JP2005034682A - Co変成触媒およびその製造方法 - Google Patents

Co変成触媒およびその製造方法 Download PDF

Info

Publication number
JP2005034682A
JP2005034682A JP2003197124A JP2003197124A JP2005034682A JP 2005034682 A JP2005034682 A JP 2005034682A JP 2003197124 A JP2003197124 A JP 2003197124A JP 2003197124 A JP2003197124 A JP 2003197124A JP 2005034682 A JP2005034682 A JP 2005034682A
Authority
JP
Japan
Prior art keywords
catalyst
alumina
carrier
active metal
boehmite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003197124A
Other languages
English (en)
Inventor
Shigeru Nojima
繁 野島
Satonobu Yasutake
聡信 安武
Masanao Yonemura
将直 米村
Satoru Watanabe
悟 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2003197124A priority Critical patent/JP2005034682A/ja
Publication of JP2005034682A publication Critical patent/JP2005034682A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

【課題】燃料電池システムにおいて、固体高分子型燃料電池に供する水素含有ガスから一酸化炭素を低減するのに好適な触媒であって、耐熱性・耐酸化性などの耐久性に優れ、且つ、COシフト反応を高効率に行えるCO変成触媒およびその製造方法を提供する。
【解決手段】アルミナまたはベーマイトからなる担体に、活性金属としてCuが担持されていることを特徴とするCO変成触媒、並びに、アルミナまたはベーマイトを含む担体に、活性金属であるCuを含浸担持することを特徴とするCO変成触媒の製造方法。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池システムにおいて、固体高分子型燃料電池に供する水素含有ガスから一酸化炭素を低減するのに好適なCO変成触媒およびその製造方法に関する。
【0002】
【従来の技術】
固体高分子形燃料電池(PEFC)は低公害でさらに熱効率が高いため自動車用電源や分散電源等の幅広い分野での動力源としての適用が期待されている。燃料電池システムでは、図1に示すように燃料電池4の前段にて、改質器1の改質触媒、CO変成触媒(COシフト触媒)2、CO除去触媒3、の順で直列に配置して、水素製造とともにCO除去を行っている。これら一連の改質装置の運転は、家庭用燃料電池においては、連続運転より夜間には運転を停止するDSS(Daily Start−up and Shut−down)運転の方が経済的であり、利便性に優れている。
しかしながら、DSS運転では停止時の可燃性ガス除去法や起動方法が複雑であり、触媒の劣化が顕著になる問題を有する。とりわけ、CO変成触媒2は一般にCu−ZnO系複合酸化物触媒が用いられるが、この触媒は耐熱性、耐水性および耐酸素性に乏しい欠点を有しており、発電停止時の水蒸気酸化、減圧によるシステムへの空気(酸素)吸い込みによる発熱の問題や、起動時の高温暴露による劣化の問題が生じていた。
これは従来のCu−ZnO系複合酸化物触媒がCOシフトを効率的に行う観点から、その性状としてCuおよびZnOがそれぞれ微細粒子として混在する混合体として形成され、高濃度に粒子状のCuが含有していたためである。一般には沈澱法を用いて微細粒子の混合体として形成されており、CuとZnOの粒子間接触面積を多くしてCOシフト反応を進行させていた。ところが、このようなCu−ZnO系複合酸化物触媒の性状では、特に、空気の吸い込みによって酸素と接触した場合には、Cuが即座に酸化されて発熱反応を生じてしまい、触媒劣化の大きな原因になっていた。
【0003】
上記の問題から、従来、Cu−ZnO系複合酸化物触媒をCO変成触媒に用いる場合には、DSS運転における触媒劣化に対応するために、運転面に細心の注意を払い、高価な制御機器を設置して、触媒の保護を行っていた。しかし、これでは高コストのプロセスとなり経済的なDSSプロセスを実現することは困難であった。
