JP2005022162A - Hole forming member of ceramic baked body and manufacturing method for ceramic baked body having holes - Google Patents

Hole forming member of ceramic baked body and manufacturing method for ceramic baked body having holes Download PDF

Info

Publication number
JP2005022162A
JP2005022162A JP2003188588A JP2003188588A JP2005022162A JP 2005022162 A JP2005022162 A JP 2005022162A JP 2003188588 A JP2003188588 A JP 2003188588A JP 2003188588 A JP2003188588 A JP 2003188588A JP 2005022162 A JP2005022162 A JP 2005022162A
Authority
JP
Japan
Prior art keywords
ceramic
thread
holes
hole forming
forming member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003188588A
Other languages
Japanese (ja)
Inventor
Takenori Kashiwabara
建記 柏原
Mineaki Hoshino
峰章 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kikusui Kagaku Kogyo KK
Original Assignee
Kikusui Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kikusui Kagaku Kogyo KK filed Critical Kikusui Kagaku Kogyo KK
Priority to JP2003188588A priority Critical patent/JP2005022162A/en
Publication of JP2005022162A publication Critical patent/JP2005022162A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide the hole forming member of a ceramic baked body capable of easily forming holes, and a manufacturing method for the ceramic baked body having the holes. <P>SOLUTION: The hole forming member 1 of the ceramic baked body has a base member 2 and a plurality of the yarn-like members 3 protruded from the base member 2. After the hole forming member 1 is brought into slide contact with the inside of a mold for molding ceramic in a relatively movable manner, a ceramic slurry is injected in the mold for molding ceramic and solidified under heating to obtain a ceramic dried body. The hole forming member 1 and the ceramic dried body are relatively moved with respect to the mold for molding ceramic and taken out of the mold for molding ceramic. Then, the ceramic dried body is drawn out from the yarn-like members 3 to obtain a ceramic dried body having through-holes. This ceramic dried body is baked to obtain the ceramic baked body having the holes. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、フィルター、プリンターヘッド、触媒担体、多層基板、ペン先、人工骨、炭素キャピラリ膜等に使用される、セラミック焼成体の孔形成部材及び孔を有するセラミック焼成体の製造方法に関するものである。
【0002】
【従来の技術】
従来の孔を有するセラミックの製造方法としては、例えば、セラミック粉末を金型プレス成形法、射出成形法、冷間等方圧加工法等により成形し、続いてバインダー脱脂後又はセラミック焼成後に孔を形成する方法がある。これらの孔の形成にはドリル、超音波あるいはレーザー等が使用される。
【0003】
また、金型プレス成形法、射出成形法等によって成形した2以上の分割成形体を冷間等方圧加工法によって一体成形する方法もある(例えば、特許文献1参照。)。
【0004】
物理的な加工によらない方法としては、中子ピンをセラミックスラリー中に挿入して乾燥硬化させ、その後中子ピンを引き抜くことによって孔を形成する方法がある。ピンを用いる方法としては他にも、セラミック乾燥体をピンで打ち抜く方法もある(例えば、特許文献2参照。)。あるいは、共晶反応によってセラミック相を一次元的に成長させ、それを取り囲むセラミックマトリックス相からなる複合膜中の一次元的に成長したセラミック相を除去して得る方法もある(例えば、特許文献3参照。)。
【0005】
このほか、セラミックスシート上に貫通孔形成剤を印刷方式で配置した後、積層、脱脂、焼結を行うことにより孔を形成する方法もある(例えば、特許文献4参照。)。
【0006】
【特許文献1】
特開平5−147011号公報(第2〜3頁、第2図、第5図)
【特許文献2】
特開平11−309697号公報(第4〜7頁)
【特許文献3】
特開平10−182263号公報(第3頁)
【特許文献4】
特開2003−20289号公報(第3〜4頁)
【0007】
【発明が解決しようとする課題】
ところが、セラミック焼成体は硬質であるため、ドリル、超音波あるいはレーザー等による加工は困難で、生産効率が低いものであった。一旦成形したセラミック体を冷間等方圧加工によって一体成形する方法では、特殊な加工装置が必要であるため、容易には使用できなかった。
【0008】
物理的な加工によらないものであっても、中子ピンによる方法ではピンの自立・抜き取り工程が必要で、生産効率が低いものであった。その他の方法についても、特殊な加工装置や前提条件が必要であるため、容易には使用できなかった。
【0009】
この発明は前述した事情に鑑みてなされたものであって、その目的は、セラミック焼成体に容易に孔を形成することができるセラミック焼成体の孔形成部材及び孔を有するセラミック焼成体の製造方法を提供することにある。
【0010】
【課題を解決するための手段】
上記目的を達成するために、請求項1に記載の発明は、セラミック成形型内に孔形成部材を配置してセラミックスラリーを注入し、該セラミックスラリーを乾燥させてセラミック乾燥体を得た後、該乾燥体を焼成してセラミック焼成体を得る、孔を有するセラミック焼成体の製造工程において、前記孔形成部材が、基部材と、該基部材から突出し、セラミックスラリーの注入時に自立可能な複数の糸状部材とを有することを要旨とした。
【0011】
請求項2に記載の発明は、請求項1に記載の発明において、前記糸状部材が可燃性であることを要旨とした。
請求項3に記載の発明は、セラミック成形型内に請求項1又は請求項2に記載の孔形成部材を配置してセラミックスラリーを注入し、該セラミックスラリーを乾燥させてセラミック乾燥体を得た後、該乾燥体から前記孔形成部材を除去し、前記乾燥体を焼成してセラミック焼成体を得ることを要旨とした。
【0012】
【発明の実施の形態】
以下、本発明を具体化した実施形態を図1〜図7に基づいて説明する。
図1に示すように、セラミック焼成体の孔形成部材1は、プラスチック製の四角板状をなす基部材2と、該基部材2から細長い円柱状に突出する複数の糸状部材3とを有している。前記糸状部材3の直径は100μmであり、その横断面の断面形状は真円である。この図においては説明のために拡大して表示してある。
【0013】
前記糸状部材3は一定の間隔をおいて自立しており、その材質は吸水率が0.01質量%、水との接触角が82°、25℃におけるヤング率が1.0GPaであるポリフッ化ビニリデンである。
【0014】
前記糸状部材3は一定の間隔をおいて自立しているが、それらの間隔は任意に設定できる。また、間隔は一定でなく個々に任意の間隔を設定しても良い。例えば0.5μm、20μm、1000μmの間隔で配置させることもできる。また、その数は特に限定されず、1又は2以上の糸状部材3を配置することができる。
【0015】
前記糸状部材3の横断面は真円に限らず、楕円、半円、三日月等でも良い。また、四角形や六角形等の多角形でも良い。また、その形状は、直線状に限らず、螺旋状、輪形状等、任意の形状のものが使用できる。
【0016】
前記糸状部材3の長さは特に限定されず、任意に設定することができる。糸状部材3の長さを調整することにより、セラミック焼成体6に設ける孔11の深さを調整することができる。
【0017】
前記糸状部材3の材質はポリフッ化ビニリデンに限らず、ポリアミド、ポリエステル、アクリル樹脂、ポリエチレン、ポリプロピレン、ポリ塩化ビニリデン等のプラスチック、カーボンナノチューブ、炭素繊維、炭化ケイ素、アルミナ、金属、ガラス、綿等の天然繊維、ウィスカー等、糸状のものであれば任意に設定することができる。
【0018】
前記糸状部材3の吸水率は好ましくは3質量%以下、より好ましくは1.5質量%以下、最も好ましくは、0.5%質量以下である。この範囲にあるとき、セラミックの成形時に糸状部材3の周囲に注入されるセラミックスラリー4の組成中の水分が、糸状部材3によって吸収されることを抑制できる。糸状部材3の吸水率が3質量%を超えると、セラミックスラリー4が脱水して流動性を失うため、目的とする形状に成形できない場合がある。
【0019】
吸水率が3質量%以下のものとしては例えば、ポリフッ化ビニリデン(0.01質量%)、ポリアミド(1.3質量%)、ポリカーボネート(0.24質量%)、ポリメタクリル酸メチル(0.35質量%)、ポリプロピレン(0.02質量%)、ポリ四フッ化エチレン(0.0質量%)等のプラスチック、カーボンナノチューブ(0.0質量%)、炭素繊維(0.0質量%)、炭化ケイ素(0.0質量%)、アルミナ(0.0質量%)等のセラミック、鉄(0.0質量%)、銅(0.0質量%)、ステンレス鋼(0.0質量%)等の金属、ガラス(0.0質量%)等が挙げられる。
【0020】
前記糸状部材3の水との接触角は好ましくは35°以上、より好ましくは60°以上、最も好ましくは80°以上である。この範囲にあるとき、セラミックスラリー4を固化させることによって得られるセラミック乾燥体5から糸状部材3を引き抜くことが容易になる。接触角が35°未満のときには、糸状部材3をセラミック乾燥体5から引き抜く際に、該セラミック乾燥体5が糸状部材3に付着して引き抜きが困難になる。
【0021】
水との接触角が35°以上のものとしては例えば、ポリ塩化ビニル(87°)、ポリ塩化ビニリデン(80°)、ポリアミド(77°)、ポリビニルアルコール(36°)、ポリエチレン(87°)、ポリプロピレン(94°)、ポリフッ化ビニル(80°)、ポリフッ化ビニリデン(82°)、ポリ三フッ化エチレン(92°)、ポリ四フッ化エチレン(108°)等が挙げられる。
【0022】
前記糸状部材3は可燃性であることが好ましい。糸状部材3をセラミック乾燥体5から引き抜く際に、糸状部材3が切断され、セラミック乾燥体5中に取り残される場合がある。前記糸状部材3が可燃性であることにより、該糸状部材3はセラミック乾燥体5の焼成時に同時に消失してしまうため、セラミック焼成体6中には残存しないものである。
【0023】
可燃性の糸状部材3としては例えば、ポリフッ化ビニリデン、ポリアミド、ポリエステル、アクリル樹脂、ポリエチレン、ポリプロピレン、ポリ塩化ビニリデン等のプラスチック、綿等の天然繊維等が挙げられる。
【0024】
前記糸状部材3の25℃におけるヤング率は好ましくは300M〜1500GPa、より好ましくは500M〜1500GPa、最も好ましくは800M〜1500GPaである。ヤング率とは、断面積 (S) の物体に力 (F) が加えられ、元の長さ (L) が (ΔL) だけ伸びたとき、 次式で与えられるものである。
【0025】
