JP2005029463A - Glass plate with transparent conductive film, its production method, and photoelectric conversion device using the glass plate - Google Patents

Glass plate with transparent conductive film, its production method, and photoelectric conversion device using the glass plate Download PDF

Info

Publication number
JP2005029463A
JP2005029463A JP2004181264A JP2004181264A JP2005029463A JP 2005029463 A JP2005029463 A JP 2005029463A JP 2004181264 A JP2004181264 A JP 2004181264A JP 2004181264 A JP2004181264 A JP 2004181264A JP 2005029463 A JP2005029463 A JP 2005029463A
Authority
JP
Japan
Prior art keywords
film
transparent conductive
conductive film
glass plate
base film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004181264A
Other languages
Japanese (ja)
Inventor
Tsutomu Otani
強 大谷
Akira Fujisawa
章 藤沢
Toru Yamamoto
透 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP2004181264A priority Critical patent/JP2005029463A/en
Publication of JP2005029463A publication Critical patent/JP2005029463A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Glass (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a glass plate with a transparent conductive film having strong adhesive force and improved light transmittance while having an SiOC film as the substrate film. <P>SOLUTION: The glass plate with a transparent conductive film includes an SiOC film 2 formed on a glass plate 1 and a transparent conductive film 3 which contains tin oxide as the main component and is formed so as to be in contact with the film 2. The adhesive force of the transparent conductive film 3, according to JIS R3255-1997, is 90 mN or higher. While the thickness of the SiOC film 2 is 20-120 nm and that of the transparent conductive film 3 is 400-2,000 nm, the absorptivity of a thin film consisting of the films 2 and 3 in a wavelength range of 400-500 nm is set at 7.5 % or less. The glass plate is obtained by bringing an airflow containing an oxidant into contact with the surface of the SiOC film 2 and forming the transparent conductive film 3 on the surface. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、透明導電膜付きガラス板に関し、さらには、この透明導電膜付きガラス板を用いた光電変換装置に関する。   The present invention relates to a glass plate with a transparent conductive film, and further relates to a photoelectric conversion device using the glass plate with a transparent conductive film.

太陽電池などの光電変換装置には、透明導電膜(透明電極)を備えたガラス板が基板として用いられることがある。例えば、アモルファス(非晶質)太陽電池は、通常、ガラス板上に形成した酸化錫を主成分とする透明導電膜上に、光電変換層であるアモルファスシリコン層、アルミニウムなどからなる裏面電極を、この順に形成して製造される。   In a photoelectric conversion device such as a solar cell, a glass plate provided with a transparent conductive film (transparent electrode) may be used as a substrate. For example, an amorphous (amorphous) solar cell usually has a back electrode made of an amorphous silicon layer, aluminum or the like as a photoelectric conversion layer on a transparent conductive film mainly composed of tin oxide formed on a glass plate, It is formed and manufactured in this order.

透明導電膜としては、フッ素をドープした酸化錫(SnO2:F)膜が多用されている。この膜は、錫をドープした酸化インジウム(ITO)膜よりも耐プラズマ性能などの化学的安定性に優れており、プラズマCVD法が適用される光電変換層(アモルファスシリコン層)の成膜時にも劣化が少ない。ガラス板としては、安価で大量に供給されているソーダライムガラスが多用されている。この場合、ガラス板から透明導電膜へのアルカリ成分の拡散を防止するために、ガラス板と透明導電膜との間に、下地膜としてバリア性能を有する膜(バリア膜)が形成される。 As the transparent conductive film, a fluorine-doped tin oxide (SnO 2 : F) film is frequently used. This film is superior in chemical stability, such as plasma resistance, to the indium oxide (ITO) film doped with tin, and even when a photoelectric conversion layer (amorphous silicon layer) to which the plasma CVD method is applied is formed. There is little deterioration. As the glass plate, soda lime glass, which is inexpensive and supplied in large quantities, is frequently used. In this case, in order to prevent the diffusion of the alkaline component from the glass plate to the transparent conductive film, a film having a barrier performance (barrier film) is formed as a base film between the glass plate and the transparent conductive film.

SnO2:F膜を形成したガラス板には、高い光透過率と十分な導電性との両立が要求される。十分な導電性を得るためにSnO2:Fを厚膜化すると、反射光の干渉色(光彩)が問題となる場合がある。この光彩を低減するには、SnO2:Fの屈折率(約1.9)とガラス板の屈折率(約1.5)の中間の屈折率を有するバリア膜を使用するとよい。 The glass plate on which the SnO 2 : F film is formed is required to satisfy both high light transmittance and sufficient conductivity. When SnO 2 : F is thickened to obtain sufficient conductivity, the interference color (light) of reflected light may become a problem. In order to reduce this brightness, a barrier film having a refractive index intermediate between the refractive index of SnO 2 : F (about 1.9) and the refractive index of the glass plate (about 1.5) may be used.

例えば、特許文献1には、モノシラン、不飽和炭化水素、二酸化炭素の混合ガスを用いた化学蒸着法(CVD法)により形成した珪素(Si)、酸素(O)、炭素(C)を含有する膜(SiOC膜)が開示されている。特許文献1が開示するSiOC膜は、屈折率が1.6〜1.8程度であるが、この上に透明導電膜を形成した場合に膜の付着力が十分ではなく、膜が剥がれやすいという問題があった。また、透明導電膜を形成した場合に、特に可視短波長域において光の透過率が低くなるという問題もあった。   For example, Patent Document 1 contains silicon (Si), oxygen (O), and carbon (C) formed by chemical vapor deposition (CVD) using a mixed gas of monosilane, unsaturated hydrocarbon, and carbon dioxide. A film (SiOC film) is disclosed. The SiOC film disclosed in Patent Document 1 has a refractive index of about 1.6 to 1.8. However, when a transparent conductive film is formed on the SiOC film, the adhesion of the film is not sufficient, and the film is easily peeled off. There was a problem. Further, when the transparent conductive film is formed, there is a problem that the light transmittance is lowered particularly in the visible short wavelength region.

特開平1−201046号公報JP-A-1-201046

本発明は、SiOC膜を下地膜としながら、膜の付着力が高い透明導電膜付きガラス板を提供することを目的とする。また、本発明は、SiOC膜を下地膜としながら、光の透過率が改善された透明導電膜付きガラス板を提供することを目的とする。   An object of this invention is to provide the glass plate with a transparent conductive film with the high adhesive force of a film | membrane, using a SiOC film | membrane as a base film. It is another object of the present invention to provide a glass plate with a transparent conductive film with improved light transmittance while using a SiOC film as a base film.