一方、従来の触媒は主に連続運転を行う化学プラントを対象とした触媒系であり、定常一定運転を行うのに適しているが、燃料電池等の負荷変動が大きな水素製造装置に用いる触媒系としては必ずしも適していなかった(例えば、特許文献1、特許文献2参照)。
【0004】
【特許文献1】
特許公報平4−75058号
【特許文献2】
特許公報平5−83304号
【0005】
【発明が解決しようとする課題】
本発明者らは、上記問題点に鑑み、簡易なDSS運転方法を可能とするために、温度条件や運転条件に依存せず、経時的な触媒劣化による性能低下を起こさず、耐熱性・耐酸化性などの耐久性に優れ、且つ、本来のCOシフトも高効率に行えるCO変成触媒を開発すべく、鋭意検討した。
その結果、本発明者らは、塩基性酸化物であり水を活性化吸着することができるAl系担体に、活性金属であるCuが担持された触媒によって、上記問題点が解決されることを見出した。また、従来のCuとZnの共沈澱法に比べて、比較的安価な卑金属触媒の調製法として、Alを主成分とする担体に活性金属のCuを担持させる含浸法によって、耐熱性・耐酸化性などの耐久性に優れた触媒が得られることを見出した。本発明は、かかる見地より完成されたものである。
【0006】
【課題を解決するための手段】
すなわち、本発明は、アルミナ(Al)またはベーマイト(AlO(OH))からなる担体に、活性金属としてCuが担持されていることを特徴とするCO変成触媒を提供するものである。アルミナまたはベーマイトは水を吸着できる担体であり、活性金属であるCuと組み合わせることにより、COを主にCOおよびHに変換する。担体となるアルミナまたはベーマイトの含有量は通常50重量%以上、好ましくは60重量%以上90重量%以下、特に好ましくは70重量%以上80重量%以下であり、Cu(還元処理前にはCuO)の含有量は通常40重量%以下である。前記担体は高比表面積を有する担体であり、通常100m/g以上500m/g以下、好ましくは150m/g以上400m/g以下の比表面積を有する。
【0007】
前記担体としては、アルミナに他の酸化物を添加した担体、Al・ZrO、Al・SiOおよびAl・TiOからなる群より選ばれる少なくとも1種以上のアルミナ系複合酸化物を用いることもできる。また、前記活性金属としては、Cu単独の場合の他、Cuと、Zn、Co、Ni、FeおよびCrからなる群から選ばれる少なくとも1種以上の金属と、を含有することもできる。
さらに、本発明は、アルミナまたはベーマイトからなる担体に活性金属であるCuを含浸担持した後、乾燥、焼成することを特徴とするCO変成触媒の製造方法を提供するものである。前記焼成の後には、通常、触媒の活性化処理として水素含有ガスによる水素還元処理を行う。
【0008】
本発明の触媒は、耐熱性に優れるとともに、酸素混入においても発熱の度合が小さく耐酸素性にも優れているため、DSS運転等を伴う長期間の燃料電池システムの使用にも十分耐えられる性能を有している。また、触媒成分の中でも、一般に吸水性が少ないアルミナを担体として用いるので、シンタリングの問題が生ぜず耐水性にも優れている。さらに、従来のCuとZnの複合酸化物を調製する際の複雑な工程を要する共沈法等と異なり、高比表面積を有する担体を用いた含浸法によって簡易な工程によって製造できる。
【0009】
本発明では、担体に活性金属であるCuを担持させることにより、触媒が劣化することを有効に防止する。具体的には、高表面積の担体表面にCuを担持することが必要であり、Cu成分が多すぎると熱劣化や酸素による劣化が生じ得るので好ましくない。触媒中には、Cuを通常40重量%以下、好ましくは35重量%以下5重量%以上、より好ましくは30重量%以下10重量%以上、担持させる。担持された後のCu成分の一次粒子径の大きさは、通常5nm以上100nm以下、好ましく10nm以上50nm以下であり、担体表面に分散して担持される。
本発明の触媒は、酸素が混入される条件下や高温になる条件下においても、触媒の劣化を有効に防止することができる。そして、燃料電池システムにおけるLTS側の反応温度は約200℃程度であり、本触媒の耐熱温度が約700℃であるので、システムの運転中あるいは運転停止を繰り返す際にも十分に適用可能であり、劣化を有効に回避できる。
【0010】
【発明の実施の形態】
ここでは先ず、本発明のCO変成触媒が用いられる燃料電池システムの概略について説明する。図1に、燃料電池への原料ガス導入系のシステム10を模式的に示す。
固体高分子型燃料電池(PEFC)は低公害で、さらに効率が高いため自動車用電源や分散電源等の幅広い分野での動力源としての適用が可能である。この燃料電池システムに、燃料である水素を供給するには、例えば改質器1を用いた水素製造による方法が挙げられる。かかる水素製造においては炭化水素系燃料(都市ガス、メタン、プロバン、灯油、ジメチルエーテル等)などが原料として用いられる。メタンやプロパン等のガスは、燃料ガスとして十分に普及している原料であり、これらのガスを改質器1において水素Hに改質する。この際、同時に一酸化炭素COおよび二酸化炭素COが生成する。
