport of the transport unit 200. The preform 232 is conveyed to the third heating unit 208 and the fourth heating unit 210 and heated while rotating the preform 232 by the rotation mechanism 266, and the preform 232 that has passed through the fourth heating unit 210 is primary. Blow molding is performed by the molding unit 212 to form a primary molded product, and then heat treatment is performed by the heat treatment unit 214, and then blow molding is performed to the final molded product by the final blow molding unit 216. This final molded product is final molded. From the unit 216, it is conveyed to the receiving / extracting unit 202 and taken out to the outside.

図3〜図9は、本発明の他の実施の形態に係る耐熱容器の成形装置を示す図である。   3-9 is a figure which shows the shaping | molding apparatus of the heat-resistant container which concerns on other embodiment of this invention.

この耐熱容器の成形装置は、プリフォーム300を射出成形するためのプリフォーム成形部302と、プリフォーム300をブロー成形して耐熱容器を成形するための耐熱容器成形部304と、プリフォーム成形部302から取り出したプリフォーム300を耐熱容器成形部304へと搬送するための搬送ライン306とを備える。   The heat-resistant container molding apparatus includes a preform molding unit 302 for injection-molding the preform 300, a heat-resistant container molding unit 304 for blow-molding the preform 300 to mold a heat-resistant container, and a preform molding unit. The conveyance line 306 for conveying the preform 300 taken out from 302 to the heat-resistant container molding unit 304 is provided.

プリフォーム成形部302は、射出成形部308と取出部310と、プリフォーム300を射出成形部308から取出部310へと回転搬送する回転搬送手段312とから構成されている。   The preform molding unit 302 includes an injection molding unit 308 and a take-out unit 310, and a rotary conveying means 312 that rotates and conveys the preform 300 from the injection molding unit 308 to the take-out unit 310.

射出成形部308は、射出装置314と、この射出装置314と接続した射出成形型(図示せず)とから構成され、同時に4個のプリフォーム300が同時成形されるようになっている。なお、本実施例ではプリフォーム成形部302と耐熱容器成形部304における同時搬送個数が4対4となっているが、熱処理時間に合わせてプリフォームの取数を8対4等任意の取数に変更できる。   The injection molding unit 308 includes an injection device 314 and an injection mold (not shown) connected to the injection device 314, and four preforms 300 are simultaneously molded. In the present embodiment, the simultaneous conveyance number in the preform molding unit 302 and the heat-resistant container molding unit 304 is 4 to 4, but the number of preforms can be any number such as 8 to 4 according to the heat treatment time. Can be changed.

取出部310は、射出成形部308と対向した位置に設けられ、射出成形部308で成形されたプリフォーム300が回転搬送手段312により180度回転して取出部310に搬送された時点で、プリフォーム300を回転搬送手段312から取り出すようになっている。   The take-out unit 310 is provided at a position opposite to the injection molding unit 308. When the preform 300 molded by the injection molding unit 308 is rotated 180 degrees by the rotary conveyance means 312 and conveyed to the extraction unit 310, the extraction unit 310 is placed. The reform 300 is taken out from the rotary conveying means 312.

回転搬送手段312は、射出成形部308および取出部310対応位置に割型から構成される4つのネック型(図示せず)が開閉可能に設けられ、このネック型に射出コア型(図示せず)が挿入されるようになっており、これらネック型及び射出コア型によりプリフォーム300を保持した状態で、プリフォーム300を射出成形部308から取出部310へと搬送し、取出部310において取出機構(図示せず)にてプリフォーム300が取り出されるようになっている。   The rotary conveying means 312 is provided with four neck molds (not shown) composed of split molds at positions corresponding to the injection molding part 308 and the take-out part 310 so as to be openable and closable. ) Is inserted, and the preform 300 is conveyed from the injection molding part 308 to the take-out part 310 while being held by the neck mold and the injection core mold, and taken out at the take-out part 310. The preform 300 is taken out by a mechanism (not shown).

耐熱容器成形部304は、受取・取出部202、第1〜第4の加熱部204,206,208,210、一次成形部212、熱処理部214および最終成形部216を、ほぼ長方形の搬送経路を形成する搬送手段200の搬送経路上に配置した、図1および図2に示す耐熱容器の成形装置と同一のものを採用しており、受取・取出部202に後述の受取・取出装置316が配設されている点で相違するだけであるため、その詳細については説明を省略する。   The heat-resistant container forming unit 304 includes a receiving / extracting unit 202, first to fourth heating units 204, 206, 208, 210, a primary forming unit 212, a heat treatment unit 214, and a final forming unit 216 through a substantially rectangular conveyance path. The same apparatus as the heat-resistant container forming apparatus shown in FIGS. 1 and 2 arranged on the conveying path of the conveying means 200 to be formed is adopted, and a receiving / extracting device 316 described later is arranged in the receiving / extracting section 202. Since the only difference is in the point where it is provided, the description thereof is omitted.

搬送ライン306は、プリフォーム成形部302の取出部310で取り出したプリフォーム300を耐熱容器成形部304の受取・取出部202へと搬送するためのもので、その搬送途中においてプリフォーム300を冷却して耐熱容器成形部304へと供給できるようにしている。   The conveyance line 306 is for conveying the preform 300 taken out by the take-out unit 310 of the preform molding unit 302 to the receiving / extracting unit 202 of the heat-resistant container molding unit 304, and the preform 300 is cooled during the conveyance. Thus, it can be supplied to the heat-resistant container molding unit 304.

例えば、プリフォーム300を耐熱容器成形部304におけるブロー成形温度よりも十分に低い温度とすることで熱履歴の影響を少なくするため、好ましくは約50℃以下、さらに好ましくは30℃程度まで冷却可能に搬送距離および搬送時間が設定されている。この場合、搬送時間は約5分程度であることが好ましい。この時間はプリフォームの肉厚に応じて任意に変更可能である。   For example, in order to reduce the influence of the thermal history by setting the preform 300 to a temperature sufficiently lower than the blow molding temperature in the heat-resistant container molding part 304, it is preferably cooled to about 50 ° C. or less, more preferably about 30 ° C. The transport distance and transport time are set in In this case, the conveyance time is preferably about 5 minutes. This time can be arbitrarily changed according to the thickness of the preform.

また、搬送ライン306は、プリフォーム300を自転させながら搬送する自転搬送手段318を備える。   Further, the conveyance line 306 includes a rotation conveyance unit 318 that conveys the preform 300 while rotating the preform 300.

自転搬送手段318は、プリフォーム300を同時成形個数(4個)ずつ間欠搬送する上流側の間欠自転搬送手段320と、この間欠自転搬送手段320により搬送されたプリフォーム300を連続して搬送する下流側の連続自転搬送手段322とから構成され、間欠搬送手段320では、搬送途中においてプリフォーム300同士がくっつかないようにプリフォーム成形部302の取出部310から取り出されたピッチで搬送されるようになっており、連続搬送手段322ではプリフォーム300がストックされるように密接して搬送されるよう搬送速度を調整するのが好ましい。なお、間欠搬送手段320は、プリフォーム成形部302の取出部310との接続部分が、取出部310におけるプリフォーム300の配列方向と平行に配置され、連続搬送手段322は、耐熱容器成形部304の受取・取出部202との接続部分が受取・取出部202に対して直交する方向で配設されている。   The rotation conveyance means 318 continuously conveys the upstream intermittent rotation conveyance means 320 that intermittently conveys the preform 300 by the simultaneous molding number (four) and the preform 300 conveyed by the intermittent rotation conveyance means 320. It is composed of a continuous rotation conveyance means 322 on the downstream side, and the intermittent conveyance means 320 conveys the preform 300 at a pitch extracted from the extraction portion 310 of the preform molding unit 302 so that the preforms 300 do not stick together during the conveyance. It is preferable that the continuous conveying means 322 adjust the conveyance speed so that the preform 300 is conveyed closely so that it is stocked. The intermittent conveying means 320 has a connecting portion with the take-out section 310 of the preform molding section 302 arranged parallel to the array direction of the preforms 300 in the take-out section 310, and the continuous conveyance means 322 has a heat-resistant container molding section 304. The connection part with the receiving / extracting part 202 is arranged in a direction orthogonal to the receiving / extracting part 202.

間欠搬送手段320および連続搬送手段322は、プリフォーム300のネック324におけるサポートリング326の下面を支持するガイドレール328と、このガイドレール328と平行に配設され、プリフォーム300を挟んでそのサポートリング326の下面を支持する搬送ベルト330と、ベルト駆動モータ332とから構成され、間欠搬送手段320ではベルト駆動モータ332による搬送ベルト330の間欠移動によりプリフォーム300の間欠搬送が行われ、連続搬送手段322ではベルト駆動モータ332による搬送ベルト330の連続移動によりプリフォーム300の連続搬送が行われるようになっている(図4および図5参照)。   The intermittent conveying means 320 and the continuous conveying means 322 are arranged in parallel to the guide rail 328 that supports the lower surface of the support ring 326 in the neck 324 of the preform 300, and supports the support 300 across the preform 300. Consisting of a conveyor belt 330 that supports the lower surface of the ring 326, and a belt drive motor 332, the intermittent conveyance means 320 performs intermittent conveyance of the preform 300 by intermittent movement of the conveyance belt 330 by the belt drive motor 332, and continuous conveyance. In the means 322, the preform 300 is continuously conveyed by the continuous movement of the conveyor belt 330 by the belt drive motor 332 (see FIGS. 4 and 5).

