JP2005024910A - 組レンズ調整方法およびその装置 - Google Patents

組レンズ調整方法およびその装置 Download PDF

Info

Publication number
JP2005024910A
JP2005024910A JP2003190372A JP2003190372A JP2005024910A JP 2005024910 A JP2005024910 A JP 2005024910A JP 2003190372 A JP2003190372 A JP 2003190372A JP 2003190372 A JP2003190372 A JP 2003190372A JP 2005024910 A JP2005024910 A JP 2005024910A
Authority
JP
Japan
Prior art keywords
lens
adjusted
light
aberration
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003190372A
Other languages
English (en)
Inventor
Masahiro Kuwabara
雅弘 桑原
Masaya Ito
正弥 伊藤
Koji Fukui
厚司 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003190372A priority Critical patent/JP2005024910A/ja
Publication of JP2005024910A publication Critical patent/JP2005024910A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mounting And Adjusting Of Optical Elements (AREA)
  • Lens Barrels (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

【課題】NAの小さいレンズに対しても高精度に位置調整することのできる組レンズ調整方法および組レンズ調整装置を提供する。
【解決手段】コヒーレントな平行光を回折して分岐した4つの光を、基準レンズ20および被調整レンズ23により集光したのち回折して干渉させて個々の干渉縞を形成し、その4つの干渉縞からそれぞれ被調整レンズ23のディセンタとチルトに対して充分な感度を有する2つの収差を検出し、被調整レンズ23の位置を所定量だけ変化させた位置で第1および第2の収差を検出し、その収差の検出結果に基づいて被調整レンズ23の位置変化に対する収差の変化量の関係を求め、第1および第2の各光に対する収差量が等しくなる位置および第3および第4の各光の収差量が等しくなる位置を算出し、算出した2つの収差の位置ずれ量から算出したディセンタ量とチルト量に基づいて被調整レンズ23の位置を調整する。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、デジタルスチールカメラの光学系として用いられる組レンズを組み立てる際の調整方法およびその装置に関するものである。
【0002】
【従来の技術】
従来から、光源より出射された光を目的の位置に正確に照射する光学系が必要とされており、このような光学系は、単一のレンズの形状を変えるように設定するのではなく、複数のレンズを組み合わせて恰も一つのレンズとして扱う、いわゆる「組レンズ」の形態にした方が必要とするものを実現し易いことが知られている。ところが、組レンズは、複数のレンズの相対位置関係を正確に調整しなければ所望の特性を得ることができない。
【0003】
従来、上記組レンズを組み立てる際のレンズの位置調整に用いる組レンズ調整装置としては、図14に示すような構成を備えたものが知られている(例えば、特許文献1参照)。同図には、光ディスク方式の情報記録媒体に情報を読み書きするための光学レンズである組レンズを組み立てる際に用いられる組レンズ調整装置を例示している。光源1からの出射光は、コリメートレンズ2によって平行光に変換されたのち、鏡筒3に固定された2つの被調整レンズ4,7を順次透過することにより、透過型回折格子8上に集光される。この回折格子8を通過した光は、広がりながらコリメートレンズ9に入射したのち、コリメートレンズ9を透過して平行光となり、さらに、集光レンズ10により集光されて、この集光レンズ10の瞳面が受像素子(撮像素子)11に受像される。
【0004】
上記組レンズ調整装置では、光が透過型回折格子8により回折を起こすので、この回折格子8を透過した光は、図15に示すように、0次回折光L、±1次回折光+L,−L、±2次回折光(図示せず)、……の回折光となる。このとき、回折格子8に角度(回折格子8に対する光の入射絞り角)φで絞られながら入射した光は、出射角度(回折角)θの広がりをもつ±0次回折光を生じる。また、±1次回折光+L,−Lの出射角度θは、周知のように、回折格子ピッチpと波長λから、つぎの(1)式で与えられる。
【0005】
p=λ/sin(θ)……(1)
したがって、出射角度θを適宜選択すれば、図15に示すように、±1次回折光+L,−Lの輪郭が互いに近接して、0次回折光Lと+1次回折光+L、または0次回折光Lと−1次回折光−Lが互いに重なる。これらの重なった光は、図14の集光レンズ10の瞳面上で干渉縞を形成し、この干渉縞が受像素子11に結像される。図14に示す処理装置12は、受像素子11に受像された干渉縞に基づいて集光レンズ10の瞳面に入射した光が有する収差を検出する。
【0006】
受像素子11に受像された干渉縞は、被調整レンズ4,7に含まれる収差によって様々な模様となって現れるが、上記組レンズの調整装置は、収差が零のときの干渉縞が得られるように被調整レンズ4,7の相対位置を調整することを目的としている。被調整レンズ4,7の位置ずれとしては、例えば、光軸方向へのずれ、光軸と直交する特定方向へのずれ、光軸と上記特定方向の両方に直交する方向へのずれ等があり、この被調整レンズ4,7の位置ずれの種類によって生成される収差が異なる。何れの位置ずれが如何なる収差を生じるかは、被調整レンズ4,7の設計に依存する。換言すれば、上記干渉縞から各収差を検出し、それに相当する位置ずれを補正することができる。
【0007】
