JP2005029431A - Crystallized glass - Google Patents

Crystallized glass Download PDF

Info

Publication number
JP2005029431A
JP2005029431A JP2003271111A JP2003271111A JP2005029431A JP 2005029431 A JP2005029431 A JP 2005029431A JP 2003271111 A JP2003271111 A JP 2003271111A JP 2003271111 A JP2003271111 A JP 2003271111A JP 2005029431 A JP2005029431 A JP 2005029431A
Authority
JP
Japan
Prior art keywords
crystallized glass
ions
wavelength
emission
wavelength band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003271111A
Other languages
Japanese (ja)
Inventor
Setsuhisa Tanabe
勢津久 田部
Shunsuke Fujita
俊輔 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2003271111A priority Critical patent/JP2005029431A/en
Publication of JP2005029431A publication Critical patent/JP2005029431A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/0071Compositions for glass with special properties for laserable glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0036Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Glass Compositions (AREA)
  • Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a crystallized glass having a broad luminescence emission spectrum in a wide wavelength zone and high emission efficiency and a gain medium using the glass. <P>SOLUTION: The crystallized glass contains Er, is formed by the deposition of garnet crystal, has the broad emission spectrum in the wide wavelength zone and high emission efficiency and is used as the gain medium in various wavelength zones which is used for an optical amplifier and a laser transmitter. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、結晶化ガラスに関し、特に光通信分野で使用される光増幅器の利得媒体用の結晶化ガラスに関するものである。   The present invention relates to a crystallized glass, and more particularly to a crystallized glass for a gain medium of an optical amplifier used in the field of optical communication.

光通信において、通信距離が長くなると、光ファイバーを伝播する光信号は減衰するため、減衰した光信号の強度を元の強度に回復させることができる光増幅器は必要不可欠である。現在の光通信には、主に1550nmの波長を有する光信号が用いられ、この波長の光信号の光増幅には光ファイバー中にEr3+イオンをドープしたエルビウムドープ光ファイバー(例えば、特許文献1参照)を用いた増幅器(EDFA)が使用されている。 In optical communication, as the communication distance becomes longer, the optical signal propagating through the optical fiber is attenuated. Therefore, an optical amplifier that can restore the intensity of the attenuated optical signal to the original intensity is indispensable. An optical signal mainly having a wavelength of 1550 nm is used for the current optical communication, and an optical signal of this wavelength is used for optical amplification. An erbium-doped optical fiber doped with Er 3+ ions in an optical fiber (for example, see Patent Document 1). ) Using an amplifier (EDFA).

尚、この光増幅器は、予め高出力半導体レーザーからのレーザー光によって、電子を高エネルギー準位に励起しておき、その励起された電子がエネルギーを失って低エネルギー準位に遷移する際に、入射された光信号と同じ波長の光を放出する、いわゆる誘導放出によって光信号を増幅するものである。   This optical amplifier excites electrons to a high energy level in advance by laser light from a high-power semiconductor laser, and when the excited electrons lose energy and transition to a low energy level, The optical signal is amplified by so-called stimulated emission that emits light having the same wavelength as the incident optical signal.

光通信システムはこのEDFAにより飛躍的な進歩を遂げたが、EDFAが急速に進歩した理由は、Er3+イオンの発光波長が光通信における1550nmの通信波長に適していたことと、Er3+イオンの励起波長が高出力半導体レーザーの発光波長と良く一致していたこと、などがあげられる。 The optical communication system has made tremendous progress with this EDFA. The reason why EDFA has made rapid progress is that the emission wavelength of Er 3+ ions is suitable for the communication wavelength of 1550 nm in optical communication, and Er 3+ For example, the excitation wavelength of ions was in good agreement with the emission wavelength of the high-power semiconductor laser.

また、今後の通信情報量の飛躍的な増大が予想される中、膨大な情報量を送ることが可能な広帯域WDM(Wavelength Division Multiplexing)通信システムが期待され、その実現へ向けての研究が着実に進行している。   In addition, while a dramatic increase in the amount of communication information is expected in the future, a broadband WDM (Wavelength Division Multiplexing) communication system capable of sending a large amount of information is expected, and research toward its realization is steady Is progressing.

