JPH0151794B2 - - Google Patents

Info

Publication number
JPH0151794B2
JPH0151794B2 JP60022120A JP2212085A JPH0151794B2 JP H0151794 B2 JPH0151794 B2 JP H0151794B2 JP 60022120 A JP60022120 A JP 60022120A JP 2212085 A JP2212085 A JP 2212085A JP H0151794 B2 JPH0151794 B2 JP H0151794B2
Authority
JP
Japan
Prior art keywords
nuclear fuel
fuel
nuclear
pellet
pellets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60022120A
Other languages
Japanese (ja)
Other versions
JPS60183582A (en
Inventor
Furanshisu Boiru Reimondo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CBS Corp
Original Assignee
Westinghouse Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Westinghouse Electric Corp filed Critical Westinghouse Electric Corp
Publication of JPS60183582A publication Critical patent/JPS60183582A/en
Publication of JPH0151794B2 publication Critical patent/JPH0151794B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/02Fuel elements
    • G21C3/04Constructional details
    • G21C3/16Details of the construction within the casing
    • G21C3/18Internal spacers or other non-active material within the casing, e.g. compensating for expansion of fuel rods or for compensating excess reactivity
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C7/00Control of nuclear reaction
    • G21C7/02Control of nuclear reaction by using self-regulating properties of reactor materials, e.g. Doppler effect
    • G21C7/04Control of nuclear reaction by using self-regulating properties of reactor materials, e.g. Doppler effect of burnable poisons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Metal Extraction Processes (AREA)