干渉縞から各収差を高精度に検出するためには、一般に知られているフリンジスキャン法を好適に用いることができる。具体的には、図14に示すように、例えばピエゾ素子を利用したピエゾ型移動機構である微動ステージ13を用いて、回折格子8をこれの格子方向に対し直交方向または該直交する成分を含む方向に移動させると、干渉領域における各々の光強度が正弦波状に変化する。いま、収差がなく、そのために干渉領域に何らの模様が無い状態を考えると、干渉領域内の全ての点において、光の強度変化が一様に起こる。換言すれば、或る点と別の点との間において、それぞれの光強度変化に位相差が存在しない。逆に、干渉領域における任意の2つの点で位相差があれば、そのことは被調整レンズ4,7に何らの収差が存在することを意味する。
【0008】
なお、位相差を無視し、単に光強度だけに着目した場合、被調整レンズ4,7へ入射した光に強度むらがあれば、被調整レンズ4,7に収差が無いにも拘わらず、収差が存在すると誤って認識する可能性がある。これに対し、上記フリンジスキャン法の場合、光の強度むらに影響されることなく、位相差に基づいて高い精度の収差検出が行える。
【0009】
そこで、処理装置12は、微動ステージ13を介して回折格子8を移動させ、干渉領域内に設定された或る基準線上の複数の点で光強度の位相を求め、それらの位相差に基づいて対応する収差を求める。このようにして処理装置12で検出された各収差は制御装置14に送られ、制御装置14は、各収差に基づいて移動調整手段17を駆動制御することにより、レンズ保持具18を介してこれに保持された被調整レンズ7の位置を調整する。
【0010】
【特許文献1】
特開2002−202450号公報
【0011】
【発明が解決しようとする課題】
しかしながら、上記従来の組レンズ調整方法は、NAが比較的大きいレンズ、例えば、光ディスクのピックアップ用対物レンズなどの位置調整に好適に用いることができるが、NAが小さいレンズ、例えば、デジタルスチールカメラ用の光学系を構成する組レンズの位置調整に適用した場合に、レンズのディセンタに対する或る特定の収差、例えば、アス収差の変動量が小さいために、高精度な位置調整を行えない問題がある。
【0012】
また、光ディスクのピックアップでは軸上の光を用いてディスクなどの記録媒体への読み書きを行うのに対して、デジタルスチールカメラでは軸外の光を用いるため、上記従来の組レンズ調整方法では、軸外の高画角の光に対して特性を保証することができない。さらに、上記従来の組レンズ調整方法では、被調整レンズのディセンタとチルトを合わせた値を収差として検出するため、チルトとディセンタとの切りわけができない。
【0013】
そこで、本発明は上記従来の課題に鑑みてなされたもので、NAの小さいレンズに対しても高精度に位置調整することのできる組レンズ調整方法および組レンズ調整装置を提供することを目的とするものである。
【0014】
【課題を解決するための手段】
上記目的を達成するために、請求項1に係る発明の組レンズ調整方法は、基準レンズの光軸を基準光軸として被調整レンズの位置を調整する組レンズ調整方法であって、コヒーレントな平行光を、前記基準光軸を含む第1の平面上で前記基準光軸に対し+方向と−方向にそれぞれ所定角度の傾きを有する第1の光および第2の光と、前記第1の平面と直交し、且つ前記基準光軸を含む第2の平面上で前記基準光軸に対し+方向と−方向にそれぞれ所定角度の傾きを有する第3および第3の光との計4つの光に分岐し、この4つの光を前記基準レンズおよび被調整レンズにより集光する工程と、前記集光された4つの光をそれぞれ回折して干渉させる工程と、前記4つの光の干渉から、それぞれ4つの対物レンズの瞳面上で干渉縞を形成し、4つの受像素子へ結像する工程と、前記受像した4つの干渉縞からそれぞれ被調整レンズのディセンタとチルトに対して充分な感度を有する収差のうちの第1および第2の2つの収差を検出する工程と、前記被調整レンズの位置を前記基準光軸を法線とする平面上で所定量だけ変化させて、その変化させた位置で前記第1および第2の収差を検出する工程と、前記第1および第2の収差の検出結果に基づいて前記被調整レンズの位置変化に対する収差の変化量の関係を求める工程と、前記求めた被調整レンズの位置変化に対する収差の変化量の関係に基づき前記第1の光に対する収差量と前記第2の光に対する収差量が等しくなる位置および前記第3の光に対する収差量と前記第4の光に対する収差量が等しくなる位置をそれぞれ前記第1および第2の収差について算出する工程と、前記算出した第1の収差と第2の収差の位置ずれ量から前記被調整レンズのディセンタ量およびチルト量を個々に算出する工程と、前記算出したディセンタ量およびチルト量に基づいて前記被調整レンズの位置を調整する工程とを有することを特徴としている。
【0015】
この組レンズ調整方法では、光が基準光軸に対して所定角度の傾きを有しているため、軸上の光つまり入射角0度の光に対する場合よりも収差の変化量が大きくなり、収差対称位置の交点を高精度に検出できるから、デジタルスチールカメラ用レンズのように、画角の大きい光に対するMTFの劣化が大きいレンズであっても、支障なく位置調整できるとともに、基準レンズおよび被調整レンズとしてNAの大きなものを用いた場合であっても、被調整レンズのディセンタ量とチルト量とを個々に独立して高精度に検出できることから、被調整レンズの位置を極めて正確に調整することができる。
【0016】
本発明の請求項2に係る組レンズ調整装置は、基準レンズの光軸を基準光軸として被調整レンズの位置を調整する組レンズ調整装置であって、コヒーレントな平行光を出射する光源と、前記平行光を、前記基準光軸を含む第1の平面上で前記基準光軸に対し+方向と−方向にそれぞれ所定角度の傾きを有する第1の光および第2の光と、前記第1の平面と直交し、且つ前記基準光軸を含む第2の平面上で前記基準光軸に対し+方向と−方向にそれぞれ所定角度の傾きを有する第3および第3の光との計4つの光に分岐する第1の回折格子と、前記被調整レンズを前記基準光軸を法線とする平面上で移動させる移動手段と、前記4つの光を前記基準レンズおよび被調整レンズにより集光した光を回折させる第2の回折格子と、前記第2の回折格子をこれの格子面内で溝方向に対し垂直な方向の成分を含む方向へ変位させる微動ステージと、対物レンズの瞳面上の干渉光を結像レンズで受像素子に結像して干渉像を観察する4つの干渉像観察系と、前記4つの干渉像観察系の干渉像を処理して前記被調整レンズのディセンタとチルトに対して感度を有する収差のうちの2つの収差を検出する処理装置と、前記処理装置の検出収差に基づき算出した調整量に基づき前記移動手段を駆動制御する制御装置とを備えていることを特徴としている。
【0017】
この組レンズ調整装置では、平行光を4つの光に分岐する第1の回折格子と、被調整レンズを移動させる移動手段と、4つの光を集光した光を回折させる第2の回折格子と、第2の回折格子を変位させる微動ステージと、干渉像を観察する4つの干渉像観察系と、干渉像を処理して被調整レンズのディセンタとチルトに対して感度を有する2つの収差を検出する処理装置と、処理装置の検出収差に基づき算出した調整量に基づき移動手段を駆動制御する制御装置とを備えているので、請求項1に係る組レンズ調整方法を忠実に具現化して、調整方法と同様の効果を確実に経ることができる。