ヤング率E=(F/S)/(ΔL/L)
25℃における前記糸状部材3のヤング率が300M〜1500GPaであることにより、周囲にセラミックスラリー4が注入されても糸状部材3は自立したままであるため、セラミック乾燥体5に形成される貫通孔13の形状が一定のものとなる。ヤング率が300MPa未満のときには、セラミックスラリー4が注入されると前記糸状部材3は自立できず、セラミック乾燥体5に形成される孔の形状が一定のものとならない。逆にヤング率が1500GPaを超える場合には、糸状部材の製造が困難となる。
【0026】
25℃におけるヤング率が300M〜1500GPaのものとしては例えば、ABS樹脂(2.1GPa)、ポリカーボネート(6.7GPa)、ポリスチレン(3.5GPa)、高密度ポリエチレン(1.5GPa)、ポリフッ化ビニリデン(1.0GPa)、鉄(206GPa)、チタン(116GPa)、銅(123GPa)、アルミニウム(69GPa)、ケイ素(105GPa)、銀(73GPa)、金(80GPa)、ガラス(73GPa)、カーボンナノチューブ(980GPa)等が挙げられる。
【0027】
前記糸状部材3を基部材2に配置する方法としては、任意の方法を使用できる。例えば、適当な長さに切断した糸状部材3の一端に接着剤等を塗布して前記基部材2に接着させる方法がある。また、別の方法としては、まず、図5(a)に示すように、目的とする基部材2よりも幅が狭い帯状基部材2aと該帯状基部材2aと同じ形状である挿入部材7とを並行に並べて糸状部材3を巻回する。次に、図5(b)に示すように、前記帯状基部材2aと糸状部材3とを帯状基部材2aの両側面で接着剤8により接着する。図6に図5(b)の状態の斜視図(図5(b)は図6のA−A線断面図)を示す。接着剤8が硬化した後、図5(c)に示すように挿入部材7を抜き取り、図5(d)に示すように糸状部材3の折返し部分を切断して孔形成部材片1aを得る。このようにして作成した複数の孔形成部材片1aの側面と、前記帯状基部材2aと同形状である複数の層間基部材2bの側面とを図5(e)に示すように、層間接着剤9によって交互に接着し、孔形成部材1を得る方法がある。
【0028】
セラミック焼成体6の製造は以下のようにして行う。図2に示すように、まず、四角筒状のセラミック成形型10の内側に前記糸状部材3の自立面が上になるようにして孔形成部材1の基部材2の側面をセラミック成形型10の内側面に相対移動可能に摺接させる。続いて、セラミック成形型10内にセラミックスラリー4を注入する。このとき糸状部材3は自立したままである。
【0029】
前記セラミックスラリー4はセラミック粉末を分散剤又はバインダーにより水に分散させたものであり、その組成は例えば以下に示すようなものである。
セラミックスラリー4の組成: 純度99.9%の高純度アルミナ800重量部、バインダーとしてのポリエステル樹脂400重量部、自己乳化型ポリアミド8重量部、水150重量部。
【0030】
セラミックスラリー4の組成中、アルミナに代えてジルコニア(ZrO)、窒化珪素(Si)等を使用しても良い。また、バインダーとしては、ポリエステル樹脂のほか、エポキシ樹脂、フェノール樹脂、メラミン樹脂、ポリイミド樹脂、シリコーン樹脂等もセラミックとの相性やバインダー性能を考慮して使用しても良い。
【0031】
そして、その状態で80℃で20分間加熱する。加熱によりセラミックスラリー4は固化し、セラミック乾燥体5を得る。その後、図3に示すように、前記孔形成部材1及びセラミック乾燥体5をセラミック成形型10に対して相対移動、すなわち孔形成部材1の底面を図に示す上向き矢印の方向に押し込むことで、セラミック成形型10から孔形成部材1及びセラミック乾燥体5を取り出す。そして、図4に示すように、セラミック乾燥体5を前記糸状部材3から引き抜くことで貫通孔13を有するセラミック乾燥体5を得る。該セラミック乾燥体5を1500℃で10時間焼成することによって、図7に示すような一方向に貫通された孔11を有するセラミック焼成体6が得られる。以上のようにして、セラミック焼成体の孔形成部材1は、孔11を有するセラミック焼成体6の製造工程において使用される。
【0032】
本実施形態は以下に示す効果を発揮することができる。
・セラミックスラリー4が注入されるセラミック成形型10内に配置されて用いられるセラミック焼成体の孔形成部材1は、基部材2と、該基部材2から突出し、セラミックスラリー4の注入時に自立可能な複数の糸状部材3とを有している。このため、機械加工や特殊な装置を必要とせず、孔11を有するセラミック焼成体6の製造が容易になる。
【0033】
・前記糸状部材3が可燃性であることにより、糸状部材3をセラミック乾燥体5から引き抜く際に、糸状部材3が切断され、セラミック乾燥体5中に取り残された場合でも、糸状部材3はセラミック乾燥体5の焼成時に同時に消失してしまうため、セラミック焼成体6中には残存することがない。
【0034】
・前記孔形成部材1にセラミックスラリー4を注入して成形することにより、機械加工や特殊な装置を必要とせず、孔11を有するセラミック焼成体6の製造を容易に行うことができる。
【0035】
・前記糸状部材3は吸水率が3質量%以下であることにより、セラミックの成形時に糸状部材3の周囲に注入されるセラミックスラリー4の組成中の水分が、糸状部材3によって吸収されることを抑制することができる。
【0036】
・前記糸状部材3の水との接触角は35°以上であることにより、セラミック乾燥体5から糸状部材3を容易に引き抜くことができる。
・25℃における前記糸状部材3のヤング率が300M〜1500GPaであることにより、セラミックスラリー4が注入されても糸状部材3は自立したままであるため、セラミック乾燥体5に形成する貫通孔13の形状を一定にすることができる。
【0037】
・セラミック焼成体6に形成したい孔11の配置を、基部材2における糸状部材3の配置によって制御することができるため、セラミック焼成体6に形成する孔11の配置を自在に決定することができる。
【0038】
なお、前記実施形態を次のように変更して構成することもできる。
・前記基部材2はプラスチック製に限らず、任意に設定することができる。例えば、紙や金属でも良い。
【0039】
・前記基部材2は四角板状に限らず、成形したいセラミック焼成体6の形状に合わせて任意に設定することができる。例えば、円板状や多角板状でも良い。
・前記糸状部材3の直径は100μmに限らず、任意に設定することができる。また、直径の異なるものを組合せて使用しても良い。例えば、0.1μm、50μm、1000μmのものを組合せて使用することができる。
【0040】
・前記糸状部材3は収縮率の異なる2種類の糸状部材3を一体化させた複合体でも良い。
このように構成した場合、前記糸状部材3は収縮率の違いから、加熱により螺旋構造に変形するため、螺旋孔が形成できる。初めから螺旋構造を有している糸状部材3を使用した場合、セラミックスラリー4はその表面張力によって螺旋構造の内側へ注入されないことがあるが、初めは直線状で加熱後に螺旋構造に変形するため、螺旋構造の内側へもセラミックスラリー4を注入することができる。
【0041】
・前記実施形態において、孔11はセラミック焼成体6を貫通しているが、貫通させなくても良い。
・前記実施形態において、前記糸状部材3をセラミック乾燥体5から引き抜いたが、糸状部材3が可燃性である場合には、糸状部材3をセラミック乾燥体5から引き抜くことなく、基部材2と糸状部材3とを切断し、そのまま焼成しても良い。
【0042】
このように構成することで、前記糸状部材3をセラミック乾燥体5から引き抜く工程を省略できる。
・上記の場合において、前記糸状部材3及び基部材2が可燃性である場合には、前記基部材2と糸状部材3とを切断せず、そのまま焼成しても良い。
【0043】
このように構成することで、前記糸状部材3をセラミック乾燥体5から引き抜く工程を省略できることに加え、前記基部材2と糸状部材3とを切断する工程も省略できる。
【0044】
・前記実施形態において、セラミック成形型10は四角筒状であったが、有底四角筒状であっても良い。また、底面の形状は四角に限らず多角形や円形でも良い。
【0045】
・セラミック成形型10が有底四角筒状の場合には、図8(a)に示すように、前記糸状部材3を下向きにしてセラミック成形型10の上部に配置しても良い。
【0046】
・前記実施形態において、糸状部材3は基部材2から突出させているが、図8(b)又は(c)に示すように、有底四角筒状のセラミック成形型10の底壁12又は側壁14から突出させても良い。また、底壁12及び側壁14の双方から突出させても良い。この場合には、可燃性の糸状部材3を使用し、セラミックスラリー4をセラミック成形型10に注入して乾燥した後、セラミック乾燥体5をセラミック成形型10から取り出さずにそのまま焼成する。焼成によって糸状部材3は消失し、孔11を有するセラミック焼成体6が得られる。
【0047】
このように構成した場合、複数の面に孔11を有するセラミック焼成体6が得らる。
次に、前記実施形態から把握できる請求項に記載した発明以外の技術的思想について、それらの効果と共に記載する。
【0048】
(1)前記糸状部材の吸水率が3質量%以下であることを特徴とする請求項1又は請求項2に記載のセラミック焼成体の孔形成部材。
このように構成した場合、糸状部材の周囲に注入されるセラミックスラリーからの脱水を抑制することができる。
【0049】
(2)前記糸状部材の水との接触角が35°以上であることを特徴とする請求項1、請求項2及び上記(1)のいずれか一項に記載のセラミック焼成体の孔形成部材。
【0050】
このように構成した場合、セラミック乾燥体から糸状部材を容易に引き抜くことができる。
(3)前記糸状部材の25℃におけるヤング率が300M〜1500GPaであることを特徴とする請求項1、請求項2、上記(1)及び(2)のいずれか一項に記載のセラミック焼成体の孔形成部材。
【0051】
このように構成した場合、セラミックスラリーが注入されても前記糸状部材は自立できるため、セラミック乾燥体に形成する孔の形状が一定のものとなる。
(4)前記基部材が可燃性であることを特徴とする請求項2に記載のセラミック焼成体の孔形成部材。
【0052】
このように構成した場合、前記糸状部材をセラミック乾燥体から引き抜く工程を省略できる。
(5)セラミック成形型内に上記(1)から(4)のいずれか一項に記載のセラミック焼成体の孔形成部材を配置してセラミックスラリーを注入し、該セラミックスラリーを乾燥させてセラミック乾燥体を得た後、該乾燥体から前記孔形成部材を除去し、前記乾燥体を焼成してセラミック焼成体を得ることを特徴とする孔を有するセラミック焼成体の製造方法。
【0053】
このように構成した場合、機械加工や特殊な装置を必要とせず、容易に孔を形成することができる。
【0054】
【発明の効果】
この発明は、以上のように構成されているため、次のような効果を奏する。
請求項1に記載の発明のセラミック焼成体の孔形成部材によれば、機械加工や特殊な装置を必要とせず、セラミック焼成体に容易に孔を形成することができる。
【0055】
請求項2に記載の発明のセラミック焼成体の孔形成部材によれば、請求項1に記載の発明の効果に加え、糸状部材をセラミック乾燥体から引き抜く際に、糸状部材が切断され、セラミック乾燥体中に取り残された場合でも、セラミック乾燥体の焼成時に同時に消失してしまうため、セラミック焼成体中には残存しないものである。
【0056】
請求項3に記載の発明の孔を有するセラミック焼成体の製造方法によれば、請求項1又は請求項2に記載のセラミック焼成体の孔形成部材を用い、孔を有するセラミック焼成体を機械加工や特殊な装置を必要とせず、容易に製造することができる。
【図面の簡単な説明】
【図1】本発明の実施形態のセラミック焼成体の孔形成部材を示す斜視図。
【図2】セラミック成形型に孔形成部材を配置し、セラミックスラリーを流し込んだ状態を示す断面図。
【図3】図2の状態から孔形成部材及びセラミック乾燥体を押し込んだ状態を示す断面図。
【図4】図3の状態からセラミック乾燥体を引き抜いた状態を示す断面図。
【図5】(a)〜(e)は基部材に糸状部材を自立させる手順の一例を示す断面図。
【図6】図5(b)の状態を示す斜視図。
【図7】孔を有するセラミック焼成体を示す斜視図。
【図8】(a)〜(c)はそれぞれセラミック成形型に孔形成部材を配置し、セラミックスラリーを流し込んだ状態の別例を示す断面図。
【符号の説明】
1…セラミック焼成体の孔形成部材、2…基部材、3…糸状部材、4…セラミックスラリー、5…セラミック乾燥体、6…セラミック焼成体、10…セラミック成形型、11…孔。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hole forming member for a ceramic fired body used for filters, printer heads, catalyst carriers, multilayer substrates, nibs, artificial bones, carbon capillary membranes, and the like, and a method for producing a ceramic fired body having holes. is there.
[0002]