さらに、間欠搬送手段320では、図5に示すように、プリフォーム300を冷却するための冷却手段334を備え、プリフォーム300を強制的に冷却することにより、プリフォーム同士のくっつきを確実に防止すると共に、間欠搬送手段320の搬送距離を短くしている。さらに加えて、連続搬送手段322にも冷却手段を設けるとより冷却が確実となる。   Further, as shown in FIG. 5, the intermittent conveying means 320 includes a cooling means 334 for cooling the preform 300, and the preform 300 is forcibly cooled to reliably prevent the preforms from sticking to each other. In addition, the conveyance distance of the intermittent conveyance means 320 is shortened. In addition, if the continuous conveying means 322 is also provided with a cooling means, the cooling is more reliable.

この冷却手段334は、搬送されるプリフォーム300の下方位置に配設した軸流ファン336と、この軸流ファン336とプリフォーム300との間に配設された多数の孔338を有する板340とから構成され、プリフォーム300に対して均一に冷却エアを供給できるようになっている。   The cooling means 334 includes a plate 340 having an axial fan 336 disposed at a lower position of the preform 300 to be conveyed and a plurality of holes 338 disposed between the axial fan 336 and the preform 300. The cooling air can be uniformly supplied to the preform 300.

このようにプリフォーム成形部302の取出部310から取り出されたプリフォーム300を間欠搬送手段320により同時成形個数ずつ間欠搬送し、この間欠搬送手段320により搬送されたプリフォーム300を、連続搬送手段322によって、密接状態で耐熱容器成形部304の受取・取出部202に対し供給することにより、取出部310から取り出されたばかりのプリフォーム300をくっつくことなく搬送し、十分に冷却された状態で密接搬送することによりプリフォーム300の十分なストック量を確保することができる。   The preforms 300 thus taken out from the take-out section 310 of the preform molding section 302 are intermittently conveyed by the simultaneous conveying number by the intermittent conveying means 320, and the preform 300 conveyed by the intermittent conveying means 320 is continuously conveyed means. The preform 300 just taken out from the take-out part 310 is conveyed without sticking by being supplied to the receiving / extracting part 202 of the heat-resistant container molding part 304 in a close state by 322, and closely in a sufficiently cooled state. By transporting, a sufficient stock amount of the preform 300 can be secured.

そして、このようにして連続搬送手段322により密接状態でストックされたプリフォーム300は、耐熱容器成形部304の受取・取出部202に配設した受取・取出装置316によって耐熱容器成形部304の搬送手段200へと受け渡されるようになっている。   The preform 300 stocked in close contact by the continuous conveying means 322 in this way is conveyed to the heat-resistant container molding unit 304 by the receiving / extracting device 316 disposed in the receiving / extracting unit 202 of the heat-resistant container molding unit 304. It is delivered to the means 200.

受取・取出装置316は、連続搬送手段322から密接状態で送られたプリフォーム300を耐熱容器成形部304における同時成形ピッチに変換して受け取るピッチ変換機構342と、このピッチ変換機構342にてピッチ変換された同時成形個数のプリフォーム300をピッチ変換機構342から受け取って受取・取出部202に位置する搬送手段200の搬送部材220に受け渡すと共に、耐熱容器成形部304による一サイクルの成形が終了して最終成形部216から受取・取出部202へと搬送された最終成形品344(図9参照)を搬送部材220から受け取って外部へ取り出す受取・取出機構346とから構成される。   The receiving / extracting device 316 converts the preform 300 sent in close contact from the continuous conveying means 322 into a simultaneous forming pitch in the heat-resistant container forming unit 304 and receives it, and the pitch converting mechanism 342 provides a pitch. The converted preform 300 having the same number of simultaneous moldings is received from the pitch converting mechanism 342 and transferred to the conveying member 220 of the conveying means 200 located in the receiving / extracting unit 202, and one cycle of molding by the heat-resistant container molding unit 304 is completed. The final molded product 344 (see FIG. 9) conveyed from the final molding unit 216 to the receiving / extracting unit 202 is received from the conveying member 220 and is taken out to the outside.

ピッチ変換機構342は、図6〜図8に示すように、受取・取出部202の搬送手段200と平行に配設され、連続搬送手段322と直交して接触可能にされると共に、耐熱容器成形部304における同時成形ピッチで、連続搬送手段322の接触側に形成された同時成形個数分のプリフォーム支持凹部348を有するピッチ変換部材350と、このピッチ変換部材350を受取・取出部202の搬送手段200と平行に搬送部材220対応位置まで移動案内するリニアガイドレール352と、ピッチ変換部材350をリニアガイドレール352に沿って移動させるロッドレスシリンダ354とを備える。   As shown in FIGS. 6 to 8, the pitch conversion mechanism 342 is arranged in parallel with the conveying means 200 of the receiving / extracting section 202, and can be brought into contact with the continuous conveying means 322 at a right angle, and is formed into a heat resistant container. A pitch converting member 350 having preform supporting recesses 348 corresponding to the number of simultaneous moldings formed on the contact side of the continuous conveying means 322 at the simultaneous molding pitch in the section 304, and conveying the pitch converting member 350 to the receiving / extracting unit 202. A linear guide rail 352 that moves and guides to a position corresponding to the conveying member 220 in parallel with the means 200 and a rodless cylinder 354 that moves the pitch conversion member 350 along the linear guide rail 352 are provided.

そして、このロッドレスシリンダ354によりリニアガイドレール352に沿ってピッチ変換部材350を搬送手段200側へスライド移動させると、連続搬送手段322に密接状態でストックされているプリフォーム300がピッチ変換部材350のプリフォーム支持凹部348に順次挿入されて受け取られ、同時成形ピッチで受取・取出部202に位置している搬送部材220と対応する位置に位置決めされるようになっている。   When the rod-less cylinder 354 slides the pitch converting member 350 along the linear guide rail 352 toward the conveying means 200, the preform 300 stocked in close contact with the continuous conveying means 322 becomes the pitch converting member 350. The preform supporting recesses 348 are sequentially inserted and received, and are positioned at a position corresponding to the conveying member 220 located in the receiving / extracting portion 202 at the same molding pitch.

受取・取出機構346は、耐熱容器成形部304の受取・取出部202における搬送手段200の搬送部材220の停止位置と対向する位置に開閉可能に配設された4つのチャック356と、これらチャック356をピッチ変換機構342側と搬送手段200側との間で反転して水平に位置決めする反転機構358と、チャック356を搬送手段200の搬送部材220およびピッチ変換部材350に相応する高さ位置と、それよりも若干上方の位置との間で昇降させる昇降機構360と、チャック356を搬送部材220の対応位置と、ピッチ変換部材350のプリフォーム支持凹部348対応位置との間で水平移動させる水平移動機構362とを備えている。   The receiving / extracting mechanism 346 includes four chucks 356 that can be opened and closed at positions that oppose the stop position of the conveying member 220 of the conveying means 200 in the receiving / extracting section 202 of the heat-resistant container forming section 304, and these chucks 356. Is reversed between the pitch converting mechanism 342 side and the conveying means 200 side and horizontally positioned, and the chuck 356 is at a height corresponding to the conveying member 220 and the pitch converting member 350 of the conveying means 200, Elevating mechanism 360 that moves up and down slightly above the position, and horizontal movement that causes chuck 356 to move horizontally between the corresponding position of conveyance member 220 and the position corresponding to preform support recess 348 of pitch conversion member 350. And a mechanism 362.

チャック356は、一対のチャック部材356a,356bで構成され、これら一対のチャック部材356a,356bを、チャック駆動シリンダ364により左右逆方向に連動してスライド可能な一対の開閉ロッド366a,366bにより開閉可能にしている。具体的には、一対の開閉ロッド366a,366bは、ラックアンドピニオン等の連動機構を介して左右逆方向にスライド可能に連結され、その一方の開閉ロッド366a又は366bに一方のチャック部材356a又は356bが固定され、他方の開閉ロッド366a又は366bに他方のチャック部材356a又は356bが固定され、開閉ロッド366a又は366bの一方に接続されたチャック駆動シリンダ364により一方の開閉ロッド366a又は366bに駆動力を伝達すると、双方の開閉ロッド366a,366bが連動機構を介して互いに逆方向にスライドし、それらにそれぞれ固定されたチャック部材356a,356bが互いに逆方向に移動してチャック356が開閉することとなる。   The chuck 356 is composed of a pair of chuck members 356a and 356b, and the pair of chuck members 356a and 356b can be opened and closed by a pair of opening and closing rods 366a and 366b that can be slid in synchronization with the chuck drive cylinder 364 in the left and right directions. I have to. Specifically, the pair of opening / closing rods 366a, 366b are connected to each other through a linkage mechanism such as a rack and pinion so as to be slidable in the left and right direction, and one chuck member 356a or 356b is connected to the one opening / closing rod 366a or 366b. The other chuck member 356a or 356b is fixed to the other open / close rod 366a or 366b, and a driving force is applied to the one open / close rod 366a or 366b by the chuck drive cylinder 364 connected to one of the open / close rod 366a or 366b. When transmitted, both the open / close rods 366a and 366b slide in the opposite directions via the interlocking mechanism, and the chuck members 356a and 356b fixed thereto move in the opposite directions to open and close the chuck 356. .