【0018】
本発明の請求項3に係る組レンズ調整方法は、基準レンズの光軸を基準光軸として被調整レンズの位置を調整する組レンズ調整方法であって、コヒーレントな第1の波長の光軸と平行である第1の平行光を前記基準レンズおよび被調整レンズで集光する工程と、前記集光された光を回折して干渉させる工程と、前記干渉光により対物レンズの瞳面上で干渉縞を形成して、第1の受像素子へ結像する工程と、前記結像した干渉像から前記被調整レンズのディセンタに対し充分な感度を有する収差のうちの1つの収差を検出する工程と、前記被調整レンズの位置を前記基準光軸を法線とする平面上で所定量だけ変化させて、その変化させた位置で前記収差を検出する工程と、前記収差の検出結果に基づき前記被調整レンズの位置変化に対する収差変化の関係を求める工程と、前記求めた関係から前記収差が零となる前記被調整レンズの位置を算出する工程と、第2の波長の第2の光を結像させたのち、その結像位置が前記被調整レンズの表面の曲率中心位置とほぼ一致するように調整して前記被調整レンズに入射させる工程と、前記第2の光の前記被調整レンズからの反射光を第2の受像素子へ結像させて、前記被調整レンズの表面の曲率中心位置を検出する工程と、前記第2の光の結像位置が前記被調整レンズの裏面の曲率中心位置とほぼ一致するように調整する工程と、前記第2の光の前記被調整レンズの裏面からの反射光を前記第2の受像素子へ結像して前記被調整レンズの裏面の曲率中心位置を検出する工程と、前記検出した被調整レンズの表面および裏面の曲率中心位置から被調整レンズのチルト量を算出する工程と、前記算出した前記被調整レンズの収差零点位置およびチルト量に基づいて前記被調整レンズの位置を調整する工程とを有していることを特徴とする。
【0019】
この組レンズ調整方法においても、請求項1の発明と同様に、NAの小さい被調整レンズであっても、ディセンタ量とチルト量を個々に独立して高精度に検出できることから、被調整レンズの位置を正確に調整することができる。
【0020】
本発明の請求項4に係る組レンズ調整装置は、基準レンズの光軸を基準光軸として被調整レンズの位置を調整する組レンズ調整装置であって、コヒーレントな第1の波長の平行光を出射する第1の光源と、前記被調整レンズを前記基準光軸を法線とする平面上で直交する2軸方向に変位させる変位手段と、前記基準レンズおよび被調整レンズからの集光光を回折して干渉させる回折格子と、前記回折格子をこれの格子面内で溝方向に対し垂直な方向の成分を含む方向へ変位させる微動ステージと、対物レンズの瞳面上の干渉光を第2の結像レンズで第1の受像素子上に結像して干渉縞を観察する干渉像観察系と、前記干渉像観察系の干渉像を処理して前記被調整レンズのディセンタに対して感度を有する収差のうちの1つの収差を検出する処理装置と、第2の波長の第2の光を出射する第2の光源と、前記第2の光を前記被調整レンズの表面または裏面の曲率中心位置に結像させるコリメートレンズ、第2の結像レンズおよび第1のハーフミラーと、前記コリメートレンズをこれの光軸方向に移動させる移動手段と、前記被調整レンズの表面または裏面からの反射光を観測する第2のハーフミラーおよび第2の受像素子と、前記検出収差および反射光位置から算出した調整量に基づき調整手段を駆動する制御装置とを備えていることを特徴としている。
【0021】
この組レンズ調整装置では、請求項3に係る組レンズ調整方法を忠実に具現化して、その調整方法と同様の効果を確実に経ることができる。
【0022】
【発明の実施の形態】
以下、本発明の好ましい実施の形態について図面を参照しながら説明する。図1は、本発明の第1の実施の形態に係る組レンズ調整方法を具現化した組レンズ調整装置の概略構成を示す斜視図である。この組レンズ調整装置では、鏡筒19に固定された基準レンズ20の光軸を装置の基準光軸(つまりZ軸)としている。そして、光源21から出射されたコヒーレントな平行光は、第1の回折格子22により、光軸を含む第1の平面(同図のXZ平面)上で基準光軸に対し+方向側に所定角度(+ψ1度)の傾きを有する第1の光と、基準光軸に対し−方向側に所定角度(−ψ1度)の傾きを有する第2の光と、光軸を含み、且つ上記第1の平面と直交する第2の平面(同図のYZ平面)上で光軸に対し+方向側に所定角度(+ψ2度)の傾きを有する第3の光と、基準光軸に対し−方向側に所定角度(−ψ2度)の傾きを有する第4の光との合わせて4光に分岐される。
【0023】
図2は上記第1の回折格子22の一例を示し、(a)は拡大斜視図、(b)はX軸方向の断面図、(c)はY軸方向の断面図である。この第1の回折格子22で分岐された4光は、上記基準レンズ20を透過したのち、被調整レンズ23に入射する。この被調整レンズ23を透過した上記4光は、これらレンズ20,23によってそれぞれ第2の回折格子24上に集光される。
【0024】
図3は上記第2の回折格子24の形状の一例を示す拡大平面図である。この第2の回折格子24は、これの中心24aにおける法線が基準光軸とほぼ一致するように配置されている。この第2の回折格子24を透過した光は回折を起こす。そこで、第2の回折格子24に対する光の集光角φおよび波長λに対して回折格子ピッチpを適当に選択することにより、0次回折光と+1次回折光、または0次回折光と−1次回折光が重なる。これらの重なった光は、その中心がほぼ第1の平面上に位置する第1の干渉像観察系27と第2の干渉像観察系28およびその中心がほぼ第2の平面上に位置する第3の干渉像観察系29と第4の干渉像観察系30によりそれぞれ観察される。
【0025】
第1ないし第4の干渉像観察系27〜30は何れも同一の基本構成を備えているが、図4には、各干渉像観察系27〜30を代表して、第1の干渉像観察系27の概略構成図を例示してある。この干渉像観察系27は、対物レンズ31、結像レンズ32およびCCDカメラ(受像素子)33を備えて構成されている。第2の回折格子24を透過して回折された光は、対物レンズ31の瞳面上で干渉縞を形成し、この干渉縞が結像レンズ32によりCCDカメラ33の受像素子上に結像される。
【0026】
図1に戻って、処理装置34は、CCDカメラ33の受像素子上に結像された干渉縞に基づいて収差を検出する。ここで、処理装置34が検出する収差は、被調整レンズ23のディセンタに対して十分な感度を有し、且つチルトに対しての感度に差がある2つの収差、例えば非点収差とコマ収差である。
【0027】