固体高分子型燃料電池1の電極には主に白金触媒が用いられるが、この触媒は一酸化炭素により被毒され易いので、予め水素を主成分とする燃料ガスからCOを極力除去して、CO濃度を低下させることが必要である。よって、図1に示すように改質器1の後流では、先ずCO変成触媒2を用いてガス中のCO濃度を低減させる。次いで、後段に設けられるCO選択酸化触媒などのCO除去触媒3を用いることにより、燃料電池本体4に送る該ガス中のCO濃度は10ppm以下に低減する。
【0011】
CO変成触媒2は、改質器1によって製造された水素含有ガス中のCO濃度を、触媒出口では通常3000ppm程度にまで低減させる。CO変成触媒2には、450℃前後の高温でシフト反応するHTS触媒と、200℃前後の低温でシフト反応するLTS触媒の2種類があるが、本発明のCO変成触媒は通常250℃以下で反応を行うものであり、LTS触媒として好適である。CO変成触媒2では、下記(1)式によってガス中のCOと水蒸気から二酸化炭素と水素を生成するシフト反応を行う。
【0012】
【化1】
Figure 2005034682
【0013】
一方、燃料電池システムの運転方法のうち、DSS運転とは、通常一日一回起動停止する運転方法を指すものであるが、特に一日一回起動停止に限定されるものではなく、頻繁に起動停止する運転または適宜起動停止する方法も含まれ、本発明のCO変成触媒はかかる運転方法でも長期間使用に適している。
【0014】
次に、本発明のCO変成触媒について詳細に説明する。
本発明のCO変成触媒は、アルミナ(Al)またはベーマイト(AlO(OH))からなる担体に、活性金属としてCuが担持されている。アルミナまたはベーマイトは水を吸着できる担体であり、活性金属であるCuと組み合わせることにより、COを主にCOおよびHに変換する。アルミナの種類は限定されず、α−,β−,γ−等のいずれの形状のものも任意に用いることができるが、中でもγ型のアルミナは特に好ましい。担体となるアルミナまたはベーマイトの含有量は、通常50重量%以上、好ましくは60重量%以上90重量%以下、特に好ましくは70重量%以上80重量%以下である。この担体は高比表面積を有し、通常100m/g以上500m/g以下、好ましくは150m/g以上400m/g以下の比表面積を有する。
【0015】
活性金属である銅(Cu)は、アルミナ等の担体の表面付近に分散して担持されている。COシフト反応を効率的に進行させるには、水を吸着するアルミナ等の担体とCOを引きつけるCuによる活性点が多く存在する状態がよい。本発明で用いられるアルミナ等は高比表面積を有する多孔質の担体であるため、表面にCuを分散して担持させることにより、多くの活性点を形成させることができる。これにより、担体担持型の触媒であってもCOシフト反応を高効率に進行させることができる。
Cu成分であるCu(還元前はCuO)の含有量は、通常40重量%以下、好ましくは35重量%以下5重量%以上、より好ましくは30重量%以下10重量%以上、特に好ましくは30重量%以下20重量%以上である。このようなCu成分が、例えば粒子状単体として多く存在すると酸素によって容易に酸化反応を起こしてしまうが、本発明のように担体上に担持されている性状では、酸素の流入があっても容易には酸化反応を生じず、活性金属としての触媒活性を維持できる。
【0016】
本発明では、前記担体として、アルミナ単独の場合の他、アルミナに他の酸化物を添加した担体を用いることも可能であり、Al・ZrO、Al・SiO又はAl・TiOなどの複合酸化物が好適に用いられる。これら複合酸化物からなる担体も、アルミナ同様に高比表面積を有するものであり、いずれの担体成分を用いた場合にも高効率なCOシフト反応が可能であり、耐酸素性等の耐久性も有する。なお、上記複合酸化物とアルミナまたはベーマイトとを混合して、担体を構成させることも可能である。
また、前記活性金属としては、Cu単独の場合の他、Cuと他の金属成分Me、具体的にはZn、Co、Ni、Fe又はCrを含有することもできる。CuとMeとの量比は特に限定されるものではなく任意に設定可能であるが、例えばCu:Me=1:0.1〜1の範囲で用いることができる。
【0017】
次に、本発明のCO変成触媒の製造方法について説明する。