反転機構358は、一対の開閉ロッド366a,366bの一端に連結され、これら一対の開閉ロッド366a,366bを一体に回転させる反転アクチュエータ368により、搬送手段200側とピッチ変換機構342側との間で反転させ、水平位置で停止できるようにしている。   The reversing mechanism 358 is connected to one end of a pair of opening / closing rods 366a, 366b, and is connected between the conveying means 200 side and the pitch converting mechanism 342 side by a reversing actuator 368 that rotates the pair of opening / closing rods 366a, 366b integrally. It is reversed so that it can stop at a horizontal position.

昇降機構360は、チャック356および反転機構358を昇降可能に支持し、これらを一体に昇降駆動する昇降シリンダ370を備え、これらを一体に昇降させて、プリフォーム300の受け取りと受け渡しを可能にしている。   The raising / lowering mechanism 360 includes a raising / lowering cylinder 370 that supports the chuck 356 and the reversing mechanism 358 so as to be movable up and down, and integrally lifts and lowers them so that the preform 300 can be received and transferred. Yes.

水平移動機構362は、チャック356および反転機構358を一体に昇降させる昇降機構360を、ピッチ変換機構342のプリフォーム300受取位置と、搬送部材220への受渡位置との間で水平移動可能に案内する水平ガイド372と、昇降機構360を前記位置間で水平移動させるための水平移動シリンダ374とを備えている。   The horizontal movement mechanism 362 guides an elevating mechanism 360 that lifts and lowers the chuck 356 and the reversing mechanism 358 integrally so as to be horizontally movable between the preform 300 receiving position of the pitch converting mechanism 342 and the delivery position to the conveying member 220. And a horizontal movement cylinder 374 for horizontally moving the elevating mechanism 360 between the positions.

従って、ピッチ変換機構342から搬送手段200の搬送部材222にプリフォーム300を受け渡す場合には、図8に示すように、チャック356が昇降機構360により上昇位置で支持された最終成形品344の取出し完了位置で、反転機構358によりチャック356をピッチ変換部材350の上方位置へと反転させ、その位置でチャック駆動シリンダ364によりチャック356を開く。   Therefore, when the preform 300 is delivered from the pitch converting mechanism 342 to the conveying member 222 of the conveying means 200, the chuck 356 is supported by the elevating mechanism 360 at the raised position as shown in FIG. At the take-out completion position, the chuck 356 is reversed to the upper position of the pitch conversion member 350 by the reversing mechanism 358, and the chuck 356 is opened by the chuck drive cylinder 364 at that position.

次に、ピッチ変換機構342のピッチ変換部材350がプリフォーム300を保持して受取・取出機構346対応位置に位置する状態で、水平移動シリンダ374により水平ガイド372に沿って昇降機構に一体に支持されたチャック356および反転機構358をピッチ変換機構342側へスライド移動させる。   Next, in a state where the pitch conversion member 350 of the pitch conversion mechanism 342 holds the preform 300 and is positioned at a position corresponding to the receiving / extracting mechanism 346, it is integrally supported by the lifting mechanism along the horizontal guide 372 by the horizontal moving cylinder 374. The chuck 356 and the reversing mechanism 358 thus moved are slid to the pitch conversion mechanism 342 side.

次いで、昇降機構360によりチャック356をピッチ変換部材350上まで下降させる。   Next, the chuck 356 is lowered onto the pitch conversion member 350 by the lifting mechanism 360.

次に、チャック駆動シリンダ364によりチャック356を閉じると、チャック356がピッチ変換部材350のプリフォーム支持凹部348に支持されたプリフォーム300のネックを把持することとなり、その状態で昇降機構360によりチャック356を上昇位置まで上昇させ、その位置で反転機構358によりチャック356を搬送部材220側へ反転させ、水平移動機構362によりチャック356を搬送部材220側へ水平移動させると、チャック356に保持されたプリフォーム300がネック324を下方に位置した倒立状態で、搬送部材220の上方に位置する状態となる。   Next, when the chuck 356 is closed by the chuck drive cylinder 364, the chuck 356 grips the neck of the preform 300 supported by the preform support recess 348 of the pitch conversion member 350, and in that state the chuck 356 When the chuck 356 is raised to the raised position, the chuck 356 is reversed to the conveying member 220 side by the reversing mechanism 358, and the chuck 356 is horizontally moved to the conveying member 220 side by the horizontal moving mechanism 362, the chuck 356 holds the chuck 356. The preform 300 is positioned above the conveying member 220 in an inverted state in which the neck 324 is positioned below.

次いで、昇降機構360によりチャック356を下降させると、チャック356に保持されたプリフォーム300のネック324内に、搬送部材220の搬送用ピン236が差し込まれて支持された状態となり、この状態でチャック駆動シリンダ364によりチャック356を開いて、水平移動機構362によりチャック356をピッチ変換機構342側に水平移動させれば、ピッチ変換機構342から搬送部材220へのプリフォーム300の受け渡しが終了し、搬送部材220によるプリフォーム300の搬送が可能な状態となる。   Next, when the chuck 356 is lowered by the elevating mechanism 360, the transfer pin 236 of the transfer member 220 is inserted into and supported by the neck 324 of the preform 300 held by the chuck 356, and in this state, the chuck When the chuck 356 is opened by the drive cylinder 364 and the chuck 356 is horizontally moved to the pitch conversion mechanism 342 side by the horizontal movement mechanism 362, the delivery of the preform 300 from the pitch conversion mechanism 342 to the conveyance member 220 is completed, and the conveyance is performed. The preform 220 can be transported by the member 220.

また、この受取・取出機構346は、耐熱容器成形部304によって成形された最終成形品344が受取・取出部202へと搬送されてきた場合に、図9に示すように、倒立状態の最終成形品344のネックをチャック356にて把持し、反転機構358によって反転させ、その位置でチャック356を開いて落下させることにより、落下シュータ376を介して外部に取出可能とされてる。   In addition, when the final molded product 344 molded by the heat-resistant container molding unit 304 is conveyed to the receiving / extracting unit 202, the receiving / extracting mechanism 346 has an inverted final molding as shown in FIG. The neck of the product 344 is gripped by the chuck 356, reversed by the reversing mechanism 358, and the chuck 356 is opened and dropped at that position, so that it can be taken out through the dropping shooter 376.

このように、受取・取出機構346をピッチ変換機構342から受け取り、搬送部材220に受け渡す機能と、耐熱容器成形部304にて成形された最終成形品344を搬送部材220から受け取って、外部へ取り出す機能とを兼用にすることにより、これらの機能を有する機構を個別に設ける場合に比し、機構の簡略化がなされ、設置スペースも省略して省スペースを実現することが可能となる。   In this way, the receiving / extracting mechanism 346 is received from the pitch converting mechanism 342 and transferred to the conveying member 220, and the final molded product 344 molded by the heat-resistant container molding unit 304 is received from the conveying member 220, and is then sent to the outside. By combining the function of taking out, it is possible to simplify the mechanism and to save the space by omitting the installation space as compared with the case where a mechanism having these functions is provided individually.

図10〜図19は、本発明のさらに他の実施の形態に係る耐熱容器の成形装置および成形方法を示す図である。   FIGS. 10-19 is a figure which shows the shaping | molding apparatus and shaping | molding method of a heat-resistant container which concern on further another embodiment of this invention.

まず、耐熱容器の成形装置について説明すると、この成形装置は、機台10と、機台10の上方位置に取り付けた上部固定板12と、機台10と上部固定板12との間に設けた上部基板14と、この上部基板14の下面側の位置で回転可能に設けられた回転板16とを備える。   First, the heat-resistant container forming apparatus will be described. This forming apparatus is provided between the machine base 10, the upper fixing plate 12 attached to the upper position of the machine base 10, and the machine base 10 and the upper fixing plate 12. An upper substrate 14 and a rotating plate 16 provided rotatably at a position on the lower surface side of the upper substrate 14 are provided.

また、機台10と回転板16との間は成形空間として利用され、回転板16が120度回転して停止する位置毎に、受取、取出部18、熱処理部20および最終成形部22が設けられている。   Further, the space between the machine base 10 and the rotating plate 16 is used as a molding space, and a receiving / extracting unit 18, a heat treatment unit 20 and a final molding unit 22 are provided at each position where the rotating plate 16 rotates 120 degrees and stops. It has been.

