JP2005030817A - Nuclear fuel assembly of boiling water type nuclear reactor - Google Patents

Nuclear fuel assembly of boiling water type nuclear reactor Download PDF

Info

Publication number
JP2005030817A
JP2005030817A JP2003194109A JP2003194109A JP2005030817A JP 2005030817 A JP2005030817 A JP 2005030817A JP 2003194109 A JP2003194109 A JP 2003194109A JP 2003194109 A JP2003194109 A JP 2003194109A JP 2005030817 A JP2005030817 A JP 2005030817A
Authority
JP
Japan
Prior art keywords
nuclear fuel
plutonium
americium
neutron source
pellet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003194109A
Other languages
Japanese (ja)
Inventor
Toshihisa Shirakawa
白川利久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003194109A priority Critical patent/JP2005030817A/en
Publication of JP2005030817A publication Critical patent/JP2005030817A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

<P>PROBLEM TO BE SOLVED: To reduce storage control cost of abandoned plutonium resulting from repeated reprocessing of a plutonium fuel and having an increased content of plutonium 242 hardly undergoing nuclear fission and strongly capturing a neutron and americium separated as a residue in reprocessing. <P>SOLUTION: A nuclear fuel rod 131 with a neutron source is constituted by loading neutron source pellets 146 on the top end and the bottom end of a conventional nuclear fuel rod 31 and loading a stainless steel wool 147 on the bottom end. The neutron source pellet is made by interposing a low melting point metal 152 such as bismuth between an americium oxide disc 151 having a thickness of about 0.1 mm and a beryllium oxide disc 153 having a thickness of about 0.1 mm and compressing them to form a laminate. The fuel rods with the the neutron source are bundled to constitute a nuclear fuel assembly with the neutron source. The low melting point metal is melted down to the stainless steel wool due to high temperature during operation. Thus, the americium oxide and the beryllium oxide are brought into direct contact with each other, and beryllium is irradiated with an α ray of americium to emit a fast neutron to cause the plutonium 242 to undergo nuclear fission in the same level that plutonium 239 does. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は特に沸騰水型原子炉の核燃料集合体に関する。特に、プルトニウムの有効利用ができる核燃料集合体である。
【0002】
【従来の技術】