収差の検出には、上述したようにフリンジスキャン法が好適に用いられる。すなわち、ピエゾ素子を利用したビエゾ型移動機構である微動ステージ37を用いて第2の回折格子24をこれの格子方向と直交する方向または該直交する成分を含む方向(例えば、図3に示す例ではB方向またはC方向)に移動すると、干渉領域における光強度が正弦波状に変化し、光の強度むらに影響されることなく、位相差に基づいて高い精度で収差を検出することができる。そして、処理装置34は、微動ステージ37を駆動制御して第2の回折格子24を移動させて、干渉領域内に設定された或る基準線上の複数の光強度の位相を求め、それらの位相差に基づいて対応する収差を求める。
【0028】
つぎに、基準レンズ20の光軸を基準光軸として、その基準光軸に対する被調整レンズ23の位置を調整する方法について、図5のフローチャートを参照しながら説明する。先ず、鏡筒19に保持された基準レンズ20を鏡筒保持具38により固定し(ステップS1)、被調整レンズ23をレンズ保持具39で保持する(ステップS2)。続いて、図1の制御装置41は、平行移動機構付き調整装置40を駆動制御してレンズ保持具39を介し被調整レンズ23を第1の測定点に移動させる(ステップS3)。この状態において、光源21を発光させて、処理装置34により第1の測定点における被調整レンズ23の上記2つの収差を測定する(ステップS4)。さらに、制御装置41は、平行移動機構付き調整装置40を駆動制御してレンズ保持具39を介し被調整レンズ23をYX平面に沿って直線X=Y方向つまり45度方向に所定量だけ微動させることにより、被調整レンズ23を第2の測定点に移動させ(ステップS5)たのち、再び処理装置34により第2の測定点における被調整レンズ23の上記2つの収差を測定する(ステップS6)。
【0029】
制御装置41は、上記第1および第2の測定点における処理装置34の測定結果から、2つの収差について被調整レンズの位置変化に対する収差の変化量の関係を示すグラフ(特性図)を求める処理を行う(ステップS7)。この被調整レンズの位置変化に対する収差の変化量の関係を求める制御処理について、図6ないし9を参照しながら説明する。
【0030】
図6は、被調整レンズ23のX方向への位置変化に対する第1の干渉像観察系27と第2の干渉像観察系28でそれぞれ測定した上記第1の平面(XZ平面)上での各々の収差量の変化を示す特性図であり、同図のC1は第1の干渉像観察系27で測定した収差、C2は第2の干渉像観察系28で測定した収差をそれぞれ示す。図7は、被調整レンズ23のX方向への位置変化に対する第3の干渉像観察系29と第4の干渉像観察系30でそれぞれ測定した上記第2の平面(YZ平面)上での各々の収差量の変化を示す特性図であり、同図のC3は第3の干渉像観察系29で測定した収差、C4は第2の干渉像観察系30で測定した収差をそれぞれ示す。
【0031】
図7に示すように、被調整レンズ23のX方向への移動に対して、第3の干渉像観察系29と第4の干渉像観察系30でそれぞれ測定した第2の平面(YZ平面)上の収差量は殆ど変化しない。一方、図6に示すように、被調整レンズ23のX方向への移動に対して、第1の干渉像観察系27で測定した第1の平面(XZ平面)上の収差が増加し、且つ第2の干渉像観察系28で測定した第1の平面(XZ平面)上の収差が減少し、その交点は、2つの収差が等しくなる収差対称位置であって、X方向において基準レンズ20の光軸と被調整レンズ23の光軸が一致する位置である。
【0032】
同様に、被調整レンズ23をY方向へ移動させた場合には、第3の干渉像観察系29と第4の干渉像観察系30でそれぞれ測定した第2の平面(YZ平面)上の収差量が、図6の特性図と同様に変化し、その収差対称位置が求まる。一方、被調整レンズ23のY方向の移動に対しては、第1の干渉像観察系27と第2の干渉像観察系28でそれぞれ測定した第1の平面(XZ平面)上の収差量は、図7の特性図と同様となって、殆ど変化しない。
【0033】
したがって、平行移動機構付き調整装置40によって被調整レンズ23をXY平面上を45度方向(直線X=Y方向)に沿って直線的に動かしながら収差を測定すると、X方向およびY方向について図6の特性図のようなグラフが描けることから、それぞれ収差対称位置となる交点を求めることができる。通常、デジタルスチールカメラ用レンズあるいはレンズ群の場合は、画角の大きい光に対するMTF(レンズの評価指数)の劣化が大きく、特性に影響を与えるが、この実施の形態の組レンズ調整装置では、光が光軸に対して上述のように±ψ1度あるいは±ψ2度の角度を有しているため、軸上の光つまり入射角0度の光に対する場合よりも収差の変化量が大きくなり、収差対称位置の交点を高精度に検出できる。
【0034】
ここで、被調整レンズ23にチルトがある場合には、被調整レンズ23をXY平面上で45度(X=Y)の方向に沿いながら直線的に所定量動かして、第1の測定点および第2の測定点において上記2つの収差を検出すると、X方向およびY方向について図8に示すようなグラフが描ける。同図のC5は第1および第3の干渉像観察系27,29で測定した非点収差、C6は第2および第4の干渉像観察系28,30で測定した非点収差、C7は第1および第3の干渉像観察系27,29で測定したコマ収差、C8は第2および第4の干渉像観察系28,30で測定したコマ収差、P1は非点収差交点、P2はコマ収差交点をそれぞれ示す。被調整レンズ23にチルトがある場合には、例えば、非点収差に比べてコマ収差の方がチルトに対する感度が大きいため、図8に明示するように、非点収差とコマ収差とで交点(収差対称位置)P1,P2間に、G1で示す位置ずれ量(チルト量)が生じる。そこで、処理装置34はX方向およびY方向の2つの収差の対称位置の位置ずれ量G1を算出する(ステップS8)。
【0035】
図9は、被調整レンズ23のチルト量に対する非点収差とコマ収差の交点位置およびその交点位置のずれ量をそれぞれ示したものであり、C9は、被点収差交点位置を、C10はコマ収差交点位置を、G2は非点収差とコマ収差の交点位置ずれ量をそれぞれ示す。交点位置ずれ量G2は被調整レンズ23のチルト量に対して決まった値になる。そこで、処理装置34は、上記交点位置ずれ量G2を測定することにより、被調整レンズ23のチルト量を算出すると同時に、チルト量が零の場合の交点位置つまりディセンタ量を算出する(ステップS9)。このチルト量および中心位置から、チルト量に応じた被調整レンズ23の中心位置からの補正調整位置を求めることができ、この求めた補正調整位置はNTFが最適となる位置である。この演算処理は処理装置34が実行する。
【0036】
上記処理装置34が求めた補正調整位置のデータは制御装置41に送られ、制御装置41は、入力した補正調整位置のデータに基づき平行移動機構付き調整装置40を駆動制御して、被調整レンズ23をXY面上で移動させることにより、被調整レンズ23の基準レンズ20に対する相対位置の調整を行う(ステップS10)。