上部固定板12は、機台10上に立設した3本のタイロッド24の上端部に取り付け固定され、3本のタイロッド24の上端部を連結した状態となっている。   The upper fixing plate 12 is attached and fixed to the upper ends of the three tie rods 24 erected on the machine base 10 and is connected to the upper ends of the three tie rods 24.

上部基板14は、タイロッド24に沿って上部固定板12下方で上下方向に移動可能に取り付けられている。また、この上部基板14は、機台10と上部基板14との間に配設された上部基板駆動装置26によって昇降可能にされている。   The upper substrate 14 is attached so as to be movable in the vertical direction below the upper fixing plate 12 along the tie rod 24. The upper substrate 14 can be moved up and down by an upper substrate driving device 26 disposed between the machine base 10 and the upper substrate 14.

上部基板駆動装置26は、機台10に取り付けられた上部基板昇降シリンダ28と、この上部基板昇降シリンダ28を貫通して進退動を行う上部基板昇降ロッド30とから構成される。この上部基板昇降ロッド30は、上端が上部基板14のセンター位置に回転可能に取り付けられた連結ブロック42に対し回転可能に連結されている。また、上部基板昇降ロッド30の下端は機台10内に突出し得るようにされており、機台10内の上部基板昇降ロッド30対応位置には、上部基板昇降ロッド30の下端が当接して、上部基板14の下降下限位置を規制するストッパ32が設けられている。   The upper substrate drive device 26 includes an upper substrate lifting cylinder 28 attached to the machine base 10 and an upper substrate lifting rod 30 that moves forward and backward through the upper substrate lifting cylinder 28. The upper substrate lifting / lowering rod 30 is rotatably connected to a connection block 42 whose upper end is rotatably attached to the center position of the upper substrate 14. In addition, the lower end of the upper substrate lifting rod 30 can protrude into the machine base 10, and the lower end of the upper substrate lifting rod 30 is in contact with the position corresponding to the upper substrate lifting rod 30 in the machine base 10. A stopper 32 for restricting the lowering lower limit position of the upper substrate 14 is provided.

回転板16は、上部基板14の下面外縁部に設けたガイドレール34によって回転可能に保持された状態となっており、上部基板14の昇降と共に昇降可能にされている。   The rotating plate 16 is rotatably held by a guide rail 34 provided on the outer edge of the lower surface of the upper substrate 14 and can be moved up and down as the upper substrate 14 moves up and down.

また、この回転板16は、回転アクチュエータ36によって120度ずつ回転停止を繰り返す状態となっている。この回転アクチュエータ36は、上部基板14の上面に設けた取付ブロック38に取り付けられ、その出力軸40が連結ブロック42を介して回転板16の上面に連結された状態となっている。   Further, the rotating plate 16 is repeatedly stopped by 120 degrees by the rotary actuator 36. The rotary actuator 36 is attached to a mounting block 38 provided on the upper surface of the upper substrate 14, and its output shaft 40 is connected to the upper surface of the rotating plate 16 via a connecting block 42.

また、回転板16の下面には、前述の受取、取出部18、熱処理部20および最終成形部22の位置に対応してそれぞれ120度の間隔で3つのネック支持部材固定板44が設けられている。   Further, on the lower surface of the rotating plate 16, three neck support member fixing plates 44 are provided at intervals of 120 degrees corresponding to the positions of the receiving, taking-out unit 18, heat treatment unit 20 and final molding unit 22, respectively. Yes.

このネック支持部材固定板44は、一対の分割板46から構成され、この分割板46に成形品のネックを把持する分割型からなるネック支持部材48が取り付けられている。また、分割板46は、常時閉方向に付勢されており、両端部付近に設けたくさび孔50を用いて分離開放可能にされている。そして、ネック支持部材48にネックが把持された状態で、成形品が受取、取出部18から熱処理部20、最終成形部22、受取、取出部18へと循環、搬送されるようになっている。なお、ネック支持部材固定板44には4つのネック支持部材48が取り付けられ、4個の成形品が同時に搬送されるようになっている。   The neck support member fixing plate 44 is composed of a pair of split plates 46, and a split neck type support member 48 that holds a neck of a molded product is attached to the split plate 46. Further, the dividing plate 46 is normally biased in the closing direction, and can be separated and opened using the wedge holes 50 provided in the vicinity of both ends. In the state where the neck is held by the neck support member 48, the molded product is received and circulated and conveyed from the take-out unit 18 to the heat treatment unit 20, the final forming unit 22, the receiving and take-out unit 18. . Note that four neck support members 48 are attached to the neck support member fixing plate 44, and four molded products are conveyed simultaneously.

受取、取出部18は、プリフォームをブロー成形して成形された一次成形品52を受け取ると共に、最終ブロー成形された最終成形品54を取り出すもので、図21に示すように、上部基板14上に一対のガイドロッド56を立設し、このガイドロッド56の上端部に型開カム駆動シリンダ58を取り付けたシリンダ固定板60を固定すると共に、上部基板14とシリンダ固定板60との間で型開カム駆動シリンダ58によりガイドロッド56に沿って可動板62が昇降可能にされている。可動板62の下面には、型開カム固定板64が取り付けられ、この型開カム固定板64の前記くさび孔50対応位置に一対の型開カム66が垂下状態で取り付けられている。   The receiving / extracting unit 18 receives a primary molded product 52 formed by blow-molding a preform and takes out a final molded product 54 formed by final blow molding. As shown in FIG. A pair of guide rods 56 is erected, and a cylinder fixing plate 60 with a mold opening cam drive cylinder 58 attached to the upper end of the guide rod 56 is fixed, and the die is fixed between the upper substrate 14 and the cylinder fixing plate 60. The movable plate 62 can be moved up and down along the guide rod 56 by the open cam drive cylinder 58. A mold opening cam fixing plate 64 is attached to the lower surface of the movable plate 62, and a pair of mold opening cams 66 are attached in a hanging state at positions corresponding to the wedge holes 50 of the mold opening cam fixing plate 64.

そして、上部基板14が下限位置にある状態で、型開カム駆動シリンダ58により型開カム66が下降されると、図12(B)に示すように、型開カム66の先端がネック支持部材固定板44のくさび孔50に差し込まれ、分割板46を押し広げてネック支持部材48を開放することで一次成形品52のネック68のネック支持部材48への挿入が可能となり、型開カム66の上昇によりネック支持部材48が閉じてネック68の把持が可能となる。また、型開カム66の下降によってネック支持部材48を開放することで、最終成形品54のネック68を開放して取り出すことが可能となる。なお、この受取、取出部18では、図示せぬが、公知のロボット装置等によりネック支持部材48に対する一次成形品52又は最終成形品54の受け渡しが行われるようになっている。   When the mold opening cam 66 is lowered by the mold opening cam drive cylinder 58 in a state where the upper substrate 14 is at the lower limit position, as shown in FIG. By inserting the split plate 46 into the wedge hole 50 of the fixing plate 44 and opening the neck support member 48, the neck 68 of the primary molded product 52 can be inserted into the neck support member 48. As a result, the neck support member 48 is closed and the neck 68 can be gripped. Further, by opening the neck support member 48 by lowering the mold opening cam 66, the neck 68 of the final molded product 54 can be opened and taken out. In the receiving / extracting portion 18, although not shown, the primary molded product 52 or the final molded product 54 is delivered to the neck support member 48 by a known robot device or the like.

熱処理部20は、機台10上に4個の熱処理型70を設置すると共に、上部基板14上に4本の熱処理用コア型72を昇降可能に設置し、一次成形品52を熱処理型70内で、内部から加圧しつつ熱処理型70の内壁面に接触させて加熱するようにしている。一次成形品52は、他の装置により、最終成形品54よりも若干大きな内壁面を有する一次ブロー成形型を用いて成形される。   The heat treatment unit 20 installs four heat treatment molds 70 on the machine base 10 and four heat treatment core molds 72 on the upper substrate 14 so as to be movable up and down. The primary molded product 52 is placed in the heat treatment mold 70. Thus, heating is performed by contacting the inner wall surface of the heat treatment mold 70 while applying pressure from the inside. The primary molded product 52 is molded by another apparatus using a primary blow molding die having an inner wall surface slightly larger than the final molded product 54.