図1は核燃料物質を内包する沸騰水型原子炉の従来の核燃料集合体(30)を示す概略斜視図である。核燃料集合体(30)は、多数本正方格子状に配列された核燃料物質を内封している円柱形状の核燃料棒(31)と、それ等の上端及び下端を夫々支持する上側結合板(32)及び下側結合板(33)と、前記核燃料棒(31)の高さ途中に位置して燃料棒間の間隔を規制する数個のスペーサ(34)と、これ等を覆うチャンネルボックス(35)とから構成される。
核燃料棒(31)は図2に示すように例えばジルカロイー2製の被覆管(41)とこの被覆管(41)の上下開口端を気密閉塞する上部端栓(42)及び下部端栓(43)と、被覆管(41)内に装填される多数の核燃料ペレット(44)と、核燃料ペレット(44)の最上面と上部端栓(42)との間に介在するスプリング(45)とから構成されている。図3は核燃料棒(31)の断面図である。図4は核燃料ペレット(44)の概略斜視図である。直径約8mm長さ約10mm のMOXと呼ばれるウラニウムとプルトニウムの混合酸化物を焼結した核燃料物質である。
【0003】
【発明が解決しょうとする課題】
原子炉を運転し核燃料集合体(30)を燃焼させると、親物質であるウラン238は中性子を捕獲すると核***し易いプルトニウム239になり、プルトニウム239は中性子を捕獲すると核***し難いプルトニウム240になり、プルトニウム240は中性子を捕獲すると核***し易いプルトニウム241になり、プルトニウム241は自然崩壊して核***し難いが中性子を強く捕獲するアメリシウム241になるか中性子を捕獲すると核***し難いが速度の遅い中性子を強く捕獲するプルトニウム242になり、プルトニウム242は中性子を捕獲すると核***を殆どしない比較的安定なアメリシウム243になる。
核***し難いが速度の遅い中性子を強く捕獲するアメリシウム241や核***を殆どしない比較的安定なアメリシウム243は再処理の過程で比較的容易に分離できるが、核***し難いが中性子捕獲作用の強いプルトニウム242は核***し易いプルトニウム239やプルトニウム241との分離は困難である。したがって、核燃料の再処理により繰り返しプルトニウムを使用し続けると、核***し難いが中性子捕獲作用の強いプルトニウム242の割合は増加し続け質の悪い、謂わば、廃棄級プルトニウムとなる。再処理を繰り返してプルトニウムを使用し続けるのは難かしい。廃棄級プルトニウムを使用せずに保管管理するには費用がかかる。その結果、発電コスト上昇の一因ともなる。なお、分離したアメリシウムも保管管理する必要があり発電コスト上昇の一因ともなる。
核燃料集合体(30)の出力は、高さ中央付近が最大で上下端近辺ではゼロに近い。中性子割合が上下端近辺では漏洩のためゼロに近いからである。したがって、上下端近辺の出力を高めるためにMOXに核***し易いプルトニウムを多く混合しても効果は上がらない。上下端近辺のプルトニウムは無駄になるだけである。
沸騰水型原子炉では、炉心の下から液体の水が入ってきて、上に行くに従い核燃料棒からの熱を吸収して水は蒸気に変わっていく。核燃料集合体(30)の中程の高さでは核***で生じた高速中性子は水による減速作用を受け難くなり速さが遅くならない。下端近辺では液体の水が多く、上端近辺でもその上は水と蒸気との二相流で満たされているため、核燃料棒(31)の上下端近辺では核***で生じた高速中性子は水による減速作用を受けて速さが遅くなる。炉心上下端近辺のプルトニウムは速度の遅い中性子を吸収してアメリシウム243を多く生成することになる。
【0004】
【課題を解決するための手段】
図5は本発明の中性子源付核燃料棒(131)の概略斜視図である。核燃料棒(31)の上下端近辺の核燃料ペレット(44)を中性子源ペレット(146)にし、最下端にはステンレスウール(147)を詰めたことを特徴とする。図6は本発明の中性子源ペレット(146)の構成を示す概略斜視図である。中性子源ペレット(146)は厚さ約0.1mmの円盤状の焼結酸化アメリシウム(151)と厚さ約0.1mmの円盤状の焼結酸化ベリリウム(153)とそれ等の間に厚さ約0.1mmの円盤状のビスマスまたは鉛と言った低融点金属(152)またはその合金を介在させて圧縮積層化したものである。
本発明の中性子源付核燃料棒(131)を束ねて中性子源付核燃料集合体となす。
なお、アメリシウムは、アメリシウム241の割合がアメリシウム243よりも多い再処理回数の少ない核燃料から分離したものがよい。
【0005】
【発明の実施の形態】
アメリシウム241は約5.5MeVのアルファ線を放出して自然崩壊する。なお、アメリシウム243もアルファ線を放出して自然崩壊するが放出割合が非常に少ない。アルファ線は固体物質の中では約0.1mm位しか透過できない。したがって、焼結酸化アメリシウムの厚さを0.1mm以上にしても焼結酸化アメリシウムの外には出て行かないため焼結酸化アメリシウムの中を発熱させるだけである。
ベリリウムはアルファ線の照射を受けると約4.5MeVの中性子を発生する。焼結酸化ベリリウムの厚さも焼結酸化アメリシウムと同様に0.1mm程度である。
焼結酸化アメリシウムと焼結酸化ベリリウムとを製造段階で直接接触させると中性子を発生するため、製造時に人体が中性子の照射を受けないように管理するのが大変である。そこで、焼結酸化アメリシウムと焼結酸化ベリリウムとの間にビスマスとか鉛のような物質を0.1mm程度介在させることにより、アメリシウムからのアルファ線はベリリウムに到達できにくくなり、中性子の発生が抑制される。