【0037】
以上説明したように、この実施の形態の組レンズ調整装置では、基準レンズ20の光軸を基準光軸として被調整レンズ23の位置を調整するに際して、コヒーレントな平行光を、第1の回折格子22により、基準光軸を含む第1の平面(XZ平面)上で基準光軸に対し+ψ1度の傾きを有する第1の光および基準光軸に対し−ψ度の傾きを有する第2の光と、第2の平面(YZ平面)と直交し、且つ基準光軸を含む第2の平面(YZ平面)上で基準光軸に対し+ψ2度の傾きを有する第3の光および基準光軸に対し−ψ2度の傾きを有する第4の光との計4光に分岐したのち、基準レンズ20および被調整レンズ23で集光する工程と、この集光された4つの光をそれぞれ第2の回折格子24で回折して干渉させる工程と、4つの光の干渉から、それぞれ4つの対物レンズ31の瞳面上で干渉縞を形成し、結像レンズ32により4つの受像素子33へ結像する工程と、受像した4つの干渉縞からそれぞれ被調整レンズ23のディセンタとチルトに対して充分な感度を有する収差のうちの第1および第2の2つの収差を検出する工程と、被調整レンズ23の位置を基準光軸を法線とする平面(XY平面)上で所定量だけ変化させて、その変化させた位置で第1および第2の収差を検出する工程と、第1および第2の収差の検出結果に基づいて被調整レンズ23の位置変化に対する収差の変化量の関係を求める工程と、その求めた被調整レンズ23の位置変化に対する収差の変化量の関係に基づき第1の光に対する収差量と第2の光に対する収差量が等しくなる位置および第3の光に対する収差量と第4の光に対する収差量が等しくなる位置をそれぞれ前記第1および第2の収差について算出する工程と、その算出した第1の収差と第2の収差の位置ずれ量から被調整レンズ23のディセンタ量およびチルト量を個々に算出する工程と、その算出したディセンタ量およびチルト量に基づいて被調整レンズ23の位置を調整する工程とを経て、基準レンズ20の光軸(基準光軸)に対する被調整レンズ23の相対位置を調整するので、基準レンズ20および被調整レンズ23としてNAの大きなものを用いた場合であっても、被調整レンズ23のディセンタ量とチルト量とを個々に独立して高精度に検出できることから、被調整レンズ23の位置を極めて正確に調整することができる。
【0038】
なお、上記実施の形態では、収差対称位置の算出のための収差測定を、被調整レンズ23を移動させてXY平面上の45度の直線上の2つの測定点で行ったが、XY平面上の45度の直線上の3つ以上の測定点で収差測定を行えば、精度が一層向上する。また、上記実施の形態では、被調整レンズ23のチルト量に応じてディセンタの調整を行うようにしたが、平行移動機構付き調整装置40に回転調整機能を持たせれば、ディセンタとチルトの両方を調整することもできる。
【0039】
図10は、本発明の第2の実施の形態に係る組レンズ調整方法を具現化した組レンズ調整装置を示す概略構成図であり、同図において、図1と同一若しくは相当するものに同一の符号を付して、重複する説明を省略する。この組レンズ調整装置においても、鏡筒19に固定された基準レンズ20の光軸を装置の基準光軸(つまりZ軸)としている。
【0040】
第1の光源42から出射した第1の波長λ1の光は、第1のコリメートレンズ43によって平行光に変換されたのち、基準レンズ20および被調整レンズ23に入射する。これらレンズ20,23を透過した光は、これらレンズ20,23によって回折格子44上に集光される。回折格子44を透過した光は、回折を起こす。回折格子44に対する光の集光角φおよび波長λに対し回折格子ピッチを適当に選択することにより、0次回折光と+1次回折光、または0次回折光と−1次回折光が重なる。これらの重なった光は、対物レンズ47上の瞳面上に干渉縞を形成し、この干渉縞が第1の結像レンズ48によって第1のCCDカメラ49の受像素子に結像される。そして、処理装置34は、受像された干渉縞に基づいて収差を検出する。
【0041】
上記検出する収差は、被調整レンズ23に対して充分な感度を有する収差のうちの一つ、例えば、コマ収差である。そして、処理装置34は、回折格子44をピエゾ型移動機構である微動ステージ37によって移動(微動)し、干渉領域内に設定された或る基準線上の複数の点で光強度の位相を求め、それらの位相差に基づいて対応する収差を求める。
【0042】
一方、第2の光源50から出射した第2の波長λ2の光は、第2のコリメートレンズ51によって平行光に変換され、さらに第2の結像レンズ52を透過して第1のハーフミラー53で反射したのち、第2の結像レンズ52によって結像点Fに結像する。結像した光は再び広がりながら進行して、基準レンズ20および被調整レンズ23に入射する。ここで、第2のコリメートレンズ51が移動手段54によって該コリメートレンズ51の光軸方向に移動されることにより、結像点Fが被調整レンズ23の表面または裏面の曲率中心とほぼ一致するように調整される。この場合、被調整レンズ23の表面または裏面で反射した光は、再び結像点Fで集光して入射光と同じ経路を戻り、第2のハーフミラー57で反射して第2の受像素子58に結像される。この結像位置を観測することにより、被調整レンズ23の表面および裏面の曲率中心位置を求めることができる。さらに、その表面および裏面の曲率中心位置から被調整レンズ23のチルト量を算出することができる。
【0043】
また、第1の波長λ1の光はフィルタ59を透過し、第2の波長λ2の光はフィルタ59で反射する。このフィルタ59は、第2の波長λ2の光が第1のCCDカメラ49側へ入射して測定精度が劣化するのを防止する。
【0044】
つぎに、基準光軸に対する被調整レンズ23の位置を調整する方法について、図11のフローチャートを参照しながら説明する。先ず、鏡筒に固定された基準レンズ20を鏡筒保持具38で固定し(ステップS11)、被調整レンズ23をレンズ保持具39で保持する(ステップS12)。続いて、第2の光源50を発光させるとともに、結像点Fが被調整レンズ23の表面の曲率中心位置とほぼ一致するように第2のコリメートレンズ51を移動手段54で移動させ、被調整レンズ23の表面の曲率中心位置を測定する(ステップS13)。さらに、結像点Fが被調整レンズ23の裏面の曲率中心位置とほぼ一致するように第2のコリメートレンズ51を移動させ、その被調整レンズ23の裏面の曲率中心位置を測定する(ステップS14)。そして、上記表裏両面の曲率中心位置から被調整レンズ23のチルト量を算出する(ステップS15)。
【0045】