Description

【発明の詳細な説明】 本発明は核燃料棒を使用して原子炉を運転する
際に放出される核***性物質によつて核燃料棒被
覆管が腐食するのを防ぐ、可燃性プレートを備え
た改良された核燃料棒に関する。 核***の過程は、通常濃縮二酸化ウランである
核***性核燃料物質が2種又はそれ以上の低質量
数の核***生成物に壊変することを含むことは周
知である。特にこの核***の過程は、連鎖反応の
基礎となる利用できる遊離中性子数の増加をも含
む。原子炉をある期間以上運転したら、燃料集合
体は核***性物質が消耗するから最後に取り替え
なければならない。この取り替え工程は時間消費
的であり高価につくものであるから、実際には使
用できる限り所定燃料集合体の寿命を延ばすこと
が望ましい。従つて、計算値による少量の寄生的
中性子捕獲元素を核燃料に添加すると、熱中性子
炉に非常に有効な効果をもたらす。このような中
性子捕獲元素は通常これらが中性子吸収の高い可
能性(即ち高い中性子吸収断面積)をもち、新た
な即ち付加的な中性子を生じず、又は中性子吸収
の結果として新たな吸収材に変換しないとき、こ
れらの中性子捕獲元素は“可燃性吸収材”と呼ば
れる。原子炉運転中、可燃性吸収材は徐々にその
量が減少するので、その結果核***性物質の付随
的な減少とバランスされる。 燃料集合体の寿命は最初多量の核***性物質を
含ませ、これに計算量の可燃性吸収材を組合わせ
ることによつて延長される。このような燃料集合
体の運転初期の間は過剰分の中性子は可燃性吸収
材に吸収され、この可燃性吸収材は、燃料集合体
の有効性が低下した寿命の終期における該燃料集
合体の反応性に実質的に影響を与えない低中性子
断面積の元素に変換される。可燃性吸収材は燃料
集合体の寿命初期における大量の核***性物質と
バランスしているが、燃料集合体の寿命終期には
徐々に少くなつた吸収材が中性子を捕獲すること
によつて、相対的に一定の核***レベルでの燃料
集合体の長寿命が保証される。従つて、注意深く
調整した量の核燃料及び可燃性吸収材の両方を含
む燃料集合体の場合には中性子の相対的に一定な
生成及び反応性によつて燃料集合体の寿命の延長
を達成することができる。 従つて、燃料集合体中に可燃性吸収材を組合わ
せることは、原子炉分野では核燃料の能力を増大
させ、それによつて原子炉炉心の寿命を延長させ
る効果的な手段として認められてきた。可燃性吸
収材は均一に核***性物質と混合して使用する即
ち可燃性吸収材を核燃料(即ち分散された吸収
材)に分散させるか、又は炉心中に別の部材とし
て別な可燃性吸収材棒のように分離して配置され
ることによつて、これらの可燃性吸収材は燃料と
同じ速度で完全燃焼即ち枯掲する。従つて、炉心
の正味の反応性は炉心の活性寿命期間にわたつて
相対的に一定に維持される。 分散された吸収材として核燃料に混合される
種々の可燃性吸収材の中で、酸化ガドリニウムは
極めて高い熱吸収断面積を有するために優れた吸
収材であることが見出されている。従つて、U−
235同位体含量が高い濃縮ウラン及び濃縮ウラン
との混合物としての酸化ガドリニウムは、従来か
ら核燃料ペレツトとして使用されている。 核燃料ペレツトと共に別な本体又はペレツトの
可燃性毒物を使用することもまた提案されてい
る。米国特許第3334019号明細書において、例え
ばホウ素若しくはホウ素化合物、ジスプロシウム
若しくはサマリウム、カドミウム若しくはユーロ
ピウムを含有する毒物プレートの使用が提案され
ており、これらの毒物プレートは核***性物質を
含む燃料部材間に配置される。燃料部材間に毒物
プレートを介在させる目的は、原子炉の燃料部材
の反応性が運転寿命中に変化する傾向を制御する
ためである。米国特許第3119747号明細書におい
てもまた燃料部材が記載されており、この明細書
では可燃性毒物のウエフアーが燃料本体の各端部
に配置されており、減速材例えばグラフアイトの
シリンダーがウエフアーと燃料部材の各端部取付
具との間に配置される。 上述のように、原子炉運転中に核燃料ペレツト
から核***性物質が放出される。揮発性物質を含
むこれらの放出物質は、応力腐食及び場合により
金属被覆管を破損するといつた問題を生ずる。こ
の現象は一般に“ペレツト−被覆管相互作用
(PCI)”と呼ばれる。金属管と揮発性核***性物
質例えばヨウ素、カドミウム、又は他の揮発性元
素との反応と、被覆管の運転中に生じた応力とが
一緒になり、金属被覆管即ち管の応力腐食亀裂を
生じ、最終的には管壁の浸透が生ずることにな
る。このようなペレツト−被覆管相互作用を防止
するための試みは、例えば保護被膜で管内壁を被
覆することにより、又はジルカロイ管壁内側部分
に純粋なジルコニウムバリヤーを同時押出成形す
る試みがなされてきた。このような操作は高価と
なるため、満足できるものではない。 本発明の目的は、ペレツト−被覆管相互作用を
排除し、又は最小とした構造の核燃料棒を提供す
ることにある。 本発明の他の目的は、ペレツト−被覆管相互作
用による破損の排除又は最小化を可燃性毒物とい
う概念に組込んだ核燃料棒を提供することにあ
る。 本発明による金属被覆管とその中に含まれる多
数の核燃料ペレツトを備えた改良された核燃料棒
は、天然又は劣化二酸化ウラン及び酸化ガドリニ
ウムの混合物の焼結体であるセラミツクウエーフ
アーを多数含む。ウエフアーは隣接する大部分の
燃料ペレツト間に各々配置され、燃料ペレツトか
ら放出された揮発性核***生成物を凝縮
(freezingout)し、ペレツト−被覆管相互作用に
よる損傷を最小にし又は防止する。ウエフアーの
直径は燃料ペレツトに直径と実質的に同一であ
り、ウエフアーの厚さは約0.25〜2.5mm(10〜100
ミル)である。酸化ガドリニウムは上記混合物に
対して1〜8重量%の量で存在させる。ウエフア
ーは天然又は劣化二酸化ウランと酸化ガドリニウ
ムとを混合し、この混合物を焼結してセラミツク
ウエーフアーを形成することにより造られる。 本発明は可燃性毒物の概念にペレツト−被覆管
相互作用の防止を組み込んだ核燃料棒を提供する
ものである。 図に示すように、核燃料棒1は既知の金属被覆
管材料例えばジルカロイから形成される金属被覆
管3を備え、この金属被覆管3は両端が慣用のよ
うに閉塞手段(図示せず)により閉塞されてい
る。金属被覆管3中には複数の核燃料ペレツト5
が配置されている。核燃料ペレツトは、一般にU
−235同位体が濃縮された二酸化ウランの焼結ペ
レツトからなる。濃縮二酸化ウランの代わりに二
酸化ウラン−二酸化プルトニウムの混合物を使用
してもよい。これらの燃料ペレツトは一般に二酸
化ウランを濃縮し、二酸化ウラン単独又は二酸化
ウランと二酸化プルトニウムとの混合物を所定の
寸法と形状に圧縮し、次いでこれを核燃料棒に使
用するために緻密なペレツトに焼結することによ
り製造される。 核燃料ペレツトの長さは通常10.2〜15.2mm(0.4
〜0.6インチ)程度であり、長さ/直径の比は1.7
〜1以下であり、好適には約1.2/1である。核
燃料ペレツトは製造時には被覆管中に配置した核
燃料ペレツトの軸方向の対向面が凹面となるよう
に、核燃料ペレツト自身に凹面7を有する。 核燃料を装入した原子炉運転中に、揮発性核分
裂生成物が放出される。この揮発性核***生成物
の放出は、一般に温度依存性なので、揮発性核分
裂生成物が最も多く放出されるのは、図中の矢印
で示される核燃料ペレツトの凹面であることが見
出された。通常、金属被覆管の管壁に直接対向す
る核燃料ペレツトの側面からは、わずかな量しか
揮発性核***生成物を放出しない。従つて、本発
明は核燃料ペレツトの凹面から放出された核***
生成物を凝縮することによつて、ペレツト−被覆
管相互作用による破損の原因となる被覆管に対す
る攻撃を実質的に減少又は除去するものである。 揮発性核***生成物を凝縮するため、さらに、
原子炉システムの出力分布特性(power
shaping)を制御するために、複数のセラミツク
ウエフアー9が軸方向で隣接する大部分の核燃料
ペレツト間の軸方向に配置され、このウエフアー
は酸化ガドリニウム及び天然又は劣化二酸化ウラ
ンから形成されている。 セラミツクウエフアー9を形成するのに使用さ
れる二酸化ウランは、ウラン−235同位体を天然
二酸化ウラン中に存在する量以下含有している。
一般に、天然二酸化ウラン−235同位体を0.71重
量%程度含有している。核燃料として使用する濃
縮二酸化ウランの製造に際には、ウラン−235同
位体含有量を増加するために、この天然ウランを
処理する。この処理からのスケーリング又は残渣
は、天然ウランよりも少量のウラン−235同位体
を含有するウラン−235同位体が減少したウラン
で、本質的にはこの同位体は全く存在しないこと
もある。本発明のセラミツクウエフアーの形成に
使用できるのはこの劣化二酸化ウラン又は天然二
酸化ウランである。 天然又は劣化二酸化ウランには酸化ガドリニウ
ムが添加され、得られた混合物は焼結されたセラ
ミツクウエフアーを形成する。天然又は劣化二酸
化ウランに添加される酸化ガドリニウムの量は、
混合物基準で約1〜8重量%である。このように
形成されたセラミツクウエフアー9の直径は、図
に示すように核燃料ペレツト5の直径と実質的に
同一であるが、その厚さは遥かに小さい。セラミ
ツクウエフアーの厚さは約0.25〜2.5mm(10〜100
ミル)である。厚さ0.25mm未満のウエフアーは製
造が困難であり、取り扱い及び使用時に一体構造
を維持することができない。一方、2.5mmより厚
い厚さのウエフアーは核燃料ペレツト間の間隙を
あげることにより、出力ピーキングに関する問題
を生ずる傾向がある。 セラミツクウエフアー9は隣接する核燃料ペレ
ツト5の間すべてに配置させる必要はないが、隣
接する核燃料ペレツト5の間の大部分に配置すべ
きである。核燃料棒中に存在させるセラミツクウ
エフアーの数を変化させることにより原子炉シス
テムの出力分布特性(power shaping)の融通性
が達成される。例えば、一般に燃料棒の中央部で
ある高出力発生領域において隣接した核燃料ペレ
ツト各ペレツト間にセラミツクウエフアーを配置
することができ、一方、燃料棒端部領域又は他の
低出力発生領域においては隣接する核燃料ペレツ
ト間にセラミツクウエフアーを備えなくてもよ