本発明の製法では、アルミナまたはベーマイトを含む担体に、活性金属であるCuを含浸法により担持する。具体的には、例えば担体に、Cu水溶液を滴下して攪拌しながら均一にしたCu溶液のCuを含浸担持する。次いで、Cu水溶液をCu換算で一定量以上加えた後、100℃以上120℃以下にて蒸発乾固させて水分を蒸発させる。蒸発後、300℃以上800℃以下で焼成して、本発明の触媒が得られる。また、Cu以外にも活性金属成分を含む場合には、Cuと、Zn、Co、Ni、Fe、又は、Crのいずれかの金属を含む各混合水溶液を加えて、含浸担持する。含浸担持後に得られた触媒は、CO変成反応を行う前に、触媒の活性化処理として水素含有ガスによる水素還元処理を行う。
【0018】
次いで、本発明のCO変成触媒を燃料電池システムに適用した場合の実施の形態について説明する。
本発明により得られるCu含有触媒を、固体高分子型燃料電池(PEFC)システムで用いる場合には、図1に示すような形態が考えられる。改質触媒を有する改質器1を用いて水素を製造する方法であり、水素製造においてはメタン、プロパン等が原料として用いられる。
図1で都市ガス(主にメタン)又はLPG(主にプロパン)を原料とする場合には、先ず硫黄分を除去する。次いで、約700℃付近にて改質器1の改質触媒によって、下記(2)式又は(3)式の水蒸気改質反応を生じさせて水素含有ガスを得る。
【0019】
【化2】
Figure 2005034682
【0020】
得られた水素含有ガスは約10%程度のCO成分を含み、このCOは燃料電池の働きを阻害する被毒物質として作用する。そこで、後段に設けられる本発明のCO変成触媒2において、通常250℃以下、好ましくは150℃以上230℃以下にてCOシフト反応を生じさせて、COを二酸化炭素に変換する(上記(1)式)。
CO変成触媒2を経たガスからは一酸化炭素が通常3000ppm以上4000ppm以下にまで減少、除去されているが、燃料電池本体4に導入する原料ガスは、通常20ppm以下好ましくは10ppm以下のCO濃度であることが必要である。CO除去触媒3をCO変性触媒2の後流に設けることにより、更なるCO除去を行う。CO除去装置3では、下記(4)式もしくは(5)式によってCO低減を行う。
【0021】
【化3】
Figure 2005034682
【0022】
このようにCO濃度が低下した水素含有ガスは、燃料電池4に送られて、アノード電極側での電極反応に利用される。燃料電池4では、アノード電極にてアノード電極触媒により、水素がHから2Hと2eとなり、Hが電解質に拡散し、eは電極間を繋ぐ線を移動する。一方、カソード電極においてカソード電極触媒により、Hとeと酸素からHOが生じる。これらの反応を合わせて電池反応が構成され、起電力を得ることができる。
【0023】
以下、実施例により本発明をより詳細に説明するが、本発明はこれら実施例によって何ら制限されるものでない。
【0024】
【実施例】
実施例1(触媒の調製)
〔CO変成触媒1の調製〕
硝酸アルミニウム(Al(NO・9HO:Mw375.13)37.5gを水1Lに添加して、60℃加熱したのち溶解させて、硝酸アルミニウム水溶液を得た。この溶液に、アンモニア水をpH=7になるまで添加して、水酸化アルミニウム沈殿物を生成させた。該沈殿物を1時間熟成した後、水洗濾過し、乾燥させてから、550℃、5時間焼成して、γ−Al(担体1)を得た。
得られた担体1(10g)に、硝酸銅(Cu(NO・6HO)水溶液を滴下して攪拌しながら、均一にCu溶液を含浸担持した。Cu水溶液をCu換算で1g滴下した後、攪拌しながら110℃にて蒸発乾固させ、24時間で水分を蒸発させた。蒸発後に得られたサンプルを、500℃、5時間空気中で焼成して、触媒1(CuO/γ−Al)を得た。
【0025】
〔CO変成触媒2〜5の調製〕
上記触媒1の調製法において、硝酸アルミニウム水溶液に塩化チタニウム塩酸溶液、シリカゾル、又は、オキシ硝酸ジルコニウムを加えて、AlとTi、AlとSi、およびAlとZrの混合水溶液(各々原子比で80:20の組成)をそれぞれ得た。これらの水溶液に対して、触媒1と同様な方法にてアンモニアを添加して、沈殿物を得て、乾燥焼成を行い、複合酸化物Al・TiO、Al・SiO、およびAl・ZrO の担体を得た。これらの担体に対して、触媒1と同様な方法によりCuOを担持して、触媒2(CuO/Al・TiO)、触媒3(CuO/Al・SiO)、および触媒4(CuO/Al・ZrO)を得た。
【0026】
〔CO変性触媒5の調製〕
上記触媒1の調製法において、上記担体1の代わりに市販のベーマイト(AlOOH)を担体に用いた以外は触媒1と同様な方法により、CuOを担持して触媒5(CuO/AlOOH)を得た。但し、焼成時には、AlOOHはAlに相変化する。
【0027】
〔CO変性触媒6〜7の調製〕
上記触媒1の調製法において、得られた担体1(γ−Al)10g上に、硝酸銅をCu換算でそれぞれ2g(触媒6)あるいは3g(触媒7)担持した後、触媒1と同様な方法にてCuO/γ−Al触媒を調製した。本触媒を触媒6、触媒7とする。
【0028】
〔CO変性触媒8〜12の調製〕