しかしながら、上記したEDFAは、増幅利得帯域が約30nmと狭いため、広範囲の波長帯域を利用するWDM通信システムにおいて、広帯域の波長の光信号を増幅することができない。したがって、WDM通信システムにおいて、広範囲の波長帯域で利得が得られる利得媒体が必要とされている。   However, since the above-mentioned EDFA has a narrow amplification gain band of about 30 nm, it cannot amplify an optical signal with a wide wavelength in a WDM communication system using a wide wavelength band. Therefore, there is a need for a gain medium that can provide gain in a wide wavelength band in a WDM communication system.

このような利得媒体としては、Cr4+をドーパントとして含む結晶化ガラスからなる利得媒体が開示されている(例えば、特許文献2参照)。
特開平5−85755号公報 特表2003−512735号公報
As such a gain medium, a gain medium made of crystallized glass containing Cr 4+ as a dopant is disclosed (for example, see Patent Document 2).
JP-A-5-85755 Special table 2003-512735 gazette

しかし、特許文献2に開示の利得媒体は、広範囲の波長帯域にわたってブロードな発光スペクトルを有するものの、Cr4+イオンの発光効率がEr3+イオンの1/10〜1/100程度と非常に低いため、Cr4+イオンを用いた利得媒体の発光効率も非常に低くなり、この利得媒体を用いて光増幅させることは事実上困難である。 However, although the gain medium disclosed in Patent Document 2 has a broad emission spectrum over a wide wavelength band, the emission efficiency of Cr 4+ ions is very low, about 1/10 to 1/100 that of Er 3+ ions. Therefore, the light emission efficiency of the gain medium using Cr 4+ ions is very low, and it is practically difficult to perform optical amplification using this gain medium.

本発明の目的は、広範囲の波長帯域においてブロードな発光スペクトルを有し、発光効率が高い結晶化ガラスとそれを用いてなる利得媒体を提供することである。   An object of the present invention is to provide a crystallized glass having a broad emission spectrum in a wide wavelength band and having high emission efficiency, and a gain medium using the same.

本発明の結晶化ガラスは、Erを含有し、ガーネット結晶を析出してなることを特徴とする。   The crystallized glass of the present invention is characterized by containing Er and depositing garnet crystals.

また、本発明の利得媒体は、Erを含有し、ガーネット結晶を析出してなる結晶化ガラスを用いてなることを特徴とする。   The gain medium of the present invention is characterized by using a crystallized glass containing Er and containing a garnet crystal precipitated.

本発明の結晶化ガラスは、Erを含有し、ガーネット結晶を析出してなるため、広範囲の波長帯域においてブロードな発光スペクトルを有し、発光効率が高くなる。すなわち、Er3+イオンは、発光効率が高いため、それを含有する結晶化ガラスの発光効率も高くなる。またEr3+イオンは、シリカガラス中ではエネルギー準位の***が少ないため、1520〜1560nm程度の狭い波長帯域にのみ発光波長を有するが、結晶化ガラス中では、Er3+イオンがガーネット結晶中に固溶することができるため、Er3+イオンのエネルギー準位の***が非常に多くなり、1400〜1700nmの広範囲の波長帯域において多くの発光波長を有することができる。さらに、Er3+イオンは、結晶化ガラス中においては、ガーネット結晶の他にもガラスマトリックスにも存在することができ、種々のEr3+イオンが存在するようになるため、Er3+イオンのエネルギー準位の***がさらに多くなり、Er3+イオンの発光波長の数が増える。 Since the crystallized glass of the present invention contains Er and precipitates a garnet crystal, it has a broad emission spectrum in a wide wavelength band and has high luminous efficiency. That is, since Er 3+ ions have high luminous efficiency, the luminous efficiency of crystallized glass containing them is also high. In addition, Er 3+ ions have a light emission wavelength only in a narrow wavelength band of about 1520 to 1560 nm because there are few energy level splits in silica glass, but in crystallized glass, Er 3+ ions are contained in garnet crystals. Therefore, the energy level splitting of Er 3+ ions becomes very large and can have many emission wavelengths in a wide wavelength band of 1400 to 1700 nm. Further, Er 3+ ions in the crystallized glass, in addition to the garnet crystal can also be present in the glass matrix, to become such that there is a variety of Er 3+ ions, the Er 3+ ions The energy level splitting is further increased, and the number of emission wavelengths of Er 3+ ions is increased.