い。さらに、原子炉システムの出力分布特性
(power shaping)を補助するために、全核燃料
棒中の特定のウエフアーは酸化ガドリニウムの存
在量を1〜8重量%の範囲で変えることができ
る。従つて、本発明による核燃料棒の使用はペレ
ツト−被覆管相互作用による破損を減少又は除去
することに加えて、核燃料ペレツト中の可燃性毒
物の必要を除去し且つ原子炉システム中に別な可
燃性毒物棒の使用を除去することができる。 天然又は劣化二酸化ウラン及び酸化ガドリニウ
ムのセラミツクウエフアーを含有する本発明の核
燃料棒において、セラミツクウエフアーからの出
力発生は極く僅かであり、セラミツクウエフアー
は核燃料ペレツト自体より相対的に低温であり、
核燃料ペレツトの凹面の端面から放出されるガス
状核***生成物の方に向いた前記ウエフアーの相
対的に低温度表面は揮発性核***生成物を凝縮
し、このような核***生成物が被覆管に到達する
ことを防止し、且つペレツト−被覆管相互作用に
よる破損を防止する。酸化ガドリニウムが完全燃
焼したのち、ウエフアー中の天然又は劣化二酸化
ウランはまだ低出力発生状態であり、有害な核分
裂生成物を凝縮する作用をする。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an improvement with combustible plates to prevent corrosion of nuclear fuel rod claddings by fissile material released during operation of a nuclear reactor using nuclear fuel rods. related to nuclear fuel rods. It is well known that the process of nuclear fission involves the decay of fissile nuclear fuel material, usually enriched uranium dioxide, into two or more low mass number fission products. In particular, this fission process also involves an increase in the number of available free neutrons, which forms the basis for a chain reaction. After a nuclear reactor has been operated for a certain period of time, the fuel assembly must be replaced as the fissile material is consumed. Since this replacement process is time consuming and expensive, it is desirable in practice to extend the life of a given fuel assembly for as long as it can be used. Therefore, adding a calculated small amount of parasitic neutron-capturing elements to nuclear fuel has a very effective effect on thermal neutron reactors. Such neutron-capturing elements usually have a high potential for neutron absorption (i.e. high neutron absorption cross section) and do not produce new or additional neutrons or are converted into new absorbers as a result of neutron absorption. When not, these neutron-capturing elements are called "combustible absorbers." During reactor operation, the amount of combustible absorbent material is gradually reduced so that it is balanced by a concomitant reduction in fissile material. The life of the fuel assembly is extended by initially containing a large amount of fissile material, combined with a calculated amount of combustible absorbent material. During the initial operation of such a fuel assembly, excess neutrons are absorbed by a combustible absorber, which absorbs the neutrons of the fuel assembly at the end of its life, when its effectiveness is reduced. It is converted to an element with a low neutron cross section that does not substantially affect reactivity. The combustible absorber balances the large amount of fissile material at the beginning of the fuel assembly's life, but at the end of the fuel assembly's life, the absorber gradually decreases and captures neutrons, causing a relative As a result, long life of the fuel assembly at a constant fission level is guaranteed. Thus, in the case of fuel assemblies containing carefully regulated amounts of both nuclear fuel and combustible absorber, an increase in the lifetime of the fuel assembly is achieved through relatively constant production and reactivity of neutrons. Can be done. Accordingly, the combination of combustible absorbent materials in fuel assemblies has been recognized in the nuclear reactor field as an effective means of increasing nuclear fuel capacity and thereby extending the life of the nuclear reactor core. The combustible absorber is used homogeneously mixed with the fissile material, i.e. the combustible absorber is dispersed in the nuclear fuel (i.e. dispersed absorber), or the combustible absorber is used as a separate component in the reactor core. By being spaced apart, such as rods, these combustible absorbents burn out or burn out at the same rate as the fuel. Therefore, the net reactivity of the core remains relatively constant over the active life of the core. Among the various combustible absorbents that are mixed into nuclear fuel as dispersed absorbers, gadolinium oxide has been found to be an excellent absorber because it has an extremely high heat absorption cross section. Therefore, U-