上記触媒1の調製法において、得られた担体1(γ−Al)10g上に硝酸銅をCu換算で1gと、硝酸亜鉛、硝酸コバルト、硝酸ニッケル、硝酸鉄、又は、硝酸クロムを、Zn換算で0.3g、Co換算で0.3g、Ni換算で0.3g、Fe換算で0.3g、Cr換算で0.3gの各混合水溶液を滴下して、触媒1と同様に含浸担持して、触媒8(CuO・ZnO/γ−Al)、触媒9(CuO・CoO/γ−Al)、触媒10(CuO・NiO/γ−Al)、触媒11(CuO・FeO/γ−Al)、および、触媒12(CuO・Cr/γ−Al)を得た。
【0029】
〔比較触媒1の調製〕
比較触媒として、従来の沈殿法で調製した触媒を以下に記す。
硝酸銅(Cu(NO・6HO)と硝酸亜鉛(Zn(NO・6HO)と硝酸アルミニウム(Al(NO・9HO)が原子比でCu:Zn:Al=100:100:20の比率になるように混合水溶液を調製した。この混合水溶液に炭酸ナトリウムをpH=7になるまで滴下して複合水酸化物沈殿を得た。この複合水酸化物沈殿物を水洗、濾過を行ったのち、110℃で乾燥を行い、300℃で5時間焼成を行い、比較触媒1を得た。
【0030】
〔触媒の物性評価〕
上記触媒1〜12及び比較触媒1の物性評価として、一点N吸着法で測定した比表面積測定を実施した。表1には、触媒リストとともに比表面積測定結果を示す。
【0031】
実施例2(触媒の評価・試験)
〔触媒活性評価〕
触媒1〜12および比較触媒1を用いて、以下の試験条件にてCO変性反応試験を行った。触媒は1mmに加圧整粒した後、固定床流通式マイクロリアクタに5cc充填した。触媒の活性化処理として、1%H/Nバランスのガスを200℃、GHSV1000h−1の条件で触媒に供給して、活性金属のCuを還元して金属状態にする。触媒出口の水素濃度をモニターしながら、入口水素濃度と同様の濃度となった時点で還元処理を終了した。
所定温度に加熱したあと、反応ガスを供給して、COの減少量をCO計(ND−IR法)によりモニターした。
(活性評価条件)ガス組成:CO 0.3%、CO 20%、HO 30%、H 残49.7%
接触時間(GHSV):3000h−1 、温度170℃、200℃
表1に、初期の活性評価としてCO転化率を記す。なお、CO転化率は以下の式にて定義する。
CO転化率=((入口CO濃度―出口CO濃度)/入口CO濃度)×100
【0032】
〔強制劣化試験〕
触媒の強制劣化試験として、上記活性評価後において、200℃で空気をGHSV1000h−1の状態で10分間触媒に供給した。この際、触媒の発熱が認められるが、最高発熱温度を測定した。さらに、空気暴露後に上記活性評価条件(170℃)において、活性評価を行い、触媒の劣化挙動を観察した。
表1に、空気暴露による最高発熱温度、及び強制劣化後の170℃におけるCO転化率を記す。
【0033】
【表1】
Figure 2005034682
【0034】
上記結果より、本発明の触媒1〜12は初期のCOシフト活性は比較触媒1と遜色ない性能を示すことが分かり、さらに、比較触媒1に比べて空気暴露による発熱上昇が少なく、これに伴う活性低下も小さいことが明らかになった。この理由は、本発明の触媒は高比表面積担体に活性金属のCuが高分散担持されているために、酸素漏洩時においても、酸素とCuの反応が緩やかであるため、温度上昇が抑制されるためである。
また、本発明の触媒は上記物性を有するため、高温時のシンタリングが抑制できるため耐熱性に優れ、さらに水分存在化での水蒸気酸化を抑制することから耐水性にも優れている。以上のことから、本発明の触媒は既存の沈殿系触媒より耐酸化性、耐熱性、耐水性に強い長寿命触媒となることが分かった。
【0035】
【発明の効果】
本発明の触媒は、システムが高温になる際にも触媒劣化しない耐熱性を有し、且つ、減圧によるシステム中への酸素混入においても容易には発熱反応が進行しない耐酸素性を有している。また、触媒成分の中でも、一般に吸水性が少ないアルミナを担体として用いるので、シンタリングの問題が生ぜず耐水性にも優れている。一方で、本来のCOシフト反応においても低温活性に優れており、高効率にCOシフトを行い、CO濃度を大幅低減させることができる。
したがって本発明によれば、燃料電池システムの温度条件や運転条件に依存せず、触媒劣化による性能低下を起こさないCO変成触媒を提供できる。本発明のCO変成触媒を用いれば、特にDSS運転等において触媒が劣化する現象を効果的に防止でき、触媒を長期間使用できる。
さらに、従来のCuとZnの複合酸化物を調製する際の複雑な工程を要する共沈法と異なり、高比表面積を有する担体を用いた含浸法によって簡易な工程によって製造できる。
【図面の簡単な説明】
【図1】燃料電池システムの概略構成を模式的に示すブロック図である。
【符号の説明】
1 改質触媒
2 CO変成触媒
3 CO除去触媒
4 燃料電池
10 燃料電池システム