本発明の第1の透明導電膜付きガラス板は、ガラス板と、このガラス板上に形成した珪素、酸素および炭素を含む下地膜と、この下地膜と接するように下地膜上に形成した酸化錫を主成分とする透明導電膜とを含む透明導電膜付きガラス板であって、JIS R3255−1997「ガラスを基板とした薄膜の付着性試験」に基づいて測定した上記透明導電膜の付着力が90mN以上であることを特徴とする。   A glass plate with a first transparent conductive film of the present invention comprises a glass plate, a base film containing silicon, oxygen and carbon formed on the glass plate, and an oxide formed on the base film so as to be in contact with the base film. A glass plate with a transparent conductive film comprising a transparent conductive film containing tin as a main component, the adhesion of the transparent conductive film measured based on JIS R3255-1997 "Adhesion test of thin film using glass as substrate" Is 90 mN or more.

本発明の第2の透明導電膜付きガラス板は、ガラス板と、このガラス板上に形成した珪素、酸素および炭素を含む下地膜と、この下地膜と接するように下地膜上に形成した酸化錫を主成分とする透明導電膜とを含む透明導電膜付きガラス板であって、下地膜の膜厚が20nm以上120nm以下であり、透明導電膜の膜厚が400nm以上2000nm以下であり、下地膜と透明導電膜とからなる薄膜の吸収率の平均が、400〜500nmの波長域において7.5%以下であることを特徴とする。   The glass plate with a second transparent conductive film of the present invention comprises a glass plate, a base film containing silicon, oxygen and carbon formed on the glass plate, and an oxide formed on the base film so as to be in contact with the base film. A glass plate with a transparent conductive film comprising a transparent conductive film containing tin as a main component, wherein the film thickness of the base film is from 20 nm to 120 nm, the film thickness of the transparent conductive film is from 400 nm to 2000 nm, The average of the absorptance of the thin film which consists of a ground film and a transparent conductive film is 7.5% or less in the wavelength range of 400-500 nm, It is characterized by the above-mentioned.

本発明の透明導電膜付きガラス板の製造方法は、ガラス板と、このガラス板上に形成した珪素、酸素および炭素を含む下地膜と、この下地膜と接するように下地膜上に形成した酸化錫を主成分とする透明導電膜とを含む透明導電膜付きガラス板の製造方法であって、下地膜の表面に酸化剤を含む気流を接触させた後、この表面に透明導電膜を形成することを特徴とする。   The method for producing a glass plate with a transparent conductive film according to the present invention comprises a glass plate, a base film containing silicon, oxygen and carbon formed on the glass plate, and an oxide formed on the base film so as to be in contact with the base film. A method for producing a glass plate with a transparent conductive film comprising a transparent conductive film containing tin as a main component, wherein an air stream containing an oxidant is brought into contact with the surface of a base film, and then a transparent conductive film is formed on the surface It is characterized by that.

下地膜であるSiOC膜の表面に酸化剤を含む気流を接触させてから透明導電膜を形成すると、透明導電膜付きガラス板の膜付着力および光透過率が向上する。本発明によれば、膜付着力および光透過率が上記程度に高い透明導電膜付きガラス板を得ることもできる。   When a transparent conductive film is formed after an air stream containing an oxidizing agent is brought into contact with the surface of the SiOC film that is the base film, the film adhesion and light transmittance of the glass plate with the transparent conductive film are improved. According to the present invention, it is possible to obtain a glass plate with a transparent conductive film having a film adhesion and light transmittance as high as those described above.

本発明は、SiOC膜を下地膜とし、この膜に含まれる炭素の反応を抑制しているので、膜の付着力が高い透明導電膜付きガラス板、あるいは光の透過率が改善された透明導電膜付きガラス板を提供できる。   In the present invention, a SiOC film is used as a base film, and the reaction of carbon contained in the film is suppressed. Therefore, a glass plate with a transparent conductive film having high film adhesion, or a transparent conductive material with improved light transmittance. A glass plate with a film can be provided.

以下、本発明の好ましい実施形態について図面を参照しながら説明する。
図1は、本発明の薄膜付きガラス板の一形態の断面図である。ガラス板1上に、珪素、酸素および炭素を含有する下地膜(SiOC膜)2が形成され、この表面上に酸化錫を主成分とする透明導電膜3が形成されている。なお、本明細書において、主成分とは、50重量%以上を占める成分をいう。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional view of one embodiment of a glass plate with a thin film of the present invention. A base film (SiOC film) 2 containing silicon, oxygen and carbon is formed on a glass plate 1, and a transparent conductive film 3 mainly composed of tin oxide is formed on this surface. In addition, in this specification, a main component means the component which occupies 50 weight% or more.

SiOC膜上に酸化錫を主成分とする透明導電膜をCVD法で直接成膜すると、特に可視短波長域における光の吸収が大きくなり、さらにはSiOC膜と透明導電膜との付着強度が低下し、透明導電膜の膜剥がれが生じやすくなる。この原因は十分に明らかではないが、SiOC膜の炭素(C)が酸化錫(SnO2)と反応して吸収の原因が発生し、かつ膜付着強度が低下すると考えられる。SiOC膜の表面に酸化剤を含む気流を接触させると、CとSnO2との反応を抑制できる。これにより、光吸収が少なく、膜付着力が向上した透明導電膜付きガラス板を得ることができる。 When a transparent conductive film containing tin oxide as a main component is directly formed on the SiOC film by the CVD method, the light absorption particularly in the visible short wavelength region increases, and the adhesion strength between the SiOC film and the transparent conductive film decreases. However, peeling of the transparent conductive film tends to occur. The cause of this is not sufficiently clear, but it is considered that carbon (C) of the SiOC film reacts with tin oxide (SnO 2 ) to cause absorption, and the film adhesion strength decreases. When an air stream containing an oxidizing agent is brought into contact with the surface of the SiOC film, the reaction between C and SnO 2 can be suppressed. Thereby, the glass plate with a transparent conductive film with little light absorption and improved film adhesion can be obtained.

酸化剤は、二酸化炭素、水蒸気などであってもよいが、酸素を含むことが好ましい。酸化剤を含む気流は、酸化剤以外を含んでいてもよいが、被酸化材料、例えば膜形成原料として用いられる金属化合物、を含有しないことが好ましい。酸化剤を含む気流の好ましい例としては、酸化剤と、窒素、不活性ガスなど当該酸化剤に対して不活性な気体とからなる気流が挙げられる。この気流を、SiOC膜の表面に吹き付けると、SiOC膜のCが関与する上記反応を効果的に抑制できる。   The oxidizing agent may be carbon dioxide, water vapor, etc., but preferably contains oxygen. The air stream containing the oxidizing agent may contain other than the oxidizing agent, but preferably does not contain the material to be oxidized, for example, a metal compound used as a film forming raw material. Preferable examples of the air stream containing an oxidant include an air stream composed of an oxidant and a gas inert to the oxidant such as nitrogen and an inert gas. When this air flow is blown onto the surface of the SiOC film, the reaction involving C in the SiOC film can be effectively suppressed.

酸化剤を含む気流を接触させる際、下地膜(SiOC膜)の表面は650℃以上に保持した状態とするとよい。酸化剤の作用が顕著となるからである。   When the air stream containing the oxidizing agent is brought into contact, the surface of the base film (SiOC film) is preferably kept at 650 ° C. or higher. This is because the action of the oxidizing agent becomes remarkable.