続いて、被調整レンズ23を平行移動機構付き調整装置40によって第1の測定点に移動させる(ステップS16)とともに、第1の光源42を発光させて、処理装置34により収差を測定する(ステップS17)。さらに、被調整レンズ23を平行移動機構付き調整装置40によってXY平面における45度(直線Y=X)の角度に沿って所定量だけ動かして第2の測定点に移動し(ステップS18)たのち、再び処理装置34により収差を測定する(ステップS19)。この測定において、被調整レンズ23をX方向に動かしたときのX方向のコマ収差のの変化を図12に、Y方向のコマ収差の変化を図13にそれぞれ示してある。被調整レンズ23のX方向の移動に対し、Y方向のコマ収差が図13に示すように殆ど変化しないのに対し、X方向のコマ収差が図12に示すように変化している。
【0046】
被調整レンズ23にチルトが無い場合には、X方向のコマ収差零点位置がX方向について基準レンズ20の光軸(基準光軸)と被調整レンズ23の光軸が一致している。同様に、被調整レンズ23のY方向の移動に対しては、Y方向のコマ収差が図12のように変化し、その収差零点位置が求まるのに対し、X方向のコマ収差は殆ど変化しない。そこで、平行移動機構付き調整装置40によって被調整レンズ23をXY平面上の45度の角度に沿って動かしながら収差を測定することにより、X方向およびY方向のコマ収差について図12のようなグラフ(特性図)を取得して(ステップS20)、それぞれ収差零点位置を求める(ステップS21)。
【0047】
ここで、制御装置41は、被調整レンズ23の最適位置、例えばMTFの最適位置を前工程で求めたチルト量に応じて算出し、これにより、被調整レンズ23の調整位置が求まる。そして、制御装置41は、上記求めた調整位置に基づき平行移動機構付き調整装置40を駆動制御して、被調整レンズ23をXY平面上で移動させることにより、被調整レンズ23の位置を調整する(ステップS22)。
【0048】
以上説明したように、この第2の実施の形態では、基準レンズ20の光軸を基準光軸として被調整レンズ23の位置を調整するに際して、コヒーレントな第1の波長λ1の光軸と平行である第1の平行光を前記基準レンズおよび被調整レンズで集光する工程と、この集光された光を回折格子44で回折して干渉させる工程と、干渉縞から対物レンズ47の瞳面上で干渉縞を形成して、第1の結像レンズ48により第1の受像素子49へ結像する工程と、その結像した干渉像から被調整レンズ23のディセンタに対し充分な感度を有する収差のうちの1つの収差を検出する工程と、被調整レンズ23の位置を基準光軸を法線とする平面上で所定量だけ変化させて、その変化させた位置で収差を検出する工程と、その収差の検出結果に基づき被調整レンズ23の位置変化に対する収差変化の関係を求める工程と、その求めた関係から収差が零となる被調整レンズ23の位置を算出する工程と、第2の波長λ2の第2の光を第2のコリメートレンズ51および第2の結像レンズ52により結像させたのち、その結像位置が被調整レンズ23の表面の曲率中心位置とほぼ一致するように第2のコリメートレンズ51を調整して被調整レンズ23に入射させる工程と、第2の光の被調整レンズ23からの反射光を第2の結像レンズ52および第2のコリメートレンズ51により第2の受像素子58へ結像させて、被調整レンズ23の表面の曲率中心位置を検出する工程と、第2の光の結像位置が被調整レンズ23の裏面の曲率中心位置とほぼ一致するように第2のコリメートレンズ51を調整する工程と、被調整レンズ23の裏面からの第2の光の反射光を第2の結像レンズ52および第2のコリメートレンズ51により第2の受像素子58へ結像して被調整レンズ23の裏面の曲率中心位置を検出する工程と、その検出した被調整レンズ23の表面および裏面の曲率中心位置から被調整レンズ23のチルト量を算出する工程と、その算出した被調整レンズ23の収差零点位置およびチルト量に基づいて被調整レンズ23の位置を調整する工程を経ることにより、NAの小さい被調整レンズ23であっても、ディセンタ量とチルト量を個々に独立して高精度に検出できることから、被調整レンズ23の位置を正確に調整することができる。
【0049】
なお、上記第2の実施の形態では、収差零点位置の算出のための収差測定を、被調整レンズ23をXY平面上の45度の角度の直線に沿って移動させながら その直線上の2つの測定点で行ったが、上記直線上の3つ点以上の測定点で行えば、検出精度が一層向上する。また、予めディセンタと収差の関係を求めておけば、XY平面上の45度の角度の直線上の1つの測定点のみによる測定だけで収差零点位置を算出することができる。さらに、上記実施の形態では、被調整レンズ23のチルト量に応じてディセンタの調整を行うようにしたが、平行移動機構付き調整装置40に回転機能を具備させれば、ディセンタとチルトの両方を調整することができる。
【0050】
【発明の効果】
以上のように本発明の組レンズ調整方法によれば、光が基準光軸に対して所定角度の傾きを有しているため、軸上の光つまり入射角0度の光に対する場合よりも収差の変化量が大きくなり、収差対称位置の交点を高精度に検出できるから、デジタルスチールカメラ用レンズのように、画角の大きい光に対するMTFの劣化が大きいレンズであっても、支障なく位置調整できるとともに、基準レンズおよび被調整レンズとしてNAの大きなものを用いた場合であっても、被調整レンズのディセンタ量とチルト量とを個々に独立して高精度に検出できることから、被調整レンズの位置を極めて正確に調整することができる。
【0051】
また、本発明の組レンズ調整装置によれば、平行光を4つの光に分岐する第1の回折格子と、被調整レンズを移動させる移動手段と、4つの光を集光した光を回折させる第2の回折格子と、第2の回折格子を変位させる微動ステージと、干渉像を観察する4つの干渉像観察系と、干渉像を処理して被調整レンズのディセンタとチルトに対して感度を有する2つの収差を検出する処理装置と、処理装置の検出収差に基づき算出した調整量に基づき移動手段を駆動制御する制御装置とを備えているので、本発明に係る組レンズ調整方法を忠実に具現化して、調整方法と同様の効果を確実に経ることができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係る組レンズ調整方法を具現化した組レンズ調整装置の概略構成を示す斜視図。
【図2】同上の組レンズ調整装置における第1の回折格子の一例であり、(a)は拡大斜視図、(b)はX軸方向の拡大断面図、(c)はY軸方向の拡大断面図。
【図3】同上の組レンズ調整装置における第2の回折格子の形状の一例を示す拡大平面図。
【図4】同上の組レンズ調整装置における上記第1の干渉像観察系の概略構成図。
【図5】同上の実施の形態における被調整レンズの位置調整の制御処理を示すフローチャート。
【図6】同上の実施の形態における被調整レンズのX方向への位置変化に対する第1の干渉像観察系と第2の干渉像観察系でそれぞれ測定したXZ平面上での2つの収差量の変化を示す特性図。