中性子源付核燃料集合体を炉心で運転すると、沸騰水型原子炉の冷却材温度は約286度Cであるから、中性子源付核燃料棒(131)の中の温度はアメリシウムの崩壊熱も加わるため286度C以上の350度Cにもなりうる。融点271度Cのビスマスとか融点327度Cの鉛は溶けて、中性子源付核燃料棒(131)下端のステンレスウール(147)の中に溶け落ちる。すると、焼結酸化アメリシウムと焼結酸化ベリリウムとは直接接触することになり、ベリリウムはアメリシウム241からのアルファ線の照射を受けるため中性子を発生する。
ベリリウムから発生した4.5MeVの速度の速い中性子は、物質透過作用が強く10cm以上も透過する。したがって、中性子源ペレット(146)近辺のMOXに到達し核***に寄与し、端部近辺のMOXの出力が高まる。なお、1.0MeV以上の速度の速い中性子はプルトニウム242をプルトニウム239と同程度に核***させるため出力増加に寄与すると共に、遅い中性子ではないためプルトニウム242はアメリシウム243になり難くアメリシウム243の発生を抑制できる。
その他、中性子源ペレット(146)中のアメリシウム241が遅い中性子を捕獲したアメリシウム242は核***がプルトニウム239以上に活発であるため出力増加に寄与する。
また、下部の中性子源ペレット(146)はアメリシウム241の崩壊熱やアメリシウム242の核***による発熱があるため炉心下部からの冷却水(37)を蒸気にする。したがって、下部の中性子源ペレット(146)のすぐ上にあるMOXの周囲の冷却材も比較的蒸気が多いため核***で発生した高速中性子は速さが減速され難いため、プルトニウム242は核***しかつアメリシウム243になる割合も抑制される。
なお、酸化アメリシウム(151)または酸化ベリリウム(153)を多孔質とすることにより、高温の原子炉運転時に溶けた低融点金属(152)を多孔質内に内蔵させることができる。
更に、上部の中性子源ペレット(146)において、低融点金属(152)を沃素または燐または水銀または砒素といった低沸点金属または低昇華点金属にすれば、それ等低沸点金属または低昇華点金属は運転時に気体となって中性子源付核燃料棒(131)の上部のスプルング(45)領域に移行する。
【0006】
【発明の効果】
使用済み核燃料集合体からの核燃料を再処理後に分離保管するしかなかったアメリシウム241は有効に利用される。
分離困難な核***し難いプルトニウム242の生成は抑制され、したがって、再処理されたプルトニウムの中にプルトニウム242の含有量が少なくなるため、再処理を来り返しても核***性能の低下を招くことなく再処理回数を多くすることができる。廃棄級プルトニウムの量を減らすことができるため長期保管管理が軽減され強いては発電コストの低減をもたらす。
プルトニウム242が遅い中性子を捕獲して生成されるアメリシウム243の生成も抑制されるため、弱いながらも放射性物質であるアメリシウム243の長期保管管理量が軽減され強いては発電コストの低減をもたらす。
なお、再処理を繰り返した廃棄級プルトニウムにおいて、プルトニウム成分が殆どプルトニウム242であったとしても、本発明の中性子源付核燃料棒(131)の核燃料として、図7に示すような廃棄級プルトニウムの酸化物と劣化ウランの酸化物とからなる廃棄級プルトニウムMOXペレット(244)約20cm置きに中性子源ペレット(146)を装荷した軸中性子源付核燃料棒(231)とすることにより、プルトニウム242を核***させて無駄なく量を減らすことができる。
軸中性子源付核燃料棒(231)からなる核燃料集合体は未臨界であるから核***はそれ程活発ではなく発熱も少ない。中性子源がなければ核***は停止してしまう。したがって、少ない冷却材流量で蒸気を多くしても除熱することができる。すると、核***で生じた高速中性子は減速されにくいため、プルトニウム242を核***させて無駄なく量を減らすことができる。中性子の多い炉心中心部に装荷すれば早く無駄なく量を減らすことができる。
本発明の軸中性子源付核燃料棒(231)を束ねて構成した臨界をわずかにこえる程度もしくは未臨界の核燃料集合体によって蒸気冷却またはヘリウムガス冷却炉心を構成すれば、爆発的事故に至る心配がない原子炉となる。事故が生じても通常火災におけるが如く放水により核***で生じた高速中性子は減速され核***の度合いが弱まり原子炉は停止する。
このように、余計ものであったプルトニウム242やアメリシウム243の生成は抑制され、プルトニウム242やアメリシウム241はむしろ有効に利用される。
【0007】
【その他実施例1】
図8は外側を外側酸化アメリシウム(441)とし内側を内側廃棄級プルトニウムMOX(442)とした本発明の焼結二重ペレット(444)の断面図である。図9はその概略斜視図である。アメリシウム241はウラン238同様親物質とみなせる。アメリシウム241はウラン238よりも中性子を捕獲する割合が大きく、中性子を捕獲して生成されたアメリシウム242はプルトニウム239よりも活発に核***する。アメリシウム241の割合がアメリシウム243よりも多い再処理回数が少ない燃料からのアメリシウムが適している。
外側酸化アメリシウム(441)に多く含まれるアメリシウム241は速度の遅い中性子を捕獲する性質が強いため、冷却水(37)で減速された速度の遅い中性子は焼結二重ペレット(444)の内側には殆ど入り込めない。したがって、焼結二重ペレット(444)の内側廃棄級プルトニウムMOX(442)に多く含まれるプルトニウム242は核***し、アメリシウム243になるものは少ない。