下地膜(SiOC膜)と透明導電膜は、いずれもCVD法により形成するとよい。この場合、これらの膜は、ガラス板を成形するためのフロート槽(錫フロート槽)内でCVD法により形成することが好ましい。フロート槽内の雰囲気は、錫浴の酸化を防ぐために非酸化性雰囲気に保たれているため、SiOC膜表面への酸化剤供給の効果は大きい。   Both the base film (SiOC film) and the transparent conductive film may be formed by a CVD method. In this case, these films are preferably formed by a CVD method in a float tank (tin float tank) for forming a glass plate. Since the atmosphere in the float bath is kept in a non-oxidizing atmosphere in order to prevent oxidation of the tin bath, the effect of supplying the oxidizing agent to the SiOC film surface is great.

CVD法によりSiOC膜と透明導電膜とを連続して形成する場合、酸化剤を含む気流は、例えば、SiOC膜の原料を供給するコータと透明導電膜の原料を供給するコータとの間に配置したコータから供給するとよい。   When the SiOC film and the transparent conductive film are continuously formed by the CVD method, for example, the air stream containing the oxidizing agent is disposed between the coater that supplies the raw material for the SiOC film and the coater that supplies the raw material for the transparent conductive film. It is good to supply from the coater.

SiOC膜のCが関与する上記反応をさらに抑制するためには、酸素濃度が高い原料ガス、例えば20〜85モル%の酸素を含む原料ガス、を用いて透明導電膜を形成するとよい。原料ガス中の酸素含有率が20モル%未満では十分な効果が得られず、85モル%を超えると透明導電膜の結晶成長が不安定になって、透明導電膜の膜質が低下する。さらに、原料ガスが発火するような危険な状態に到ることもある。   In order to further suppress the reaction involving C in the SiOC film, the transparent conductive film may be formed using a source gas having a high oxygen concentration, for example, a source gas containing 20 to 85 mol% oxygen. If the oxygen content in the source gas is less than 20 mol%, a sufficient effect cannot be obtained, and if it exceeds 85 mol%, crystal growth of the transparent conductive film becomes unstable and the film quality of the transparent conductive film is deteriorated. Furthermore, a dangerous state may occur in which the source gas is ignited.

SiOC膜の屈折率は1.6〜1.8、特に1.7〜1.8が好ましい。この膜の屈折率は、膜組成などにより調整することができる。SiOC膜の膜厚は、アルカリ成分の拡散を抑制するバリア膜としての機能を発揮するためには、20nm以上が好ましく、高い透過率を得るためには、120nm以下、特に100nm以下が好ましい。   The refractive index of the SiOC film is preferably 1.6 to 1.8, particularly preferably 1.7 to 1.8. The refractive index of this film can be adjusted by the film composition or the like. The film thickness of the SiOC film is preferably 20 nm or more in order to exhibit a function as a barrier film that suppresses the diffusion of alkali components, and 120 nm or less, particularly 100 nm or less is preferable in order to obtain high transmittance.

SiOC膜は、スパッタリング法、イオンプレーティング法、真空蒸着法などのいわゆる物理的成膜法により形成してもよいが、CVD法により成膜することが好ましい。膜厚の均一性では物理的成膜法が有利であるが、被膜の化学的耐久性ではCVD法、特に常圧熱CVD法が優れている。このCVD法に用いる原料混合ガスには、少なくとも、シリコン含有物質および酸化剤を添加する。   The SiOC film may be formed by a so-called physical film forming method such as a sputtering method, an ion plating method, or a vacuum vapor deposition method, but is preferably formed by a CVD method. The physical film formation method is advantageous for the uniformity of the film thickness, but the CVD method, particularly the atmospheric pressure thermal CVD method, is excellent for the chemical durability of the film. At least a silicon-containing substance and an oxidizing agent are added to the raw material mixed gas used in this CVD method.

シリコン含有物質(シリコン前駆物質)としては、モノシラン(SiH4)、ジシラン(Si26)、ジクロルシラン(SiH2Cl2)、三塩化シラン(SiHCl3)などの水素化シリコン、テトラメチルシラン((CH34Si)などのアルキル化シラン、四フッ化ケイ素(SiF4)、四塩化ケイ素(SiCl4)などを用いればよい。シリコン含有物質としてはモノシランが好適である。酸化剤としては、二酸化炭素(CO2)、一酸化炭素(CO)、酸素(O2)、水蒸気(H2O)など、少なくとも酸素元素を含む化合物を用いればよく、例えば空気を用いてもよい。 Examples of silicon-containing materials (silicon precursors) include silicon hydride such as monosilane (SiH 4 ), disilane (Si 2 H 6 ), dichlorosilane (SiH 2 Cl 2 ), silane trichloride (SiHCl 3 ), tetramethylsilane ( An alkylated silane such as (CH 3 ) 4 Si), silicon tetrafluoride (SiF 4 ), silicon tetrachloride (SiCl 4 ), or the like may be used. Monosilane is preferred as the silicon-containing material. As the oxidant, a compound containing at least an oxygen element such as carbon dioxide (CO 2 ), carbon monoxide (CO), oxygen (O 2 ), water vapor (H 2 O) may be used. For example, air may be used. Good.

原料混合ガスには、さらに、不飽和炭化水素を添加するとよい。不飽和炭化水素としては、エチレン系不飽和炭化水素、アセチレン系不飽和炭化水素、芳香族化合物などを用いればよいが、常温常圧で気体である化合物が適している。不飽和炭化水素としては、オレフィン、特に2〜4個の炭素原子を含むオレフィン、具体的にはエチレン(C24)が好適である。 An unsaturated hydrocarbon may be further added to the raw material mixed gas. As the unsaturated hydrocarbon, an ethylenically unsaturated hydrocarbon, an acetylenic unsaturated hydrocarbon, an aromatic compound, or the like may be used, but a compound that is a gas at normal temperature and pressure is suitable. As the unsaturated hydrocarbon, an olefin, particularly an olefin containing 2 to 4 carbon atoms, specifically ethylene (C 2 H 4 ) is preferable.