【図7】同上の実施の形態における被調整レンズのX方向への位置変化に対する第3の干渉像観察系と第4の干渉像観察系でそれぞれ測定したYZ平面上での2つの収差量の変化を示す特性図。
【図8】同上の実施の形態におけるチルトがある場合のレンズの位置変動に対する収差変動量を示す特性図。
【図9】同上の実施の形態におけるレンズチルト量に対する非点収差とコマ収差の位置ずれ量を示す特性図。
【図10】本発明の第2の実施の形態に係る組レンズ調整方法を具現化した組レンズ調整装置を示す概略構成図。
【図11】同上の実施の形態における被調整レンズの位置調整の制御処理を示すフローチャート。
【図12】同上の実施の形態における被調整レンズのX方向への位置変化に対するX方向コマ収差の変化量を示す特性図。
【図13】同上の実施の形態における被調整レンズのX方向への位置変化に対するY方向コマ収差の変化量を示す特性図。
【図14】従来の組レンズ調整装置を示す概略構成図。
【図15】同上の組レンズ調整装置における回折格子での回折の説明図。
【符号の説明】
20 基準レンズ
21 光源
22 第1の回折格子
23 被調整レンズ
24 第2の回折格子
27〜30 干渉像観察系
31 対物レンズ
32 結像レンズ
34 処理装置
33 CCDカメラ(受像素子)
37 微動ステージ
40 平行移動機構付き調整装置(移動手段)
41 制御装置
42 第1の光源
44 回折格子
47 対物レンズ
48 第1の結像レンズ
49 第1の受像素子
50 第2の光源
51 第2のコリメートレンズ
52 第2の結像レンズ
53 第1のハーフミラー
54 移動手段
57 第2のハーフミラー
58 第2の受像素子

Claims (4)

  1. 基準レンズの光軸を基準光軸として被調整レンズの位置を調整する組レンズ調整方法であって、
    コヒーレントな平行光を、前記基準光軸を含む第1の平面上で前記基準光軸に対し+方向と−方向にそれぞれ所定角度の傾きを有する第1の光および第2の光と、前記第1の平面と直交し、且つ前記基準光軸を含む第2の平面上で前記基準光軸に対し+方向と−方向にそれぞれ所定角度の傾きを有する第3および第3の光との計4つの光に分岐し、この4つの光を前記基準レンズおよび被調整レンズにより集光する工程と、
    前記集光された4つの光をそれぞれ回折して干渉させる工程と、
    前記4つの光の干渉から、それぞれ4つの対物レンズの瞳面上で干渉縞を形成し、4つの受像素子へ結像する工程と、
    前記受像した4つの干渉縞からそれぞれ被調整レンズのディセンタとチルトに対して充分な感度を有する収差のうちの第1および第2の2つの収差を検出する工程と、
    前記被調整レンズの位置を前記基準光軸を法線とする平面上で所定量だけ変化させて、その変化させた位置で前記第1および第2の収差を検出する工程と、
    前記第1および第2の収差の検出結果に基づいて前記被調整レンズの位置変化に対する収差の変化量の関係を求める工程と、
    前記求めた被調整レンズの位置変化に対する収差の変化量の関係に基づき前記第1の光に対する収差量と前記第2の光に対する収差量が等しくなる位置および前記第3の光に対する収差量と前記第4の光に対する収差量が等しくなる位置をそれぞれ前記第1および第2の収差について算出する工程と、
    前記算出した第1の収差と第2の収差の位置ずれ量から前記被調整レンズのディセンタ量およびチルト量を個々に算出する工程と、
    前記算出したディセンタ量およびチルト量に基づいて前記被調整レンズの位置を調整する工程とを有することを特徴とする組レンズ調整方法。
  2. 基準レンズの光軸を基準光軸として被調整レンズの位置を調整する組レンズ調整装置であって、
    コヒーレントな平行光を出射する光源と、
    前記平行光を、前記基準光軸を含む第1の平面上で前記基準光軸に対し+方向と−方向にそれぞれ所定角度の傾きを有する第1の光および第2の光と、前記第1の平面と直交し、且つ前記基準光軸を含む第2の平面上で前記基準光軸に対し+方向と−方向にそれぞれ所定角度の傾きを有する第3および第3の光との計4つの光に分岐する第1の回折格子と、
    前記被調整レンズを前記基準光軸を法線とする平面上で移動させる移動手段と、
    前記4つの光を前記基準レンズおよび被調整レンズにより集光した光を回折させる第2の回折格子と、
    前記第2の回折格子をこれの格子面内で溝方向に対し垂直な方向の成分を含む方向へ変位させる微動ステージと、
    対物レンズの瞳面上の干渉光を結像レンズで受像素子に結像して干渉像を観察する4つの干渉像観察系と、
    前記4つの干渉像観察系の干渉像を処理して前記被調整レンズのディセンタとチルトに対して感度を有する収差のうちの2つの収差を検出する処理装置と、
    前記処理装置の検出収差に基づき算出した調整量に基づき前記移動手段を駆動制御する制御装置とを備えていることを特徴とする組レンズ調整装置。
  3. 基準レンズの光軸を基準光軸として被調整レンズの位置を調整する組レンズ調整方法であって、
    コヒーレントな第1の波長の光軸と平行である第1の平行光を前記基準レンズおよび被調整レンズで集光する工程と、
    前記集光された光を回折して干渉させる工程と、
    前記干渉光により対物レンズの瞳面上で干渉縞を形成して、第1の受像素子へ結像する工程と、
    前記結像した干渉像から前記被調整レンズのディセンタに対し充分な感度を有する収差のうちの1つの収差を検出する工程と、
    前記被調整レンズの位置を前記基準光軸を法線とする平面上で所定量だけ変化させて、その変化させた位置で前記収差を検出する工程と、
    前記収差の検出結果に基づき前記被調整レンズの位置変化に対する収差変化の関係を求める工程と、
    前記求めた関係から前記収差が零となる前記被調整レンズの位置を算出する工程と、
    第2の波長の第2の光を結像させたのち、その結像位置が前記被調整レンズの表面の曲率中心位置とほぼ一致するように調整して前記被調整レンズに入射させる工程と、
    前記第2の光の前記被調整レンズからの反射光を第2の受像素子へ結像させて、前記被調整レンズの表面の曲率中心位置を検出する工程と、
    前記第2の光の結像位置が前記被調整レンズの裏面の曲率中心位置とほぼ一致するように調整する工程と、
    前記第2の光の前記被調整レンズの裏面からの反射光を前記第2の受像素子へ結像して前記被調整レンズの裏面の曲率中心位置を検出する工程と、
    前記検出した被調整レンズの表面および裏面の曲率中心位置から被調整レンズのチルト量を算出する工程と、
    前記算出した前記被調整レンズの収差零点位置およびチルト量に基づいて前記被調整レンズの位置を調整する工程とを有していることを特徴とする組レンズ調整方法。