Claims (7)

  1. アルミナまたはベーマイトからなる担体に、活性金属としてCuが担持されていることを特徴とするCO変成触媒。
  2. 前記担体となるアルミナまたはベーマイトの含有量が50重量%以上であり、Cuの含有量が40重量%以下であることを特徴とする請求項1記載のCO変成触媒。
  3. 前記担体が、100m/g以上500m/g以下の比表面積を有することを特徴とする請求項1又は2に記載のCO変成触媒。
  4. 前記担体が、アルミナに他の酸化物を添加した担体であり、Al・ZrO、Al・SiOおよびAl・TiOからなる群より選ばれる少なくとも1種以上のアルミナ系複合酸化物であることを特徴とする請求項1ないし請求項3のいずれか1項に記載のCO変成触媒。
  5. 前記活性金属として、Cuと、Zn、Co、Ni、FeおよびCrからなる群から選ばれる少なくとも1種以上の金属と、を含有することを特徴とする請求項1ないし請求項4のいずれか1項に記載のCO変成触媒。
  6. アルミナまたはベーマイトからなる担体に活性金属であるCuを含浸担持した後、乾燥、焼成することを特徴とするCO変成触媒の製造方法。
  7. 前記焼成の後、触媒の活性化処理として水素含有ガスによる還元処理を行うことを特徴とする請求項6に記載のCO変成触媒の製造方法。
JP2003197124A 2003-07-15 2003-07-15 Co変成触媒およびその製造方法 Withdrawn JP2005034682A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003197124A JP2005034682A (ja) 2003-07-15 2003-07-15 Co変成触媒およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003197124A JP2005034682A (ja) 2003-07-15 2003-07-15 Co変成触媒およびその製造方法