CVD法では、例えばモノシランと酸素あるいは二酸化炭素の少なくとも一方とエチレンとを含む原料混合ガスは、不活性ガスであるキャリアガスとともに供給される。キャリアガスとしては、窒素やヘリウムなどを用いることができる。成膜時のガラス基板温度の低下を防止する必要があるときには、ヘリウムやヘリウムと窒素との混合ガスを使用するとよい。ヘリウムは窒素と比較して、熱伝達係数が大きいため、高温の基板へガスが吹き付けられるまでのガス温度上昇がヘリウムでは大きく、窒素と比較してガラス基板の温度低下を防止することができる。特に大きな成膜速度を得る場合など、ガラスの軟化点より成膜温度を高くする必要がある場合には、キャリアガスとして窒素を用いると、原料ガスの吹き付けにより、ガラス基板温度が低下して、ガラス基板が変形するといった問題が生じる場合がある。このような時には、ヘリウムやヘリウムと窒素との混合ガスを使用することが望ましい。   In the CVD method, for example, a raw material mixed gas containing monosilane and at least one of oxygen or carbon dioxide and ethylene is supplied together with a carrier gas which is an inert gas. Nitrogen, helium, or the like can be used as the carrier gas. When it is necessary to prevent a decrease in the glass substrate temperature during film formation, helium or a mixed gas of helium and nitrogen may be used. Since helium has a larger heat transfer coefficient than nitrogen, the increase in gas temperature until gas is blown onto a high-temperature substrate is large with helium, and the temperature of the glass substrate can be prevented from lowering compared to nitrogen. When it is necessary to increase the film formation temperature above the softening point of the glass, particularly when obtaining a high film formation rate, when nitrogen is used as the carrier gas, the temperature of the glass substrate decreases due to the blowing of the source gas, There may be a problem that the glass substrate is deformed. In such a case, it is desirable to use helium or a mixed gas of helium and nitrogen.

透明導電膜としては、酸化錫を主成分とする膜、具体的には、フッ素などの不純物をドープした酸化錫膜(SnO2:F膜、屈折率約1.9)が適している。透明導電膜の膜厚は、太陽電池など光電変換装置用基板として用いるには、光透過率を維持しながら導電性を確保するために、400nm以上2000nm以下、さらには400nm以上1400nm以下、特に500nm以上1000nm以下とするとよい。下地膜と透明導電膜の好ましい膜厚の組み合わせの一例は、下地膜の膜厚が20nm以上100nm以下、透明導電膜の膜厚が400nm以上1400nm以下である。透明導電膜のシート抵抗値は、特に限定されないが、具体的には、5Ω/スクエア(Ω/□)以上20Ω/スクエア以下が好ましい。 As the transparent conductive film, a film containing tin oxide as a main component, specifically, a tin oxide film doped with an impurity such as fluorine (SnO 2 : F film, refractive index of about 1.9) is suitable. The film thickness of the transparent conductive film is 400 nm or more and 2000 nm or less, more preferably 400 nm or more and 1400 nm or less, particularly 500 nm, in order to ensure conductivity while maintaining light transmittance when used as a substrate for a photoelectric conversion device such as a solar cell. It is preferable that the thickness be 1000 nm or less. An example of a preferable combination of the film thickness of the base film and the transparent conductive film is that the film thickness of the base film is 20 nm to 100 nm and the film thickness of the transparent conductive film is 400 nm to 1400 nm. The sheet resistance value of the transparent conductive film is not particularly limited, but specifically, it is preferably 5Ω / square (Ω / □) or more and 20Ω / square or less.

透明導電膜も、SiOC膜と同様、物理的成膜法よりも、スプレー法、CVD法など原料の熱分解酸化反応を伴う化学的成膜法により成膜するとよい。スプレー法としては、金属化合物を含む溶液を加熱したガラス板上に噴霧する溶液スプレー法、上記溶液に代えて金属化合物の微粒子を液体に分散させた分散液を用いる分散液スプレー法、上記溶液に代えて金属化合物の粉末を用いる粉末スプレー法などが挙げられる。これに対し、CVD法では、少なくとも錫原料を含む被膜形成用の蒸気が用いられる。   Similarly to the SiOC film, the transparent conductive film may be formed by a chemical film formation method involving a thermal decomposition oxidation reaction of a raw material, such as a spray method or a CVD method, rather than a physical film formation method. As the spray method, a solution spray method in which a solution containing a metal compound is sprayed on a heated glass plate, a dispersion spray method using a dispersion in which fine particles of a metal compound are dispersed in a liquid instead of the above solution, Instead, a powder spray method using a metal compound powder may be used. On the other hand, in the CVD method, steam for forming a film containing at least a tin raw material is used.

スプレー法は、比較的簡便な装置で実施できるという利点があるが、液滴の制御や排気されるべき生成物(反応生成物、未分解生成物など)の制御が難しいために均一な膜厚を得にくく、ガラス板の歪みも大きくなる。このため、成膜法として、総合的にはCVD法が優れている。   The spray method has the advantage that it can be carried out with a relatively simple device, but it has a uniform film thickness because it is difficult to control droplets and products to be exhausted (reaction products, undecomposed products, etc.). The distortion of the glass plate is also increased. For this reason, the CVD method is generally excellent as a film forming method.

酸化錫を主成分とする透明導電膜には、フッ素とともに、あるいはフッ素に代えて、アンチモンのような他の微量成分を添加しても構わない。さらに、シリコン、アルミニウム、亜鉛、銅、インジウム、ビスマス、ガリウム、ホウ素、バナジウム、マンガン、ジルコニウムなどを添加してもよいが、これら微量成分の含有率は0.02重量%以下に留めるとよい。酸化錫を主成分とする透明導電膜には、錫原料から塩素が取り込まれることがあるが、この塩素は光透過率を低下させる原因となるため、塩素の含有率は0.4重量%以下が好ましい。   To the transparent conductive film containing tin oxide as a main component, other trace components such as antimony may be added together with fluorine or instead of fluorine. Further, silicon, aluminum, zinc, copper, indium, bismuth, gallium, boron, vanadium, manganese, zirconium, or the like may be added, but the content of these trace components is preferably 0.02% by weight or less. Chlorine may be taken from the tin raw material into the transparent conductive film containing tin oxide as a main component. However, since this chlorine causes a decrease in light transmittance, the chlorine content is 0.4% by weight or less. Is preferred.

ガラス板としては、安価で大量に供給されているソーダライムシリカガラス(屈折率約1.5)を用いればよい。このガラス板は、通常、フロート法により製造され、極めて平滑な表面を有する。その厚さは、特に限定されないが、好ましくは0.5mm以上5mm以下である。   As the glass plate, soda lime silica glass (refractive index of about 1.5) which is inexpensive and supplied in large quantities may be used. This glass plate is usually produced by a float process and has a very smooth surface. Although the thickness is not specifically limited, Preferably it is 0.5 mm or more and 5 mm or less.

CVD法による成膜は、予め所定の大きさに切断し、加熱したガラス板に原料混合ガスを吹き付けて行ってもよい。しかし、CVD法による成膜は、フロート法によるガラス製造工程におけるガラスリボン上において実施することが好ましい。この成膜法によれば、ガラス板を成形する際の熱エネルギーを利用できる。この好ましい製法(オンラインCVD法)は、大面積の透明導電膜付きガラス板の製造に有利であり、屋根材用などとして用いるために大面積のガラス板への成膜が求められる光電変換装置用基板の製造には特に適している。また、CVD法を錫フロート槽内の空間で行えば、軟化点以上の温度を有するガラス表面上で成膜できるため、膜の特性、成膜反応速度、膜反応効率などの向上が可能となる。さらに、ピンホール(膜抜け)などの欠点も抑制される。   The film formation by the CVD method may be performed by cutting the material into a predetermined size in advance and spraying a raw material mixed gas on a heated glass plate. However, the film formation by the CVD method is preferably performed on the glass ribbon in the glass manufacturing process by the float method. According to this film-forming method, the thermal energy at the time of shaping | molding a glass plate can be utilized. This preferred production method (online CVD method) is advantageous for the production of a large-area glass plate with a transparent conductive film, and is used for photoelectric conversion devices that require film formation on a large-area glass plate for use as a roofing material. It is particularly suitable for the production of substrates. Further, if the CVD method is performed in the space in the tin float bath, it is possible to form a film on a glass surface having a temperature equal to or higher than the softening point, so that it is possible to improve film characteristics, film formation reaction rate, film reaction efficiency, and the like. . Furthermore, defects such as pinholes (film loss) are also suppressed.