また、Er3+イオンは、少量ながら、ガラスマトリックスとガーネット結晶との界面及びガーネット結晶の粒界にも存在し、周りの元素(配位元素)の種類や配位元素との距離が異なるEr3+イオンが形成されるため、このEr3+イオンのエネルギー準位が微妙に変化し、結果として全体のEr3+イオンの発光波長の重なりが多くなって、発光スペクトルがよりブロードになる。 In addition, Er 3+ ions are present in a small amount but also at the interface between the glass matrix and the garnet crystal and the grain boundary of the garnet crystal, and the types of surrounding elements (coordination elements) and the distances from the coordination elements are different. Since 3+ ions are formed, the energy level of the Er 3+ ions changes slightly. As a result, the overlapping of emission wavelengths of the entire Er 3+ ions increases, resulting in a broader emission spectrum.

尚、ガーネット結晶とは、一般的にはA32312で表される結晶(A=Mg、Mn、Fe、Ca、Y、Gd等:B=Al、Cr、Fe、Ga、Sc等:C=Al、Si、Ga、Ge等)であり、上記したガーネット結晶として、特に、YAG結晶(Y3Al512結晶)、YGG結晶(Y3Ga512結晶)、YSGG結晶(Y3Sc2Ga312結晶)、GGG結晶(Gd3Ga512結晶)であると、Er3+イオンのエネルギー準位の***が非常に多くなりやすくなるため好ましい。 The garnet crystal is generally a crystal represented by A 3 B 2 C 3 O 12 (A = Mg, Mn, Fe, Ca, Y, Gd, etc .: B = Al, Cr, Fe, Ga, Sc = C = Al, Si, Ga, Ge, etc.) As the garnet crystal, YAG crystal (Y 3 Al 5 O 12 crystal), YGG crystal (Y 3 Ga 5 O 12 crystal), YSGG Crystals (Y 3 Sc 2 Ga 3 O 12 crystals) and GGG crystals (Gd 3 Ga 5 O 12 crystals) are preferred because the energy level splitting of Er 3+ ions tends to become very large.

また、本発明の結晶化ガラスがCaO及びSiO2を含有してなると、Er3+イオンのエネルギー準位の***がさらに多くなるため好ましい。すなわちCa2+はY3+とイオン半径がほぼ等しく、Si4+はAl3+とイオン半径がほぼ等しいため、Ca2+はY3+の一部の位置に、またSi4+はAl3+の一部の位置に入って固溶することができる。従って、YAG結晶中において、周りの元素(配位元素)の種類が異なるEr3+イオンが形成されるため、このEr3+イオンのエネルギー準位が微妙に変化し、結果として全体のEr3+イオンの発光波長の重なりが多くなって、発光スペクトルがよりブロードになりやすい。 Moreover, it is preferable that the crystallized glass of the present invention contains CaO and SiO 2 because the energy level splitting of Er 3+ ions further increases. That is, since Ca 2+ has an ionic radius almost equal to Y 3+ , Si 4+ has an ionic radius almost equal to Al 3+ , Ca 2+ is in a part of Y 3+ , and Si 4+ is Al. Can enter 3+ position and dissolve. Thus, the YAG crystal, since the kinds of elements around (coordination elements) are different Er 3+ ions are formed, the energy level of the Er 3+ ions slightly changed, as a whole result Er 3 + Overlapping emission wavelengths of ions increases, and the emission spectrum tends to be broader.