核燃料棒(31)を束ねた核燃料集合体(30)に上記焼結二重ペレット(444)を装填すれば、余計もののプルトニウム242を有効に燃焼させることができるばかりでなく、余計なアメリシウム243の生成を抑制できる。また、核***が活発な装荷したばかりの核燃料集合体においてアメリシウム241の強い中性子捕獲作用により核***は抑制され、核***が弱まる運転末期ではアメリシウム241から生成されたアメリシウム242が豊富になっていて核***を活発にするように作用するため運転期間を通じて変化が緩やかな運転をすることができる。
従来の核燃料集合体からなる炉心に本発明の核燃料集合体を定期検査の度に約1/4ずつ取り替えていくことにより、全炉心または炉心の一部を本実施例の核燃料集合体からなる炉心にすることができる。
【図面の簡単な説明】
【図1】沸騰水型原子炉における従来の核燃料集合体(30)の概略斜視図。
【図2】従来の核燃料棒(31)の概略断面図。
【図3】従来の核燃料棒(31)の断面図。
【図4】従来の核燃料ペレット(44)の概略斜視図。
【図5】本発明の中性子源付核燃料棒(131)の概略斜視図。
【図6】本発明の中性子源ペレット(146)の概略斜視図。
【図7】本発明の軸中性子源付核燃料棒(231)の概略斜視図。
【図8】本発明の焼結二重ペレット(444)の断面図。
【図9】本発明の焼結二重ペレット(444)の概略斜視図。
【符号の説明】
30は核燃料集合体
31は核燃料棒
32は上側結合板
33は下側結合板
34はスペーサ
35はチャンネルボックス
37は冷却水
41は被覆管
42は上部端栓
43は下部端栓
44は核燃料ペレット
45はスプリング
131は中性子源付核燃料棒
146は中性子源ペレット
147はステンレスウール
151は酸化アメリシウム
152は低融点金属
153は酸化ベリリウム
231は軸中性子源付核燃料棒
244は廃棄級プルトニウムMOXペレット
441は酸化アメリシウム
442は内側廃棄級プルトニウムMOX
444は焼結二重ペレット
[0001]
BACKGROUND OF THE INVENTION
The present invention particularly relates to a nuclear fuel assembly for a boiling water reactor. In particular, it is a nuclear fuel assembly that can effectively use plutonium.
[0002]
[Prior art]
FIG. 1 is a schematic perspective view showing a conventional nuclear fuel assembly (30) of a boiling water reactor containing nuclear fuel material. The nuclear fuel assembly (30) includes a cylindrical nuclear fuel rod (31) enclosing a nuclear fuel material arranged in a square lattice, and an upper coupling plate (32) for supporting the upper end and the lower end thereof. ) And the lower coupling plate (33), several spacers (34) that are positioned in the middle of the height of the nuclear fuel rods (31) and regulate the spacing between the fuel rods, and a channel box (35 ).
As shown in FIG. 2, the nuclear fuel rod (31) includes, for example, a cladding tube (41) made of Zircaloy 2, an upper end plug (42) and a lower end plug (43) that hermetically close the upper and lower opening ends of the cladding tube (41). And a large number of nuclear fuel pellets (44) loaded in the cladding tube (41), and a spring (45) interposed between the uppermost surface of the nuclear fuel pellet (44) and the upper end plug (42). ing. FIG. 3 is a sectional view of the nuclear fuel rod (31). FIG. 4 is a schematic perspective view of the nuclear fuel pellet (44). It is a nuclear fuel material obtained by sintering a mixed oxide of uranium and plutonium called MOX having a diameter of about 8 mm and a length of about 10 mm.