この場合、一次成形品52は、ネック68から肩部74にかけて広がり、胴部76では軸方向において凹凸のほとんどない筒状に成形されているため、熱処理型70においては、一次成形品52の肩部74にあたる肩部加熱ブロック78を割型で構成し、筒状の胴部76にあたる胴部加熱ブロック80は、周方向に一体のポット状に形成している。肩部加熱ブロック78は、開閉シリンダ82により開閉可能にされている。また、底部加熱ブロック84には、上底型86が設けられている。そして、胴部加熱ブロック80および底部加熱ブロック84の外周面にバンドヒータ88が取り付けられ、肩部加熱ブロック78および上底加熱ブロック86には、ヒータ79を内蔵させるようにしている。なお、ヒータ79にかえて温調媒体を供給することも可能である。このように、熱処理型70の内壁面を一次成形品52の形状に対応させ、その肩部74にあたる部分の肩部加熱ブロック78のみを割型で構成することにより、高価な割型部分を最小限にし、装置全体のコスト、設置面積を小さくすると共に、開閉シリンダ82も小型のものにすることができる。   In this case, the primary molded product 52 spreads from the neck 68 to the shoulder 74, and the body 76 is molded into a cylindrical shape having almost no irregularities in the axial direction. Therefore, in the heat treatment mold 70, the shoulder of the primary molded product 52 is formed. The shoulder heating block 78 corresponding to the portion 74 is formed in a split shape, and the body heating block 80 corresponding to the cylindrical body 76 is formed in an integral pot shape in the circumferential direction. The shoulder heating block 78 can be opened and closed by an opening / closing cylinder 82. The bottom heating block 84 is provided with an upper bottom mold 86. Band heaters 88 are attached to the outer peripheral surfaces of the trunk heating block 80 and the bottom heating block 84, and the heater 79 is built in the shoulder heating block 78 and the upper bottom heating block 86. It is also possible to supply a temperature control medium instead of the heater 79. As described above, the inner wall surface of the heat treatment mold 70 is made to correspond to the shape of the primary molded product 52, and only the shoulder heating block 78 corresponding to the shoulder 74 is constituted by the split mold, thereby minimizing the expensive split mold portion. Therefore, the cost and installation area of the entire apparatus can be reduced, and the opening / closing cylinder 82 can be made smaller.

熱処理用コア型72は、上部基板14に立設した一対のガイドロッド56の上端部に取り付けられたシリンダ固定板60に設置されたコア駆動シリンダ90により、ガイドロッド56に沿って昇降可能にされた可動板62に、熱処理用コア固定板92を介して取り付けられ、コア駆動シリンダ90により昇降して熱処理型70に対し型開閉可能にされている。この熱処理用コア型72は、先端からエアを供給できるようになっており、一次成形品52内にエアを導入し、内圧をかけ、一次成形品52の熱処理型70の内壁面に接触させて加熱することにより、伝熱効果を向上させると共に、一次成形品52の熱処理中の熱収縮を防止して偏肉を抑えるようにしている。   The heat treatment core mold 72 can be moved up and down along the guide rod 56 by a core drive cylinder 90 installed on a cylinder fixing plate 60 attached to the upper end of a pair of guide rods 56 erected on the upper substrate 14. It is attached to the movable plate 62 via a heat treatment core fixing plate 92 and is moved up and down by a core drive cylinder 90 so that the mold can be opened and closed with respect to the heat treatment mold 70. The heat treatment core die 72 can supply air from the tip, introduce air into the primary molded product 52, apply internal pressure, and contact the inner wall surface of the heat treatment die 70 of the primary molded product 52. By heating, the heat transfer effect is improved, and heat shrinkage during heat treatment of the primary molded product 52 is prevented to suppress uneven thickness.

この場合、一次成形品52の内部へ導入するエア圧力は2〜10kg/cm2の範囲としている。また、熱処理の温度条件としては、肩部温度が150〜220℃、胴部温度が150〜220℃、熱処理時間は5〜10秒としている。この熱処理時間は、5秒未満では熱処理後の中間成形品94の収縮程度が不安定となり中間成形品94の大きさにバラつきができることとなり、10秒を越える場合には成形サイクル上好ましくないことによる。   In this case, the air pressure introduced into the primary molded product 52 is in the range of 2 to 10 kg / cm 2. Moreover, as temperature conditions of heat processing, shoulder part temperature is 150-220 degreeC, trunk | drum temperature is 150-220 degreeC, and heat processing time is 5-10 second. If the heat treatment time is less than 5 seconds, the degree of shrinkage of the intermediate molded product 94 after heat treatment becomes unstable, and the size of the intermediate molded product 94 can vary, and if it exceeds 10 seconds, the molding cycle is not preferable. .

さらに、熱処理後の一次成形品52から中間成形品94の収縮容積率は10〜30%(軸方向の収縮率5〜15%、周方向の収縮率0〜15%)になるように設定し、最終ブロー成形直前の中間成形品94の温度が約180℃になるように設定している。これによって、熱処理後中間成形品94の大きさが最終成形品54とほぼ同じか若干小さくされることになる。   Furthermore, the shrinkage volume ratio from the primary molded product 52 to the intermediate molded product 94 after heat treatment is set to be 10 to 30% (axial shrinkage 5 to 15%, circumferential shrinkage 0 to 15%). The temperature of the intermediate molded product 94 immediately before the final blow molding is set to be about 180 ° C. As a result, the size of the intermediate molded product 94 after heat treatment is substantially the same as or slightly smaller than the final molded product 54.

最終成形部22は、機台10上に最終ブロー成形型96を設置し、上部基板14上に4本のブローコア型98を昇降可能に設置し、熱処理を経た中間成形品94を、加熱した最終ブロー成形型96内で最終成形品54の形状にブロー成形するようにしている。   The final molding unit 22 has a final blow molding die 96 installed on the machine base 10, four blow core molds 98 are installed on the upper substrate 14 so as to be movable up and down, and the intermediate molded product 94 that has undergone heat treatment is heated Blow molding into the shape of the final molded product 54 is performed in the blow mold 96.

最終ブロー成形型96は、最終成形品54の形状を有する4つのキャビティー面を備えた割型状のものとなっており、この最終ブロー成形型96が型締装置100によって型締め可能にされている。この型締装置100は、片側にのみ駆動シリンダ102を有する牽引式のもとなっており、型締駆動時には図示しない同調機構により両側の割型が同期して開閉するようになっている。また、この最終ブロー成形型96には、底型駆動用シリンダ104により駆動する底型106が設けられている。また、この最終ブロー成形型96にはヒータ108が内蔵され、最終ブロー成形時に成形品を所望の耐熱温度以上に加熱して、最終成形品にブロー成形された際に生じた歪みを取り除くようにしている。なお、ヒータ108にかえて、温調媒体を用いるようにしても良い。   The final blow molding die 96 has a split mold shape having four cavity surfaces having the shape of the final molded product 54, and the final blow molding die 96 can be clamped by the mold clamping device 100. ing. The mold clamping device 100 is of a pulling type having a drive cylinder 102 only on one side, and the molds on both sides are opened and closed synchronously by a tuning mechanism (not shown) during mold clamping driving. The final blow molding die 96 is provided with a bottom die 106 driven by a bottom die driving cylinder 104. In addition, the final blow molding die 96 has a built-in heater 108, and the molded product is heated to a temperature higher than a desired heat-resistant temperature at the time of final blow molding so as to remove distortion generated when the final molded product is blow molded. ing. A temperature control medium may be used instead of the heater 108.

ブローコア型98は、上部基板14に立設した一対のガイドロッド56の上端部に取り付けられたシリンダ固定板60に設置されたブローコア駆動シリンダ110により、ガイドロッド56に沿って昇降可能にされた可動板62に、ブローコア固定板112を介して取り付けられ、ブローコア駆動シリンダ110により昇降して最終ブロー成形型96に対し型開閉可能にされている。また、このブローコア型98は、先端からブローエアを供給できるようになっている。   The blow core mold 98 is movable so that it can be moved up and down along the guide rod 56 by a blow core drive cylinder 110 installed on a cylinder fixing plate 60 attached to the upper ends of a pair of guide rods 56 erected on the upper substrate 14. It is attached to the plate 62 via a blow core fixing plate 112 and is moved up and down by a blow core drive cylinder 110 so that the mold can be opened and closed with respect to the final blow molding die 96. The blow core mold 98 can supply blow air from the tip.

そして、この最終成形部22においては、熱処理を経た、収縮して軟化状態にある中間成形品94を、最終成形品54の形状を有する最終ブロー成形型96内で、この最終ブロー成形型96を加熱した状態にしてブロー成形することで、形状を出すと同時に熱処理を行うようにしている。   Then, in the final molding part 22, the intermediate molded product 94 that has undergone heat treatment and is in a contracted and softened state is placed in the final blow molding die 96 having the shape of the final molded product 54. By performing blow molding in a heated state, heat treatment is performed at the same time as the shape is obtained.

この最終ブロー成形時の熱処理の条件は、最終ブロー成形型の温度が90〜100℃、ブロー成形時間が5〜15秒、ブローエアの圧力が15〜30kg/cm2の範囲に設定されている。このように、最終ブロー成形時に熱処理を行うことにより、最終ブロー成形時に発生する歪みをとることができ、耐熱性が向上する。また、このブロー成形時においては、中間成形品94が、最終成形品54の大きさとほぼ等しいか若干小さい程度となっているので、ほとんど延伸されない上に、中間成形品94が延伸適温よりも十分に高い温度なのでほとんど配向もせず、従って、この状態で歪みはほとんど発生しない状態となっている。なお、中間成形品94が最終成形品54とほぼ同じか若干小さい程度であるため、最終ブロー成形時の型締による挟み込みを防止できる。   The heat treatment conditions for the final blow molding are set such that the temperature of the final blow mold is 90 to 100 ° C., the blow molding time is 5 to 15 seconds, and the blow air pressure is 15 to 30 kg / cm 2. Thus, by performing heat treatment at the time of final blow molding, it is possible to take the distortion that occurs at the time of final blow molding and improve heat resistance. Further, at the time of this blow molding, the intermediate molded product 94 is approximately equal to or slightly smaller than the size of the final molded product 54, so that the intermediate molded product 94 is sufficiently stretched at a temperature suitable for stretching. Since the temperature is very high, there is almost no orientation. Therefore, in this state, almost no distortion occurs. In addition, since the intermediate molded product 94 is approximately the same as or slightly smaller than the final molded product 54, it is possible to prevent pinching due to mold clamping during final blow molding.