また、CaOは、ガラスの修飾酸化物であり、化学耐久性を向上させ、ガラスの溶融温度を低下させる成分であり、その含有量は、0〜60モル%であることが好ましい。   Moreover, CaO is a modified oxide of glass, is a component that improves chemical durability and lowers the melting temperature of glass, and its content is preferably 0 to 60 mol%.

SiO2は、ガラスの網目形成酸化物であり、その含有量は、10〜80モル%であることが好ましい。 SiO 2 is a network-forming oxide of glass, and the content thereof is preferably 10 to 80 mol%.

Er23は、発光を得るために必須の成分(発光中心成分)であり、その含有量は、0.01〜5モル%であることが好ましい。Er23の含有量が0.01モル%よりも少ないと発光中心成分としての役割を果たさず、又は5モル%よりも多いと濃度消光により発光効率が低くなるため好ましくない。 Er 2 O 3 is an essential component (luminescence center component) for obtaining light emission, and its content is preferably 0.01 to 5 mol%. When the content of Er 2 O 3 is less than 0.01 mol%, it does not play a role as a luminescent center component, and when it is more than 5 mol%, the luminous efficiency is lowered by concentration quenching, which is not preferable.

23とGd23は、ガーネット結晶の構成成分であるとともに、Erの均一分散能を向上させ、濃度消光を抑制する成分であり、Y23とGd23の含有量は合量で2〜30モル%であることが好ましい。Y23とGd23の含有量が合量で2モル%よりも少ないと、ガーネット結晶が析出しにくく、30モル%よりも多いと、ガラス化しにくくなるため好ましくない。 Y 2 O 3 and Gd 2 O 3 are components of garnet crystals, are components that improve the uniform dispersibility of Er and suppress concentration quenching, and the contents of Y 2 O 3 and Gd 2 O 3 Is preferably 2 to 30 mol% in total. If the total content of Y 2 O 3 and Gd 2 O 3 is less than 2 mol%, garnet crystals are difficult to precipitate, and if it is more than 30 mol%, vitrification is difficult.

Al23とGa23も、ガーネット結晶の構成成分であるとともに、化学的耐久性を向上させる成分であり、Al23とGa23の含有量は合量で5〜50モル%であることが好ましい。Al23とGa23の含有量が合量で5モル%よりも少ないと、ガーネット結晶が析出しにくく、化学的耐久性が低下する。また50モル%よりも多いと、ガラス化しにくくなるため好ましくない。 Al 2 O 3 and Ga 2 O 3 are also constituents of the garnet crystal and are components that improve chemical durability. The total content of Al 2 O 3 and Ga 2 O 3 is 5 to 50. It is preferable that it is mol%. If the total content of Al 2 O 3 and Ga 2 O 3 is less than 5 mol%, garnet crystals are difficult to precipitate and the chemical durability is lowered. Moreover, since it will become difficult to vitrify when it is more than 50 mol%, it is not preferable.

本発明の結晶化ガラスは、上記した成分以外にも、TiO2、ZrO2等を含有させることができる。 The crystallized glass of the present invention can contain TiO 2 , ZrO 2 and the like in addition to the above-described components.

また、本発明の結晶化ガラスは、1400〜1700nmの波長帯域においてブロードな発光スペクトルを有するため、SバンドからUバンドまで(1460〜1680nm)の広範囲の波長帯域に適した利得媒体として使用することができるが、特に、1400〜1500nmの波長帯域において発光波長を有すると、Sバンド(1460〜1525nm)の波長帯域に適した利得媒体として使用することができる。また、1500〜1560nmの波長帯域において発光波長を有すると、Sバンド又はCバンド(1525〜1565nm)の波長帯域に適した利得媒体として使用することができる。また、1560〜1700nmの波長帯域において発光波長を有すると、Lバンド(1565〜1620nm)又はUバンド(1620〜1680nm)の波長帯域に適した利得媒体として使用することができる。   Moreover, since the crystallized glass of the present invention has a broad emission spectrum in the wavelength band of 1400 to 1700 nm, it should be used as a gain medium suitable for a wide wavelength band from S band to U band (1460 to 1680 nm). However, in particular, when the emission wavelength is in the wavelength band of 1400 to 1500 nm, it can be used as a gain medium suitable for the wavelength band of S band (1460 to 1525 nm). Moreover, when it has a light emission wavelength in the wavelength band of 1500-1560 nm, it can be used as a gain medium suitable for the wavelength band of S band or C band (1525-1565 nm). Moreover, when it has a light emission wavelength in the wavelength band of 1560-1700 nm, it can be used as a gain medium suitable for the wavelength band of L band (1565-1620 nm) or U band (1620-1680 nm).