Publications (1)

Publication Number Publication Date
JP2005034682A true JP2005034682A (ja) 2005-02-10

Family

ID=34207367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003197124A Withdrawn JP2005034682A (ja) 2003-07-15 2003-07-15 Co変成触媒およびその製造方法

Country Status (1)

Country Link
JP (1) JP2005034682A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007209976A (ja) * 2006-02-10 2007-08-23 Samsung Sdi Co Ltd 燃料電池システムの改質装置用水性ガス転換酸化触媒とその製造方法および燃料電池システム
JP2008093610A (ja) * 2006-10-13 2008-04-24 Mitsubishi Heavy Ind Ltd Co変成触媒、燃料改質装置、燃料電池システム及びco変成方法
JP2008272614A (ja) * 2007-04-25 2008-11-13 Mitsubishi Heavy Ind Ltd Co除去触媒、燃料改質装置、燃料電池システム及びco除去方法
JP2008542018A (ja) * 2005-06-01 2008-11-27 バスフ・カタリスツ・エルエルシー 白金、銅および鉄を含有する改善された高選択酸化触媒
US20090317672A1 (en) * 2008-06-24 2009-12-24 Mitsubishi Heavy Industries, Ltd. Co conversion catalyst for use in fuel cell in dss operation, method for producing the same, and fuel cell system
JP2010064036A (ja) * 2008-09-12 2010-03-25 Japan Energy Corp 低い温度での水素製造に適した水素製造用改質触媒、及び該触媒を用いた水素製造方法
US20110172417A1 (en) * 2008-07-09 2011-07-14 Postech Academy-Industry Foundation Heterogeneous Copper Nanocatalyst and Manufacturing Methods Thereof
WO2019181681A1 (ja) * 2018-03-23 2019-09-26 住友精化株式会社 構造体触媒の製造方法、および構造体触媒を用いた水素製造方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101346465B1 (ko) 2005-06-01 2014-01-02 바스프 카탈리스트 엘엘씨 수소-풍부 기체로부터 일산화탄소를 제거하기 위한, 백금,구리 및 철을 함유하는 개선된 선택적 산화 촉매
JP2008542018A (ja) * 2005-06-01 2008-11-27 バスフ・カタリスツ・エルエルシー 白金、銅および鉄を含有する改善された高選択酸化触媒
JP2007209976A (ja) * 2006-02-10 2007-08-23 Samsung Sdi Co Ltd 燃料電池システムの改質装置用水性ガス転換酸化触媒とその製造方法および燃料電池システム
JP4686486B2 (ja) * 2006-02-10 2011-05-25 三星エスディアイ株式会社 燃料電池システムの改質装置用水性ガス転換酸化触媒とその製造方法および燃料電池システム
JP2008093610A (ja) * 2006-10-13 2008-04-24 Mitsubishi Heavy Ind Ltd Co変成触媒、燃料改質装置、燃料電池システム及びco変成方法
JP2008272614A (ja) * 2007-04-25 2008-11-13 Mitsubishi Heavy Ind Ltd Co除去触媒、燃料改質装置、燃料電池システム及びco除去方法
US8785061B2 (en) * 2008-06-24 2014-07-22 Mitsubishi Heavy Industries, Ltd. CO conversion catalyst for use in fuel cell in DSS operation, method for producing the same, and fuel cell system
US20090317672A1 (en) * 2008-06-24 2009-12-24 Mitsubishi Heavy Industries, Ltd. Co conversion catalyst for use in fuel cell in dss operation, method for producing the same, and fuel cell system
JP2011527628A (ja) * 2008-07-09 2011-11-04 ポステック アカデミー−インダストリー ファンデーション 不均一銅ナノ触媒およびその製造方法
US20110172417A1 (en) * 2008-07-09 2011-07-14 Postech Academy-Industry Foundation Heterogeneous Copper Nanocatalyst and Manufacturing Methods Thereof
US8877676B2 (en) * 2008-07-09 2014-11-04 Postech Academy-Industry Foundation Heterogeneous copper nanocatalyst and manufacturing methods thereof
US9375705B2 (en) 2008-07-09 2016-06-28 Postech Academy-Industry Foundation Heterogeneous copper nanocatalyst and manufacturing methods thereof
JP2010064036A (ja) * 2008-09-12 2010-03-25 Japan Energy Corp 低い温度での水素製造に適した水素製造用改質触媒、及び該触媒を用いた水素製造方法
WO2019181681A1 (ja) * 2018-03-23 2019-09-26 住友精化株式会社 構造体触媒の製造方法、および構造体触媒を用いた水素製造方法
JPWO2019181681A1 (ja) * 2018-03-23 2021-03-25 住友精化株式会社 構造体触媒の製造方法、および構造体触媒を用いた水素製造方法