[Prior art]
As a conventional method for producing a ceramic having holes, for example, ceramic powder is formed by a die press molding method, an injection molding method, a cold isostatic pressing method, etc., and then the holes are formed after binder degreasing or ceramic firing. There is a method of forming. Drills, ultrasonic waves, lasers, or the like are used to form these holes.
[0003]
In addition, there is a method in which two or more divided molded bodies molded by a die press molding method, an injection molding method, or the like are integrally molded by a cold isostatic pressing method (see, for example, Patent Document 1).
[0004]
As a method not based on physical processing, there is a method of forming a hole by inserting a core pin into a ceramic slurry and drying and curing it, and then pulling out the core pin. As another method using a pin, there is a method of punching a ceramic dry body with a pin (see, for example, Patent Document 2). Alternatively, there is a method in which a ceramic phase is grown one-dimensionally by a eutectic reaction, and the one-dimensionally grown ceramic phase in a composite film made of a ceramic matrix phase surrounding the ceramic phase is removed (for example, Patent Document 3). reference.).
[0005]
In addition, there is a method of forming a hole by arranging a through-hole forming agent on a ceramic sheet by a printing method, and then laminating, degreasing, and sintering (for example, see Patent Document 4).
[0006]
[Patent Document 1]
Japanese Patent Laid-Open No. 5-147011 (pages 2 and 3, FIGS. 2 and 5)
[Patent Document 2]
JP-A-11-309697 (pages 4-7)
[Patent Document 3]
JP 10-182263 A (page 3)
[Patent Document 4]
JP 2003-20289 A (pages 3 to 4)
[0007]
[Problems to be solved by the invention]
However, since the ceramic fired body is hard, it is difficult to process with a drill, an ultrasonic wave, or a laser, and the production efficiency is low. In the method of integrally forming a once formed ceramic body by cold isostatic pressing, a special processing apparatus is required, so that it cannot be easily used.
[0008]
Even if it is not based on physical processing, the method using the core pin requires a self-supporting and extracting process of the pin, and the production efficiency is low. Other methods also cannot be used easily because they require special processing equipment and preconditions.
[0009]
The present invention has been made in view of the above-described circumstances, and an object thereof is to provide a hole-forming member for a ceramic fired body that can easily form holes in the ceramic fired body, and a method for producing a ceramic fired body having holes. Is to provide.
[0010]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the invention according to claim 1, after placing the hole forming member in the ceramic mold, injecting the ceramic slurry, and drying the ceramic slurry to obtain a ceramic dried body, In the manufacturing process of a ceramic fired body having holes, by firing the dried body to obtain a ceramic fired body, the hole forming member protrudes from the base member and the base member, and is capable of self-supporting when the ceramic slurry is injected. The gist is to have a thread-like member.
[0011]
The gist of the invention described in claim 2 is that, in the invention described in claim 1, the thread-like member is combustible.
According to a third aspect of the present invention, the hole forming member according to the first or second aspect is disposed in a ceramic mold, the ceramic slurry is injected, and the ceramic slurry is dried to obtain a dried ceramic body. Thereafter, the pore-forming member was removed from the dried body, and the dried body was fired to obtain a ceramic fired body.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments embodying the present invention will be described below with reference to FIGS.
As shown in FIG. 1, the hole forming member 1 of the ceramic fired body has a base member 2 having a plastic square plate shape, and a plurality of thread-like members 3 protruding from the base member 2 into an elongated cylindrical shape. ing. The diameter of the thread-like member 3 is 100 μm, and the cross-sectional shape of the cross section is a perfect circle. In this figure, it is enlarged and displayed for explanation.
[0013]
The thread-like member 3 is self-supporting at regular intervals, and the material thereof is a polyfluorinated material having a water absorption of 0.01% by mass, a contact angle with water of 82 °, and a Young's modulus at 25 ° C. of 1.0 GPa. Vinylidene.
[0014]
The thread-like member 3 is self-supporting with a certain interval, but the interval can be arbitrarily set. Further, the interval is not constant, and an arbitrary interval may be set individually. For example, they can be arranged at intervals of 0.5 μm, 20 μm, and 1000 μm. Moreover, the number is not specifically limited, The 1 or 2 or more thread-like member 3 can be arrange | positioned.
[0015]
The cross section of the thread member 3 is not limited to a perfect circle, but may be an ellipse, a semicircle, a crescent moon, or the like. Moreover, polygons, such as a rectangle and a hexagon, may be sufficient. Further, the shape is not limited to a straight line shape, and any shape such as a spiral shape or a ring shape can be used.
[0016]
The length of the thread-like member 3 is not particularly limited and can be arbitrarily set. By adjusting the length of the thread member 3, the depth of the hole 11 provided in the ceramic fired body 6 can be adjusted.
[0017]
The material of the thread-like member 3 is not limited to polyvinylidene fluoride, such as polyamide, polyester, acrylic resin, polyethylene, polypropylene, polyvinylidene chloride and the like, carbon nanotube, carbon fiber, silicon carbide, alumina, metal, glass, cotton, etc. It can be arbitrarily set as long as it is in the form of threads, such as natural fibers and whiskers.