フロート法におけるガラスリボン上にCVD法により成膜するオンラインCVD法のための装置の一形態を図2に示す。図2に示したように、この装置では、溶融炉(フロート窯)11から錫フロート糟12内に流れ出し、錫浴15上を帯状に移動するガラスリボン10の表面から所定距離を隔て、所定個数のコータ16(図示した形態では3つのコータ16a,16b,16c)が配置されている。これらのコータからガス状の原料(原料混合ガス)が供給され、ガラスリボン10上に連続的に膜が形成されていく。これら複数のコータを利用することにより、ガラスリボン10上に、錫フロート槽内において、SiOC膜をCVD法により成膜し、この膜の表面に酸化剤を含む気流を吹き付け、さらにこの表面に透明導電膜をCVD法により成膜してもよい。   FIG. 2 shows an embodiment of an apparatus for on-line CVD that forms a film on a glass ribbon in the float process by the CVD method. As shown in FIG. 2, in this apparatus, a predetermined number of pieces are separated from the surface of the glass ribbon 10 that flows out from the melting furnace (float kiln) 11 into the tin float trough 12 and moves in a strip shape on the tin bath 15. The coater 16 (three coaters 16a, 16b, 16c in the illustrated form) is disposed. A gaseous raw material (raw material mixed gas) is supplied from these coaters, and a film is continuously formed on the glass ribbon 10. By utilizing these plural coaters, a SiOC film is formed on the glass ribbon 10 by a CVD method in a tin float tank, and an air stream containing an oxidizing agent is sprayed on the surface of the film, and further transparent on the surface. The conductive film may be formed by a CVD method.

各膜が形成されたガラスリボン10は、ローラ17により引き上げられて、徐冷窯13へと送り込まれる。徐冷窯13で冷却されたガラス板は、図示を省略する切断装置により切断され、所定の大きさのガラス板となる。   The glass ribbon 10 on which each film is formed is pulled up by the roller 17 and sent to the slow cooling furnace 13. The glass plate cooled in the slow cooling furnace 13 is cut by a cutting device (not shown) to become a glass plate having a predetermined size.

CVD法により酸化錫を主成分とする透明導電膜を形成する場合の錫原料としては、四塩化錫、ジメチル錫ジクロライド、ジブチル錫ジクロライド、テトラメチル錫、テトラブチル錫、ジオクチル錫ジクロライド、モノブチル錫トリクロライドなどが挙げられる。錫原料を酸化するための酸化原料としては、酸素、水蒸気、乾燥空気などを用いればよい。フッ素原料としては、フッ化水素、トリフルオロ酢酸、ブロモトリフルオロメタン、クロロジフルオロメタンなどが好ましい。アンチモンを添加する場合には、五塩化アンチモン、三塩化アンチモンなどを用いるとよい。また、四塩化錫など、反応性の高い錫原料を用いる場合は、塩酸、アルコールなどの反応抑制剤を適量添加してもよい。   The tin raw material for forming a transparent conductive film mainly composed of tin oxide by the CVD method is tin tetrachloride, dimethyltin dichloride, dibutyltin dichloride, tetramethyltin, tetrabutyltin, dioctyltin dichloride, monobutyltin trichloride. Etc. As an oxidizing raw material for oxidizing the tin raw material, oxygen, water vapor, dry air or the like may be used. As the fluorine raw material, hydrogen fluoride, trifluoroacetic acid, bromotrifluoromethane, chlorodifluoromethane and the like are preferable. When antimony is added, antimony pentachloride, antimony trichloride, or the like may be used. In addition, when a highly reactive tin raw material such as tin tetrachloride is used, an appropriate amount of a reaction inhibitor such as hydrochloric acid or alcohol may be added.

本発明の透明導電膜付きガラス板は、特に太陽電池用基板として好適である。アモルファスシリコン太陽電池用基板として用いる場合には、透明導電膜上に、光電変換層としてアモルファスシリコン膜が形成される。アモルファスシリコン膜は、例えば、水素ガスで希釈されたモノシランを原料とし、グロー放電を用いたプラズマCVD法により成膜すればよい。アモルファスシリコン膜は、通常、pin接合が形成されるように適宜メタン、ジボラン、フォスフィンなどをシリコン膜に添加しながら、透明導電膜側から順に、p層、i層、n層を成膜することにより形成される。さらに、アモルファスシリコン膜上には、アルミニウム膜などからなる金属電極層(裏面電極)が形成される。もっとも、アモルファスシリコン膜に代えて、結晶シリコン膜を光電変換層として形成しても構わない。   The glass plate with a transparent conductive film of the present invention is particularly suitable as a solar cell substrate. When used as a substrate for an amorphous silicon solar cell, an amorphous silicon film is formed as a photoelectric conversion layer on the transparent conductive film. The amorphous silicon film may be formed by plasma CVD using glow discharge using, for example, monosilane diluted with hydrogen gas as a raw material. As for an amorphous silicon film, a p-layer, an i-layer, and an n-layer are usually formed in order from the transparent conductive film side while appropriately adding methane, diborane, phosphine, etc. to the silicon film so that a pin junction is formed. It is formed by. Further, a metal electrode layer (back surface electrode) made of an aluminum film or the like is formed on the amorphous silicon film. However, instead of the amorphous silicon film, a crystalline silicon film may be formed as a photoelectric conversion layer.

以下、実施例により本発明をさらに詳細に説明するが、本発明は以下の実施例により制限されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not restrict | limited by a following example.

(実施例1)
図2と同様の装置を用いて、オンラインCVD法により、ガラスリボン表面にSiOC膜を形成した後、酸素を含む気流をSiOC膜表面に吹き付け、その後、このガラスリボンの表面にSnO2膜を成膜した。フロートバス内には、1500〜1600℃の通常のソーダライムシリカガラス組成からなる熔融ガラス生地を流し込んだ。
(Example 1)
A SiOC film is formed on the surface of the glass ribbon by online CVD using the same apparatus as in FIG. 2, and then an air stream containing oxygen is blown onto the surface of the SiOC film, and then an SnO 2 film is formed on the surface of the glass ribbon. Filmed. In the float bath, a molten glass dough having a normal soda-lime silica glass composition at 1500 to 1600 ° C. was poured.