[0003]
[Problems to be solved by the invention]
When the nuclear fuel assembly (30) is burned by operating the nuclear reactor, the parent material uranium 238 becomes plutonium 239 that easily undergoes fission when neutrons are captured, and plutonium 239 becomes plutonium 240 that is difficult to fission when neutrons are captured, Plutonium 240 becomes plutonium 241 that easily undergoes fission when neutrons are captured, and plutonium 241 becomes americium 241 that does not spontaneously collapse and fission, but strongly captures neutrons. The captured plutonium 242 becomes a relatively stable americium 243 that hardly undergoes fission when the neutron is captured.
Americium 241 that strongly captures slow neutrons that are difficult to fission and relatively stable americium 243 that hardly causes fission can be separated relatively easily in the process of reprocessing, but plutonium 242 that is difficult to fission but has strong neutron capture action. Is difficult to separate from plutonium 239 and plutonium 241 which are easily fissioned. Therefore, if plutonium is repeatedly used by reprocessing nuclear fuel, the proportion of plutonium 242 that is difficult to fission but has a strong neutron capture function will continue to increase, so-called waste grade plutonium. It is difficult to continue using plutonium by repeating reprocessing. It is expensive to store and manage without using waste grade plutonium. As a result, it also contributes to an increase in power generation cost. In addition, it is necessary to store and manage the separated americium, which contributes to an increase in power generation cost.
The output of the nuclear fuel assembly (30) is maximum near the center of the height and close to zero near the upper and lower ends. This is because the neutron ratio is close to zero due to leakage near the upper and lower ends. Therefore, even if a large amount of plutonium that easily undergoes fission is mixed with MOX in order to increase the output near the upper and lower ends, the effect does not increase. The plutonium near the upper and lower ends is only wasted.
In boiling water reactors, liquid water enters from the bottom of the core, and as it goes up, it absorbs heat from the nuclear fuel rods and turns the water into steam. At the middle height of the nuclear fuel assembly (30), fast neutrons generated by fission are not easily slowed by water and do not slow down. Near the lower end, there is a lot of liquid water, and even near the upper end, it is filled with a two-phase flow of water and steam. Therefore, near the upper and lower ends of the nuclear fuel rod (31), fast neutrons generated by fission are decelerated by water. Receiving the action, the speed becomes slower. Plutonium in the vicinity of the upper and lower ends of the core absorbs slow neutrons and produces a large amount of americium 243.
[0004]
[Means for Solving the Problems]
FIG. 5 is a schematic perspective view of a nuclear fuel rod (131) with a neutron source of the present invention. The nuclear fuel pellet (44) in the vicinity of the upper and lower ends of the nuclear fuel rod (31) is a neutron source pellet (146), and the lowermost end is filled with stainless wool (147). FIG. 6 is a schematic perspective view showing the configuration of the neutron source pellet (146) of the present invention. The neutron source pellet (146) is a disc-shaped sintered americium oxide (151) having a thickness of about 0.1 mm, a disc-shaped sintered beryllium oxide (153) having a thickness of about 0.1 mm, and a thickness between them. It is formed by compressing and laminating a low melting point metal (152) such as disc-shaped bismuth or lead of about 0.1 mm or an alloy thereof.
The nuclear fuel rod with neutron source (131) of the present invention is bundled to form a nuclear fuel assembly with neutron source.
Note that the americium is preferably separated from nuclear fuel having a lower ratio of americium 241 than that of the americium 243 and having a small number of reprocessing times.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Americium 241 emits about 5.5 MeV alpha rays and spontaneously decays. Americium 243 also emits alpha rays and spontaneously decays, but the emission rate is very small. Alpha rays can only transmit about 0.1 mm in solid materials. Therefore, even if the thickness of the sintered americium oxide is 0.1 mm or more, the sintered americium oxide does not go out of the sintered americium oxide.
Beryllium generates about 4.5 MeV neutrons when irradiated with alpha rays. The thickness of the sintered beryllium oxide is about 0.1 mm as in the case of the sintered americium oxide.
When the sintered americium oxide and the sintered beryllium oxide are brought into direct contact with each other at the manufacturing stage, neutrons are generated. Therefore, it is difficult to manage the human body not to be irradiated with neutrons during manufacturing. Therefore, by interposing a material such as bismuth or lead about 0.1 mm between the sintered americium oxide and the sintered beryllium oxide, alpha rays from the americium are difficult to reach the beryllium, and the generation of neutrons is suppressed. Is done.