次に、前述の耐熱容器の成形装置を用いた耐熱容器の成形方法について図19を中心に説明する。   Next, a method for forming a heat-resistant container using the aforementioned heat-resistant container forming apparatus will be described with reference to FIG.

まず、この耐熱容器の成形装置とは別に、予め射出成形機により成形したプリフォームを一次ブロー成形によりブロー成形して一次成形品52を成形しておく。この一次成形品52は、最終成形品54よりも若干大きく成形される。例えば、この一次成形品52の成形条件は、一次ブロー成形時のプリフォームの表面温度が約100〜120℃、一次ブロー成形型の温度が常温で、最終成形品54の大きさよりも約10%大きく成形される。そして、予めブロー成形された一次成形品52を、図示せぬロボット装置等の受け渡し装置を用いて受取、取出部18に受け渡す。   First, separately from the molding apparatus for the heat-resistant container, a preform molded in advance by an injection molding machine is blow-molded by primary blow molding to form a primary molded product 52. The primary molded product 52 is molded slightly larger than the final molded product 54. For example, the molding condition of the primary molded product 52 is such that the surface temperature of the preform at the time of primary blow molding is about 100 to 120 ° C., the temperature of the primary blow molding die is room temperature, and about 10% of the size of the final molded product 54. Largely molded. Then, the primary molded product 52 blow-molded in advance is received and transferred to the take-out unit 18 using a transfer device such as a robot device (not shown).

受取、取出部18では、上部基板14が上部基板駆動装置26によって下限位置に位置決めされた状態となっている。また、型開カム66が型開カム駆動シリンダ58によって下降し、ネック支持部材固定板44のくさび孔50内に入り込んでネック支持部材48を開いた状態になっている。この状態で、(A)に示すように、このネック支持部材48に対して一次成形品52のネック68が挿入され、型開カム66が型開カム駆動シリンダ58により上昇してくさび孔50から離脱することにより、一次成形品52のネック支持部材48への受け渡しが終了することとなる。そして、この受け渡しが終了した状態で、上部基板駆動装置26によって上部基板14が上限位置まで上昇し、搬送状態に移行する。この上限位置は、一次成形品52の下端が熱処理部20の熱処理型70に当接しない高さに設定されている。そして、この状態で、回転アクチュエータ36により回転板16が120度回転させられて、(B)に示すように、その位置で停止し、一次成形品52が熱処理部20へと搬送される。なお、この回転時においては、型開カム66、熱処理用コア型72およびブローコア型98は回転板16の上方に退避した状態となっており、回転板16が確実に回転できる状態とされている。   In the receiving / extracting portion 18, the upper substrate 14 is positioned at the lower limit position by the upper substrate driving device 26. The mold opening cam 66 is lowered by the mold opening cam drive cylinder 58 and enters the wedge hole 50 of the neck support member fixing plate 44 so that the neck support member 48 is opened. In this state, as shown in (A), the neck 68 of the primary molded product 52 is inserted into the neck support member 48, and the mold opening cam 66 is raised by the mold opening cam drive cylinder 58, and from the wedge hole 50. By detaching, the delivery of the primary molded product 52 to the neck support member 48 is completed. Then, in the state where the delivery is completed, the upper substrate drive device 26 raises the upper substrate 14 to the upper limit position, and shifts to the transport state. This upper limit position is set to a height at which the lower end of the primary molded product 52 does not contact the heat treatment mold 70 of the heat treatment section 20. Then, in this state, the rotary plate 16 is rotated 120 degrees by the rotary actuator 36 and stops at that position as shown in (B), and the primary molded product 52 is conveyed to the heat treatment section 20. During this rotation, the mold opening cam 66, the heat treatment core mold 72, and the blow core mold 98 are in a state of being retracted above the rotating plate 16, so that the rotating plate 16 can be reliably rotated. .

熱処理部20では、(B)に示すように、一次成形品52が熱処理型70の上方に位置し、熱処理型70は肩部加熱ブロック78が開閉シリンダ82により開いた状態とされている。この状態で、上部基板駆動装置26を作動させて上部基板14を下限位置まで下降させ、一次成形品52を熱処理型70内に挿入する。この場合、肩部加熱ブロック78が開いた状態となっているため、一次成形品52は確実に熱処理型70内に挿入されることとなる。また、熱処理型70は一次成形品52よりも若干大きな内壁面に設定され、一次成形品52挿入時に一次成形品52が傷つくのを防止できるようになっている。   In the heat treatment section 20, the primary molded product 52 is positioned above the heat treatment mold 70, and the shoulder heating block 78 is opened by the open / close cylinder 82 as shown in FIG. In this state, the upper substrate driving device 26 is operated to lower the upper substrate 14 to the lower limit position, and the primary molded product 52 is inserted into the heat treatment mold 70. In this case, since the shoulder heating block 78 is in an open state, the primary molded product 52 is surely inserted into the heat treatment mold 70. Further, the heat treatment mold 70 is set to an inner wall surface slightly larger than the primary molded product 52 so that the primary molded product 52 can be prevented from being damaged when the primary molded product 52 is inserted.

次いで、(C)に示すように、開閉シリンダ82により肩部加熱ブロック78を閉じ、熱処理用コア駆動シリンダ90により熱処理用コア型72を下降させて、ネック支持部材48と組み合わせ、熱処理用コア型72から一次成形品52内にエアを導入し内圧を付加して、一次成形品52を熱処理型70の内壁面に接触させた状態で熱処理を行う。この熱処理は、中間成形品94が最終成形品54とほぼ同じか若干小さくなるように熱処理温度と時間を設定することにより行われる。例えば、導入エアの圧力は約2〜10kg/cm2で、肩部温度が150〜220℃、胴部温度が150〜220℃、熱処理時間が5〜10秒の範囲で行われる。このように設定することにより、熱処理後の一次成形品52から中間成形品94への収縮率が容積率で10〜30%(軸方向収縮率5〜15%、周方向収縮率0〜15%)の中間成形品94が得られることとなる。また、最終ブロー成形直前の中間成形品94の温度が約180℃になるように熱処理される。   Next, as shown in (C), the shoulder heating block 78 is closed by the opening / closing cylinder 82, the heat treatment core die 72 is lowered by the heat treatment core drive cylinder 90, and the heat treatment core die is combined with the neck support member 48. Air is introduced into the primary molded product 52 from 72 and internal pressure is applied, and heat treatment is performed in a state where the primary molded product 52 is in contact with the inner wall surface of the heat treatment mold 70. This heat treatment is performed by setting the heat treatment temperature and time so that the intermediate molded product 94 is substantially the same as or slightly smaller than the final molded product 54. For example, the pressure of the introduction air is about 2 to 10 kg / cm 2, the shoulder temperature is 150 to 220 ° C., the trunk temperature is 150 to 220 ° C., and the heat treatment time is 5 to 10 seconds. By setting in this way, the shrinkage rate from the primary molded product 52 to the intermediate molded product 94 after heat treatment is 10 to 30% by volume (axial shrinkage 5 to 15%, circumferential shrinkage 0 to 15%. ) Intermediate molded product 94 is obtained. Further, heat treatment is performed so that the temperature of the intermediate molded product 94 immediately before the final blow molding is about 180 ° C.

次に、熱処理が終了した状態で、開閉シリンダ82を作動させて型部加熱ブロック78を開くとともに、コア駆動シリンダを作動させて熱処理をコア93を上昇移動させ回転板から退避した状態とする。そして、上部基板駆動装置26を作動させて上部基板14を上限位置まで上昇させ、熱処理の済んだ一次成形品52を熱処理型70から引き抜き、次工程の搬送工程へと移行する。この場合、熱処理型70から引き抜かれた一次成形品52は、収縮して軟化状態にある中間成形品94となる。   Next, in a state where the heat treatment is completed, the open / close cylinder 82 is operated to open the mold heating block 78, and the core drive cylinder is operated to move the core 93 upward and retreat from the rotating plate. Then, the upper substrate driving device 26 is operated to raise the upper substrate 14 to the upper limit position, the heat-treated primary molded product 52 is pulled out from the heat treatment mold 70, and the process proceeds to the next transfer step. In this case, the primary molded product 52 pulled out from the heat treatment mold 70 becomes an intermediate molded product 94 that is contracted and softened.

次いで、回転アクチュエータ36により回転板16を120度回転させ、中間成形品94を最終成形部22へと搬送する。   Next, the rotating plate 16 is rotated 120 degrees by the rotary actuator 36, and the intermediate molded product 94 is conveyed to the final molding unit 22.