[0018]
The water absorption rate of the filamentous member 3 is preferably 3% by mass or less, more preferably 1.5% by mass or less, and most preferably 0.5% by mass or less. When it exists in this range, it can suppress that the water | moisture content in the composition of the ceramic slurry 4 inject | poured around the thread-like member 3 at the time of ceramic shaping | molding is absorbed by the thread-like member 3. If the water absorption rate of the thread-like member 3 exceeds 3% by mass, the ceramic slurry 4 is dehydrated and loses fluidity.
[0019]
Examples of water absorption of 3% by mass or less include polyvinylidene fluoride (0.01% by mass), polyamide (1.3% by mass), polycarbonate (0.24% by mass), and polymethyl methacrylate (0.35). Mass%), polypropylene (0.02 mass%), plastics such as polytetrafluoroethylene (0.0 mass%), carbon nanotubes (0.0 mass%), carbon fibers (0.0 mass%), carbonized Ceramics such as silicon (0.0 mass%), alumina (0.0 mass%), iron (0.0 mass%), copper (0.0 mass%), stainless steel (0.0 mass%), etc. A metal, glass (0.0 mass%), etc. are mentioned.
[0020]
The contact angle of the thread-like member 3 with water is preferably 35 ° or more, more preferably 60 ° or more, and most preferably 80 ° or more. When in this range, it becomes easy to pull out the thread-like member 3 from the ceramic dried body 5 obtained by solidifying the ceramic slurry 4. When the contact angle is less than 35 °, when the thread-like member 3 is pulled out from the ceramic dried body 5, the ceramic dried body 5 adheres to the thread-like member 3 and is difficult to pull out.
[0021]
Examples of the contact angle with water of 35 ° or more include polyvinyl chloride (87 °), polyvinylidene chloride (80 °), polyamide (77 °), polyvinyl alcohol (36 °), polyethylene (87 °), Examples include polypropylene (94 °), polyvinyl fluoride (80 °), polyvinylidene fluoride (82 °), polytrifluoride ethylene (92 °), and polytetrafluoroethylene (108 °).
[0022]
The thread-like member 3 is preferably flammable. When the thread-like member 3 is pulled out from the ceramic dried body 5, the thread-like member 3 may be cut and left in the ceramic dried body 5. Since the thread-like member 3 is flammable, the thread-like member 3 disappears simultaneously with the firing of the ceramic dry body 5 and therefore does not remain in the ceramic fired body 6.
[0023]
Examples of the combustible thread-like member 3 include polyvinylidene fluoride, polyamide, polyester, acrylic resin, polyethylene, polypropylene, polyvinylidene chloride and other natural fibers such as cotton.
[0024]
The Young's modulus at 25 ° C. of the filamentous member 3 is preferably 300 M to 1500 GPa, more preferably 500 M to 1500 GPa, and most preferably 800 M to 1500 GPa. The Young's modulus is given by the following equation when a force (F) is applied to an object having a cross-sectional area (S) and the original length (L) is extended by (ΔL).
[0025]
Young's modulus E = (F / S) / (ΔL / L)
When the Young's modulus of the thread-like member 3 at 25 ° C. is 300 M to 1500 GPa, the thread-like member 3 remains self-supported even when the ceramic slurry 4 is injected into the periphery. The shape of 13 becomes constant. When the Young's modulus is less than 300 MPa, when the ceramic slurry 4 is injected, the thread-like member 3 cannot stand by itself, and the shape of the holes formed in the ceramic dried body 5 does not become constant. On the other hand, when the Young's modulus exceeds 1500 GPa, it becomes difficult to manufacture the thread-like member.
[0026]
Examples of those having a Young's modulus at 25 ° C. of 300 M to 1500 GPa include ABS resin (2.1 GPa), polycarbonate (6.7 GPa), polystyrene (3.5 GPa), high-density polyethylene (1.5 GPa), and polyvinylidene fluoride ( 1.0 GPa), iron (206 GPa), titanium (116 GPa), copper (123 GPa), aluminum (69 GPa), silicon (105 GPa), silver (73 GPa), gold (80 GPa), glass (73 GPa), carbon nanotube (980 GPa) Etc.
[0027]
Any method can be used as a method of arranging the thread-like member 3 on the base member 2. For example, there is a method in which an adhesive or the like is applied to one end of the thread-like member 3 cut to an appropriate length and adhered to the base member 2. As another method, first, as shown in FIG. 5A, a band-shaped base member 2a having a narrower width than the target base member 2 and an insertion member 7 having the same shape as the band-shaped base member 2a, Are arranged in parallel and the thread-like member 3 is wound. Next, as shown in FIG. 5B, the band-shaped base member 2a and the thread-shaped member 3 are bonded to each other by an adhesive 8 on both side surfaces of the band-shaped base member 2a. FIG. 6 shows a perspective view of the state of FIG. 5B (FIG. 5B is a cross-sectional view taken along line AA of FIG. 6). After the adhesive 8 is cured, the insertion member 7 is extracted as shown in FIG. 5C, and the folded portion of the thread-like member 3 is cut as shown in FIG. 5D to obtain the hole forming member piece 1a. As shown in FIG. 5 (e), the side surface of the plurality of hole forming member pieces 1a thus prepared and the side surface of the plurality of interlayer base members 2b having the same shape as the strip-shaped base member 2a are interlayer adhesives. There is a method in which the hole forming member 1 is obtained by alternately adhering by 9.
[0028]
The ceramic fired body 6 is manufactured as follows. As shown in FIG. 2, first, the side surface of the base member 2 of the hole forming member 1 is placed on the inner side of the square cylindrical ceramic mold 10 so that the self-supporting surface of the thread-like member 3 faces upward. The inner side surface is slidably contacted. Subsequently, the ceramic slurry 4 is injected into the ceramic mold 10. At this time, the thread-like member 3 remains self-supporting.