ガラスリポンの温度が750℃のときに、最上流側に位置する第1のコータ(図2中16a)から、厚さが4.0mmのガラスリボンに原料ガスを吹き付けてSiOC膜を成膜した。原料ガスは、モノシラン(SiH4)、エチレン(C24)、二酸化炭素(CO2)、酸素(O2)の混合ガスを用いた。この原料ガスの濃度を調節して膜厚が50nmのSiOC膜を成膜した。 When the temperature of the glass ribbon was 750 ° C., a SiOC film was formed by blowing a source gas onto a glass ribbon having a thickness of 4.0 mm from the first coater (16a in FIG. 2) located on the most upstream side. As the source gas, a mixed gas of monosilane (SiH 4 ), ethylene (C 2 H 4 ), carbon dioxide (CO 2 ), and oxygen (O 2 ) was used. A SiOC film having a thickness of 50 nm was formed by adjusting the concentration of the source gas.

次いで、第2のコータ(図2中16b)から、SiOC膜の表面に酸素と窒素の混合ガスを吹き付けた。混合ガスのモル比は酸素:窒素=1:1とした。このとき、ガラスリボンは、少なくとも650℃を下回らない温度に保たれている。   Next, a mixed gas of oxygen and nitrogen was sprayed on the surface of the SiOC film from the second coater (16b in FIG. 2). The molar ratio of the mixed gas was oxygen: nitrogen = 1: 1. At this time, the glass ribbon is kept at a temperature not lower than at least 650 ° C.

引き続き、第3のコータ(図2中16c)から、塩化第二錫(蒸気)、水蒸気、塩化水素、フッ化水素、窒素およびヘリウムからなる混合ガス(原料ガス)を供給し、厚さ200nmのSnO2:F膜(第1層)を形成した。さらに、第4のコータおよび第5のコータ(ともに図2では図示省略)から、第3のコータと同じ混合ガスを供給し、厚さ550nmのSnO2:F膜(第2層)を形成した。なお、塩化水素は、水蒸気との混合前の塩化第二錫に事前混合して供給した。 Subsequently, a mixed gas (raw material gas) composed of stannic chloride (steam), water vapor, hydrogen chloride, hydrogen fluoride, nitrogen and helium was supplied from the third coater (16c in FIG. 2), and the thickness was 200 nm. An SnO 2 : F film (first layer) was formed. Further, the same mixed gas as that of the third coater was supplied from the fourth coater and the fifth coater (both not shown in FIG. 2) to form a SnO 2 : F film (second layer) having a thickness of 550 nm. . Hydrogen chloride was premixed and supplied to stannic chloride before mixing with water vapor.

こうして得た膜厚50nmのSiOC膜および合計膜厚750nmのSnO2:F膜からなる薄膜のシート抵抗は12Ω/□であった。また、この薄膜の波長400nm〜500nmにおける吸収率の平均は5.5%であった。さらに、JIS R3255−1997に基づいて測定した薄膜の付着力は95mNであった。 The sheet resistance of the thin film composed of the SiOC film having a film thickness of 50 nm and the SnO 2 : F film having a total film thickness of 750 nm was 12Ω / □. Moreover, the average of the absorptance in wavelength 400nm -500nm of this thin film was 5.5%. Furthermore, the adhesive force of the thin film measured based on JIS R3255-1997 was 95 mN.

なお、膜の吸収率は、以下のようにして測定した。まず、透明導電膜上に、屈折率が1.79のヨウ化メチレンを塗布し、さらにその上に厚さ1mmのカバーガラス(コーニング社製#7059)を密着させ、透明導電膜の表面凹凸による散乱ロスを解消したサンプルを作製した。このサンブルの可視光域における透過率および反射率を、分光光度計を用いて測定し、その結果からサンプルの吸収率を求めた。一方、薄膜を形成していないソーダライムガラス板にヨウ化メチレンを塗布し、その上から上記カバーガラスを密着させて参照用サンプルを作製し、この参照用サンプルについても上記と同様にして可視光域における吸収率を求めた。そして、サンプルの吸収率から参照用サンプルの吸収率を差し引いて、薄膜の吸収率を求めた。   The absorption rate of the film was measured as follows. First, methylene iodide having a refractive index of 1.79 is applied onto the transparent conductive film, and a 1 mm thick cover glass (# 7059 manufactured by Corning) is further adhered to the transparent conductive film. A sample in which scattering loss was eliminated was prepared. The transmittance and reflectance of the sample in the visible light range were measured using a spectrophotometer, and the absorbance of the sample was obtained from the result. On the other hand, methylene iodide is applied to a soda-lime glass plate on which a thin film is not formed, and the cover glass is closely adhered to the sample to produce a reference sample. The reference sample is also subjected to visible light in the same manner as described above. Absorption rate in the region was determined. Then, the absorption rate of the thin film was obtained by subtracting the absorption rate of the reference sample from the absorption rate of the sample.

(実施例2)
SiOC膜を成膜する原料ガスとして、モノシラン(SiH4)、エチレン(C24)、酸素(O2)の混合ガスを用いて、この原料ガスの濃度を調節して膜厚が60nmのSiOC膜を成膜したこと以外は、すべて実施例1と同様におこなった。
こうして得た膜厚60nmのSiOC膜および合計膜厚750nmのSnO2:F膜からなる薄膜のシート抵抗は11Ω/□であった。また、この薄膜の波長400nm〜500nmにおける吸収率の平均は5.1%であった。さらに、JIS R3255−1997に基づいて測定した薄膜の付着力は98mNであった。
(Example 2)
As a raw material gas for forming the SiOC film, a mixed gas of monosilane (SiH 4 ), ethylene (C 2 H 4 ), and oxygen (O 2 ) is used. All the processes were performed in the same manner as in Example 1 except that a SiOC film was formed.
The sheet resistance of the thin film composed of the SiOC film having a film thickness of 60 nm and the SnO 2 : F film having a total film thickness of 750 nm was 11Ω / □. Moreover, the average of the absorptance in wavelength 400nm -500nm of this thin film was 5.1%. Furthermore, the adhesive force of the thin film measured based on JIS R3255-1997 was 98 mN.

(実施例3)
第3のコータ(図2中16c)でSnO2:F膜(第1層)を成膜する原料ガスとして塩化第二錫(蒸気)、水蒸気、塩化水素、フッ化水素、窒素、ヘリウム、および酸素からなる混合ガスを供給し、厚さ200nmのSnO2:F膜(第1層)を形成したこと以外は、すべて実施例1と同様におこなった。原料ガス中の酸素濃度は、50モル%とした。
こうして得た膜厚50nmのSiOC膜および合計膜厚750nmのSnO2:F膜からなる薄膜のシート抵抗は12Ω/□であった。また、この薄膜の波長400nm〜500nmにおける吸収率の平均は4.9%であった。さらに、JIS R3255−1997に基づいて測定した薄膜の付着力は101mNであった。
(Example 3)
As source gases for forming the SnO 2 : F film (first layer) in the third coater (16c in FIG. 2), stannic chloride (vapor), water vapor, hydrogen chloride, hydrogen fluoride, nitrogen, helium, and All operations were performed in the same manner as in Example 1, except that a mixed gas composed of oxygen was supplied to form a 200 nm thick SnO 2 : F film (first layer). The oxygen concentration in the raw material gas was 50 mol%.
The sheet resistance of the thin film composed of the SiOC film having a film thickness of 50 nm and the SnO 2 : F film having a total film thickness of 750 nm was 12Ω / □. Moreover, the average of the absorptance in wavelength 400nm -500nm of this thin film was 4.9%. Furthermore, the adhesive force of the thin film measured based on JIS R3255-1997 was 101 mN.