Enriched uranium with a high 235 isotope content and gadolinium oxide as a mixture with enriched uranium have traditionally been used as nuclear fuel pellets. It has also been proposed to use burnable poisons in separate bodies or pellets with nuclear fuel pellets. In US Pat. No. 3,334,019 it is proposed to use poison plates containing, for example, boron or boron compounds, dysprosium or samarium, cadmium or europium, which poison plates are arranged between fuel elements containing fissile material. be done. The purpose of interposing poison plates between fuel components is to control the tendency for the reactivity of the reactor fuel components to change during its operational life. U.S. Pat. No. 3,119,747 also describes a fuel member in which a burnable poison wafer is placed at each end of the fuel body, and a cylinder of moderator, such as graphite, is attached to the wafer. and each end fitting of the fuel member. As mentioned above, fissile material is released from nuclear fuel pellets during reactor operation. These emitted materials, including volatile materials, create problems such as stress corrosion and possibly failure of metal cladding. This phenomenon is commonly referred to as "pellet-cladding interaction" (PCI). The reaction of the metal tube with volatile fissile materials, such as iodine, cadmium, or other volatile elements, together with the stresses developed during operation of the cladding, can result in stress corrosion cracking of the metal cladding or tube. , eventually penetration of the tube wall will occur. Attempts have been made to prevent such pellet-cladding interactions, for example by coating the inner tube wall with a protective coating or by coextruding a pure zirconium barrier on the inner portion of the Zircaloy tube wall. . Such operations are expensive and therefore unsatisfactory. An object of the present invention is to provide a nuclear fuel rod having a structure that eliminates or minimizes pellet-cladding interactions. Another object of the present invention is to provide a nuclear fuel rod that incorporates the burnable poison concept to eliminate or minimize failure due to pellet-cladding interactions. An improved nuclear fuel rod with a metal cladding tube and a plurality of nuclear fuel pellets contained therein according to the present invention includes a plurality of ceramic wafers which are sintered bodies of a mixture of natural or depleted uranium dioxide and gadolinium oxide. The wafers are each positioned between adjacent bulk fuel pellets to freeze out volatile fission products released from the fuel pellets and to minimize or prevent damage from pellet-cladding interactions. The diameter of the wafer is substantially the same as the diameter of the fuel pellet, and the thickness of the wafer is approximately 0.25-2.5 mm (10-100 mm).
Mill). Gadolinium oxide is present in an amount of 1 to 8% by weight, based on the mixture. The wafer is made by mixing natural or depleted uranium dioxide and gadolinium oxide and sintering this mixture to form a ceramic wafer. The present invention provides a nuclear fuel rod that incorporates the concept of burnable poisons with the prevention of pellet-cladding interactions. As shown, a nuclear fuel rod 1 comprises a metal cladding tube 3 formed from a known metal cladding material such as Zircaloy, the metal cladding tube 3 being closed at both ends by closure means (not shown) in a conventional manner. has been done. A plurality of nuclear fuel pellets 5 are contained in the metal cladding tube 3.
is located. Nuclear fuel pellets are generally U
It consists of sintered pellets of uranium dioxide enriched with the -235 isotope. A uranium dioxide-plutonium dioxide mixture may be used instead of enriched uranium dioxide. These fuel pellets are generally made by enriching uranium dioxide, compressing uranium dioxide alone or a mixture of uranium dioxide and plutonium dioxide to a predetermined size and shape, which is then sintered into dense pellets for use in nuclear fuel rods. Manufactured by The length of nuclear fuel pellets is usually 10.2 to 15.2 mm (0.4
~0.6 inch), with a length/diameter ratio of 1.7
~1 or less, preferably about 1.2/1. During manufacture, the nuclear fuel pellet itself has a concave surface 7 so that the axially opposing surface of the nuclear fuel pellet placed in the cladding tube is a concave surface. During operation of a nuclear reactor charged with nuclear fuel, volatile fission products are released. Since the release of volatile fission products is generally temperature dependent, it was found that the largest amount of volatile fission products are released from the concave surface of the nuclear fuel pellet, as indicated by the arrow in the figure. Typically, only a small amount of volatile fission products are released from the side of the nuclear fuel pellet directly opposite the metal cladding tube wall. Accordingly, the present invention substantially reduces or eliminates attacks on the cladding that cause failure due to pellet-cladding interactions by condensing fission products released from the concave surface of the nuclear fuel pellet. It is. In addition, to condense volatile fission products,