最終成形部22では、(D)に示すように、最終ブロー成形型96が型締装置100によって型開状態となっており、ブローコア型98はブローコア駆動シリンダ110により回転板16上方に退避した状態となっている。この状態で、上部基板駆動装置26により、上部基板14を下限位置まで下降させて、中間成形品94をブロー成形型96間に位置させる。また、(E)に示すように、ブロー成形型96を型締装置100により型締し、ブローコア駆動シリンダ110によりブローコア型98を下降させてネック支持部材48に組合せる。そして、ブローコア型98からブローエアを中間成形品94内に導入し最終ブロー成形型96により最終成形品54の形状にする。   In the final molding portion 22, as shown in (D), the final blow molding die 96 is in the mold open state by the mold clamping device 100, and the blow core mold 98 is retracted above the rotary plate 16 by the blow core driving cylinder 110. It has become. In this state, the upper substrate drive device 26 lowers the upper substrate 14 to the lower limit position, and the intermediate molded product 94 is positioned between the blow molds 96. Further, as shown in (E), the blow molding die 96 is clamped by the mold clamping device 100, and the blow core die 98 is lowered by the blow core driving cylinder 110 to be combined with the neck support member 48. Then, blow air is introduced from the blow core mold 98 into the intermediate molded product 94, and the final blow molded die 96 is used to form the final molded product 54.

この場合、ヒータ108により最終ブロー成形型96を加熱しておき、最終成形品54の熱処理を行う。この最終ブロー成形時における熱処理の条件は、最終ブロー成形型96の温度が90〜100℃、ブロー成形時間が5〜15秒、ブローエア圧力が15〜30kg/cm2この最終ブロー成形時には、最終ブロー成形型96を所望の耐熱温度以上に加熱して、最終成形品54にブロー成形された際に生じる歪みを取り除くようにしている。また、中間成形品94は、最終成形品54とほぼ同じか若干小さい程度であるため、最終ブロー成形時にはほとんど延伸されず、しかも中間成形品94が延伸適温よりも十分高い温度になっているのでほとんど配向もせず、従って、この状態で歪みの発生はほとんどない。また、最終ブロー成形時において、中間成形品94が最終成形品54とほぼ同じか若干小さい程度であるため、最終ブロー成形型96の型締時おける挟み込みは生じないようになっている。   In this case, the final blow molding die 96 is heated by the heater 108 and the final molded product 54 is heat-treated. The heat treatment conditions during the final blow molding are as follows: the temperature of the final blow mold 96 is 90 to 100 ° C., the blow molding time is 5 to 15 seconds, and the blow air pressure is 15 to 30 kg / cm 2. The mold 96 is heated to a desired heat-resistant temperature or higher so as to remove distortion generated when the final molded product 54 is blow-molded. Further, since the intermediate molded product 94 is almost the same as or slightly smaller than the final molded product 54, it is hardly stretched at the time of final blow molding, and the intermediate molded product 94 is at a temperature sufficiently higher than the optimum stretching temperature. There is almost no orientation, so there is almost no distortion in this state. Further, during the final blow molding, the intermediate molded product 94 is approximately the same as or slightly smaller than the final molded product 54, so that the final blow molding die 96 is not pinched when the mold is clamped.

そして、最終ブロー成形終了後、型締装置100により最終ブロー成形型96を開くと共に、ブローコア駆動シリンダ110によりブローコア型98を上昇させて回転板16より退避させた後、(F)に示すように、上部基板14を上昇させて搬送位置に移行する。   After the final blow molding is completed, the final blow molding die 96 is opened by the mold clamping device 100, the blow core driving cylinder 110 is lifted by the blow core driving cylinder 110 and retracted from the rotary plate 16, and then as shown in FIG. Then, the upper substrate 14 is raised to move to the transfer position.

その後、回転板16を120度回転させて、上部基板14を下降させて、型開カム66を下降させることにより、受取、取出部18での最終成形品54の取出しが(G)に示すように行われる。   Thereafter, the rotating plate 16 is rotated 120 degrees, the upper substrate 14 is lowered, and the mold opening cam 66 is lowered, so that the final molded product 54 is picked up by the receiving and taking-out portion 18 as shown in (G). To be done.

そして、これら(A)〜(G)の工程が順次繰返されて成形が行われることとなる。   Then, these steps (A) to (G) are sequentially repeated to perform molding.

図20は、本発明のさらに他の実施の形態にかかる耐熱容器の成形装置を示す図である。 この実施例では、リニア搬送式の搬送装置120を用い、プリフォームをブロー成形して成形された一次成形品を受け取る受取部122から熱処理部20、最終成形部22、取出部124へと成形品を搬送して、熱処理および最終ブロー成形を行うことにより前記図10〜図19に示す実施の形態と同様の機能が得られるようになっている。   FIG. 20 is a diagram showing a heat-resistant container molding apparatus according to still another embodiment of the present invention. In this embodiment, a linear transport-type transport device 120 is used, and a molded product is formed from a receiving unit 122 that receives a primary molded product molded by blow molding a preform to a heat treatment unit 20, a final molding unit 22, and an extraction unit 124. By carrying out heat treatment and final blow molding, functions similar to those of the embodiment shown in FIGS. 10 to 19 can be obtained.

図21は、本発明のさらに他の実施の形態にかかる耐熱容器の成形装置を示す。   FIG. 21 shows a heat-resistant container molding apparatus according to still another embodiment of the present invention.

この実施例では、リニア搬送式の搬送装置120を用い、予め射出成形されたプリフォームを受け取る受取部126、一次加熱部128、二次加熱部130、温調部132、中間ブロー成形部134、熱処理部20、最終成形部22、取出部124へと成形品を搬送することで熱処理および最終成形を行い、前記図第1および図第2に示す実施の形態と同様の機能が得られ、かつ、プリフォームの次段階からの成形が可能となる。   In this embodiment, using a linear conveyance type conveyance device 120, a receiving unit 126 that receives a preform that has been injection molded in advance, a primary heating unit 128, a secondary heating unit 130, a temperature adjustment unit 132, an intermediate blow molding unit 134, Heat treatment and final molding are performed by conveying the molded product to the heat treatment section 20, the final molding section 22, and the take-out section 124, and functions similar to those of the embodiment shown in FIGS. 1 and 2 are obtained, and The preform can be molded from the next stage.

本発明は、前記各実施の形態に限定されるものではなく、本発明の要旨の範囲内において種々の実施の形態に変形可能である。   The present invention is not limited to the above-described embodiments, and can be modified into various embodiments within the scope of the gist of the present invention.

例えば、図10〜図19に示す実施の形態において、上部基板や回転板の駆動装置は前記実施例に限らず、種々の駆動装置を採用することが可能である。   For example, in the embodiment shown in FIGS. 10 to 19, the driving device for the upper substrate and the rotating plate is not limited to the above-described embodiment, and various driving devices can be adopted.

また、前記図10〜図19に示す実施の形態では熱処理型および最終ブロー成形型を固定式のものとし、上部基板を昇降させて熱処理型および最終ブロー成形型から成形品を退避させるようにしているが、この例に限らず、上部基板を固定、熱処理型および最終ブロー成形型を可動として退避させるようにすることも可能である。   In the embodiment shown in FIGS. 10 to 19, the heat treatment mold and the final blow mold are fixed, and the upper substrate is moved up and down to retract the molded product from the heat treatment mold and the final blow mold. However, the present invention is not limited to this example, and the upper substrate may be fixed, and the heat treatment mold and the final blow mold may be moved away.

更に、前記各実施の形態では4個の容器を同時に成形するようにしているが、個数は自由に設定できること勿論である。   Furthermore, in each of the above embodiments, four containers are formed at the same time, but it goes without saying that the number can be freely set.

また、一次成形部と最終成形部との間に複数の熱処理部を直列又は並列に配設することにより、1つの熱処理部の場合に比べて熱処理時間を長くでき、成形品の肉厚に応じて所望の熱処理を付与することができる。   Also, by arranging a plurality of heat treatment parts in series or in parallel between the primary molding part and the final molding part, the heat treatment time can be made longer than in the case of one heat treatment part, and depending on the thickness of the molded product Desired heat treatment.