以上のように、本発明の結晶化ガラスは、広範囲の波長帯域においてブロードな発光スペクトルを有し、発光効率が高くなるため、光増幅器やレーザー発信器に用いられる様々な波長帯域の利得媒体として使用することができる。   As described above, the crystallized glass of the present invention has a broad emission spectrum in a wide wavelength band and has high emission efficiency, so that it can be used as a gain medium for various wavelength bands used in optical amplifiers and laser oscillators. Can be used.

以下、本発明の実施の形態を実施例に基づいて説明する。   Hereinafter, embodiments of the present invention will be described based on examples.

表1は本発明の実施例1〜6及び比較例1、2を示す。また、図1は、実施例1、比較例1及び比較例2の発光スペクトルを示すグラフである。   Table 1 shows Examples 1 to 6 and Comparative Examples 1 and 2 of the present invention. FIG. 1 is a graph showing emission spectra of Example 1, Comparative Example 1, and Comparative Example 2.

実施例の結晶化ガラスは以下のようにして作製した。   The crystallized glass of the example was produced as follows.

まず、表1に示した組成となるように調合したガラス原料をガラス溶解窯に投入し、1650℃にて5時間溶融した後、融液をステンレス板上に流し出すことによって母ガラスを得た。次いでこれらのガラスを再溶融し、所定の温度域で24時間保持することによって実施例1〜6の結晶化ガラスを得た。   First, glass raw materials prepared so as to have the composition shown in Table 1 were put into a glass melting furnace, melted at 1650 ° C. for 5 hours, and then the mother glass was obtained by pouring the melt onto a stainless steel plate. . Subsequently, these glasses were remelted and kept in a predetermined temperature range for 24 hours to obtain crystallized glasses of Examples 1 to 6.

また、比較例1はEr3+イオンをドープしたアルミナ含有シリカガラスであり、VAD法によって得られたAl23を含有する多孔質シリカガラス母材に塩化エルビウムを含浸させ、電気炉中においてHeガス中で1470℃で加熱処理することによって作製した。また、比較例2はEr3+イオンをドープしたYAG結晶であり、表1に示した組成となるように調合した原料混合物を固相反応させることによって作製した。 Comparative Example 1 is an alumina-containing silica glass doped with Er 3+ ions. A porous silica glass base material containing Al 2 O 3 obtained by the VAD method is impregnated with erbium chloride in an electric furnace. It was fabricated by heat treatment at 1470 ° C. in He gas. Comparative Example 2 is a YAG crystal doped with Er 3+ ions, and was produced by solid-phase reaction of a raw material mixture prepared to have the composition shown in Table 1.

実施例1は、YAG結晶が析出し、図1に示すように1400〜1700nmの波長帯域において、多くの発光波長を有し、その結果としてブロードな発光スペクトルが得られた。また実施例2〜6についても、実施例1と同様の発光スペクトルが得られた。   In Example 1, YAG crystals were precipitated, and as shown in FIG. 1, in the wavelength band of 1400 to 1700 nm, there were many emission wavelengths, and as a result, a broad emission spectrum was obtained. Moreover, the same emission spectrum as Example 1 was obtained also about Examples 2-6.