Power distribution characteristics (power) of a nuclear reactor system
To control shaping, a plurality of ceramic wafers 9 are disposed axially between axially adjacent bulk nuclear fuel pellets, the wafers being formed from gadolinium oxide and natural or depleted uranium dioxide. The uranium dioxide used to form the ceramic wafer 9 contains less than the amount of uranium-235 isotope present in natural uranium dioxide.
Generally, it contains about 0.71% by weight of natural uranium dioxide-235 isotope. In producing enriched uranium dioxide for use as nuclear fuel, this natural uranium is processed to increase its uranium-235 isotope content. The scaling or residue from this processing is uranium depleted in uranium-235 isotope, containing less of the uranium-235 isotope than natural uranium, and may be essentially devoid of this isotope. It is this depleted uranium dioxide or natural uranium dioxide that can be used to form the ceramic wafers of the present invention. Gadolinium oxide is added to natural or depleted uranium dioxide and the resulting mixture forms a sintered ceramic wafer. The amount of gadolinium oxide added to natural or depleted uranium dioxide is
About 1-8% by weight based on the mixture. The diameter of the ceramic wafer 9 thus formed is substantially the same as the diameter of the nuclear fuel pellet 5, as shown in the figure, but its thickness is much smaller. The thickness of ceramic wafer is approximately 0.25~2.5mm (10~100 mm)
Mill). Wafers less than 0.25 mm thick are difficult to manufacture and cannot maintain an integral structure during handling and use. On the other hand, wafer thicknesses greater than 2.5 mm tend to create problems with power peaking by increasing the spacing between nuclear fuel pellets. Ceramic wafers 9 do not have to be placed all between adjacent nuclear fuel pellets 5, but should be placed mostly between adjacent nuclear fuel pellets 5. Flexibility in the power shaping of a nuclear reactor system is achieved by varying the number of ceramic wafers present in a nuclear fuel rod. For example, ceramic wafers may be placed between adjacent nuclear fuel pellets in the high power producing region, typically the center of the fuel rod, while adjacent nuclear fuel pellets may be placed between adjacent nuclear fuel pellets in the fuel rod end regions or other low power producing regions. There is no need to provide ceramic wafers between the nuclear fuel pellets. Furthermore, to aid in power shaping of the nuclear reactor system, specific wafers in all nuclear fuel rods can vary in the amount of gadolinium oxide present in the range of 1-8% by weight. Thus, in addition to reducing or eliminating damage due to pellet-cladding interactions, the use of nuclear fuel rods in accordance with the present invention eliminates the need for combustible poisons in the nuclear fuel pellets and eliminates the need for combustible poisons in the reactor system. The use of poison rods can be eliminated. In the nuclear fuel rods of the present invention containing ceramic wafers of natural or depleted uranium dioxide and gadolinium oxide, the power generation from the ceramic wafers is negligible and the ceramic wafers are relatively cooler than the nuclear fuel pellets themselves. ,
The relatively cool surface of the wafer facing the gaseous fission products emitted from the concave end face of the nuclear fuel pellet condenses volatile fission products and prevents such fission products from reaching the cladding. This also prevents damage due to pellet-cladding interaction. After complete combustion of the gadolinium oxide, the natural or depleted uranium dioxide in the wafer is still in a low power generation state and acts to condense harmful fission products.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明によるセラミツクウエフアーを含有
した核燃料棒の断面図である。図中、 1……核燃料棒、3……金属管状被覆管、5…
…核燃料ペレツト、7……凹部、9……セラミツ
クウエフアー。
The figure is a cross-sectional view of a nuclear fuel rod containing a ceramic wafer according to the present invention. In the figure, 1... Nuclear fuel rod, 3... Metal tubular cladding tube, 5...
...Nuclear fuel pellet, 7...Recess, 9...Ceramic wafer.