[0029]
The ceramic slurry 4 is obtained by dispersing ceramic powder in water with a dispersant or a binder, and the composition thereof is as shown below, for example.
Composition of ceramic slurry 4: 800 parts by weight of high-purity alumina having a purity of 99.9%, 400 parts by weight of polyester resin as a binder, 8 parts by weight of self-emulsifying polyamide, and 150 parts by weight of water.
[0030]
In the composition of the ceramic slurry 4, zirconia (ZrO 2 ), silicon nitride (Si 3 N 4 ) or the like may be used instead of alumina. As the binder, in addition to the polyester resin, an epoxy resin, a phenol resin, a melamine resin, a polyimide resin, a silicone resin, and the like may be used in consideration of compatibility with ceramics and binder performance.
[0031]
And it heats at 80 degreeC for 20 minutes in the state. The ceramic slurry 4 is solidified by heating to obtain a ceramic dried body 5. Thereafter, as shown in FIG. 3, the hole forming member 1 and the ceramic dried body 5 are moved relative to the ceramic mold 10, that is, the bottom surface of the hole forming member 1 is pushed in the direction of the upward arrow shown in the figure. The hole forming member 1 and the ceramic dried body 5 are taken out from the ceramic mold 10. Then, as shown in FIG. 4, the ceramic dried body 5 having the through holes 13 is obtained by pulling out the ceramic dried body 5 from the thread-like member 3. By firing the ceramic dry body 5 at 1500 ° C. for 10 hours, a ceramic fired body 6 having holes 11 penetrating in one direction as shown in FIG. 7 is obtained. As described above, the hole forming member 1 of the ceramic fired body is used in the manufacturing process of the ceramic fired body 6 having the holes 11.
[0032]
This embodiment can exhibit the following effects.
A hole forming member 1 of a ceramic fired body used by being placed in a ceramic mold 10 into which the ceramic slurry 4 is injected projects from the base member 2 and the base member 2 and can be self-supporting when the ceramic slurry 4 is injected. A plurality of thread-like members 3. For this reason, the manufacturing of the ceramic fired body 6 having the holes 11 is facilitated without requiring machining or special equipment.
[0033]
-When the thread-like member 3 is flammable, even when the thread-like member 3 is cut and left in the ceramic dried body 5 when the thread-like member 3 is pulled out from the ceramic dried body 5, the thread-like member 3 is ceramic. Since it disappears at the same time when the dried body 5 is fired, it does not remain in the ceramic fired body 6.
[0034]
-By injecting and molding the ceramic slurry 4 into the hole forming member 1, the ceramic fired body 6 having the holes 11 can be easily manufactured without requiring machining or special equipment.
[0035]
-Since the thread-like member 3 has a water absorption rate of 3% by mass or less, the thread-like member 3 absorbs moisture in the composition of the ceramic slurry 4 injected around the thread-like member 3 during the molding of the ceramic. Can be suppressed.
[0036]
The thread-like member 3 can be easily pulled out from the ceramic dried body 5 by the contact angle of the thread-like member 3 with water being 35 ° or more.
When the Young's modulus of the thread-like member 3 at 25 ° C. is 300 M to 1500 GPa, the thread-like member 3 remains self-supported even when the ceramic slurry 4 is injected, so the through-holes 13 formed in the ceramic dried body 5 The shape can be made constant.
[0037]
Since the arrangement of the holes 11 to be formed in the ceramic fired body 6 can be controlled by the arrangement of the thread-like members 3 in the base member 2, the arrangement of the holes 11 formed in the ceramic fired body 6 can be freely determined. .
[0038]
In addition, the said embodiment can also be changed and comprised as follows.
The base member 2 is not limited to being made of plastic but can be arbitrarily set. For example, paper or metal may be used.
[0039]
The base member 2 is not limited to a square plate shape, and can be arbitrarily set according to the shape of the ceramic fired body 6 to be formed. For example, a disc shape or a polygonal plate shape may be used.
The diameter of the thread-like member 3 is not limited to 100 μm and can be arbitrarily set. Moreover, you may use combining a thing from which a diameter differs. For example, 0.1 μm, 50 μm, and 1000 μm can be used in combination.
[0040]
The thread-like member 3 may be a composite body in which two kinds of thread-like members 3 having different shrinkage rates are integrated.
When configured in this manner, the thread-like member 3 is deformed into a spiral structure by heating due to a difference in shrinkage rate, so that a spiral hole can be formed. When the thread-like member 3 having a helical structure from the beginning is used, the ceramic slurry 4 may not be injected into the inside of the helical structure due to its surface tension, but initially it is linear and deforms into a helical structure after heating. The ceramic slurry 4 can also be injected inside the spiral structure.
[0041]
-In the said embodiment, although the hole 11 has penetrated the ceramic sintered body 6, it does not need to be penetrated.
In the embodiment, the thread-like member 3 is pulled out from the ceramic dry body 5. However, when the thread-like member 3 is flammable, the thread-like member 3 and the thread-like member 3 are not pulled out from the ceramic dry body 5. The member 3 may be cut and fired as it is.
[0042]
By comprising in this way, the process of pulling out the said thread-like member 3 from the ceramic dry body 5 can be skipped.