本発明の実施の一形態にかかる耐熱容器の成形装置を示す平面図である。It is a top view which shows the shaping | molding apparatus of the heat-resistant container concerning one Embodiment of this invention. 図1の搬送部材の状態を示す断面図である。It is sectional drawing which shows the state of the conveyance member of FIG. 本発明の実施の他の形態にかかる耐熱容器の成形装置を示す平面図である。It is a top view which shows the shaping | molding apparatus of the heat-resistant container concerning the other form of implementation of this invention. 図3の搬送ラインの部分拡大平面図である。FIG. 4 is a partially enlarged plan view of the conveyance line in FIG. 3. 図4のV-V線に沿う縦断面図である。It is a longitudinal cross-sectional view which follows the VV line of FIG. 図3の受取・取出部の拡大平面図である。FIG. 4 is an enlarged plan view of a receiving / extracting section in FIG. 3. 図5の矢示VII方向から見た側面図である。It is the side view seen from the arrow VII direction of FIG. 図5の矢示VIII方向から見た受取・取出装置による受取状態を示す側面図である。It is a side view which shows the receiving state by the receiving / extracting device seen from the arrow VIII direction of FIG. 図8の受取・取出装置による取出状態を示す側面である。It is a side surface which shows the extraction state by the receiving / extracting device of FIG. 本発明の1実施例にかかる耐熱容器の成形装置を示す平面図である。It is a top view which shows the shaping | molding apparatus of the heat-resistant container concerning one Example of this invention. 図1のXI−XI線に沿う断面図である。It is sectional drawing which follows the XI-XI line of FIG. 受取、取出部を示す図で、(A)はその正面図、(B)はその側面図、(C)は平面図である。It is a figure which shows a receipt and an extraction part, (A) is the front view, (B) is the side view, (C) is a top view. 受取、取出ステーションにおける一次成形品の支持状態を示す断面図である。It is sectional drawing which shows the support state of the primary molded product in a receiving and taking out station. 熱処理部における熱処理型の斜視図である。It is a perspective view of the heat processing type | mold in a heat processing part. 図14の熱処理型の断面図である。It is sectional drawing of the heat processing type | mold of FIG. 熱処理部における熱処理用コア型を示す図で、(A)は正面図、(B)は平面図である。It is a figure which shows the core type for heat processing in a heat processing part, (A) is a front view, (B) is a top view. 最終成形部におけるブローコア型の昇降状態を示す正面図である。It is a front view which shows the raising / lowering state of the blow core type | mold in the final shaping | molding part. 最終成形部における最終ブロー成形型を示す断面図である。It is sectional drawing which shows the last blow molding die in the last shaping | molding part. 本発明の一実施例にかかる耐熱容器の成形方法を示す説明図である。It is explanatory drawing which shows the shaping | molding method of the heat-resistant container concerning one Example of this invention. 本発明の他の実施例にかかる耐熱容器の成形装置を示す説明図である。It is explanatory drawing which shows the shaping | molding apparatus of the heat-resistant container concerning the other Example of this invention. 本発明の更に他の実施例にかかる耐熱容器の成形装置を示す説明図である。It is explanatory drawing which shows the shaping | molding apparatus of the heat-resistant container concerning other Example of this invention.

符号の説明Explanation of symbols

18,202 受取、取出部
20,214 熱処理部
22,216 最終成形部
52 一次成形品
54,344 最終成形品
70,254 熱処理型
74 肩部
76 胴部
78 肩部加熱ブロック
80 胴部加熱ブロック
94 中間成形品
96,256 最終ブロー成形型
120 搬送装置
122,126 受取部
124 取出部
200 搬送手段
204 第1の加熱部
206 第2の加熱部
208 第3の加熱部
210 第4の加熱部
212 一次成形部
218 搬送レール
220 搬送部材
228 搬送用スプロケット
230 搬送チェーン
232 プリフォーム
238 自転用スプロケット
242 型締め機構
264 自転用チェーン
266 回転機構
300 プリフォーム
302 プリフォーム成形部
304 耐熱容器成形部
306 搬送ライン
308 取出成形部
316 受取、取出装置
318 自転搬送手段
320 間欠搬送手段
322 連続搬送手段
334 冷却手段
342 ピッチ変換機構
346 受取・取出機構
18,202 Receiving, taking-out part 20,214 Heat treatment part 22,216 Final molding part 52 Primary molded part 54,344 Final molded part 70,254 Heat treatment mold 74 Shoulder part 76 Body part 78 Shoulder part heating block 80 Body part heating block 94 Intermediate molded product 96,256 Final blow mold 120 Conveying device 122,126 Receiving unit 124 Extracting unit 200 Conveying means 204 First heating unit 206 Second heating unit 208 Third heating unit 210 Fourth heating unit 212 Primary Forming part 218 Conveying rail 220 Conveying member 228 Conveying sprocket 230 Conveying chain 232 Preform 238 Rotating sprocket 242 Clamping mechanism 264 Rotating chain 266 Rotating mechanism 300 Preform 302 Preform forming part 304 Heat resistant container forming part 306 Conveying line 308 Removal Shaped portion 316 receives, take-out apparatus 318 rotating conveying means 320 intermittently conveying means 322 continuously conveying means 334 cooling unit 342 pitch changing mechanism 346 receives-ejecting mechanism

Claims (4)

プリフォームを射出成形するためのプリフォーム成形部と、
前記プリフォームをブロー成形して耐熱容器を成形するための耐熱容器成形部と、
前記プリフォーム成形部から取出したプリフォームを前記耐熱容器成形部へと搬送するための搬送ラインとを備え、
前記搬送ラインは、少なくとも上流側に、前記プリフォームを冷却するための冷却手段を備えることを特徴とする耐熱容器の成形装置。
A preform molding part for injection molding the preform;
A heat-resistant container molding part for blow-molding the preform to form a heat-resistant container;
A transport line for transporting the preform taken out from the preform molding section to the heat-resistant container molding section;
The transport line is provided with cooling means for cooling the preform at least on the upstream side.
請求項1において、
前記搬送ラインは、プリフォームを自転させながら搬送する自転搬送手段を備えることを特徴とする耐熱容器の成形装置。
In claim 1,
The said conveyance line is equipped with the rotation conveyance means to convey a preform, rotating the preform, The heat-resistant container shaping | molding apparatus characterized by the above-mentioned.
請求項2において、
前記自転搬送手段は、プリフォームを同時成形個数ずつ間欠搬送する上流側の間欠自転搬送手段と、この間欠自転搬送手段により搬送されたプリフォームを連続して搬送する下流側の連続自転搬送手段とから構成されていることを特徴とする耐熱容器の成形装置。
In claim 2,
The rotation conveyance means includes an upstream intermittent rotation conveyance means that intermittently conveys preforms by the number of simultaneous moldings, and a downstream continuous rotation conveyance means that continuously conveys the preform conveyed by the intermittent rotation conveyance means; An apparatus for forming a heat-resistant container, comprising:
請求項1において、
前記搬送ラインは、プリフォームをブロー成形温度よりも充分に低い温度まで冷却可能に搬送距離および搬送時間が設定されていることを特徴とする耐熱容器の成形装置。
In claim 1,
The conveyance line is configured with a conveyance distance and a conveyance time so that the preform can be cooled to a temperature sufficiently lower than the blow molding temperature.
JP2004284438A 1994-11-11 2004-09-29 Apparatus for molding heat-resistant container Pending JP2005035306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004284438A JP2005035306A (en) 1994-11-11 2004-09-29 Apparatus for molding heat-resistant container

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP30301694 1994-11-11
JP2004284438A JP2005035306A (en) 1994-11-11 2004-09-29 Apparatus for molding heat-resistant container

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP20772595A Division JP3777204B2 (en) 1994-11-11 1995-07-21 Heat-resistant container molding apparatus and molding method

Publications (1)

Publication Number Publication Date
JP2005035306A true JP2005035306A (en) 2005-02-10

Family

ID=34219704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004284438A Pending JP2005035306A (en) 1994-11-11 2004-09-29 Apparatus for molding heat-resistant container

Country Status (1)

Country Link
JP (1) JP2005035306A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114801126A (en) * 2022-04-29 2022-07-29 杭州中亚机械股份有限公司 Rotary bottle blowing machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114801126A (en) * 2022-04-29 2022-07-29 杭州中亚机械股份有限公司 Rotary bottle blowing machine

Similar Documents

Publication Publication Date Title
JP3777204B2 (en) Heat-resistant container molding apparatus and molding method
RU2123934C1 (en) Method of cast oriented blow moulding and device for its realization
JP3816537B2 (en) Injection blow molding apparatus, injection blow molding method and injection molding apparatus
EP0868989B1 (en) Method and apparatus for forming preforms with crystallized necks
JP6678733B2 (en) Blow molding equipment
JP3824360B2 (en) Injection stretch blow molding apparatus and molding method
JP3775801B2 (en) Heat blow molding apparatus and heat blow molding method
JP3612388B2 (en) Injection blow molding apparatus and injection blow molding method
WO1995028270A1 (en) Blow molding apparatus
JP3158102B2 (en) Injection stretch blow molding method
JP3701430B2 (en) Heat-resistant container molding equipment
JP2005035306A (en) Apparatus for molding heat-resistant container
JP3254208B2 (en) Blow molding equipment
JP3419615B2 (en) Blow molding equipment
JP3420365B2 (en) Blow molding equipment
JP2002361723A (en) Blow molding apparatus
JP3227443B2 (en) Injection stretch blow molding apparatus and method
JP3612395B2 (en) Container forming apparatus and container forming method
JP3227453B2 (en) Injection stretch blow molding apparatus and injection stretch blow molding method
JP4074409B2 (en) Injection stretch blow molding equipment
JPH11138582A (en) Device and method for forming of preform
JP3254209B2 (en) Blow molding equipment
JP4141203B2 (en) Blow molding machine
JP4718720B2 (en) Injection stretch blow molding apparatus and injection stretch blow molding method
JP3785140B2 (en) Blow molding equipment

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080226