【特許請求の範囲】[Claims]

1 燃料集合体と制御棒とを配置して成る沸騰水
型原子炉炉心の核燃料を取扱う方法において、同
時期に交換すべき燃料集合体を配置するに際し、
上記同時期に交換すべき燃料集合体の内の4体を
互いに隣接させて2列、2行に配置し、かつ、該
2列、2行の配列によつて制御棒を取り囲まない
いように配列して装荷しておき、当該沸騰水型原
子炉を構成している多数の燃料集合体のうち、交
換時期に達した燃料集合体を交換する場合、前記
4体の燃料集合体を1組として移送することを特
徴とする、沸騰水型原子炉の核燃料取扱い方法。
1. In a method of handling nuclear fuel in a boiling water reactor core consisting of fuel assemblies and control rods, when arranging fuel assemblies to be replaced at the same time,
Four of the fuel assemblies to be replaced at the same time are arranged adjacent to each other in two columns and two rows, and the control rods are not surrounded by the arrangement of the two columns and two rows. When replacing fuel assemblies that have reached their replacement time among the large number of fuel assemblies that are arranged and loaded and make up the boiling water reactor, the four fuel assemblies mentioned above are to be replaced as one set. A method for handling nuclear fuel in a boiling water reactor, which is characterized by transferring it as a fuel.