In the above case, when the thread member 3 and the base member 2 are flammable, the base member 2 and the thread member 3 may be fired as they are without being cut.
[0043]
By comprising in this way, the process of pulling out the thread-like member 3 from the ceramic dried body 5 can be omitted, and the process of cutting the base member 2 and the thread-like member 3 can also be omitted.
[0044]
-In the said embodiment, although the ceramic shaping | molding die 10 was a square cylinder shape, a bottomed square cylinder shape may be sufficient. Further, the shape of the bottom surface is not limited to a square and may be a polygon or a circle.
[0045]
When the ceramic mold 10 is a bottomed square cylinder, it may be arranged on the upper part of the ceramic mold 10 with the thread-like member 3 facing downward as shown in FIG.
[0046]
-In the said embodiment, although the thread-like member 3 is made to protrude from the base member 2, as shown in FIG.8 (b) or (c), the bottom wall 12 or side wall of the bottomed square cylinder-shaped ceramic shaping | molding die 10 You may make it protrude from 14. Further, it may protrude from both the bottom wall 12 and the side wall 14. In this case, the combustible thread-like member 3 is used, the ceramic slurry 4 is poured into the ceramic mold 10 and dried, and then the ceramic dried body 5 is fired as it is without being taken out from the ceramic mold 10. The filamentary member 3 disappears by firing, and a ceramic fired body 6 having holes 11 is obtained.
[0047]
When comprised in this way, the ceramic sintered body 6 which has the hole 11 in a some surface is obtained.
Next, technical ideas other than the invention described in the claims that can be grasped from the embodiment will be described together with their effects.
[0048]
(1) The hole forming member for a ceramic fired body according to claim 1 or 2, wherein the thread-like member has a water absorption of 3% by mass or less.
When comprised in this way, the spin-drying | dehydration from the ceramic slurry inject | poured around the threadlike member can be suppressed.
[0049]
(2) A hole forming member for a ceramic fired body according to any one of claims 1, 2 and (1), wherein a contact angle of the thread-like member with water is 35 ° or more. .
[0050]
When comprised in this way, a thread-like member can be easily extracted from a ceramic dry body.
(3) A Young's modulus at 25 ° C. of the thread-like member is 300M to 1500GPa, and the ceramic fired body according to any one of claims 1 and 2, and (1) and (2) above Hole forming member.
[0051]
In such a configuration, since the thread-like member can be self-supported even when ceramic slurry is injected, the shape of the hole formed in the ceramic dried body is constant.
(4) The hole forming member for a ceramic fired body according to claim 2, wherein the base member is combustible.
[0052]
When comprised in this way, the process of pulling out the said thread-like member from a ceramic dry body can be skipped.
(5) The ceramic sintered body according to any one of (1) to (4) above is disposed in the ceramic mold, the ceramic slurry is injected, the ceramic slurry is dried, and the ceramic is dried. A method for producing a ceramic fired body having holes, comprising: obtaining a body, removing the hole forming member from the dried body, and firing the dried body to obtain a ceramic fired body.
[0053]
When configured in this way, holes can be easily formed without requiring machining or special equipment.
[0054]
【The invention's effect】
Since this invention is comprised as mentioned above, there exist the following effects.
According to the hole forming member of the ceramic fired body of the first aspect of the present invention, holes can be easily formed in the ceramic fired body without requiring machining or special equipment.
[0055]
According to the hole-forming member of the ceramic fired body of the invention described in claim 2, in addition to the effect of the invention of claim 1, the thread-like member is cut when the thread-like member is pulled out from the ceramic dried body, and the ceramic dried Even when left in the body, it disappears at the same time when the ceramic dried body is fired, so it does not remain in the ceramic fired body.
[0056]
According to the method for producing a ceramic fired body having holes according to claim 3, the ceramic fired body having holes is machined using the hole forming member of the ceramic fired body according to claim 1 or 2. And can be manufactured easily without the need for special equipment.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a hole forming member of a ceramic fired body according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view showing a state in which a hole forming member is arranged in a ceramic mold and a ceramic slurry is poured therein.
3 is a cross-sectional view showing a state in which a hole forming member and a ceramic dry body are pushed in from the state of FIG. 2;
4 is a cross-sectional view showing a state in which a ceramic dried body is pulled out from the state of FIG. 3;
FIGS. 5A to 5E are cross-sectional views showing an example of a procedure for allowing a thread-like member to stand on a base member.
6 is a perspective view showing the state of FIG.
FIG. 7 is a perspective view showing a ceramic fired body having holes.
FIGS. 8A to 8C are cross-sectional views showing other examples of a state in which a hole forming member is arranged in a ceramic mold and a ceramic slurry is poured therein, respectively.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Hole formation member of ceramic fired body, 2 ... Base member, 3 ... Thread member, 4 ... Ceramic slurry, 5 ... Ceramic dry body, 6 ... Ceramic fired body, 10 ... Ceramic molding die, 11 ... Hole.