Similar Documents

Publication Publication Date Title
JP3473898B2 (ja) 水素精製装置
JP4185952B2 (ja) 一酸化炭素除去触媒及びその製造方法並びに一酸化炭素除去装置
JP2004522672A (ja) 水性ガス転換反応触媒によるメタン化活性の抑制
US7824455B2 (en) High activity water gas shift catalysts based on platinum group metals and cerium-containing oxides
TWI294413B (en) Method for converting co and hydrogen into methane and water
CA2629078C (en) Process conditions for pt-re bimetallic water gas shift catalysts
JP2005529824A (ja) 水−気体転化用白金族金属触媒のメタン化活性の抑制
JP2007252989A (ja) 一酸化炭素メタネーション用触媒および該触媒を用いた一酸化炭素のメタネーション方法
JP2001522122A (ja) 燃料電池用金触媒
JP2006239551A (ja) Coメタン化触媒、co除去触媒装置及び燃料電池システム
JP2005034682A (ja) Co変成触媒およびその製造方法
JP3943902B2 (ja) 炭化水素用脱硫触媒、脱硫方法および燃料電池システム
JP2013017913A (ja) 水蒸気改質触媒及び該触媒を用いた水素製造方法
JP4210130B2 (ja) 炭化水素の脱硫触媒、脱硫方法及び燃料電池システム
JP2005007383A (ja) 硫黄化合物除去用吸着剤及び燃料電池用水素の製造方法
JP3574469B2 (ja) Coのco2への酸化方法及び燃料電池用の水素含有ガスの製造方法
TWI433722B (zh) A method for producing hydrogen or a synthesis gas using a catalyst for the modification of oxygen-containing hydrocarbons, and a fuel cell system
JP2008272614A (ja) Co除去触媒、燃料改質装置、燃料電池システム及びco除去方法
JP2006346535A (ja) Co除去触媒及び燃料電池システム
JP4127685B2 (ja) 一酸化炭素選択メタン化器、一酸化炭素シフト反応器及び燃料電池システム
JP4663095B2 (ja) 水素精製装置
KR100448683B1 (ko) 연료전지 자동차용 가솔린 개질촉매 및 이의 제조방법
JP4056773B2 (ja) 水素生成装置および燃料電池発電システム
JP4569408B2 (ja) 水性ガスシフト反応触媒とこれを用いる水素ガス中の一酸化炭素ガスを除去する方法
JP2006008434A (ja) 水素生成装置、燃料電池発電システム、水素生成方法

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061003