一方、比較例1は、1400〜1500nmの波長帯域や1600〜1700nmの波長帯域に発光波長を有していなかった。また比較例2は、1400〜1700nmの波長帯域において多くの発光波長を有していたが、その結果得られた発光スペクトルはシャープであった。   On the other hand, Comparative Example 1 did not have an emission wavelength in a wavelength band of 1400 to 1500 nm or a wavelength band of 1600 to 1700 nm. Moreover, although the comparative example 2 had many light emission wavelengths in the wavelength band of 1400-1700 nm, the emission spectrum obtained as a result was sharp.

尚、析出結晶種の同定は、粉末X線回折法により行なった。また、発光特性(スペクトル)は励起波長970nmの半導体レーザーを試料に照射し、試料から発せられた光を検出器により検出して測定し、1500nm以下及び1600nm以上の波長帯域に発光波長を有し、且つ得られた発光スペクトルがブロードである場合を○とし、それ以外は×とした。   In addition, the identification of the precipitated crystal species was performed by a powder X-ray diffraction method. The emission characteristics (spectrum) are measured by irradiating a sample with a semiconductor laser having an excitation wavelength of 970 nm, detecting the light emitted from the sample with a detector, and having emission wavelengths in wavelength bands of 1500 nm or less and 1600 nm or more. In addition, the case where the obtained emission spectrum was broad was marked with ◯, and the others were marked with x.

実施例1、比較例1及び比較例2の発光スペクトルを示すグラフである。3 is a graph showing emission spectra of Example 1, Comparative Example 1 and Comparative Example 2.

符号の説明Explanation of symbols

1 実施例1
2 比較例1
3 比較例2
1 Example 1
2 Comparative Example 1
3 Comparative Example 2

Claims (11)

Erを含有し、ガーネット結晶を析出してなる結晶化ガラス。 Crystallized glass containing Er and precipitated garnet crystals. ガーネット結晶がYAG結晶である請求項1に記載の結晶化ガラス。 The crystallized glass according to claim 1, wherein the garnet crystal is a YAG crystal. CaO及びSiO2を含有してなる請求項1又は2に記載の結晶化ガラス。 The crystallized glass according to claim 1 or 2, comprising CaO and SiO 2 . Er23を0.01〜5モル%含有する請求項1〜3のいずれかに記載の結晶化ガラス。 Crystallized glass according to any one of claims 1 to 3 to Er 2 O 3 containing 0.01 to 5 mol%. 23とGd23を合量で2〜30モル%含有する請求項1〜4のいずれかに記載の結晶化ガラス。 The crystallized glass according to any one of claims 1 to 4, comprising 2 to 30 mol% of Y 2 O 3 and Gd 2 O 3 in a total amount. モル%で、SiO2を10〜80%、Al23とGa23を合量で5〜50%、CaOを0〜60%、Y23とGd23を合量で2〜30%、Er23を0.01〜5%含有してなる請求項1〜5のいずれかに記載の結晶化ガラス。 In mol%, SiO 2 is 10 to 80%, Al 2 O 3 and Ga 2 O 3 are combined 5 to 50%, CaO is 0 to 60%, Y 2 O 3 and Gd 2 O 3 are combined. 2-30%, crystallized glass according to any one of claims 1 to 5 the Er 2 O 3 comprising 0.01% to 5%. 1400〜1700nmの波長帯域において発光スペクトルを有する請求項1〜6のいずれかに記載の結晶化ガラス。 The crystallized glass according to any one of claims 1 to 6, which has an emission spectrum in a wavelength band of 1400 to 1700 nm. 1400〜1500nmの波長帯域において発光波長を有する請求項1〜7のいずれかに記載の結晶化ガラス。 The crystallized glass according to any one of claims 1 to 7, which has an emission wavelength in a wavelength band of 1400 to 1500 nm. 1500〜1560nmの波長帯域において発光波長を有する請求項1〜8のいずれかに記載の結晶化ガラス。 The crystallized glass according to any one of claims 1 to 8, which has an emission wavelength in a wavelength band of 1500 to 1560 nm. 1560〜1700nmの波長帯域において発光波長を有する請求項1〜9のいずれかに記載の結晶化ガラス。 The crystallized glass according to any one of claims 1 to 9, which has an emission wavelength in a wavelength band of 1560 to 1700 nm. 請求項1〜10のいずれかに記載の結晶化ガラスを用いてなる利得媒体。 A gain medium using the crystallized glass according to claim 1.
JP2003271111A 2003-07-04 2003-07-04 Crystallized glass Withdrawn JP2005029431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003271111A JP2005029431A (en) 2003-07-04 2003-07-04 Crystallized glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003271111A JP2005029431A (en) 2003-07-04 2003-07-04 Crystallized glass