When the nuclear fuel assembly with a neutron source is operated in the core, the coolant temperature of the boiling water reactor is about 286 degrees C. Therefore, the temperature in the nuclear fuel rod with the neutron source (131) also includes the decay heat of americium. It can be as high as 350 degrees C. Bismuth with a melting point of 271 ° C or lead with a melting point of 327 ° C melts and melts into the stainless wool (147) at the lower end of the nuclear fuel rod with a neutron source (131). Then, the sintered americium oxide and the sintered beryllium oxide are in direct contact with each other, and the beryllium is irradiated with alpha rays from the americium 241 and generates neutrons.
Neutrons with a high speed of 4.5 MeV generated from beryllium have a strong substance permeation effect and penetrate more than 10 cm. Therefore, it reaches the MOX near the neutron source pellet (146), contributes to fission, and the output of the MOX near the end increases. Note that neutrons with a speed of 1.0 MeV or higher cause plutonium 242 to fission to the same extent as plutonium 239 and contribute to an increase in output, and because they are not slow neutrons, plutonium 242 is unlikely to become americium 243 and suppresses the generation of americium 243. it can.
In addition, the americium 242 in which the americium 241 in the neutron source pellet (146) captures slow neutrons contributes to an increase in output because fission is more active than plutonium 239.
Further, since the lower neutron source pellet (146) generates heat due to the decay heat of the americium 241 and the fission of the americium 242, the cooling water (37) from the lower part of the core is vaporized. Therefore, since the coolant around the MOX just above the lower neutron source pellet (146) is also relatively vaporous, fast neutrons generated by fission are difficult to slow down, so plutonium 242 is fissioned and americium. The ratio of 243 is also suppressed.
In addition, by making the americium oxide (151) or the beryllium oxide (153) porous, the low melting point metal (152) melted during the high temperature nuclear reactor operation can be incorporated in the porous body.
Further, in the upper neutron source pellet (146), if the low melting point metal (152) is a low boiling point metal or low sublimation point metal such as iodine or phosphorus, mercury or arsenic, such low boiling point metal or low sublimation point metal is obtained. It becomes a gas during operation and moves to the upper sprung (45) region of the nuclear fuel rod (131) with a neutron source.
[0006]
【The invention's effect】
The americium 241 that can only be separated and stored after reprocessing the nuclear fuel from the spent nuclear fuel assembly is effectively used.
Production of plutonium 242 that is difficult to separate and is difficult to fission is suppressed. Therefore, the content of plutonium 242 is reduced in the reprocessed plutonium, so that the fission performance is not deteriorated even if the reprocessing is repeated. The number of reprocessing can be increased. Since the amount of waste-grade plutonium can be reduced, long-term storage management is reduced, leading to a reduction in power generation costs.
Since the generation of americium 243 generated by capture of slow neutrons by plutonium 242 is also suppressed, the amount of long-term storage and management of americium 243, which is a radioactive material, is reduced, but if it is forced, power generation costs are reduced.
In the waste grade plutonium that has been repeatedly processed, even if the plutonium component is mostly plutonium 242, the oxidation of the waste grade plutonium as shown in FIG. 7 is used as the nuclear fuel of the nuclear fuel rod with neutron source (131) of the present invention. Waste-grade plutonium MOX pellets (244) consisting of materials and depleted uranium oxides (244). Nuclear fuel rods with axial neutron sources (231) loaded with neutron source pellets (146) at intervals of about 20 cm. The amount can be reduced without waste.
Since the nuclear fuel assembly consisting of the nuclear fuel rod (231) with an axial neutron source is subcritical, fission is not so active and heat generation is small. Fission stops without a neutron source. Therefore, heat can be removed even if steam is increased with a small coolant flow rate. Then, since fast neutrons generated by fission are not easily decelerated, the amount of plutonium 242 can be fissioned to reduce the amount without waste. If it is loaded in the core of the core where there are many neutrons, the amount can be reduced quickly and without waste.
If a steam-cooled or helium gas-cooled core is constituted by a nuclear fuel assembly with a degree of criticality slightly exceeding the criticality formed by bundling the nuclear fuel rods (231) with an axial neutron source of the present invention, there is a concern that an explosive accident may occur. There will be no reactor. Even if an accident occurs, fast neutrons produced by fission are slowed down as in a normal fire, the degree of fission is weakened, and the reactor stops.