JP60022120A 1984-02-09 1985-02-08 Nuclear fuel rod consisting of metallic tubular cladding containing plurality of nuclear fuel pellet Granted JPS60183582A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US06/578,336 US4636352A (en) 1984-02-09 1984-02-09 Nuclear fuel rod with burnable plate and pellet-clad interaction fix
US578336 1984-02-09

Publications (2)

Publication Number Publication Date
JPS60183582A JPS60183582A (en) 1985-09-19
JPH0151794B2 true JPH0151794B2 (en) 1989-11-06

Family

ID=24312428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60022120A Granted JPS60183582A (en) 1984-02-09 1985-02-08 Nuclear fuel rod consisting of metallic tubular cladding containing plurality of nuclear fuel pellet

Country Status (3)

Country Link
US (1) US4636352A (en)
JP (1) JPS60183582A (en)
IT (1) IT1199662B (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE452153B (en) * 1985-09-18 1987-11-16 Asea Atom Ab SET TO MANUFACTURE SINTERED NUCLEAR FUEL BODIES
JPS6315162U (en) * 1986-07-11 1988-02-01
US5347550A (en) * 1987-03-28 1994-09-13 Kabushiki Kaisha Toshiba Core of light-water reactor
US4818471A (en) * 1987-08-10 1989-04-04 Westinghouse Electric Corp. BWR fuel assembly channel with localized neutron absorber strips for LPRM calibration
US4814137A (en) * 1988-02-16 1989-03-21 Westinghouse Electric Corp. High performance reliability fuel pellet
FR2817385B1 (en) * 2000-11-30 2005-10-07 Framatome Anp PASTILLE OF NUCLEAR FUEL OXIDE AND PENCIL COMPRISING A STACK OF SUCH PELLETS
RU2221288C1 (en) * 2002-12-18 2004-01-10 Институт проблем химической физики РАН Fuel element for steam generating power installations
US20050069075A1 (en) * 2003-06-04 2005-03-31 D.B.I. Century Fuels And Aerospace Services, Inc. Reactor tray vertical geometry with vitrified waste control
US9275759B2 (en) * 2006-11-28 2016-03-01 Terrapower, Llc Modular nuclear fission reactor
US9214246B2 (en) * 2006-11-28 2015-12-15 Terrapower, Llc System and method for operating a modular nuclear fission deflagration wave reactor
US9831004B2 (en) 2006-11-28 2017-11-28 Terrapower, Llc Controllable long term operation of a nuclear reactor
US8971474B2 (en) 2006-11-28 2015-03-03 Terrapower, Llc Automated nuclear power reactor for long-term operation
US9734922B2 (en) 2006-11-28 2017-08-15 Terrapower, Llc System and method for operating a modular nuclear fission deflagration wave reactor
US7860207B2 (en) 2006-11-28 2010-12-28 The Invention Science Fund I, Llc Method and system for providing fuel in a nuclear reactor
US20090175402A1 (en) * 2006-11-28 2009-07-09 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Method and system for providing fuel in a nuclear reactor
US9230695B2 (en) 2006-11-28 2016-01-05 Terrapower, Llc Nuclear fission igniter
US20090080588A1 (en) * 2006-11-28 2009-03-26 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Nuclear fission igniter
US20090080587A1 (en) * 2006-11-28 2009-03-26 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Nuclear fission igniter
US20080123795A1 (en) * 2006-11-28 2008-05-29 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Controllable long term operation of a nuclear reactor
US20080123797A1 (en) * 2006-11-28 2008-05-29 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Automated nuclear power reactor for long-term operation
US8842800B2 (en) * 2007-11-28 2014-09-23 Ge-Hitachi Nuclear Energy Americas Llc Fuel rod designs using internal spacer element and methods of using the same
US9793014B2 (en) * 2008-05-15 2017-10-17 Terrapower, Llc Heat pipe fission fuel element
US20090285348A1 (en) * 2008-05-15 2009-11-19 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Heat pipe fission fuel element
US9236150B2 (en) 2009-11-02 2016-01-12 Terrapower, Llc Standing wave nuclear fission reactor and methods
CA2787423C (en) 2010-02-04 2018-02-20 General Atomics Modular nuclear fission waste conversion reactor
CN113409964A (en) * 2021-06-17 2021-09-17 中国核动力研究设计院 Compression system capable of effectively reducing axial load of fuel assembly and fuel assembly