Claims (3)

セラミック成形型内に孔形成部材を配置してセラミックスラリーを注入し、該セラミックスラリーを乾燥させてセラミック乾燥体を得た後、該乾燥体を焼成してセラミック焼成体を得る、孔を有するセラミック焼成体の製造工程において使用され、前記孔形成部材が、基部材と、該基部材から突出し、セラミックスラリーの注入時に自立可能な複数の糸状部材とを有することを特徴とするセラミック焼成体の孔形成部材。A ceramic having holes in which a hole forming member is placed in a ceramic mold, a ceramic slurry is injected, the ceramic slurry is dried to obtain a ceramic dried body, and then the dried body is fired to obtain a ceramic fired body A hole in a ceramic fired body used in a process for producing a fired body, wherein the hole forming member has a base member and a plurality of thread-like members protruding from the base member and capable of being self-supporting when the ceramic slurry is injected. Forming member. 前記糸状部材が可燃性であることを特徴とする請求項1に記載のセラミック焼成体の孔形成部材。The hole forming member for a ceramic fired body according to claim 1, wherein the thread-like member is combustible. セラミック成形型内に請求項1又は請求項2に記載の孔形成部材を配置してセラミックスラリーを注入し、該セラミックスラリーを乾燥させてセラミック乾燥体を得た後、該乾燥体から前記孔形成部材を除去し、前記乾燥体を焼成してセラミック焼成体を得ることを特徴とする孔を有するセラミック焼成体の製造方法。The hole forming member according to claim 1 or 2 is disposed in a ceramic mold, and ceramic slurry is injected. The ceramic slurry is dried to obtain a dried ceramic, and then the holes are formed from the dried body. A method for producing a ceramic fired body having holes, wherein the member is removed and the dried body is fired to obtain a ceramic fired body.
JP2003188588A 2003-06-30 2003-06-30 Hole forming member of ceramic baked body and manufacturing method for ceramic baked body having holes Pending JP2005022162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003188588A JP2005022162A (en) 2003-06-30 2003-06-30 Hole forming member of ceramic baked body and manufacturing method for ceramic baked body having holes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003188588A JP2005022162A (en) 2003-06-30 2003-06-30 Hole forming member of ceramic baked body and manufacturing method for ceramic baked body having holes