In this manner, the generation of extra plutonium 242 and americium 243 is suppressed, and the plutonium 242 and americium 241 are rather effectively used.
[0007]
[Other Example 1]
FIG. 8 is a cross-sectional view of a sintered double pellet (444) of the present invention with the outer americium oxide (441) on the outside and the inner waste grade plutonium MOX (442) on the inside. FIG. 9 is a schematic perspective view thereof. Americium 241 can be regarded as a parent substance like uranium 238. Americium 241 has a higher rate of capturing neutrons than uranium 238, and americium 242 generated by capturing neutrons is more actively fissioned than plutonium 239. Americium from a fuel in which the ratio of americium 241 is higher than that of americium 243 and the number of reprocessing times is small is suitable.
Since americium 241 contained in the outer americium oxide (441) in a large amount has a strong property of capturing slow neutrons, the slow neutrons decelerated by the cooling water (37) are placed inside the sintered double pellet (444). Can hardly enter. Therefore, the plutonium 242 contained in a large amount in the inner waste grade plutonium MOX (442) of the sintered double pellet (444) undergoes fission and there are few that become americium 243.
If the sintered double pellet (444) is loaded into the nuclear fuel assembly (30) in which the nuclear fuel rods (31) are bundled, not only the extra plutonium 242 can be effectively burned, but also the extra americium 243. Generation can be suppressed. Moreover, in the nuclear fuel assembly just loaded with active fission, the fission is suppressed by the strong neutron capture action of the americium 241 and at the end of the operation when the fission is weakened, the americium 242 generated from the americium 241 is abundant and the fission is actively performed. Therefore, it is possible to perform an operation with a gradual change throughout the operation period.
By replacing the nuclear fuel assembly of the present invention with a conventional nuclear fuel assembly by about ¼ at every periodic inspection, the entire core or a part of the core is made of the nuclear fuel assembly of this embodiment. Can be.
[Brief description of the drawings]
FIG. 1 is a schematic perspective view of a conventional nuclear fuel assembly (30) in a boiling water reactor.
FIG. 2 is a schematic sectional view of a conventional nuclear fuel rod (31).
FIG. 3 is a cross-sectional view of a conventional nuclear fuel rod (31).
FIG. 4 is a schematic perspective view of a conventional nuclear fuel pellet (44).
FIG. 5 is a schematic perspective view of a nuclear fuel rod (131) with a neutron source of the present invention.
FIG. 6 is a schematic perspective view of a neutron source pellet (146) of the present invention.
FIG. 7 is a schematic perspective view of a nuclear fuel rod (231) with an axial neutron source of the present invention.
FIG. 8 is a cross-sectional view of a sintered double pellet (444) of the present invention.
FIG. 9 is a schematic perspective view of a sintered double pellet (444) of the present invention.
[Explanation of symbols]
30, nuclear fuel assembly 31, nuclear fuel rod 32, upper coupling plate 33, lower coupling plate 34, spacer 35, channel box 37, cooling water 41, cladding tube 42, upper end plug 43, lower end plug 44, nuclear fuel pellet 45 The spring 131 is the nuclear fuel rod with neutron source 146, the neutron source pellet 147 is stainless steel wool 151, the americium oxide 152 is the low melting point metal 153, the beryllium oxide 231 is the nuclear fuel rod 244 with the axial neutron source, the plutonium MOX pellet 441 is the americium oxide 442 is the inner waste grade plutonium MOX
444 is a sintered double pellet

Claims (4)

沸騰水型原子炉の核燃料物質を内包する核燃料棒において、核燃料棒(31)の上下端近辺の核燃料ペレット(44)を中性子源ペレット(146)にし、最下端にはステンレスウール(147)を詰めたことを特徴とする中性子源付核燃料棒(131)。In the nuclear fuel rod containing the nuclear fuel material of the boiling water reactor, the nuclear fuel pellet (44) near the upper and lower ends of the nuclear fuel rod (31) is used as the neutron source pellet (146), and the bottom end is filled with stainless wool (147). A nuclear fuel rod (131) with a neutron source, characterized in that 請求項1における中性子源付核燃料棒(131)に装荷せる中性子源ペレット(146)において、円盤状の焼結酸化アメリシウム(151)と円盤状の焼結酸化ベリリウム(153)とそれ等の間に円盤状のビスマスまたは鉛と言った低融点金属(152)またはその合金を介在させて圧縮積層化したことを特徴とする。In the neutron source pellet (146) to be loaded on the nuclear fuel rod (131) with neutron source according to claim 1, between the disc-shaped sintered americium oxide (151) and the disc-shaped sintered beryllium oxide (153) and the like. It is characterized by being compression-laminated by interposing a low melting point metal (152) such as disc-shaped bismuth or lead or an alloy thereof. 請求項1における中性子源付核燃料棒(131)を束ねたことを特徴とする中性子源付核燃料集合体。A nuclear fuel assembly with a neutron source, wherein the nuclear fuel rod with a neutron source (131) according to claim 1 is bundled. 核燃料集合体(30)を構成する核燃料棒(31)に内包せる核燃料ペレットにおいて、外側を外側酸化アメリシウム(441)とし内側を内側廃棄級プルトニウムMOX(442)としたことを特徴とする焼結二重ペレット(444)。In the nuclear fuel pellet enclosed in the nuclear fuel rod (31) constituting the nuclear fuel assembly (30), the outer side is the outer americium oxide (441) and the inner side is the inner waste grade plutonium MOX (442). Heavy pellet (444).