Publications (1)

Publication Number Publication Date
JP2005029431A true JP2005029431A (en) 2005-02-03

Family

ID=34209086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003271111A Withdrawn JP2005029431A (en) 2003-07-04 2003-07-04 Crystallized glass

Country Status (1)

Country Link
JP (1) JP2005029431A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007326772A (en) * 2006-06-06 2007-12-20 Schott Ag Method of producing ceramic having garnet phase
US7910505B2 (en) * 2006-06-06 2011-03-22 Schott Ag Sintered glass ceramic and method for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007326772A (en) * 2006-06-06 2007-12-20 Schott Ag Method of producing ceramic having garnet phase
US7910505B2 (en) * 2006-06-06 2011-03-22 Schott Ag Sintered glass ceramic and method for producing the same
US7958746B2 (en) 2006-06-06 2011-06-14 Schott Ag Method for producing a glass ceramic having a garnet phase
US8039407B2 (en) 2006-06-06 2011-10-18 Schott Ag Sintered glass ceramic and method for producing the same

Similar Documents

Publication Publication Date Title
JP4773948B2 (en) Bismuth oxide glass and process for producing the same
US6347177B1 (en) Optical fiber for light amplifier
US6413891B1 (en) Glass material suitable for a waveguide of an optical amplifier
US5378664A (en) Optical fiber amplifier and a glass therefor
dos Santos et al. Evaluating the link between blue-green luminescence and cross-relaxation processes in Tb3+-doped glasses
Kumar et al. Static energy transfer for Mn2+: Pr3+ system in phosphate glasses
US7440672B2 (en) Optical fiber for optical amplifier and process for manufacturing thereof
JP4183225B2 (en) Optical amplifier
Pascuta et al. The impact of Ag and Cu nanoparticles on optical and magnetic properties of new Tb2O3-PbO-TeO2 glass ceramic system
Tanabe et al. Improved Fluorescence from Tm‐Ho‐and Tm‐Ho‐Eu‐Codoped Transparent PbF2 Glass‐Ceramics for S+‐Band Amplifiers
Wang et al. Quantum‐dots‐precipitated rare‐earth‐doped glass for ultra‐broadband mid‐infrared emissions
JP2005029431A (en) Crystallized glass
JP2022071001A (en) Glass composition, optical element and optical device using the same
JP2004277252A (en) Optical amplification glass and optical waveguide
JPH0826768A (en) Yb laser glass and laser using the glass
JP2882351B2 (en) Crystal for solid-state laser, its manufacturing method and laser device
Górny et al. Germanate glasses co-doped with Ce3+/Ln (3+)(Ln= Pr, Tb, Dy) for white light emitting diodes
Iezid et al. Spectroscopic analysis of up conversion luminescence in doped halogeno-antimonite glass
CN1269915A (en) Glass for high and flat gain 1.55 micros optical amplifiers
CN106242272B (en) A kind of doping Bi3+SiO2- CaO-MgO based laser glass and preparation method thereof
JP2002057396A (en) Optical amplifier and optical gain medium
KR100503420B1 (en) Selenide glasses for optical fiber amplifiers
Krishnaiah et al. Broadband emission in tellurite glasses
CN105776858B (en) Mix Er3+Bi2O3-GeO2Based laser glass and preparation method thereof
JP3346533B2 (en) Fluoride glass composition

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060905