(比較例1)
第2のコータ(図2中16b)から酸素と窒素の混合ガスを吹き付けないこと以外は実施例1と同様にして、実施例1と同じ膜厚のSiOC膜およびSnO2:F膜を形成した。こうして得た透明導電膜付きガラス板について、実施例1と同様にして各特性を測定したところ、シート抵抗は12Ω/□であり、波長400nm〜500nmにおける薄膜の吸収率の平均は8.2%であり、JIS R3255−1997に基づいて測定した薄膜の付着力は80mNであった。
(Comparative Example 1)
A SiOC film and a SnO 2 : F film having the same thickness as in Example 1 were formed in the same manner as in Example 1 except that the mixed gas of oxygen and nitrogen was not sprayed from the second coater (16b in FIG. 2). . About the glass plate with a transparent conductive film obtained in this way, each characteristic was measured in the same manner as in Example 1. As a result, the sheet resistance was 12Ω / □, and the average of the thin film absorptance at a wavelength of 400 nm to 500 nm was 8.2%. The adhesion of the thin film measured based on JIS R3255-1997 was 80 mN.

本発明は、SIOC膜を下地膜としながらも、この膜に含まれる炭素の反応を抑制することにより、膜の付着力が高い透明導電膜付きガラス板、あるいは光の透過率が改善された透明導電膜付きガラス板を提供するものとして、例えば光電変換装置の分野において大きな利用価値を有する。   The present invention uses a SIOC film as a base film, but suppresses the reaction of carbon contained in the film, whereby a glass plate with a transparent conductive film having a high film adhesion or a transparent with improved light transmittance. For providing a glass plate with a conductive film, for example, it has great utility value in the field of photoelectric conversion devices.

本発明による透明導電膜付きガラス板の一形態を示す断面図である。It is sectional drawing which shows one form of the glass plate with a transparent conductive film by this invention. 本発明の透明導電膜付きガラス板の製造に用い得る装置の構成を示す図である。It is a figure which shows the structure of the apparatus which can be used for manufacture of the glass plate with a transparent conductive film of this invention.

符号の説明Explanation of symbols

1 ガラス板
2 SiOC膜
3 透明導電膜
10 ガラスリボン
11 溶融炉
12 錫フロート槽
13 徐冷窯
15 錫浴
16 コータ
17 ローラ
DESCRIPTION OF SYMBOLS 1 Glass plate 2 SiOC film 3 Transparent conductive film 10 Glass ribbon 11 Melting furnace 12 Tin float tank 13 Slow cooling kiln 15 Tin bath 16 Coater 17 Roller

Claims (11)

ガラス板と、前記ガラス板上に形成した珪素、酸素および炭素を含む下地膜と、前記下地膜と接するように前記下地膜上に形成した酸化錫を主成分とする透明導電膜とを含む透明導電膜付きガラス板であって、JIS R3255−1997「ガラスを基板とした薄膜の付着性試験」に基づいて測定した前記透明導電膜の付着力が90mN以上である透明導電膜付きガラス板。   Transparent including a glass plate, a base film containing silicon, oxygen and carbon formed on the glass plate, and a transparent conductive film mainly composed of tin oxide formed on the base film so as to be in contact with the base film A glass plate with a transparent conductive film, which is a glass plate with a conductive film, wherein the adhesive force of the transparent conductive film measured based on JIS R3255-1997 “Test for Adhesion of Thin Film Using Glass as a Substrate” is 90 mN or more. 前記下地膜の膜厚が20nm以上120nm以下であり、前記透明導電膜の膜厚が400nm以上2000nm以下であり、前記下地膜と前記透明導電膜とからなる薄膜の吸収率の平均が、400〜500nmの波長域において7.5%以下である請求項1に記載の透明導電膜付きガラス板。   The film thickness of the base film is 20 nm or more and 120 nm or less, the film thickness of the transparent conductive film is 400 nm or more and 2000 nm or less, and the average of the absorptance of the thin film composed of the base film and the transparent conductive film is 400 to The glass plate with a transparent conductive film according to claim 1, which is 7.5% or less in a wavelength region of 500 nm. ガラス板と、前記ガラス板上に形成した珪素、酸素および炭素を含む下地膜と、前記下地膜と接するように前記下地膜上に形成した酸化錫を主成分とする透明導電膜とを含む透明導電膜付きガラス板であって、前記下地膜の膜厚が20nm以上120nm以下であり、前記透明導電膜の膜厚が400nm以上2000nm以下であり、前記下地膜と前記透明導電膜とからなる薄膜の吸収率の平均が、400〜500nmの波長域において7.5%以下である透明導電膜付きガラス板。   Transparent including a glass plate, a base film containing silicon, oxygen and carbon formed on the glass plate, and a transparent conductive film mainly composed of tin oxide formed on the base film so as to be in contact with the base film A glass plate with a conductive film, wherein the base film has a thickness of 20 nm to 120 nm, the transparent conductive film has a thickness of 400 nm to 2000 nm, and is a thin film comprising the base film and the transparent conductive film The glass plate with a transparent conductive film whose average absorptance is 7.5% or less in a wavelength region of 400 to 500 nm. 前記下地膜の膜厚が20nm以上100nm以下であり、前記透明導電膜の膜厚が400nm以上1400nm以下である請求項1〜3のいずれかに記載の透明導電膜付きガラス板。   4. The glass plate with a transparent conductive film according to claim 1, wherein the base film has a thickness of 20 nm to 100 nm, and the transparent conductive film has a thickness of 400 nm to 1400 nm. ガラス板と、前記ガラス板上に形成した珪素、酸素および炭素を含む下地膜と、前記下地膜と接するように前記下地膜上に形成した酸化錫を主成分とする透明導電膜とを含む透明導電膜付きガラス板の製造方法であって、前記下地膜の表面に酸化剤を含む気流を接触させた後、前記表面に前記透明導電膜を形成する透明導電膜付きガラス板の製造方法。   Transparent comprising a glass plate, a base film containing silicon, oxygen and carbon formed on the glass plate, and a transparent conductive film mainly composed of tin oxide formed on the base film so as to be in contact with the base film It is a manufacturing method of the glass plate with a conductive film, Comprising: After making the airflow containing an oxidizing agent contact the surface of the said base film, the manufacturing method of the glass plate with a transparent conductive film which forms the said transparent conductive film on the said surface. 前記酸化剤が酸素を含む請求項5に記載の透明導電膜付きガラス板の製造方法。   The manufacturing method of the glass plate with a transparent conductive film of Claim 5 in which the said oxidizing agent contains oxygen. 前記表面を650℃以上に保持した状態で前記表面に前記気流を接触させる請求項5または6に記載の透明導電膜付きガラス板の製造方法。   The manufacturing method of the glass plate with a transparent conductive film of Claim 5 or 6 which makes the said air current contact the said surface in the state which hold | maintained the said surface at 650 degreeC or more. 前記下地膜および前記透明導電膜を化学蒸着法により形成する請求項5〜7のいずれかに記載の透明導電膜付きガラス板の製造方法。   The manufacturing method of the glass plate with a transparent conductive film in any one of Claims 5-7 which forms the said base film and the said transparent conductive film by a chemical vapor deposition method. 前記下地膜および前記透明導電膜を、前記ガラス板を成形するためのフロート槽内で化学蒸着法により形成する請求項8に記載の透明導電膜付きガラス板の製造方法。   The manufacturing method of the glass plate with a transparent conductive film of Claim 8 which forms the said base film and the said transparent conductive film by the chemical vapor deposition method in the float tank for shape | molding the said glass plate. 20〜85モル%の酸素を含む原料ガスを用いて前記透明導電膜を形成する請求項5〜9のいずれかに記載の透明導電膜付きガラス板の製造方法。   The manufacturing method of the glass plate with a transparent conductive film in any one of Claims 5-9 which forms the said transparent conductive film using the source gas containing 20-85 mol% oxygen. 請求項1〜4のいずれかに記載の透明導電膜付きガラス板を含む光電変換装置。   The photoelectric conversion apparatus containing the glass plate with a transparent conductive film in any one of Claims 1-4.
JP2004181264A 2003-06-20 2004-06-18 Glass plate with transparent conductive film, its production method, and photoelectric conversion device using the glass plate Pending JP2005029463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004181264A JP2005029463A (en) 2003-06-20 2004-06-18 Glass plate with transparent conductive film, its production method, and photoelectric conversion device using the glass plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003177027 2003-06-20
JP2004181264A JP2005029463A (en) 2003-06-20 2004-06-18 Glass plate with transparent conductive film, its production method, and photoelectric conversion device using the glass plate