JP2003194109A 2003-07-09 2003-07-09 Nuclear fuel assembly of boiling water type nuclear reactor Pending JP2005030817A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003194109A JP2005030817A (en) 2003-07-09 2003-07-09 Nuclear fuel assembly of boiling water type nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003194109A JP2005030817A (en) 2003-07-09 2003-07-09 Nuclear fuel assembly of boiling water type nuclear reactor

Publications (1)

Publication Number Publication Date
JP2005030817A true JP2005030817A (en) 2005-02-03

Family

ID=34205357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003194109A Pending JP2005030817A (en) 2003-07-09 2003-07-09 Nuclear fuel assembly of boiling water type nuclear reactor

Country Status (1)

Country Link
JP (1) JP2005030817A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021532364A (en) * 2018-07-24 2021-11-25 ウエスト リアリティ、 エス.アール.オー. Addition of nuclear fuel for nuclear reactors to the fuel mixture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021532364A (en) * 2018-07-24 2021-11-25 ウエスト リアリティ、 エス.アール.オー. Addition of nuclear fuel for nuclear reactors to the fuel mixture
JP7299301B2 (en) 2018-07-24 2023-06-27 ウエスト リアリティ、 エス.アール.オー. Addition of nuclear fuel for nuclear reactors to fuel mixtures

Similar Documents

Publication Publication Date Title
KR102590954B1 (en) All-ceramic microencapsulated fuel manufactured with combustible poisons as sintering aids
US20080031398A1 (en) Use of boron or enriched boron 10 in UO2
JPH0151794B2 (en)
EP2105934A2 (en) Fuel rod and assembly containing an internal hydrogen/tritium getter structure
US20130114781A1 (en) Fully ceramic microencapsulated replacement fuel assemblies for light water reactors
RU2170956C1 (en) Nuclear reactor fuel element
KR102095810B1 (en) Fuel assembly, core design method and fuel assembly design method of light-water reactor
EP0230376B1 (en) Burnable neutron absorber elements
JP2005030817A (en) Nuclear fuel assembly of boiling water type nuclear reactor
JP5947733B2 (en) Fast reactor core
JP2742441B2 (en) Fast breeder reactor core
JPH05232276A (en) Core of nuclear reactor
JPH11352272A (en) Reactor core and fuel assembly and fuel element used for the core
JP7278937B2 (en) Method for manufacturing nuclear fuel elements
JPH0119555B2 (en)
KR102588913B1 (en) Light water reactor uranium fuel assembly and nuclear fuel cycle operating method
JP3825050B2 (en) Actinide combustion fuel elements
JP2006064678A (en) Fuel assembly arrangement method, fuel rod, and fuel assembly of nuclear reactor
JP4351798B2 (en) Fuel assemblies and reactors
JP2006250534A (en) Simplified reprocessing nuclear fuel assembly
Newman Burning weapons-grade plutonium in reactors
JP2008175637A (en) Fuel assembly for light water reactor and criticality control method nuclear fuel cycle facility
JP2022181930A (en) Light water reactor fuel assembly and light water reactor core
JP2023072223A (en) Fuel assembly and core of nuclear reactor
JP2010151573A (en) Fuel assembly and boiling water reactor