  4. 基準レンズの光軸を基準光軸として被調整レンズの位置を調整する組レンズ調整装置であって、
    コヒーレントな第1の波長の平行光を出射する第1の光源と、
    前記被調整レンズを前記基準光軸を法線とする平面上で直交する2軸方向に変位させる変位手段と、
    前記基準レンズおよび被調整レンズからの集光光を回折して干渉させる回折格子と、
    前記回折格子をこれの格子面内で溝方向に対し垂直な方向の成分を含む方向へ変位させる微動ステージと、
    対物レンズの瞳面上の干渉光を第1の結像レンズで第1の受像素子上に結像して干渉縞を観察する干渉像観察系と、
    前記干渉像観察系の干渉像を処理して前記被調整レンズのディセンタに対して感度を有する収差のうちの1つの収差を検出する処理装置と、
    第2の波長の第2の光を出射する第2の光源と、
    前記第2の光を前記被調整レンズの表面または裏面の曲率中心位置に結像させるコリメートレンズ、第2の結像レンズおよび第1のハーフミラーと、
    前記コリメートレンズをこれの光軸方向に移動させる移動手段と、
    前記被調整レンズの表面または裏面からの反射光を観測する第2のハーフミラーおよび第2の受像素子と、
    前記検出収差および反射光位置から算出した調整量に基づき調整手段を駆動する制御装置とを備えていることを特徴とする組レンズ調整装置。
JP2003190372A 2003-07-02 2003-07-02 組レンズ調整方法およびその装置 Pending JP2005024910A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003190372A JP2005024910A (ja) 2003-07-02 2003-07-02 組レンズ調整方法およびその装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003190372A JP2005024910A (ja) 2003-07-02 2003-07-02 組レンズ調整方法およびその装置

Publications (1)

Publication Number Publication Date
JP2005024910A true JP2005024910A (ja) 2005-01-27

Family

ID=34188288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003190372A Pending JP2005024910A (ja) 2003-07-02 2003-07-02 組レンズ調整方法およびその装置

Country Status (1)

Country Link
JP (1) JP2005024910A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007205905A (ja) * 2006-02-02 2007-08-16 Matsushita Electric Ind Co Ltd レンズ計測方法、製造方法、及び光ピックアップ
CN117075293A (zh) * 2023-10-17 2023-11-17 长春长光智欧科技有限公司 计算全息的亚微米级多环带多级次对准检测装置与方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007205905A (ja) * 2006-02-02 2007-08-16 Matsushita Electric Ind Co Ltd レンズ計測方法、製造方法、及び光ピックアップ
JP4710630B2 (ja) * 2006-02-02 2011-06-29 パナソニック株式会社 レンズ計測装置、及び計測方法
CN117075293A (zh) * 2023-10-17 2023-11-17 长春长光智欧科技有限公司 计算全息的亚微米级多环带多级次对准检测装置与方法
CN117075293B (zh) * 2023-10-17 2023-12-22 长春长光智欧科技有限公司 计算全息的亚微米级多环带多级次对准检测装置与方法

Similar Documents

Publication Publication Date Title
JP2000097666A (ja) 面形状計測用干渉計、波面収差測定機、前記干渉計及び前記波面収差測定機を用いた投影光学系の製造方法、及び前記干渉計の校正方法
JP2001304918A (ja) 格子干渉型光学式エンコーダ
EP0652487A1 (en) Rotational deviation detecting method and system using a periodic pattern
JP2006250859A (ja) 面形状測定方法、面形状測定装置、投影光学系の製造方法、投影光学系、及び投影露光装置
JP2011252774A (ja) 被検面測定装置
JP4134740B2 (ja) レンズ調整方法及びその装置
WO2017126215A1 (ja) 位相シフト量測定装置
JP3667149B2 (ja) レンズの評価方法、レンズの評価装置、及びレンズの調整装置
JP2005024910A (ja) 組レンズ調整方法およびその装置
JP5675382B2 (ja) シアリング干渉測定装置
CN113900357A (zh) 测量图案均匀性的装置和方法以及制造掩模的方法
JP5511556B2 (ja) 傾斜センサ、それを備えた加工装置、及びワークの製造方法
JP2007033098A (ja) レンズ計測方法、及びレンズ計測装置
JP2775519B2 (ja) 参照レティクルを用いた2重焦点装置
JP4635371B2 (ja) 波面変換光学系、面形状測定装置、及び面形状測定方法
JP2002323406A (ja) 組レンズの評価方法及び装置、光学ユニットの製造方法
JP4127422B2 (ja) レンズその他の光学素子を含む光学系の光学特性検出方法及び光学特性検出装置
JP4106191B2 (ja) 光学システムの調整方法
JP2002202450A (ja) 組レンズの調整方法及びその装置
JP4366999B2 (ja) 光学レンズの収差検出方法
JP2005315683A (ja) シヤリング干渉計及び干渉計測装置
JPH08320205A (ja) 干渉縞の評価装置及びそれを用いた回折干渉光学系の検査方法
JP3315806B2 (ja) 像面測定装置
JP2004239875A (ja) 光学レンズの収差検出方法および装置および収差検出用回折格子
JP2002329338A (ja) 光ヘッドの調整方法及び装置