Publications (1)

Publication Number Publication Date
JP2005029463A true JP2005029463A (en) 2005-02-03

Family

ID=34220084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004181264A Pending JP2005029463A (en) 2003-06-20 2004-06-18 Glass plate with transparent conductive film, its production method, and photoelectric conversion device using the glass plate

Country Status (1)

Country Link
JP (1) JP2005029463A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011504293A (en) * 2007-11-02 2011-02-03 エージーシー フラット グラス ノース アメリカ,インコーポレイテッド Transparent conductive oxide film for thin film photovoltaic application and method of manufacturing the same
WO2014129171A1 (en) * 2013-02-20 2014-08-28 凸版印刷株式会社 Transparent conductive film, and touch panel and display device provided with same
JP2021014384A (en) * 2019-07-12 2021-02-12 Agc株式会社 Glass substrate with film and manufacturing method thereof
WO2022050066A1 (en) * 2020-09-04 2022-03-10 Agc株式会社 Glass article

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011504293A (en) * 2007-11-02 2011-02-03 エージーシー フラット グラス ノース アメリカ,インコーポレイテッド Transparent conductive oxide film for thin film photovoltaic application and method of manufacturing the same
US9181124B2 (en) 2007-11-02 2015-11-10 Agc Flat Glass North America, Inc. Transparent conductive oxide coating for thin film photovoltaic applications and methods of making the same
WO2014129171A1 (en) * 2013-02-20 2014-08-28 凸版印刷株式会社 Transparent conductive film, and touch panel and display device provided with same
CN105009041A (en) * 2013-02-20 2015-10-28 凸版印刷株式会社 Transparent conductive film, and touch panel and display device provided with same
US9523880B2 (en) 2013-02-20 2016-12-20 Toppan Printing Co., Ltd. Transparent conductive film, and touch panel and display device having the same
JPWO2014129171A1 (en) * 2013-02-20 2017-02-02 凸版印刷株式会社 Transparent conductive film, touch panel and display device including the same
JP2021014384A (en) * 2019-07-12 2021-02-12 Agc株式会社 Glass substrate with film and manufacturing method thereof
JP7020458B2 (en) 2019-07-12 2022-02-16 Agc株式会社 Glass substrate with film and its manufacturing method
CN115093128A (en) * 2019-07-12 2022-09-23 Agc株式会社 Glass substrate with film and method for producing same
WO2022050066A1 (en) * 2020-09-04 2022-03-10 Agc株式会社 Glass article

Similar Documents

Publication Publication Date Title
US6380480B1 (en) Photoelectric conversion device and substrate for photoelectric conversion device
US6602606B1 (en) Glass sheet with conductive film, method of manufacturing the same, and photoelectric conversion device using the same
US7846562B2 (en) Transparent substrate with transparent conductive film, method of manufacturing the same, and photoelectric conversion element including the substrate
US20080038541A1 (en) Method of forming thin film, substrate having thin film formed by the method, photoelectric conversion device using the substrate
JP2002260448A (en) Conductive film, method of making the same, substrate and photoelectric conversion device equipped with the same
EP1473606A1 (en) Safety network system, safety slave, and communication method
US7320827B2 (en) Glass substrate and method of manufacturing the same
JP4468894B2 (en) Transparent conductive substrate, manufacturing method thereof, and photoelectric conversion element
JP4460108B2 (en) Method for manufacturing substrate for photoelectric conversion device
JP2003060217A (en) Glass plate with conductive film
JP4467707B2 (en) Glass plate with conductive film, method for producing the same, and photoelectric conversion device using the same
JP2005029464A (en) Glass plate with thin film, its production method, and photoelectric conversion device using the glass plate
JP2005029463A (en) Glass plate with transparent conductive film, its production method, and photoelectric conversion device using the glass plate
JP2004362842A (en) Transparent base substrate with transparent conductive film, its manufacturing method, photoelectric conversion device and substrate therefor
JP2001039738A (en) Glass plate having conductive film, its production and photo-electric transfer device using the glass plate
JP3984404B2 (en) Glass plate with conductive film, method for producing the same, and photoelectric conversion device using the same
JP2017001924A (en) Coating film-fitted glass plate
US20050156167A1 (en) Substrate for photoelectric conversion device
JP2001036107A (en) Photoelectric transducer and substrate there for
JP2000340815A (en) Optoelectronic transducer element substrate
US20050144981A1 (en) Method of manufacturing glass sheet with thin film and the glass sheet
JP2005015295A (en) Glass plate with transparent electric conducting membrane
JP2009239301A (en) Substrate and photoelectric conversion device using the same
JP2002094083A (en) Substrate for photoelectric conversion device