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5548689A (en) * 1978-10-05 1980-04-07 Tokyo Shibaura Electric Co Nuclear fuel rod

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL265705A (en) * 1960-06-08
NL6401633A (en) * 1964-02-21 1965-08-23 Reactor Centrum Nederland Fuel element provided with disappearing poison
US3872022A (en) * 1970-08-10 1975-03-18 Gen Electric Sintering uranium oxide in the reaction products of hydrogen-carbon dioxide mixtures
US3930787A (en) * 1970-08-10 1976-01-06 General Electric Company Sintering furnace with hydrogen carbon dioxide atmosphere
JPS51101689A (en) * 1975-03-05 1976-09-08 Doryokuro Kakunenryo
US4052330A (en) * 1975-03-20 1977-10-04 Gen Electric Sintering uranium oxide using a preheating step
US4100020A (en) * 1976-10-22 1978-07-11 Combustion Engineering, Inc. Internal fuel pin oxidizer
US4285769A (en) * 1978-10-19 1981-08-25 General Electric Company Control cell nuclear reactor core
JPS5933862B2 (en) * 1979-04-11 1984-08-18 株式会社日立製作所 Fuel assembly for pressure tube reactor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5548689A (en) * 1978-10-05 1980-04-07 Tokyo Shibaura Electric Co Nuclear fuel rod

Also Published As

Publication number Publication date
IT8519408A0 (en) 1985-02-06
IT1199662B (en) 1988-12-30
US4636352A (en) 1987-01-13
JPS60183582A (en) 1985-09-19

Similar Documents

Publication Publication Date Title
JPH0151794B2 (en)
KR101733832B1 (en) Nuclear fuel, nuclear fuel element, nuclear fuel assembly and a method manufacturing nuclear fuel
JP3037717B2 (en) Reactor fuel assembly
US4671927A (en) Nuclear fuel rod containing a hybrid gadolinium oxide, boron carbide burnable absorber
EP1647993A2 (en) Use of boron or enriched boron 10 in UO2
US20080031398A1 (en) Use of boron or enriched boron 10 in UO2
EP3396676B1 (en) A ceramic nuclear fuel pellet, a fuel rod, and a fuel assembly
US20130114781A1 (en) Fully ceramic microencapsulated replacement fuel assemblies for light water reactors
US5642390A (en) Uranium-containing nuclear-fuel sintered pellet
JPS58204387A (en) Improved fuel rod of nuclear fuel assembly
JPS58135989A (en) Fuel assembly for bwr type reactor
US4696793A (en) Burnable poison rod for use in a nuclear reactor
JPS59192992A (en) Control rod of reactor
JP2742441B2 (en) Fast breeder reactor core
EP1780729A2 (en) Fuel assembly with boron containing nuclear fuel
JPS60188880A (en) Fuel aggregate for nuclear reactor
US6226340B1 (en) Hermaphroditic absorber loading for higher worth control rods
JP2565861B2 (en) Fuel assembly for boiling water reactor
EP0199197B1 (en) Fuel assembly
EP0518860A1 (en) Pressurized water nuclear reactor fuel
JP2000019282A (en) Fuel assembly for light-water reactor
US4762673A (en) Burnable poison rod for use in a nuclear reactor
JPH041593A (en) Fuel assembly
RU42128U1 (en) FUEL TABLET OF A NUCLEAR REACTOR NUCLEAR REJECTOR WITH A BURNING ABSORBER
JP3884192B2 (en) MOX fuel assembly, reactor core, and operating method of reactor