Publications (1)

Publication Number Publication Date
JP2005022162A true JP2005022162A (en) 2005-01-27

Family

ID=34187085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003188588A Pending JP2005022162A (en) 2003-06-30 2003-06-30 Hole forming member of ceramic baked body and manufacturing method for ceramic baked body having holes

Country Status (1)

Country Link
JP (1) JP2005022162A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009234061A (en) * 2008-03-27 2009-10-15 Ngk Insulators Ltd Mandrel for dry type hydrostatic pressure pressurization shaping
KR101013454B1 (en) * 2009-05-12 2011-02-14 주식회사 지오 A method and an apparatus for forming via holes into a ceramic sheet
KR101076643B1 (en) 2008-08-13 2011-10-26 티디케이가부시기가이샤 Layered ceramic electronic component and manufacturing method therefor
KR101403157B1 (en) * 2012-08-30 2014-06-27 한국에너지기술연구원 Method for producing ceramic honeycomb structure

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5782170A (en) * 1980-11-11 1982-05-22 Matsushita Electric Ind Co Ltd Ceramic material mud casting formation
JPS59225717A (en) * 1983-06-08 1984-12-18 Tokyo Shiyouketsu Kinzoku Kk Preparation of sintered filter molding material
JPS6195902A (en) * 1984-10-18 1986-05-14 アサヒ衛陶株式会社 Casting molding method of pottery and molding die thereof
JPS62227448A (en) * 1986-03-31 1987-10-06 Nippon Kinzoku Kk Preparation of catalyst carrier made of ceramic
JPS63207464A (en) * 1987-02-23 1988-08-26 Matsushita Electric Works Ltd Forming die for printing wire guide member
JPH06122107A (en) * 1992-10-12 1994-05-06 Nippon Cement Co Ltd Cast molding of ceramic
JPH08155927A (en) * 1994-12-06 1996-06-18 Mitsubishi Materials Corp Cast-molding and cast molding die
JP2000185311A (en) * 1998-12-21 2000-07-04 Takamura Sogyo Kk Production mold of residual form for concrete structure
JP2001260113A (en) * 2000-03-14 2001-09-25 Inax Corp Method for sludge cast molding of ceramics molded body

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5782170A (en) * 1980-11-11 1982-05-22 Matsushita Electric Ind Co Ltd Ceramic material mud casting formation
JPS59225717A (en) * 1983-06-08 1984-12-18 Tokyo Shiyouketsu Kinzoku Kk Preparation of sintered filter molding material
JPS6195902A (en) * 1984-10-18 1986-05-14 アサヒ衛陶株式会社 Casting molding method of pottery and molding die thereof
JPS62227448A (en) * 1986-03-31 1987-10-06 Nippon Kinzoku Kk Preparation of catalyst carrier made of ceramic
JPS63207464A (en) * 1987-02-23 1988-08-26 Matsushita Electric Works Ltd Forming die for printing wire guide member
JPH06122107A (en) * 1992-10-12 1994-05-06 Nippon Cement Co Ltd Cast molding of ceramic
JPH08155927A (en) * 1994-12-06 1996-06-18 Mitsubishi Materials Corp Cast-molding and cast molding die
JP2000185311A (en) * 1998-12-21 2000-07-04 Takamura Sogyo Kk Production mold of residual form for concrete structure
JP2001260113A (en) * 2000-03-14 2001-09-25 Inax Corp Method for sludge cast molding of ceramics molded body

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009234061A (en) * 2008-03-27 2009-10-15 Ngk Insulators Ltd Mandrel for dry type hydrostatic pressure pressurization shaping
KR101076643B1 (en) 2008-08-13 2011-10-26 티디케이가부시기가이샤 Layered ceramic electronic component and manufacturing method therefor
KR101013454B1 (en) * 2009-05-12 2011-02-14 주식회사 지오 A method and an apparatus for forming via holes into a ceramic sheet
KR101403157B1 (en) * 2012-08-30 2014-06-27 한국에너지기술연구원 Method for producing ceramic honeycomb structure

Similar Documents

Publication Publication Date Title
Colombo In praise of pores
Therriault et al. Fugitive inks for Direct‐Write assembly of Three‐Dimensional microvascular networks
US6008163A (en) Process for slip casting textured tubular structures
Leo et al. Near‐net‐shaping methods for ceramic elements of (body) armor systems
CA2124158C (en) High modulus carbon and graphite articles and method for their preparation
RU2008146855A (en) METHOD FOR PRODUCING PARTS FROM COMPOSITE MATERIAL REINFORCED BY CARBON FIBER
WO2009102815A3 (en) Alpha alumina (corundum) whiskers and fibrous-porous ceramics and method of preparing thereof
JP2006207393A (en) Heat insulator for end cone part of exhaust emission control device
CN105405964B (en) A kind of preparation method of piezoelectric fabric composite construction layer
Wu et al. Fabrication of oriented SiC‐whisker‐reinforced mullite matrix composites by tape casting
KR880000066A (en) Implants with continuous two-dimensional pores and method for manufacturing the same
JP2005022162A (en) Hole forming member of ceramic baked body and manufacturing method for ceramic baked body having holes
JP2005263537A (en) Method for manufacturing porous ceramic body having through-hole
Zhang et al. Biomorphic cellular silicon carbide nanocrystal-based ceramics derived from wood for use as thermally stable and lightweight structural materials
Zhang et al. Cuttlefish-bone-structure-like lamellar porous fiber-based ceramics with enhanced mechanical performances
US5284698A (en) Partially stabilized ZrO2 -based laminar ceramic composites
US4814127A (en) Method of producing a reinforced ceramic
Greenwood et al. A method for making alumina fibres by co-extrusion of an alumina and starch paste
KR101494071B1 (en) Method for producing porous scaffolds with unidirectionally macro-channel and porous scaffolds with unidirectionally macro-channel manufactured thereby
JP4766645B2 (en) Damping member
US20060081171A1 (en) Method for producing photonic crystal and photonic crystal
JP2003309297A5 (en)
US20130285510A1 (en) Method for fabricating piezoelectric composite material and piezoelectric power generating device
GB2334771A (en) Making a spring out of thermostructural composite material
Crumm et al. New microfabrication technique for electroactive ceramic and electrode materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090724

A131 Notification of reasons for refusal

Effective date: 20091006

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20100316

Free format text: JAPANESE INTERMEDIATE CODE: A02